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Abstract

This paper studies the question of how to define, construct, and use obfuscators for
probabilistic programs. Such obfuscators compile a possibly randomized program into a
deterministic one, which achieves computationally indistinguishable behavior from the original
program as long as it is run on each input at most once. For obfuscation, we propose a
notion that extends indistinguishability obfuscation to probabilistic circuits: It should be hard
to distinguish between the obfuscations of any two circuits whose output distributions at each
input are computationally indistinguishable, possibly in presence of some auxiliary input. We
call the resulting notion probabilistic indistinguishability obfuscation (pIO).

We define several variants of pIO, using different approaches to formalizing the above security
requirement, and study non-trivial relations among them. Moreover, we give a construction
of one of our pIO variants from sub-exponentially hard indistinguishability obfuscation (for
deterministic circuits) and one-way functions, and conjecture this construction to be a good
candidate for other pIO variants. We then move on to show a number of applications of pIO:

• We give a general and natural methodology to achieve leveled homomorphic encryption
(LHE) from variants of semantically secure encryption schemes and of pIO. In particular,
we propose instantiations from lossy and re-randomizable encryption schemes, assuming the
two weakest notions of pIO.

• We enhance the above constructions to obtain a full-fledged (i.e., non-leveled) FHE scheme
under the same (or slightly stronger) assumptions. In particular, this constitutes the first
construction of full-fledged FHE that does not rely on encryption with circular
security.

• Finally, we show that assuming sub-exponentially secure puncturable PRFs computable
in NC1, sub-exponentially-secure indistinguishability obfuscation for (deterministic) NC1

circuits can be bootstrapped to obtain indistinguishability obfuscation for arbitrary
(deterministic) poly-size circuits.
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1 Introduction

Program obfuscation, namely the algorithmic task of turning input programs into “unintelligible”
ones while preserving their functionality, has been a focal point for cryptography for over a
decade. However, while the concept is intuitively attractive and useful, the actual applicability of
obfuscation has been limited. Indeed, the main notion to be considered has been virtual black box
(VBB) [BGI+12] which, while natural and intuitively appealing, is very strong, hard to satisfy, and
also not easy to use. In fact, for many program classes of interest, VBB obfuscation is unattainable
[BGI+12, GK05, BCC+14].

All this changed with the recent breakthrough results of [GGH+13, SW14]. Their contribution
is twofold: First they demonstrate a candidate general obfuscation algorithm for all circuits, thus
reviving the hope in the possibility of making good of the initial intuitive appeal of program
obfuscation as an important and useful cryptographic primitive. Second, they demonstrate
how to make use of a considerably weaker notion of secure obfuscation than VBB, namely
indistinguishability obfuscation (IO), initially defined in [BGI+12]. Indeed, following [GGH+13,
SW14] there has been a gush of works demonstrating how to apply IO to a plethora of situations
and applications, and even resolving long standing open problems.

Obfuscating probabilistic programs. Still, exiting notions of obfuscation, VBB and IO
included, predominantly address the task of obfuscating deterministic programs. That is, the
program to be obfuscated is a sequence of deterministic operations. This leaves open the question
of obfuscating probabilistic programs, namely programs that make random choices as part of their
specification, and whose output, on each input, is a random variable that depends on the internal
random choices.

A priori it may not be clear what one wants to obtain when obfuscating such programs, or
why is the problem different than that of obfuscating deterministic programs. Indeed, why not just
obfuscate the deterministic program that takes both “main” and “random” input, and leave it to
the evaluator to choose some of the input at random, if it so desires?

The main drawback of this approach is that it does not allow the obfuscation mechanism to
hide the random choices of the program from the evaluator. Consider for instance the task of
creating a program that allows generating elements of the form gr, hr for a random r, where g, h
are two generators of a large group, and where r should remain hidden even from the evaluator
of the program. Alternatively, consider the task of obfuscation-based re-encryption: Here we wish
to “obfuscate” the program that decrypts a ciphertext using an internal decryption key, and then
re-encrypts the obtained plaintext under a different key, using fresh randomness — all this while
keeping the plaintext hidden from the evaluator.

Indeed, in both these examples, the goal is to create an obfuscation mechanism with two
additional properties, stated very informally as follows: (a) the internal random choices of the
obfuscated program should “remain hidden” from the evaluator, up to what is learnable from the
output, and (b) the random choices of the program should remain “ random”, or “unskewed”, as
much as possible.

How can we define these properties in a sensible way? Barak et al. [BGI+12] take a first stab
at this challenging task by defining the concept of obfuscators for sampling algorithms, namely
algorithms that take only random input and at each execution output a sample from a distribution.
Essentially, their definition requires that the (one bit) output of any adversary that has access to
an obfuscated version of such a sampling algorithm be simulatable given only poly-many random
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samples from the distribution. However, while this definition does capture much of the essence
of the problem, it is subject to essentially the same unattainability results that apply to VBB
obfuscation.

Probabilistic IO. We propose an alternative definition for what it means to obfuscate probabilistic
circuits. Our starting point is IO, rather than VBB, and hence we refer to the resulting general
notion as indistinguishability obfuscation for probabilistic circuits, or pIO for short. This both
reduces the susceptibility to unattainability results and allows making stronger distributional
requirements on the outputs.

The basic idea is to compile a randomized circuit, namely a circuit C that expects an input x
and a uniformly chosen random input r, returning the random variable C(x, r), into a deterministic
obfuscated circuit Λ = O(C) that has essentially the same functionality as the original circuit —
with the one caveat that if Λ is run multiple times on the same input then it will give the same
output. The security requirements from a pIO obfuscator O for a family of circuits C are three:
First, polynomial slowdown should hold as usual. Second, functionality should be preserved in the
sense that for any C ∈ C and for any input x it should hold that C(x) ≈c Λ(x). Note that in
C(x) the probability is taken over the random choices of C (i.e., the sampling of r), whereas Λ is
a deterministic circuit and the probability is taken only over the random choices of O. (In fact
we make the stronger requirement that no efficient adversary can distinguish whether it is given
access to the randomized oracle C(·) or the deterministic oracle Λ(·), as long as it does not submit
repetitive queries to the oracles.)

Third, obfuscation should hold in the sense that O(C1) ≈c O(C2) for any two circuits C1 and
C2 where the output distributions of C1(x) and C2(x) are “similar” for all inputs x, where similar
means in general computationally indistinguishable. This property is trickiest to define, and to
stress this even further, we note that the indistinguishability of O(C1) and O(C2) does not follow
from IO even if the distributions of C1(x) and C2(x) are identical. Another important aspect is that
we often need to consider programs that are parameterized by some additional system parameters,
such as a public key of a cryptosystem. We thus extend the definition to consider also families of
circuits with auxiliary input.

Concretely, we follow the approach of [BST14, ABG+13] capturing the strength of an IO
algorithm O in terms of the distributions on triples (C1, C2, z) on which it succeeds in making
O(C1) and O(C2) indistinguishable (given z). With this framework at hand, we consider four
variants of the above intuitive notion, depending on the specific notion of indistinguishability of
probabilistic circuits assumed on the distribution. The four variants we consider differ in the
level of adaptivity in choosing the inputs on which the programs are run in the experiment that
determines whether programs are indistinguishable—they are correspondingly called dynamic-input
pIO, worst-case-input pIO, memory-less worst-case-input pIO, and X-indistinguishable static-input
pIO or X-pIO for short (see definitions in Section 1.1).

A construction for X-pIO. For X-pIO, as our first main result, we prove the existence of
a X-pIO scheme, given any IO scheme. The scheme is natural: X-piO(C) is the result of
applying an indistinguishability obfuscator to the following circuit. First apply the puncturable
PRF to the input x to obtain a pseudorandom value r, using a hard-coded PRF secret key.
Next, we run the circuit C on input x and random input r. We show by reduction that if
the underlying IO and puncturable PRF are sub-exponentially secure then the scheme is X-pIO.
Noting that subexponentially-secure puncturable PRFs are implied by subexponentially-hard one-
way functions, we obtain the following theorem.
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Theorem 1 (Informal) Assume the existence of a subexponentially-hard indistinguishability
obfuscator for (deterministic) circuits and one-way functions. Then, X-pIO exist.

Furthermore, one can also consider the same natural construction as a candidate implementation
of any of the other variants of pIO.

Applications: FHE and Bootstrapping. To demonstrate the usefulness of pIO we present two
natural applications of the notion, which are arguably of independent interest.

Our first application (see Section 1.2) is to construct fully homomorphic encryption schemes.
Here we provide a natural construction of fully homomorphic encryption from pIO (or, in turn from
sub-exponentially secure IO and puncturable PRFs.) In fact, we provide the first full-fledged
FHE scheme that does not rely on circular security assumptions for encryption. More
precisely, we obtain the following theorem:

Theorem 2 (Informal) Assume the existence of a sub-exponentially secure indistinguishability
obfuscator for (deterministic) circuits, and sub-exponentially secure one-way functions.

• Any perfectly rerandomizable encryption scheme can be transformed into a leveled homomorphic
encryption scheme.

• Any perfectly rerandomizable encryption scheme that is slightly super-polynomially secure can
be transformed into a fully homomorphic encryption scheme.

The above theorem is, in fact, a special case of a general transformation that constructs FHE
schemes in two steps. In the first step, we show how to obtain leveled homomorphic encryption
(LHE), where only a prespecified number of homomorphic operations can be made securely. The
basic idea is to use pIO to transform an underlying encryption scheme with some mild structural
properties (such as rerandomizability) into an LHE. We give a number of different instantiations
of the general scheme, where each instantiation uses a different variant of pIO and a different type
of encryption scheme as a starting point.

The second step transforms the resulting LHE into a full-fledged FHE, again assuming IO
and puncturable PRFs. (All primitives from LHE to IO to PRFs are required to be slightly
super-polynomially secure.) While this transformation works in general for any LHE with a-
priori fixed polynomial decryption depth, it is particularly suitable for LHEs that result from
our pIO based construction in that it uses the same underlying primitives and assumptions. These
constructions use in an inherent way the concept of obfuscation of randomized circuits, and in
particular probabilistic IO.

As a second application, discussed in Section 1.3, we consider variants of bootstrapping,
transforming IO obfuscation (both probabilistic and not probabilistic) for weak classes (such as
low-depth circuits) into obfuscation for arbitrary polynomial-size circuits.

Organization. The rest of this introduction gives a detailed high-level and self-contained overview
of the contributions of this paper, both at the definitional level, as well as in terms of applications.

Further down, Section 2 presents our definitions of pIO and studies relations among them.
Moreover, it presents the construction of X-pIO from IO and puncturable PRFs. Section 3 and 4
present the application to FHE and bootstrapping IO.
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Figure 1: Notions of obfuscation for probabilistic circuits: Gray boxes correspond to existing
notions, whereas purple ones correspond to notions introduced in this paper. Arrows indicate
implication, whereas lack of arrows among azure boxes implies a formal separation. The thicker
line indicates that the implication holds under the assumption of subexponentially-hard puncturable
PRFs, which in turn, follow from subexponentially-hard one-way functions.

1.1 Our Definitional Framework: IO for Probabilistic Circuits

The first contribution of this paper, found in Section 2, is the definition and study of IO notions for
probabilistic circuits, or pIO. For our purposes, a probabilistic obfuscator piO transforms a (usually
probabilistic, i.e. randomized) circuit C into a deterministic circuit Λ := piO(C) with the property
that Λ(x) is computationally indistinguishable from C(x) the first time it is invoked, even when
the circuits are invoked as oracles multiple times on distinct inputs. (Across multiple calls with
the same input, Λ(x) returns the same value over and over, whereas C(x) returns a fresh random
output.)

As for security, we want to ensure indistinguishability of piO(C0) and piO(C1) whenever C0(x)
and C1(x) are computationally indistinguishable for every input x, rather than identical as in IO.
However, formalizing this concept is challenging, due to the exponential number of inputs and the
fact that C0, C1 are usually chosen from some distribution.

Four pIO notions. Following the approach of [BST14, ABG+13], we capture different pIO notions
via classes of samplers, where such a sampler is a distributions D (parametrized by the security
parameter) outputting triples (C0, C1, z), such that C0, C1 are circuits, and z is some (generally
correlated) auxiliary input. Different pIO notions result from different requirement in terms of
the class of samplers for which a certain obfuscator piO guarantees indistinguishability of the
obfuscations of C0 and C1 (given the auxiliary input z), in addition to the above correctness
requirement. Concretely, we consider four main sampler classes matching different approaches to
formalizing the above computational indistinguishability requirement on all inputs, resulting in four
different notions:

Dynamic-input pIO (d-pIO). A d-pIO obfuscator is required to work on samplers D such that
any PPT attacker, given a triple (C0, C1, z) sampled from D, cannot find (adaptively) an input
x for which, when given additionally Cb(x) for a random b, it can guess the value of b with
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noticeable advantage over random guessing.

Worst-case-input pIO (w-pIO and mw-pIO). A w-pIO obfuscator weakens the above notion
by only working on samplers for which the above indistinguishability requirement holds for
(much) stronger attackers where the choice of x after sampling (C0, C1, z) is made without
any computational restrictions, whereas the final guess, after learning Cb(x), is restricted to
be polynomial-time. This captures the fact that the choice of the input x is worst case as to
maximize the guessing probability in the second stage. It turns out that it makes a difference
whether the first, computationally unbounded stage can pass a state (in addition to the chosen
input x) to the computationally bounded stage. The (stronger) notion where we enlarge our
sampler class to only require indistinguishability for attackers not passing such state is referred
to as memory-less worst-case-input pIO (or mw-pIO for short).

X-Ind pIO (X-pIO). The last notion takes a different path. Here, we weaken the adversary to
choose the input x before seeing (C0, C1, z). While this alone enlarges the class too much,
resulting in an unachievable notion, we additionally require the guessing advantage of the
attacker to be very small, smaller than negl · X−1, for some negligible function, where X
is the number of inputs of the circuits. The requirement on the small distinguishing gap
seems stringent and leads to a weak notion. However, we show that this notion is essentially
optimal in the sense that when static input choices are considered, there are specific samplers
with distinguishing gaps 1/poly · X−1 for which indistinguishability obfuscation is impossible
(unconditionally).

In a sequence of steps, we prove that d-pIO implies mw-pIO, and mw-pIO implies both w-pIO and
X-pIO, but the latter two notions do not imply each other. These relations are summarized in
Figure 1 below. The fact that mw-pIO implies X-pIO is surprising at first, as on one hand we are
restricting the power of the attacker, but on the other hand we are simplifying its task by choosing
our barrier at negl/X advantage, and it is not clear what prevails.

The notion of d-pIO is a natural generalization of the notion of differing inputs obfus-
cation [BGI+12, BCP14, ABG+13], and therefore directly suffers from recent implausibility
results [GGHW14] in its most general form. In contrast, achievability of mw-pIO and the even
weaker notion of w-pIO is not put in question by similar results, and the original IO notion is
recovered from both w-pIO and mw-pIO when restricting them to deterministic circuits only. We
in fact feel comfortable in conjecturing that w-pIO is achieved by a construction first transforming
a randomized circuit C into a deterministic one Dk(x) = C(x;PRF(k, x)) for a PRF key k, then
applying an existing obfuscator O to Dk, such as those from [GGH+13, BGK+14, BR13].

X-Ind pIO from sub-exponential IO. The main technical result of this part is a proof that for
X-pIO, the above approach indeed provably yields a secure obfuscator if the PRF is puncturable
and if the obfuscator O = iO is an IO, as long as additionally PRF and iO are subexponentially
secure. In this context, sub-exponential means that no PPT attacker can achieve better than
sub-exponential advantage, an assumption which we believe to be reasonable.

Consider two circuits C1, C2 sampled satisfying the indistinguishability requirement imposed
by X-Ind pIO, their obfuscation are the IO obfuscated programs Λ1,Λ2 of the two derandomized
circuits Dk

1 , D
k
2 . The challenge lies in how to apply the security guaranetees of IO on two circuits

Dk
1 , D

k
2 that have completely different functionality. Our hope is to leverage the fact that the

original circuits C1, C2 are strongly indistinguishable together with the sub-exponential pseudo-
randomness of PRF; indeed, when the PRF key is sufficiently long, it holds that for every x, the
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output pair Dk
1(x) and Dk

2(x) is 1
X2ω(log(λ))

-indistinguishable. Thus by a simple union bound over

all X inputs, even the entire truth tables
{
Dk1

1 (x)
}

,
{
Dk2

2 (x)
}

are indistinguishable. However,

even given such strong guarantees, it is still not clear how to apply IO.
We overcome the challenge by considering a sequence of X + 1 hybrids {Hi}, in which we

obfuscate a sequence of “hybrid circuits”
{
Eki (x)

}
that “morph” gradually from Dk

1 to Dk
2 . More

specifically, circuit Eki evaluates the first i inputs using Dk
2 , and the rest using Dk

1 . In any two
subsequent hybrids, the circuits Eki−1 and Eki only differ at whether the i’th input is evaluated using

Dk
1 or Dk

2 . Consider additionally two auxiliary hybrids H+
i−1, H

+
i where two circuits F

k−i,y
i−1 , F

k−i,y′

i

modified from Eki−1, E
k
i are obfuscated; they proceed the same as Eki−1, E

k
i respectively, except

that they use internally a PRF key k−i punctured at point i, and output directly y and y′ for
input i respectively. Then, when y and y′ are programmed to be exactly y = Eki−1(i) = Dk

1(i)
and y′ = Eki (i) = Dk

2(i), the two circuits compute exactly the same functionality as Eki−1, E
k
i .

By IO, these auxilary hybrids are indistinguishable from hybrids Hi−1 and Hi respectively. Then,
by the fact that y = Eki−1(i) = Dk

1(i) and y′ = Eki (i) = Dk
2(i) are indistinguishable (which in

turn relies on the pseudo-randomness of the PRF function), the two auxiliary hybrids H+
i−1, H

+
i

are indistinguishable, and thus so are Hi−1 and Hi. Furthermore, since the distinguishing gap of
IO and PRF are bounded by 1

X2ω(log λ)
, it follows from a hybrid argument that H0 and HX , which

contain the IO obfuscations of Dk
1(x) and Dk

2(x), respectively, are 1
2ω(log λ)

- indistinguishable.
We emphasize that the reason that we require the underlying primitives, namely IO and

puncturable PRF, to be subexponentially secure is because the above hybrid argument essentially
“enumerates” over all inputs in the domain of C1 and C2. In fact, with a closer examination,
for two specific circuits C1, C2, it suffices to “enumerate” over all “differing inputs” for which the
distribution of C1(x) and C2(x) are different.

1.2 Application 1: Fully-Homomorphic Encryption

The first testbed for our pIO notions, discussed in Section 3, is a generic construction of leveled
homomorphic-encryption (or LHE, for short) from a regular encryption scheme. We are then
going to boost this to achieve fully-homomorphic encryption (FHE) without any circular security
assumptions using a technique of independent interest.

The LHE construction. When trying to build a LHE scheme using ofuscation, the following
natural and straightforward idea came up immediately. Starting from a CPA-secure encryption,
we generate public-key and secret-key pairs for all levels (pk0, sk0), . . . , (pkL, skL), and then, as
part of the evaluation key, add for every level i ∈ {1, . . . , L}, the pIO obfuscation of the circuit
Prog(ski−1,pki) which takes two ciphertexts α = Enc(pki−1, a) and β = Enc(pki−1, b) (where a and b
are bits), decrypts them using ski−1, and then outputs a fresh encryption c = Enc(pki, a NAND b).
The outputs of this circuit, given ski−1 and pki (but not ski) are computationally indistinguishable
from those of a “trapdoor” circuit tProg(pki) which instead ignores its inputs, and simply
outputs a fresh encryption c = Enc(pki, 0) of 0. Note that this circuit is independent of ski−1.
We therefore hope that by relying on some pIO notion for the sampler Dski−1 that outputs
(Prog(ski−1,pki), tProg(pki), pki) (and through a careful hybrid argument), one might transform the
honest evaluation key to one that contains only obfuscations of the “trapdoor” circuits; in the latter
case, since the evaluation key depends only on public keys, the semantic security of the LHE scheme
reduces down to that of the underlying CPA scheme. The nice feature of this approach is that it
builds on top of any already existing encryption scheme (say ElGamal), and that for all levels,
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ciphertexts are of the same type and size. A similar generic approach was for example abstracted
in the work of Alwen et al. [ABF+13], and proved secure under ad-hoc obfuscation assumptions.

Unfortunately, it turns out that the above approach generically works for every CPA-secure
scheme only when using d-pIO, which, as we discussed above, is somewhat brittle. Indeed, the
above sampler Dski−1 is not contained in the classes associated with X-pIO and w-pIO. With
respect to X-pIO there is no guarantee that encryptions (of values (a NAND b) or 0) are negl/X
close to each other (note that here the domain size X corresponds to the length |α| + |β| of the
two input ciphertexts). It seems that to fix the problem, one could simply re-encrypt under an
encryption scheme which is negl/X secure (which exists assuming sub-exponentially secure CPA
encryption), but this results in a longer output ciphertext of size poly(logX) (i.e., poly(|α|+ |β|)),
leading to exponentially growing ciphertext with the depth.

With respect to w-pIO (and to mw-pIO also), the main challenge with the above sampler is
that given the two circuits, the adversarial first stage is computationally unbounded and can (for
example) find a secret key corresponding to the public key, and pass it on to the second stage,
which proceeds in distinguishing encryptions (of values (a NAND b) and 0 again) using the secret
key efficiently.

LHE via trapdoor encryption. We get around the above conundrum by using a generalization
of CPA encryption—called trapdoor encryption: The idea here is that the encryption scheme can
generate a special trapdoor key which is indistinguishable from a real public-key, but it does not
guarantee decryption any more. In this way, we expect to be able to guarantee stronger ciphertext
indistinguishability (even statistical) under a trapdoor key which cannot be satisfied by normal
encryption scheme as long as correctness needs to be guaranteed. In particular, we modify the
proof in the above approach as follows: In the hybrids, the obfuscations in the evaluation key are
changed one by one in the reverse order; to change the obfuscation of circuit Prog(ski−1,pki), first
replace the public key with a trapdoor key tpki, and then move to an obfuscation of a modified
trapdoor circuit tProg(tpki) with the trapdoor key built in. Now thanks to the stronger ciphertext
indistinguishability under the trapdoor key, it suffices to use weak notions of pIO. In this paper,
we provide the following instantiations of this paradigm:

• Lossy encryption + w-pIO. In order to instantiate the construction from w-pIO, we
consider encryption schemes which are statistically secure under a trapdoor key, so-called lossy
encryption schemes [BHY09]. Such schemes can be built using techniques from a variety of
works [KN08, PVW08, BHY09, PW11], and admit instantiations from most cryptographic
assumptions. This gives an LHE construction from w-pIO and any lossy encryption schemes.1

• Re-randomizable encryption + sub-exponential IO. Existing constructions of lossy
encryption unfortunately do not allow a distinguishing gap of negl/X without having the
ciphertext size growing polynomially in logX. Instead, we construct a trapdoor encryption
scheme with such a tiny distinguishing gap under the trapdoor key, from any re-randomizable
(secret or public-key) encryption scheme: The (honest) public key of the trapdoor encryption
scheme consists of two encryptions (c0, c1) of 0 and 1 of the underlying re-randomizable
encryption scheme, and to encrypt a bit b, one simply re-randomizes cb; the trapdoor key, on
the other hand, simply consists of two encryptions (c0, c

′
0) of both 0. By the semantic security

of the underlying scheme, the honest and trapdoor keys are indistinguishable. Furthermore,

1In fact, this instantiation only requires an even weaker w-pIO notion where sampler indistinguishability must
hold against computationally unbounded adversaries in both stages.
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if the re-randomizability of the underlying scheme guarantees that re-randomization of one
ciphertext or another of the same plaintext yields identical distributions, then encryptions
under the trapdoor keys are perfectly hiding. Many encryption schemes such as ElGamal,
Goldwasser-Micali [GM84], Paillier [Pai99], Damg̊ard-Jurik [DJ01], satisfy the perfect re-
randomizability. Therefore, when relying on such a scheme, the corresponding samplers is
negl/X-indistinguishable, for any X; hence X-pIO suffices. Combined with the aforementioned
construction of X-pIO, this also gives us leveled LHE from any re-randomizable encryption
scheme and sub-exponentially hard IO and one-way functions.

We also note that the instantiation from d-pIO mentioned above from any CPA-secure encryption
scheme is also a (trivial) application of the above general result.

From LHE to FHE. As a final contribution of independent interest, in Section 3.4.1 we use IO to
turn an LHE scheme info an FHE scheme via techniques inspired by the recent works of Bitansky,
Garg, and Telang [BGT14], and of Lin and Pass [LP14].

The basic idea is to instantiate the above LHE construction on super-polynomially many
levels, but to represent these keys succinctly. This is done by considering a circuit Γ that on
input i genarates the i-th level evaluation key, i.e., the pIO obfuscation of Prog(ski−1,pki) (in the
evaluation key for super-polynomially many levels), where the key pairs (pki−1, ski−1) and (pki, ski)
are generated using pseudo-random coins PRF(k, i−1) and PRF(k, i) computed using a puncturable
PRF on a hard-coded seed k; (the pIO obfuscations also use pseudo-random coins as well). The
new succinct evaluation key is the IO-obfuscation of this circuit Γ, while the public key is pk0

(generated using coins PRF(k, 0)) and the secret key is the PRF seed k. In order for this approach
to be secure, we need the IO obfuscation to be slightly super-polynomially secure (not necessarily
sub-exponentially secure), in order to accommodate for a number of hybrids in the proof which
accounts to the (virtual) super-polynomial number of levels implicitly embedded in the succinct
representation. In particular, we get this step almost for free (in terms of assumptions) when
starting with our LHE constructions, either because we assume sub-exponential IO in the first
place, or assuming just a slightly stronger form of w-pIO and d-pIO than what necessary above.

We also observe that this is a special case of a more general paradigm of using IO to turn any
LHE with a fixed decryption depth (independent of the maximum evaluation level) into an FHE,
which applies to almost all known LHE schemes (e.g. [Gen09, BV11, BGV12, Bra12, GSW13]). We
believe that this general transformation is of independent interest, especially because it does not
rely on any encryption scheme with circular security.

1.3 Application 2: Bootstrapping IO

Our second contribution is to use the notion of pIO to provide a simple way of bootstrapping
(standard, deterministic) IO for weak circuit classes, such as NC1, into ones for all polynomial-size
circuits. In the very first candidate construction of IO for P/poly, Garg et al. [GGH+13] show
how to obtain full fledged IO assuming the existence of indistinguishability obfuscation for a weak
circuit class WEAK, as well as a fully homomorphic encryption scheme whose decryption can be
computed in WEAK (given the known FHE schemes, one can think of WEAK as NC1). The
natural question that remained is: Can we achieve bootstrapping without the FHE assumption?

We show a new way to bootstrap indistinguishability obfuscation, without assuming that FHE
schemes exist. Instead, our assumption is the existence of sub-exponentially hard indistinguisha-
bility obfuscation for a complexity class WEAK and a sub-exponentially secure puncturable PRF
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computable in WEAK. Our technique is inspired by the recent work of Applebaum [App13] that
shows how to bootstrap VBB obfuscations from WEAK to P/poly using randomized encodings;
however his transformation strongly relies on the fact that the starting point is a VBB obfuscation.

The idea is to apply the “randomized encodings” paradigm which was originally proposed in
the context of multiparty computation [IK00, AIK04] and has found many further uses ever since.
A randomized encoding RE for a circuit family C is a probabilistic algorithm that takes as input
a circuit C ∈ C and an input x, and outputs its randomized encoding (Ĉ, x̂). The key properties
of RE are that: (1) given Ĉ and x̂, one can efficiently recover C(x); (2) given C(x), one can
efficiently simulate the pair (Ĉ, x̂), implying that the randomized encoding reveals no information
beyond the output C(x); and (3) computing RE is very fast in parallel. In particular, the work
of Applebaum, Ishai and Kushilevitz [AIK06], building on Yao’s garbled circuits, showed a way to
perform randomized encoding of any circuit in P/poly using a circuit RE ∈ NC0, assuming a PRG
in ⊕L/poly (which is implied by most cryptographic assumptions). The typical use of randomized
encodings is to reduce computing a circuit C to the easier task of computing its randomized encoding
RE(C, ·).

Therefore, to obfuscate a circuit C ∈ P/poly, the natural idea is obfuscating its randomized
encoding RE(C, x; r) using an appropriate pIO scheme for NC0. (Here, pIO comes into play
naturally, since RE is a randomized circuit.) We show that, in fact, X-pIO suffices for this purpose:
Assuming that randomized encoding is sub-exponentially secure, then for any two functionally
equivalent circuits C1 and C2, their randomized encoding RE(C1, x; r) and RE(C2, x; r) have
indistinguishable outputs for every input x, where the distinguishing gap is as small as negl(λ)2−|x|2.
Therefore, obfuscating RE(C1, ·) and RE(C2, ·) using an X-pIO scheme piO yields indistinguishable
obfuscated programs, and hence iO(C) = piO(RE(C, ·)) is an indistinguishable obfuscator for all
P/poly. Since, our construction of X-pIO from sub-exponentially indistinguishable IO preserves the
class of circuits modulo the complexity of the sub-exponentially indistinguishable puncturable PRF.
Put together, we are able to bootstrap sub-exponentially indistinguishable IO for a weak class, say
NC1, to IO for all of P/poly, assuming a sub-exponentially indistinguishable PRF computable in
the weak class of circuits.

Bootstrapping pIO. The same technique above can be applied to bootstrap worst-case-input
pIO from NC0 to P/poly, assuming the existence of a PRG in ⊕L/poly. The key observation
here is that since pIO handles directly randomized circuits, it can be used to obfuscate the
randomized encoding RE(C, ·) (without relying on pseudorandom functions). Furthermore, the
security of the randomized encoding holds for any input and auxiliary information (even ones
that are not efficiently computable). Then, given any two circuits C1(x; r), C2(x; r) whose outputs
are indistinguishable even for dynamically chosen worst-case inputs, their randomized encoding
C ′1(x; r, r′) = RE(C1, (x, r); r

′) and C ′2(x; r, r′) = RE(C2, (x, r); r
′) are also indistinguishable on

dynamically chosen worst case inputs. This is because, over the random choice of r and r′, the
distributions of C ′1(x; r, r′) and C ′2(x; r, r′) can be simulated using only C1(x; r) and C2(x; r), which
are indistinguishable. Therefore a worst-case-input pIO scheme for NC0 suffices for obfuscating
the circuit C ′(x; r, r′) = RE(C, (x, r); r), leading to a worst-case-input pIO scheme for all P/poly.
Following the same approach, we can bootstrap dynamic-input pIO for NC0 to dynamic-input pIO
for P/poly assuming a PRG in ⊕L/poly . Similarly, we can also bootstrap X-pIO for NC0 to
X-pIO for P/poly, but relying on the sub-exponential security of the PRG. The stronger security

2This can be done by using a sufficiently large security parameter when generating the randomized encoding.

9



of PRG is needed so that the randomized encoding can be made negl(λ)/X(λ) indistinguishable.

2 IO for Probabilistic Circuits

In this section, we extend the notion of indistinguishability obfuscation (IO) to probabilistic circuits.
To this end, extending [BST14], we first introduce in Section 2.1 a general notion of IO for general
samplers outputting triples (C0, C1, z), where z is some auxiliary input, and we are going to seek
for obfuscation algorithms which, given such a triple from the sampler, have the property that
the obfuscations of C0 and of C1 are computationally indistinguishable, given z, C0, and C1. We
then exercise this framework to derive our IO notions for probabilistic circuits in terms of different
sampler classes – the smaller the class, the weaker the resulting security assumption. Concretely,
we will define four different notions of pIO corresponding to different classes of samplers.

2.1 IO for General Samplers over Probabilistic Circuits

In this section, we define the notion of indistinguishability obfuscation for general classes of samplers
over potentially probabilistic circuits, called pIO for samplers in class S. Here, a sampler is a
distribution ensemble over pairs of potentially randomized circuits, together with an auxiliary
input. Different notions of obfuscation (with indistinguishability-based security) in the literature,
can be derived by instantiating the general definition with a specific class of samplers. For instance,
IO for circuits [BGI+12, SW14] is an IO for the class of samplers that sample pairs of deterministic
circuits with the same functionality (and some arbitrary auxiliary input). Later, to define various
notions of obfuscation for probabilistic circuits, we will instantiate the general definition with classes
of samplers that produce pairs of probabilistic circuits satisfying different properties.

More formally, let C = {Cλ}λ∈N be a family of sets of (randomized) circuits, where Cλ contains
circuits of size poly(λ). Extending the notation of [BST14], a circuit sampler for C is a distribution
ensemble D = {Dλ}λ∈N, where the distribution Dλ ranges over triples (C0, C1, z) with C0, C1 ∈ Cλ
such that C0, C1 take inputs of the same length, and z ∈ {0, 1}poly(λ). Moreover, a class S of
samplers for C is a set of circuit samplers for C.

The following definition captures the notion of pIO for a class of samplers.

Definition 2.1 (pIO for a Class of Samplers). A uniform PPT machine piO is an indistinguishabil-
ity obfuscator for a class of samplers S over the (potentially randomized) circuit family C = {Cλ}λ∈N
if the following two conditions hold:

Correctness: piO on input a (potentially probabilistic) circuit C ∈ Cλ and the security parameter
λ ∈ N (in unary), outputs a deterministic circuit Λ of size poly(|C|, λ).

Furthermore, for every non-uniform PPT distinguisher D, every (potentially probabilistic)
circuit C ∈ Cλ, and string z, we define the following two experiments:

• Exp1
D(1λ, C, z): D on input 1λ, C, z, participates in an unbounded number of iterations of

his choice. In iteration i, it chooses an input xi; if xi is the same as any of the previously
chosen input xj for j < i, then abort; otherwise, D receives C(xi; ri) using fresh random
coins ri (ri = null if C is deterministic). At the end of all iterations, D outputs a bit b.
(Note that D can keep state across iterations.)
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• Exp2
D(1λ, C, z): Obfuscate circuit C to obtain Λ

$← piO(1λ, C; r) using fresh random coins
r. Run D as described above, except that in each iteration, feed D with Λ(xi) instead.

Overload the notation ExpiD(1λ, C, z) as the output of D in experiment ExpiD. We require that
for every non-uniform PPT distinguisher D, there is a negligible function µ, such that, for every
λ ∈ N, every C ∈ Cλ, and every auxiliary input z ∈ {0, 1}poly(λ),

AdvD(1λ, C, z) = |Pr[Exp1
D(1λ, C, z)]− Pr[Exp2

D(1λ, C, z)]| = µ(λ) .

Security with respect to S: For every sampler D = {Dλ}λ∈N ∈ S, and for every non-uniform
PPT machine A, there exists a negligible function µ such that∣∣Pr[(C1, C2, z)

$← Dλ : A(C1, C2, piO(1λ, C1), z) = 1]−

− Pr[(C1, C2, z)
$← Dλ : A(C1, C2, piO(1λ, C2), z) = 1]

∣∣ = µ(λ) .

where µ is called the distinguishing gap.

Furthermore, we say that piO is δ-indistinguishable if the above security condition holds with a
distinguishing gap µ bounded by δ. Especially, piO is sub-exponentially indistinguishable if µ(λ)
is bounded by 2−λ

ε
for a constant ε.

We note that the sub-exponential indistinguishability defined above is weaker than usual sub-
exponential hardness assumptions in that the distinguishing gap only need to be small for PPT
distinguishers, rather than sub-exponential time distinguishers.

An obvious (but important) remark is that an obfuscator piO for the class S is also an obfuscator
for any class S′ ⊆ S, whereas conversely, if no obfuscator exists for S′ (or its existence is implausible),
then the same is true for S ⊇ S′.

2.2 Dynamic-input pIO for Circuits

We start with the most natural way of formalizing a sampler outputting a triple (C0, C1, z) for
which C0 and C1 are indistinguishable on every input. Namely, we ask indistinguishability on
every input x adaptively chosen by a (PPT) adversary A1 on input (C0, C1, z). This defines the
largest class of samplers we consider in the following, denoted Sd-Ind.

Definition 2.2 (Dynamic-input Indistinguishable Samplers). The class Sd-Ind of dynamic-input
indistinguishable samplers for a circuit family C contains all circuit samplers D = {Dλ}λ∈N for C
with the following property: For all non-uniform PPT A = (A1,A2), the advantage of A in the
following experiment is negligible.

Experiment dynamic-input-INDDA(1λ):

1. (C0, C1, z)
$← Dλ

2. (x, st)
$← A1(C0, C1, z)

3. y
$← Cb(x), where b

$← {0, 1}

4. b′
$← A2(st, C0, C1, z, x, y)

The advantage of A is Pr[b′ = b]− 1/2.
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The above definition states that dynamic-input indistinguishable samplers produce pairs of
probabilistic circuits satisfying that no efficiency adversary can distinguish their output C0(x) or
C1(x) on an input chosen adaptively given C0, C1, z.

Remark 2.1 (On multi-input indistinguishability). The above definition of Sd-Ind only allows the
adversary to receive output Cb(x) for one input x. We note that this is with loss of generality, as
it follows from a standard hybrid argument that the above definition implies that the advantage of
any efficiency adversary is still negligible even if it receives samples from Cb(x) for an unbounded
number of dynamically and adaptively chosen inputs. More precisely, this means that the advantage
of an adversary AØb(C0, C1, z) with access to an oracle Øb in guessing b is negligible, where Øb on

input x samples y
$← Cb(x) for A. For simplicity, we therefore adopt the above definition, as a

multi-input indistinguishability requirement does not restrict the class any further.

We can now use the above sampler class to directly obtain the notion of Dynamic-input pIO for
randomized circuits.

Definition 2.3 (Dynamic-input pIO for Randomized Circuits). A uniform PPT machine d-piO is
a dynamic-input pIO (or d-pIO) for randomized circuits, if it is a pIO for the class of dynamic-input
indistinguishable samplers Sd-Ind over C that includes all randomized circuits of size at most λ.

Differing-Input Indistinguishability Obfuscation. We can recover the notion of differing-
inputs indistinguishability obfuscation (dIO) for circuits [BGI+12, BCP14, ABG+13], by just
restricting the above definition of d-pIO to the class C′ = {C′λ}λ∈N of deterministic circuits. In

this case, if a circuit sampler D = {Dλ}λ∈N is in the class Sd-Ind, then it must be that given

a randomly sampled tuple (C0, C1, z)
$← Dλ, it is hard to find an input x that makes the two

deterministic circuits output different values. Therefore, we can re-define the dIO notion as follows
within our framework .

Definition 2.4 (Differing-input IO for Circuits [BGI+12, BCP14, ABG+13]). A uniform PPT
machine diO is a differing input IO for circuits, if it is a pIO for the class of dynamic-input
indistinguishable samplers Sd-Ind over C′ that includes all deterministic circuits of size at most λ.

In other words, the notion of dynamic-input pIO is a direct generalization of differing-input
IO to the case of randomized circuits. In a recent work by Garg et al. [GGHW14], it was
shown that assuming strong obfuscation for a specific sampler of circuits and auxiliary inputs,
it is impossible to construct differing-input IO for general differing-input samplers over circuits.
Since dynamic-input pIO implies differing-input IO, a construction of d-pIO for general dynamic-
input indistinguishable samplers is also implausible. However, a construction of d-pIO for specific
dynamic-input indistinguishable samplers remains possible, as in the case of dIO.

2.3 Worst-case-input pIO for Circuits

In light of the implausibility of general dynamic-input pIO, we seek for a more restrictive class
of samplers which bypasses this result. To this end, we introduce the notion of worst-case-input
indistinguishable samplers and denote the resulting class as Sw-Ind.

Definition 2.5 (Worst-case-input Indistinguishable Samplers). The class Sw-Ind of worst-case-
input indistinguishable samplers for a circuit family C contains all circuit samplers D = {Dλ}λ∈N
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for C with the following property: For all adversary A = (A1,A2) where A1 is an unbounded
non-uniform machine and A2 is PPT, the advantage of A in the following experiment is negligible.

Experiment worst-case-input-INDDA(1λ):

1. (C0, C1, z)
$← Dλ

2. (x, st) = A1(C0, C1, z) // A1 is unbounded.

3. y
$← Cb(x), where b

$← {0, 1}

4. b′
$← A2(st, C0, C1, z, x, y) // A2 is PPT.

The advantage of A is Pr[b′ = b]− 1/2.

This directly yields the notion of worst-case-input pIO, summarized in the following definition.

Definition 2.6 (Worst-case-input pIO for Randomized Circuits). A uniform PPT machine w-piO
is a worst-case-input pIO (or w-pIO) for randomized circuits, if it is a pIO for the class of worst-
case-input indistinguishable samplers Sw-Ind over C that includes all randomized circuits of size at
most λ.

Note that in the above definition, since A1 is computationally unbounded, its best strategy on
input (C0, C1, z) is to choose (x∗, st∗) that maximizes the guessing advantage of A2.

(x∗, st∗) = arg maxx,st∈{0,1}poly(λ)
(

Pr[b
$← {0, 1}, y $← Cb(x) : b = A2(st, C0, C1, z, x, y))]

)
Since the above definition quantifies over all adversaries (A1,A2), it implies that worst-case-
input indistinguishable samplers produce pairs of probabilistic circuits satisfying that no efficient
adversary (A2) can distinguish their output C0(x) or C1(x) on any input x.

Remark 2.2 (On Multi-input indistinguishability). As in Definition 2.3, the above definition only
allows the adversary to choose one input x. We note that this implies a limited form of multi-
instance indistinguishability: The advantage of any adversary (A1,A2) in the above experiment
is negligible even if A1 can choose a polynomial number of inputs (x1, · · · , x`, st) at once and A2

receives output samples yi
$← Cb(xi) for all these inputs, i.e., it is given (st, C0, C1, z, {xi}, {yi}).

This form of multi-instance indistinguishability follows from the above definition by a standard
hybrid argument, but note that the ability for A1 to pass on state to A2 is clearly necessary for this
proof to be valid.

Also note that we cannot consider the stronger form of multi-instance indistinguishability
considered for dynamic-input indistinguishable samplers; this is because here A1 and A2 have
different computational powers and cannot be “collapsed” into one adversary.

Memory-less worst-case-input pIO: Forbidding state-passing. Passing state between A1

and A2 in the above definition of worst-case-input indistinguishable samplers appears somewhat
unavoidable for any “meaningful” way of defining Sw-Ind. Indeed, if we have a sampler D ∈ Sw-Ind,
then for any length function `, we also would like any sampler D′ constructed as follows to be also
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in Sw-Ind: D′λ samples (C0, C1, z) from the same distribution as Dλ, but instead returns a triple
(C ′0, C

′
1, z) where C ′b is a circuit such that C ′b(x;x′) = Cb(x) for any x′ ∈ {0, 1}`(λ), i.e., the last `(λ)

bits of the input are ignored. For such a pair, the adversary A1 can always use the last `(λ) bits
of the input (which are ignored by the circuit) to pass on some helpful, not efficiently computable,
information to A2 that would help distinguish.

Explicitly forbidding state passing will however be useful when establishing the landscape of
relationships among notions below. In particular, we define Smw-Ind as the class of memory-
less worst-case-input indistinguishable samplers, which consists of all samplers D for which the
advantage in worst-case-input-INDDA(1λ) is negligible for any A = (A1,A2) such that A1 is
unbounded and outputs st = ⊥, whereas A2 is PPT. Note that clearly Sw-Ind ⊆ Smw-Ind. This
then is used in the following definition.

Definition 2.7 (Memory-less worst-case-input pIO for Randomized Circuits). A uniform PPT
machine mw-piO is a memory-less worst-case-input pIO (or mw-pIO) for randomized circuits, if it
is a pIO for the class of memory-less worst-case-input indistinguishable samplers Smw-Ind over C
that includes all randomized circuits of size at most λ.

Indistinguishability Obfuscation. We can recover the notion of indistinguishability obfusca-
tion (IO) for circuits [BGI+12, GGH+13] by restricting Definition 2.6 of worst-case-input pIO to
the class C′ = {C′λ}λ∈N of deterministic circuits. In this case, if a circuit sampler D = {Dλ}λ∈N is

in the class Sw-Ind, then it must be that given a randomly sampled tuple (C0, C1, z)
$← Dλ, C0 and

C1 agrees on every input x. Thus, the definition of IO can be restated in our framework as follows.

Definition 2.8 (IO for Circuits [BGI+12, GGH+13]). A uniform PPT machine iO is a IO for
circuits, if it is a pIO for the class of worst-case-input indistinguishable samplers Sw-Ind over C′ that
includes all deterministic circuits of size at most λ.

In other words, the notion of worst-case-input pIO is a direct generalization of IO to the case
of randomized circuits. Also, note that the classes Smw-Ind and Sw-Ind are the same (and thus the
notion of memory-less worst-case-input and worst-case-input pIO) when restricted to deterministic
circuits.

Relations. It follows directly from the definitions that every worst-case-input indistinguishable
sampler is also a dynamic-input indistinguishable sampler. This is true also if the sampler is only
memory-less worst-case-input indistinguishable sampler. Therefore:

Proposition 2.1 (d-pIO ⇒ mw-pIO ⇒ w-pIO). A dynamic-input pIO obfuscator for randomized
circuits is also a memory-less worst-case-input pIO obfuscator for randomized circuits. Moreover,
a memory-less worst-case-input pIO obfuscator is also a worst-case-input pIO obfuscator.

Proof. It is not hard to see that Sw-Ind ⊆ Sd-Ind and obviously Sw-Ind ⊆ Smw-Ind. It is a bit
harder to prove that Smw-Ind ⊆ Sd-Ind. Indeed, assume for a sampler D ∈ Sw-Ind there exists a
non-uniform PPT adversary A = (A1,A2) with non-negligible advantage in Experiment dynamic-
input-INDDA(1λ). Then, we can assume without loss of generality that A is deterministic by non-
uniformity. Moreover, we can build an memory-less worst-case-input adversary A′ = (A′1,A′2)
where A′1(C0, C1, z) runs A1(C0, C1, z) to compute the input x (and ignores the state st output by
A1), whereas A′2, given (C0, C1, x, y = Cb(x), z), first re-runs A1(C0, C1, z) to obtain (x, st), and

14



then runs A2(st, C0, C1, x, y, z) to compute the output bit. Clearly A′ achieves the same advantage
as A, which is non-negligible, leading to a contradiction.

A plausible candidate. We stress that existing implausibility results do not apply to this
class (as much as IO for deterministic circuits appears feasible). We conjecture here that for a
suitable PRF construction, obfuscating a randomized circuit C by applying one of the existing IO
obfuscators [GGH+13, BR13, BGK+14] to the derandomized circuit DK(x) = C(x;PRFK(x)) for
some hard-coded PRF seed K, is indeed a secure w-pIO obfuscator.

Conjecture 1. There exists a w-pIO obfuscator for randomized circuits.

Below, we will prove that the above construction is indeed a secure obfuscator for an alternative,
weak class of indistinguishable samplers, which we move to introduce next.

2.4 Static-input pIO for Circuits

Given the above formulations of dynamic-input pIO and worst-case-input pIO, it is natural to
ask whether there exists a notion of pIO corresponding to static input selection. In this section,
we formulate the class of static-input indistinguishable samplers and define the notion of static-
input pIO for circuit. We show that general static-input pIO is impossible. However, pIO for a
more restricted class of static-input indistinguishable samplers, namely these that are “X-strongly
indistinguishable” (defined shortly below), is possible; in fact, in Section 2.6 we give a construction
for such a pIO assuming sub-exponentially indistinguishable IO.

Definition 2.9 (Static-input Indistinguishable Samplers). The class Ss-Ind of dynamic-input
indistinguishable samplers for a circuit family C contains all circuit samplers D = {Dλ}λ∈N for C
with the following property: For all non-uniform PPT A = (A1,A2), the advantage of A in the
following experiment is negligible.

Experiment static-input-INDDA(1λ):

1. (x, st)
$← A1(1λ) // A1 chooses challenge input x statically.

2. (C0, C1, z)
$← Dλ

3. y
$← Cb(x), where b

$← {0, 1}.

4. b′
$← A2(st, C0, C1, z, x, y)

The advantage of A is Pr[b′ = b]− 1/2.

In the above definition, the adversary chooses the challenge input x statically before seeing the
circuit pairs and auxiliary input sampled by the sampler. This definition is equivalent to stating
that for every input x, no efficient adversary can distinguish the outputs of two randomly sampled
circuits from a static-input indistinguishable sampler D on input x.

Unfortunately, we now show that pIO for general static-input indistinguishable samplers is
(unconditionally) impossible, but we will see below that a further restriction of the class Ss-Ind will
bypass this impossibility.
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Proposition 2.2. There exists a static-input indistinguishable sampler D∗ over deterministic
circuits, such that, there is no pIO for D∗.

Proof. Consider the following sampler D∗: D∗λ samples (C0, C1, z) where C0 is an all zero circuit,
C1 computes a point function that outputs 1 at a single point s chosen uniformly randomly, and z
is set to s.

D∗ is a static-input indistinguishable sampler. For any fixed input x, with overwhelming
probability D∗ samples (C0, C1, s), with a differing input s 6= x. Thus, the outputs C0(x) =
C1(x) = 0 cannot be distinguished.

On the other hand, we show that any machine piO that has correctness cannot be secure for
this sampler D∗. This is because an adversary can easily tell apart (C0, C1, s,Λ0 = piO(C0)) from
(C0, C1, s,Λ1 = piO(C1)), by simply evaluating Λ0 and Λ1 on input s.

X-Ind pIO. As mentioned above, we now consider a smaller class of static-input indistinguishable
samplers, SX-Ind ⊂ Ss-Ind, that circumvents the impossibility of Proposition 2.2. The samplers D
we consider satisfy that the distinguishing gap of any PPT adversary in the above static-input-IND
experiment is bounded by negl · X−1, where X is the number of “differing inputs” that circuits
C0, C1 sampled from D have, and negl is some negligible function. More precisely,

Definition 2.10 ((Static-input) X-Ind-Samplers). Let X(λ) be a function bounded by 2λ. The
class SX-Ind of (static-input) X-Ind-samplers for a circuit family C contains all circuit samplers
D = {Dλ}λ∈N for C with the following property: For every λ ∈ N, there is a set X = Xλ ⊆ {0, 1}∗
of size at most X(λ) (called the differing domain), such that,

X differing inputs: With overwhelming probability over the choice of (C0, C1, z)
$← Dλ, for every

input outside the differing domain, x 6∈ X , it holds that C0(x′; r) = C1(x′; r) for every random
string r.

X-indistinguishability: For all non-uniform PPT A = (A1,A2), the advantage of A in the
experiment static-input-INDDA(1λ) defined in Definition 2.9 is neglX−1.

Definition 2.11 (X-Ind pIO for Randomized Circuits). Let X be any function bounded by 2λ. A
uniform PPT machine X-piO is an X-pIO for randomized circuits, if it is a pIO for the class of
X-Ind samplers SX-Ind over C that includes all randomized circuits of size at most λ.

We note that the notion of a differing set is added for flexibility purposes, as our constructions
below will allow for it. We stress that its definition is not allowed to depend on the circuits which
are actually sampled, and must be fixed a-priori. Also, note that the notion encompasses the setting
where C0(x) and C1(x) are identically distributed, or are statistically very close.

The notion of X-Ind pIO is the “best-possible” achievable with respect of static input. Indeed,
one can modify the distribution D∗ constructed in Proposition 2.2 to have C1(s) output 1
with probability 1

p(λ) for a polynomial p. The differing domain there is the whole domain, i.e.,

Xλ = {0, 1}λ (since the circuit may differ at any point.) This makes the sampler exactly X · p−1

indistinguishable for static adversaries, as C1(x) 6= C0(x) with probability X · p−1 over the choice
of (C0, C1, z). Yet, pIO for this sampler is impossible, as again, the circuit differ on input z = s
with probability 1

p(λ) . This impossibility cannot be pushed any further, and indeed general X-pIO
is possible: For every function X, we provide a construction of X-pIO for randomized circuits in
Section 2.6, assuming sub-exponentially secure IO for deterministic circuits, which we believe to be
a reasonable assumption.
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Other X-Ind notions. One could indeed formulate X-Ind versions of dynamic-input, memory-
less worst-case-input, and worst-case-input pIO, where the distinguishing advantage is required
to be very small. Indeed, these notions would all be (in analogy of the above) weaker (and hence
implied) byX-pIO, and can thus all be achieved by our construction presented below. (Note that our
possibility result below does not contradict the implausibility of [GGHW14], as the corresponding
sampler from their proof would enable a larger distinguishing gap.)

Relation to worst-case-input pIO. We are going to now show that every X-Ind indistinguish-
able sampler is also a memory-less worst-case-input indistinguishable one, i.e., it belongs to Smw-Ind.
Hence, if memory-less worst-case-input pIO exists, then so does X-Ind pIO. This result appears
at first somewhat surprising (and indeed, its proof requires some technical work), because static
adversaries are the weakest, as opposed to memory-less worst-case-input adversaries being among
the strongest. This really highlights the power of requiring a neglX−1 distinguishing gap. Moreover,
it is important to note that the result does not extend to worst-case-input pIO, which we show to
be incomparable to X-Ind pIO below.

Proposition 2.3. Let X = X(λ) ≤ 2poly(λ). Then, SX-Ind ⊆ Smw-Ind.

The proof of the proposition is provided in Appendix B.1.

Corollary 2.4. If d-pIO or mw-pIO for randomized circuits exists, then X-pIO for randomized
circuits exists.

2.5 Strict Inclusions

We note that all relations we proved above result into strict inclusions of the corresponding sampler
classes into each other. Moreover, we also note that the two notions of w-pIO and X-pIO are
incomparable. This follows by the three following separations of sampler classes:

mw-pIO 6⇒ d-pIO. Let πλ be a permutation on {0, 1}λ. Consider the sampler D such that Dλ

outputs triples (C0, C1, z) such that C0(x) = 0 for all inputs x ∈ {0, 1}λ, z = πλ(x∗) for a
random x∗ in {0, 1}λ, and finally, C1, on input x, checks whether πλ(x) = z, and if so outputs
1, and it outputs 0 otherwise. Then, it is not hard to see that D ∈ Sd-Ind as long as π = {πλ}λ∈N
is one-way, yet D /∈ Smw-Ind, as a computationally unbounded A1 can simply recover x∗ from
z, and output this value, and this leads to easy distinguishing for A2.

X-pIO 6⇒ w-pIO. We consider a bit-commitment scheme which is computationally hiding (against
non-uniform adversaries) and statistically binding. Then, we consider the pair of circuits C0, C1

with input length λ such that Cb(x) ignores the λ-bit inout x and outputs Com(b; r), for a
randomly chosen commitment randomness which we set to be λ bits without loss of generality.
Note that these circuits differ on every input. Then, consider D which outputs (C0, C1). First
of all, we have D ∈ Sw-Ind, because regardless for all x, the outputs C0(x) and C1(x) are
computationally indistinguishable. However, D /∈ SX-Ind for X = 2λ: A distinguisher can
just guess the randomness r, and check which bit was committed to (and if the randomness is
incorrect, just output a random bit). This strategy achieves advantage 2−λ = 1/X.

w-pIO 6⇒ X-pIO. Here, we consider a sampler which outputs a triple (C0, C1, z), where z = pk is
the public key of a bit-encryption scheme, and Cb(x) = Enc(pk, b) for all x. (Note that no
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matter how one defines the differing sets, all x are in it, since the circuits behave completely
differently on all inputs.) Here, we assume that x is λ-bit long, and that the encryption scheme
can be distinguished with advantage at most negl(λ)·2−λ by an attacker. (Such a scheme can be
obtained from any subexponentially-secure bit-encryption scheme.) Then, clearly, D ∈ SX-Ind,
but however, D /∈ Sw-Ind, since an unbounded A1 can compute a secret key from z and pass it
on to A2.

We stress that the last counterexample does not work against mw-pIO (thus possibly violating
Proposition 2.3) because in order to achieve such high security, the secret key of the exponentially-
secure encryption scheme must be longer than λ bits, and thus cannot be embedded in a carefully
chosen x.

2.6 Construction of X-Ind pIO from Sub-exp Indistinguishable IO

The following theorem yields a construction of an X-Ind pIO obfuscator (as in Definition 2.11) from
sub-exponentially hard IO. It relies on sub-exponentially secure puncturable PRF, as defined in
Appendix A.1.

C, C1 and C2 are probabilistic circuits of size at most λ, K is a key of the PRF function and K−i
a punctured key at input xi, and y is a string of length at most λ. In particular, x1, . . . , xX for
X = X(λ) are the elements of the differing domain, canonically ordered (e.g., with respect to the
lexicographic ordering of strings).

Circuit E(C,K)(x): Output C(x ; PRF(K,x)).

Circuit E
(C1,C2,K)
i (x): If x < xi, output C1(x ; PRF(K,x)); otherwise, if x ≥ xi, output

C2(x ; PRF(K,x)).

Circuit E
(C1,C2,K,y)
i (x): If x < xi, output C1(x ; PRF(K−i, x)), and if x = xi, output y;

otherwise, if x > xi, output C2(x ; PRF(K−i, x)).

All circuits E(C,K), E
(C1,C2,K)
i , E

(C1,C2,K,y)
i are padded to their maximum size.

Figure 2: Circuits used in the construction of X-piO and its analysis

Theorem 2.5 (Existence of X-Ind pIO.). Assume the existence of a sub-exponentially indistinguish-
able indistinguishability obfuscator iO for circuits and a sub-exponentially secure puncturable PRF
(Key,Puncture,PRF). Then, there exists a X-Ind pIO obfuscator X-piO for randomized circuits.

Below we describe only our construction of X-Ind pIO, denoted as X-piO, and leave the proof
of its correctness and security to Appendix B.2. Recall that by our assumption, both iO and the
puncturable PRF (Key,Puncture,PRF) have a 2−λ

ε
distinguishing gap for some constant ε ∈ (0, 1)

and any non-uniform PPT distinguisher. Also, in the following, we implicitly identify strings with
integers (via their binary encoding) and vice versa.
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Construction X-piO: On input 1λ and a probabilistic circuit C of size at most λ,
proceed as follows:

1. Let λ′ = λ′(λ) = (λ log2(λ))1/ε. Sample a key of the PRF function K ← Key(1λ
′
).

2. Construct deterministic circuit E(C,K) as described in Figure 2. By construction the
size of E(C,K) is bounded by a polynomial p(λ′) ≥ λ′ in λ′.

3. Let λ′′ = p(λ′) ≥ λ′. Obfuscate E(C,K) using iO, Λ
$← iO(1λ

′′
, E(C,K)).

4. Output Λ.

3 Application 1: Fully Homomorphic Encryption

3.1 Our Results

In this section, we show how to construct leveled and fully homomorphic encryption schemes
using different notions of pIO. One of the main corollary of our construction is that assuming
sub-exponentially indistinguishable IO and sub-exponential secure OWF, any rerandomizable CPA
encryption scheme (that is slightly inverse super-polynomial indistinguishable) can be transformed
into a FHE scheme. More precisely,

Theorem 3.1 (LHE and FHE from sub-exp indistinguishable IO and sub-exp OWFs). Assume
the existence of a sub-exponentially indistinguishable IO for circuits, and a sub-exponentially secure
OWF.

• Any perfectly rerandomizable encryption scheme can be transformed into a leveled homomorphic
encryption scheme.

• Any perfectly rerandomizable encryption scheme that is µ-indistinguishable for any inverse
super-polynomial function µ, can be transformed into a fully homomorphic encryption scheme.

At a high-level, the above theorem is obtained through a general two-step approach.

Step 1: A general construction of LHE. We first show a general transformation that turns
any, so called, trapdoor encryption scheme Π (introduced shortly), into a LHE scheme, assuming
the existence of pIO for a specific class of samplers defined by Π. Our transformation follows a
very natural idea for enabling homomorphic evaluation: Obfuscate the program that on input
some input ciphertexts, decrypt them, compute NAND and re-encrypt under a different key.
Since the program to be obfuscated is probabilistic, pIO comes into play natural. But as seen in
Section 2, pIO for different classes of samplers leads to various notions with different power. The
challenge is to only rely on weak notions of pIO, namely, worst-case-input pIO and X-Ind pIO.
We achieve this by instantiating the trapdoor encryption scheme Π with specific constructions
that have certain special properties.

Step 2: A general transformation from LHE to FHE. Assume that the LHE scheme con-
structed in Step 1 is slightly inverse super-polynomially indistinguishable (i.e., the advantage
of any PPT adversary in violating semantic security is bounded by an inverse super-polynomial
function µ, for example, 2log λ log log λ); this can be achieved assuming slightly stronger
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underlying trapdoor encryption scheme and pIO. Then additionally assuming an inverse super-
polynomially indistinguishable IO for deterministic circuits and puncturable PRF, we can
transform the LHE scheme into a FHE scheme without relying on circular security. In fact,
this transformation is general and applies to not only our LHE scheme based on pIO, but any
LHE scheme that has a fixed decryption depth, which includes almost all known LHE schemes
(e.g. [Gen09, BV11, BGV12, Bra12, GSW13]).

Below we describe the two steps in more details.
Roughly speaking, a trapdoor encryption scheme has two-modes: In the honest mode, it acts

as a CPA secure encryption scheme, whereas in the trapdoor mode, an indistinguishable trapdoor
public key is sampled, under which encryption is no longer guaranteed to have correctness. So far,
we haven’t put any security requirement on the trapdoor mode. In this work, we will consider three
different security properties in the trapdoor mode: (i) Computationally hiding, that is, encryption
under trapdoor public keys are negligibly indistinguishable, or (ii) ν-hiding, that is, encryption
is indistinguishable with a distinguishing gap ν(λ) = negl(λ)22l(λ) where l is the length of the
ciphertext, or (iii) statistically hiding.

The advantage of using a trapdoor encryption scheme is that first it is a generalization of
CPA encryption (as any CPA encryption automatically gives a trapdoor encryption scheme with
computationally hiding trapdoor mode), and second the trapdoor mode may have strong hiding
properties, such as ν-hiding and statistically-hiding, that are impossible for normal CPA encryption
schemes. The strong hiding properties are, in fact, the key towards basing our LHE scheme on
weak notions of pIO, in particular, the statistically hiding property of the trapdoor mode enables
our LHE scheme to rely only on worst-case-input pIO, while ν-hiding enables it to rely only on
X-Ind pIO, leading to different instantiations of our general construction of LHE.

Summarizing, our general transformation is stated informally in the following proposition (see
Proposition 3.2 for the formal statement), followed by its instantiations.

Informal Proposition (Step 1: General Construction of LHE). Let Π be a trapdoor encryption
scheme. Assume the existence of a pIO for an appropriate class of samplers SΠ defined by Π. Then,
Π can be transformed into a leveled homomorphic encryption scheme.

By instantiating the two key components—the trapdoor encryption scheme and a matching
pIO—we obtain the following three instantiations:

1. Rerandomizable encryption + sub-exponentially indistinguishable IO: We show that
perfectly rerandomizable encryption scheme can be converted into a trapdoor encryption scheme
whose trapdoor mode is ν-hiding. (In fact, as we see later, a weaker notion of rerandomizability
suffices.) The ν-hiding property of the trapdoor mode implies that the matching pIO can be
instantiated with X-Ind pIO, which in turn is implied by sub-exponentially indistinguishable IO
and OWF by our construction in Section 2.6. This instantiation corresponds to the first LHE
construction in Theorem 3.1.

2. Lossy encryption + worst-case-input pIO: In [BHY09] Bellare, Hofheinz and Yilek intro-
duced lossy encryption, based on dual-mode encryption in [PVW08] and meaningful/meaningless
encryption in [KN08]. As we see below, a lossy encryption is exactly a trapdoor encryption
scheme with statistically hiding trapdoor mode, which implies that the matching pIO can be
instantiated with worst-case-input pIO. Recall that, so far, no implausibility results apply to
worst-case-input pIO and a candidate construction is described in Conjecture 1.

20



3. CPA encryption + dynamic-input pIO: Any CPA encryption scheme trivially implies a
trapdoor encryption scheme whose trapdoor mode is computationally hiding (by simply setting
the trapdoor mode to be identical to the honest mode). The computational hiding property in
the trapdoor mode implies that the matching pIO can be instantiated using dynamic-input pIO.
Though dynamic-input pIO for general classes of samplers is implausible [GGHW14], dynamic-
input pIO for the specific class defined by a CPA encryption for our LHE scheme circumvents
the implausibility result. Furthermore, the same construction in Conjecture 1 can also be a
candidate of dynamic-input pIO for that specific class.

In the next step, we show a general transformation that turns any LHE scheme with a fixed
decryption depth (i.e., the decryption algorithm has depth poly(λ) independent of the maximum
evaluation level) into a FHE, provided that the encryption of the LHE scheme is slightly inverse
super-polynomially indistinguishable and assuming IO and puncturable PRFs with also inverse
super-polynomial distinguishing gap.

Informal Proposition (Step 2: General transformation from LHE to FHE). Let µ be any
inverse super-polynomial function. Assume a µ-indistinguishable IO for deterministic circuits and
puncturable PRF. Then any µ-indistinguishable LHE scheme Π, can be transformed into a FHE
scheme.

The general transformation from LHE to FHE directly applies to our LHE scheme which
has a decryption algorithm identical to the underlying trapdoor encryption scheme, (hence, the
decryption depth is independent of the maximum evaluation depth). When the LHE scheme
is instantiated with a rerandomizable encryption and sub-exponentially indistinguishable IO, the
transformation leads to an FHE without assuming any additional assumptions, which corresponds
to the construction of FHE in Theorem 3.1. Furthermore, the general transformation also applies
to many known lattice based LHE schemes such as [Gen09, BV11, BGV12, Bra12, GSW13]; in
particular, this give FHE based on slightly super-polynomial hardness of the learning with error
problem, and slightly super-polynomially secure IO and OWFs.

3.1.1 Organization of the Section.

Below, we first formally define trapdoor encryption scheme in Section 3.2. Then we proceed to
formally describe the general transformation from a trapdoor encryption scheme to a LHE scheme,
and discuss about the three concrete instantiations in Section 3.3. In Sections 3.4, we show how to
further turn the construction of LHE into a FHE.

3.2 Trapdoor Encryption Schemes

In this section, we define the notion of trapdoor encryption schemes. They have two modes: In the
honest mode, an honest public key is sampled and the encryption and decryption algorithms work
as in a normal CPA-secure encryption scheme with semantic security and correctness; additionally,
there is a “trapdoor mode”, in which a indistinguishable “trapdoor public key” is sampled and the
encryption algorithm produces ciphertexts that may have stronger indistinguishability properties
than these in the honest mode, at the price of losing correctness. More precisely,

Definition 3.1 (Trapdoor Encryption Scheme). We say that Π = (KeyGen,Enc,Dec, tKeyGen) is
a trapdoor encryption scheme, if (KeyGen,Enc,Dec) is a CPA-secure encryption scheme and the
trapdoor key generation algorithm tKeyGen satisfies the following additionally properties:

21



Trapdoor Public Keys: The following two ensembles are indistinguishable:{
(pk, sk)

$← KeyGen(1λ) : pk
}
λ
≈
{
tpk

$← tKeyGen(1λ) : tpk
}
λ

Computational hiding: The following ensembles are indistinguishable.{
tpk

$← tKeyGen(1λ) : Enctpk(0)
}
λ
≈
{
tpk

$← tKeyGen(1λ) : Enctpk(1)
}
λ

The basic definition of trapdoor encryption scheme only requires encryption of different bits
under a freshly generated trapdoor public key to be computationally indistinguishable. As discussed
before, this definition is a generalization of CPA encryption in the following sense,

Claim 3.1.1. Let Π′ = (KeyGen,Enc,Dec) be a CPA-encryption scheme. Then Π = (KeyGen,Enc,Dec, tKeyGen =
KeyGen) is a trapdoor encryption scheme.

The basic trapdoor encryption scheme does not provide any advantage in the trapdoor mode
than the honest mode. Below, we consider two stronger security properties in the trapdoor mode.

3.2.1 Statistical Trapdoor Encryption Scheme

Definition 3.2 (Statistical Trapdoor Encryption Scheme). We say that trapdoor encryption scheme
Π = (KeyGen,Enc,Dec, tKeyGen) is a statistical trapdoor encryption scheme, if the computational
hiding property in Definition 3.1 is replaced by the following.

Statistical hiding: The following ensembles are statistically close.{
tpk

$← tKeyGen(1λ) : Enctpk(0)
}
λ
≈s
{
tpk

$← tKeyGen(1λ) : Enctpk(1)
}
λ

We note that any lossy encryption scheme as defined by Bellare, Hofheinz and Yilek [BHY09]
implies a statistical trapdoor encryption scheme. A lossy encryption scheme has a key generation
algorithm KeyGen that takes as input the security parameter 1λ and additionally a variable m ∈
{injective, lossy} indicating whether to generate a key in the injective mode or in the lossy mode. A
key generated in the injective mode ensures decryption correctness and semantic security, whereas a
key generated in the lossy mode statistically loses information of the plaintexts, that is, encryption
of different bits are statistically close. Therefore, we have:

Claim 3.1.2. Let Π′ = (Gen′,Enc,Dec) be a lossy encryption scheme. Then Π = (KeyGen,Enc,Dec, tKeyGen)
where KeyGen(1λ) = Gen′(1λ, injective) and KeyGen(1λ) = Gen′(1λ, lossy), is a statistical trapdoor
encryption scheme.

3.2.2 µ-Hiding Trapdoor Encryption Scheme

Definition 3.3 (µ-Hiding Trapdoor Encryption Scheme). Let µ be any function We say that
trapdoor encryption scheme Π = (KeyGen,Enc,Dec, tKeyGen) is a µ-Lossy trapdoor encryption
scheme, if the computational hiding property in Definition 3.1 is replaced by the following.

µ-hiding: For any non-uniform PPT adversary A, the following holds:∣∣∣Pr[tpk
$← tKeyGen(1λ) : A(Enctpk(0)) = 1]− Pr[tpk

$← tKeyGen(1λ) : A(Enctpk(1)) = 1]
∣∣∣ ≤ µ(λ)
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where µ is called the distinguishing gap.

One of the instantiations of our general transformation for obtaining FHE relies on sub-
exponentially indistinguishable IO and a µ-hiding trapdoor encryption scheme where µ is bounded
by negl(λ)2−2l(λ) and l(λ) is an upper bound on the length of the ciphertext. In other words, the
distinguishing gap is much smaller than the inverse exponentiation of the ciphertext length. Note
that such a small distinguishing gap can only be achieved in the trapdoor mode where correctness is
not required. We construct such a µ-hiding trapdoor encryption scheme using a µ-rerandomizable
encryption. In fact, our construction achieves the stronger property of perfect hiding, that is, µ = 0.

Below we define the notion of rerandomizable encryption scheme we need and provide the
construction. Roughly speaking, a µ-rerandomizable encryption scheme is one such that given
freshly sampled public key pk and two encryptions c0, c1 of the same bit b, the distribution of
a rerandomized ciphertext from c0 and that from c1 are µ-indistinguishable. We note that our
notion of rerandomizable encryption is slightly different from previous notions in the literature, for
example [PR07, HLOV11], where re-randomizability means that the distribution of a rerandomized
ciphertext is statistically close or identical to the distribution of a freshly generated ciphertext.
Here, we do not require the rerandomized ciphertext to distribute close to a fresh ciphertext, but
rather, require the weaker property that their distributions are µ-indistinguishable no matter which
original ciphertexts they are derived from. Many encryption scheme such as ElGamal, Goldwasser-
Micali [GM84], Paillier [Pai99], Damg̊ard-Jurik [DJ01], are in fact perfectly rerandomizable as
per [PR07, HLOV11] and hence satisfy our definition.

Definition 3.4 (µ-Rerandomizable Encryption Scheme). We say that a quadruple of uniform PPT
algorithms Π = (Gen,Enc,Dec, reRand) is a µ-rerandomizable encryption scheme, if (Gen,Enc,Dec)
is a CPA-secure encryption scheme, and additionally the algorithm reRand satisfies the following
property:

µ-Rerandomizability: For every non-uniform PPT adversary A, the following holds for every
λ ∈ N.∣∣∣Pr[(pk, sk)

$← Gen(1λ), c0
$← Encpk(b), c1

$← Encpk(b) : A(pk, c0, c1, reRandpk(c0)) = 1]

−Pr[(pk, sk)
$← Gen(1λ), c0

$← Encpk(b), c1
$← Encpk(b) : A(pk, c0, c1, reRandpk(c1)) = 1]

∣∣∣ ≤ µ(λ)

We way that Π is perfectly re-randomizable, if the distinguishing gap µ above is zero.

Claim 3.1.3. Let µ be any negligible function. Every µ-rerandomizable CPA encryption scheme
Π′ can be transformed into a µ-hiding trapdoor encryption scheme Π.

To construct a µ-hiding trapdoor encryption scheme Π from a µ-rerandomizable encryption
Π′, the idea is to generate an (honest) public key that contains a public key pk of Π′, and a pair
of ciphertexts (c0, c1) of bits 0 and 1 under pk; to encrypt a bit b, simply rerandomize the b’th
ciphertext cb in the public key. On the other hand, a trapdoor public key contains instead two
ciphertexts c′0, c

′
1 of 0. It follows from the µ-rerandomizability Π′ that rerandomized ciphertexts

from c′0 and c′1 are µ-indistinguishable; therefore, under the trapdoor public key, ciphertexts of 0
and 1 are µ-indistinguishable. Now we provide the complete proof.

Proof of Claim 3.1.3. Fix any µ-rerandomizable CPA encryption scheme Π′ = (KeyGen′,Enc′,Dec′, reRand′).
We show how to transform it into a µ-hiding trapdoor encryption scheme Π = (KeyGen,Enc,Dec, tKeyGen).
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• KeyGen(1λ): Sample a pair of keys (pk′, sk′)
$← KeyGen′(1λ) of Π′, and two ciphertexts of 0 and

1, c0
$← Enc′pk′(0) and c1

$← Enc′pk′(1). Output pk = (pk′, c0, c1) and sk = sk′.

• Encpk(b): To encrypt a bit b ∈ {0, 1}, rerandomize the b’th ciphertext cb in the public key pk,

to obtain the ciphertext c
$← reRand′pk′(cb).

• Decsk(c): Decrypt using Dec′ with secret key sk = sk′, b = Dec′sk′(c).

• tKeyGen(1λ): Sample a pair of keys (pk′, sk′)
$← KeyGen′(1λ) of Π′, and two ciphertexts of 0,

c0
$← Enc′pk′(0) and c1

$← Enc′pk′(0). Output tpk = (pk′, c0, c1).

It follows from the µ-rerandomizability and the semantic security of Π′ that Π is also semantically
secure. Moreover, it follows from the semantic security of Π that a trapdoor public key (consisting
of pk′ and two ciphertexts of 0) is indistinguishable from an honest public key (consisting of pk′,
one ciphertext of 0 and one of 1). Finally, it follows again from the µ-rerandomizability of Π′ that
under a trapdoor public key, distributions of encryption of 0 or 1 are µ-indistinguishable. This
concludes that Π is a µ-hiding trapdoor encryption scheme.

3.3 From Trapdoor Encryption to Leveled Homomorphic Encryption

In this section, we present our general transformation from a trapdoor encyrption scheme Π =
(KeyGen,Enc,Dec, tKeyGen) to a leveled fully homomorphic encryption scheme LHE, relying on a
pIO scheme piO for a specific class SΠ of samplers defined by Π as described in Figure 4; (more
explanation on the class is provided in the proof of semantic security).

Proposition 3.2. Let Π be any trapdoor encryption scheme. Assume the existence of pIO for
the class of samplers SΠ defined by Π as in Figure 4. Then, Π can be transformed into a leveled
homomorphic encryption scheme.

Below we first describe our construction and then prove its correctness and semantic security
in Lemma 3.3 and 3.4. Without loss of generality, we assume that the public, secret keys and
ciphertexts of Π have lengths bounded by l(λ). Below we first describe our construction.

Construction of LHE: Let L = L(λ) be the depth of the circuits that we want to evaluate. The
four algorithms of the scheme proceed as follows:

• Key generation: LHE.Keygen(1λ, 1L) does the following for every level i from 0 to L.

– samples a pair of keys (pki, ski)
$← KeyGen(1λ) of Π;

– for i ≥ 1, obfuscate the circuit Pi = Prog(ski−1,pki) as described in Figure 3, that is, sample

Λi
$← piO(1s, Pi) where the security parameter s = s(λ) for obfuscation is an upper-bound

on the size of all Pi’s.
3

Finally outputs pk = pk0, sk = skL, evk = {Pi}0≤i≤L.

• Encryption: LHE.Encpk(m) outputs a fresh encryption of m under pk = pk0 using Π, c
$←

Encpk0(m).

3This is because the obfuscator piO(1λ, C) works with classes of circuits Cλ of size at most λ.
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• Decryption: LHE.Decsk(c) decrypts c using the secret key sk = skL to obtain m = DecskL(c).

• Homomorphic evaluation: LHE.Evalevk(C, c1, . . . , c`) on input a layered circuit C (consisting
of only NAND gates) of depth at most L, evaluate C layer by layer; in iteration i, layer i ∈ [L] is
evaluated (the first layer is connected with the input wires): At the onset of this iteration, the
values of the input wires of layer i has been homomorphically evaluated in the previous iteration
and encrypted under key pki−1 (in the first iteration, these encryptions are simply c1, · · · , c`);
for each NAND gate g in this layer i, let α(g), β(g) be encryption of the values of its input wires;
evaluate g homomorhpically by computing γ(g) = Λi(α(g), β(g)) to obtain an encryption of the
value of g’s output wire under public key pki. At the end, output the encryptions generated in
the last iteration L.

sk, pk, tpk, α, and β are strings of length l(λ).

Circuit Prog(sk,pk)(α, β): Decrypt α and β to obtain a = Decsk(α) and b = Decsk(β); output

γ
$← Encpk(a NAND b).

Circuit tProg(tpk)(α, β): Output γ
$← Enctpk(0).

Both circuits are padded to their maximum size. Let s(λ) be an upper bound on their sizes.

Figure 3: Circuits used in the construction of LHE and its analysis

It follows from the correctness of pIO and Π that the scheme LHE is correct. That is,

Lemma 3.3. If pIO and Π are correct, then LHE has homomorphism.

Proof. Fix any sequence of circuits Cλ of depth at most L(λ) and inputs m1, . . . ,m` ∈ {0, 1} (where
` = `(λ)). We want to show that

Pr [LHE.Decsk(LHE.Evalevk(Cλ, c1, . . . , c`)) 6= Cλ(m1, . . . ,m`)] = negl(λ) ,

where (pk, evk, sk)←LHE.Keygen(1λ) and ci←LHE.Encpk(mi).
Assume for contradiction that the above condition does hold, that is the probability above is

at least 1/p(λ) for some polynomial. Towards reaching a contradiction, we consider a sequence
of hybrids, H0, · · · , HL: In Hi, the LHE.Evalevk(Cλ) procedure is modified to LHE.Evalievk(Cλ) as
follow: The first i layers of Cλ are homomorphically evaluated using the obfuscated circuits Λj ,
and the rest layers are evaluated using the circuits Pj directly (without obfuscation). In H0, the
whole circuit Cλ is evaluated using solely {Pj}, whereas in H`, Cλ is evaluated using solely {Λj}
as in LHE.Eval. Define pi to be the probability that LHE.Evali produces the wrong output, that is,

pi = Pr
[
LHE.Decsk(LHE.Eval

i
evk(Cλ, c1, . . . , c`)) 6= Cλ(m1, . . . ,m`)

]
It follows directly from the correctness of the encryption scheme Π that, this probability p0 in H0

is negligible. Thus there must exist an 0 ≤ i < L, such that |pi − pi+1| ≥ 1/2Lp(λ). Moreover,
there must exist a set of keys {pki, ski}, such that conditioned on LHE.Keygen sampling these keys
in Hi and Hi+1, it still holds that |pi − pi+1| ≥ 1/2Lp(λ). Recall that Hi and Hi+1 only differ at
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whether layer i+ 1 is evaluated using Pi+1 or Λi+1
$← piO(1s, Pi+1). We show how to construct an

distinguisher D that violates the correctness of the pIO obfuscator piO.
The distinguisher D on input (1s, Pi+1, z), with z = ({pki, ski} , {mi} , Cλ), participates

externally either experiment Exp1
D(1s, Pi+1, z) or Exp2

D(1s, Pi+1, z) (where it receives outputs of
Pi+1 in the former and that of Λi+1 in the latter). Internally, D tries to homomorphically evaluate
Cλ(m1, · · · ,m`) as in Hi or Hi+1 as follows. It encrypts m1, · · · ,m` honestly obtaining ciphertexts
c1, · · · , c`, and obfuscates P1 to Pi using piO obtaining Λ1 to Λi. Then it evaluates the first i layers
of Cλ over c1, · · · , c` homomorphically using Λ1 to Λi, and layer i + 2 to L using Pi+2 to PL; to
evaluate layer i+ 1, for each NAND gate g, it forwards externally the encryptions α(g), β(g) of the
values of g’s input wires and receives an encryption γ(g) of the value of g’s output wire. Finally,
D decrypts the output encryptions using skL and outputs 1 if the decrypted value does not equal
to Cλ(m1, · · · ,m`).

By construction of D, when it is participating externally in experiment Exp1
D(1s, Pi, z), it

homomorphically evaluates Cλ exactly as in Hi, thus the probability that it outputs 1 is exactly
pi; on the other hand, when it is participating externally in Exp2

D(1s, Pi, z), it homomorphically
evaluates Cλ as in Hi+1 and the probability that it outputs 1 is pi+1. Since |pi − pi+1| is non-
negligible, D distinguishes the two experiments and thus violates the correctness of piO, which
gives a contradiction.

3.3.1 Proof of Semantic Security of LHE

Towards establishing the semantic security of LHE, we rely on the security property of pIO for the
class of samplers SΠ defined by the trapdoor encryption scheme Π used in LHE. Roughly speaking,
samplers in SΠ samples pairs of circuits where one of them is identical the “honest” program used
for generating the evaluation key in LHE, except that a trapdoor public key tpk (instead of an
honest public key) is hardwired in (that is, Prog(sk,tpk)), and the other one is a “trapdoor” program
tProg(tpk) as described in Figure 3 that always generates a ciphertext of 0 under the “trapdoor”
public key hardwired inside. More precisely, we describe the class of samplers in Figure 4.

Π = (KeyGen,Enc,Dec, tKeyGen) is a trapdoor encryption scheme, SK = {skλ} is a sequence

of strings of length l(λ), and s(λ) is an upper bound on the sizes of programs Prog(sk,tpk) and

tProg(tpk).

The Sampler DSK : The distribution DSK
s samples a trapdoor public key tpk

$← tKeyGen(1λ),

and outputs C0 = Prog(sk,tpk), C1 = tProg(tpk) and z = tpk, where sk = skλ.

The Class SΠ: Let SΠ be the class of samplers that include distribution ensembles DSK for all
sequence of strings SK of length l(λ).

Figure 4: The class of samplers for proving the semantic security of LHE.

Next we show that LHE is semantic secure. We note that for the proof to go through, we only
rely on the fact that piO is a pIO for the above described class SΠ and the fact that trapdoor public
keys of the trapdoor encryption scheme Π are indistinguishable from honest public keys. The proof
actually does not depend on any hiding property in the trapdoor mode, which will only play a role
later when instantiating pIO for SΠ.
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Lemma 3.4. Assume that Π is a trapdoor encryption scheme and piO is a pIO for the class of
samplers SΠ in Figure 4. Then, LHE is semantically secure.

Proof. Fix any polynomial time adversary A. We want to show that for every λ ∈ N, it holds that,

AdvCPA[A] := |Pr[A(pk, evk, LHE.Encpk(0)) = 1]− Pr[A(pk, evk, LHE.Encpk(1)) = 1]| < negl(λ) ,

where (pk, evk, sk)←LHE.Keygen(1λ).
Towards this, we consider two sequences of hybrids Hb

0, · · · , Hb
L for b ∈ {0, 1}. Hb

0 is exactly an
honest CPA game with the adversaryA where it receives a challenge ciphertext that is an encryption
of b; in intermediate hybrids, the adversary A participates in a modified game. We show that for
every two subsequent hybrids Hb

i , H
b
i+1, as well as H0

L, H
1
L, the view of A is indistinguishable. Below

we formally describe all the hybrids.

Hybrid Hb
0: Hybrid Hb

0 is an honest CPA game with A, where A receives (pk, evk, c∗ =

LHE.Encpk(b)) for freshly sampled (pk, evk, sk)
$← LHE.Keygen(1λ). By construction of LHE,

the view of A is,

view[A]b0 =
(
pk = pk0, evk = (Λ1, · · · ,ΛL), cb = Encpk0(b)

)
Hybrid Hb

i for i > 0: Hybrid Hb
i proceeds identically to Hb

0 except that the evaluation key evk is
sampled in a different way. Recall that in Hb

0, evk consists of the obfuscated circuits Λ1, · · · ,ΛL
of circuits P1, · · · , PL, where Pj = Prog(skj−1,pkj). In Hb

i , the last i circuits PL−i+1, · · · , PL are

replaced with tPL−i+1, · · · , tPL, where tPj = tProg(tpkj) (see Figure 3) hardwired with a freshly

sampled “trapdoor” public key tpkj
$← tKeyGen(1λ). Let tΛL−i+1, · · · , tΛL be the obfuscated

circuits of tPL−i+1, · · · , tPL. Then evki in Hb
i consists of evki = Λ1, · · · ,ΛL−i, tΛL−i+1, · · · , tΛL.

The view of A in Hb
i is

view[A]bi =
(
pk0, evki = (Λ1, · · · ,ΛL−i, tΛL−i+1, · · · , tΛL), cb = Encpk0(b)

)
To show that the A cannot distinguish the two CPA games, it is equivalent to show that A

cannot distinguish hybrids H0
0 and H1

0 . Towards this, it suffices to prove that A cannot distinguish
any of the neighboring hybrids, that is,

• The views of A in H0
L and H1

L are indistinguishable,{
view[A]0L =

(
pk0, evkL = (tΛ1, · · · , tΛL−i, tΛL−i+1, · · · , tΛL), Encpk0(0)

)}
λ

≈
{
view[A]1L =

(
pk0, evkL = (tΛ1, · · · , tΛL−i, tΛL−i+1, · · · , tΛL), Encpk0(1)

)}
λ

• For every b and 0 ≤ i ≤ L, the views of A in Hb
i and Hb

i+1 are indistinguishable,{
view[A]bi =

(
pk0, evki = (Λ1, · · · , ΛL−i , tΛL−i+1, · · · , tΛL), cb = Encpk0(b)

)}
λ

≈
{
view[A]bi+1 =

(
pk0, evki+1 = (Λ1, · · · , tΛL−i , tΛL−i+1, · · · , tΛL), cb = Encpk0(b)

)}
λ
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where the difference in the views of A in neighboring hybrids are highlighted in box.

Towards showing the first indistinguishability, we observe that in H0
L and H1

L, the evaluation key

evkL consists of only obfuscation of the “trapdoor” programs {tΛi
$← piO(1s, tProg(tpkj))} which

does not depend on any secret key skj . Thus by the semantic security of Π, encryption Encpk0(0)
and Encpk0(1) are indistinguishable, and hence so are the views of A in H0

L and H1
L.

Towards showing the second indistinguishability, we observe that the only difference between
Hb
i and Hb

i+1 lies in whether the evaluation key contains an obfuscation ΛL−i of the honest program

Prog(skL−i−1,pkL−i) for layer L − i, or an obfuscation tΛL−i of the trapdoor program tProg(tpkL−i).
Furthermore, in both Hb

i and Hb
i+1 the generation of the evaluation key does not depend on skL−i,

and hence neither do the views of A. Thus to show the indistinguishability of the views of A it
suffices to show the indistinguishability of the following ensembles, from which the views of A in
Hb
i and Hb

i+1 can be reconstructed.{
ΛL−i, pkL−i, pkL−i−1, )

}
λ
≈
{
tΛL−i, tpkL−i, pkL−i−1)

}
λ

where in the above distributions (pkL−i, skL−i) and (pkL−i−1, skL−i−1) are all randomly sampled
honest keys of Π, tpkL−i is a randomly sampled trapdoor public key, and ΛL−i and tΛL−i are
obfuscations of the honest program or the trapdoor program as in Hb

i and Hb
i+1. We argue

why the views of A in Hb
i and Hb

i+1 can be reconstructed from the left and right random
variables respectively: This is because ΛL−i and tΛL−i correspond respectively to the (L − i)’th
obfuscation in the evaluation key in Hb

i and Hb
i+1, and the other obfuscated programs Λ1, · · ·ΛL−i−1,

tΛL−i+1, · · · , tΛL in the evaluation key can be sampled efficiently given pkL−i−1 together with pkL−i
or tpkL−i; finally, encryption of b under pk0 can be sampled independently.

We show the above indistinguishability in two steps, via an intermediate hybrid where an
obfuscation Λ′L−i of the hybrid program Prog(skL−i−1,tpkL−i) is sampled; the hybrid program is the
same as the honest program except that a trapdoor public key tpkL−i is hardwired.{

ΛL−i, pkL−i , pkL−i−1, )
}
λ
≈

{
Λ′L−i, tpkL−i , pkL−i−1, )

}
λ

(1){
Λ′L−i , pkL−i, pkL−i−1, )

}
λ
≈

{
tΛL−i , tpkL−i, pkL−i−1)

}
λ

(2)

Equation (1) follows directly from the fact that a randomly sampled trapdoor public key is
indistinguishable from an honest public key.

Equation (2) holds following the pIO security for the class of samplers SΠ. More specifically,
to show the equation, it suffices to show that it holds for every fixed sequence of pairs S ={

(pkL−i−1, skL−i−1)
}

of length l(λ) each. Fix such a sequence S and let SK = {skL−i−1} be
the sequence of secret keys only. Notice that the sampler DSK described in Figure 4 produces
exactly the hybrid and trapdoor programs as above, that is,

(C0 = Prog(skL−i−1,tpkL−i), C1 = tProg(tpkL−i), z = tpkL−i)
$← DSK

s

Thus for the fixed sequence S, Equation (2) is equivalent to the following:{
(C0, C1, z)

$← D
skL−i−1
s : (C0, C1, piO(1s, C0), z)

}
λ

≈
{

(C0, C1, z)
$← D

skL−i−1
s : (C0, C1, piO(1s, C1), z)

}
λ

This indistinguishability follows directly from the premise that piO is a pIO for the sampler DSK .
Thus the views of A in Hb

i and Hb
i+1 are indistinguishable.
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3.3.2 Instantiation of LHE

In this section, we show how to instantiate our general transformation from any trapdoor encryption
scheme to a LHE scheme, more precisely, how to realize the premise of Proposition 3.2. Towards
this, the focus is to instantiate the pIO scheme matching the trapdoor encryption scheme Π. Since
Π defines the class of samplers for which pIO security is required. Properties of Π determines how
strong the corresponding pIO is. As we will see, by varying the properties of Π, it leads to different
instantiations of pIO.

Instantiation 1: Rerandomizable Encryption + Sub-exponential IO. The first instanti-
ation uses a ν-hiding trapdoor encryption scheme Π and a X-Ind pIO for appropriate functions ν
and X. Let us specify the functions: First, set ν(λ) = negl(λ)2−2l(λ), where l(λ) is an upper bound
on the lengths of the ciphertexts of Π. Second, to set the function X, recall that every sampler
DSK
s

4 in the class SΠ produces circuits C0 = Prog(sk,tpk) and C1 = tProg(tpk) of size s(λ) and input
length 2l(λ); by setting X(s(λ)) = 22l(λ), we have that the two sampled circuits C0, C1 differ at
most X(s) inputs and the output distributions of C0 and C1 are negl(λ)X(λ)−1-indistinguishable
following from the ν-hiding property of Π. Therefore DSK is an X-Ind sampler.

Claim 3.4.1. Let Π be a ν-hiding trapdoor encryption scheme, where ν = negl(λ)2−2l(λ) and l(λ) is
an upperbound on the length of the ciphertexts of Π, and X is a function such that X(s(λ)) = 22l(λ).
Every sampler DSK ∈ SΠ is a X-Ind sampler.

Therefore, any X-Ind pIO scheme is a pIO scheme matching the ν-hiding trapdoor encryption
scheme Π. Plugging them in the general transformation for LHE, that is, Proposition 3.2, we
obtain:

Corollary 3.5 (LHE from ν-hiding trapdoor encryption scheme and X-Ind pIO). Let Π, ν, X be
defined as in Claim 3.4.1. Assume the existence of an X-Ind pIO scheme piO. Then, Π can be
transformed into a leveled homomorphic encryption scheme.

By Claim 3.1.3, the existence of a ν-rerandomizable encryption scheme (in particular, a perfectly
rerandomizable one) implies that of a ν-hiding trapdoor encryption scheme. Furthermore, by
Theorem 2.5, X-Ind pIO can be constructed from any sub-exponentially indistinguishable IO and
sub-exponentially secure OWFs. Therefore, we further obtain:

Corollary 3.6 (LHE from rerandomizable encryption and sub-exponentially secure IO and OWF.).
Let Π be a perfectly rerandomizable encryption scheme. Assume the existence of sub-exponentially
indistinguishable IO for circuits and sub-exponentially secure one-way functions. Π can be turned
into a leveled homomorphic encryption scheme.

Instantiation 2: Lossy Encryption + worst-case-input pIO. The second instantiation
combines a lossy encryption scheme, which by Claim 3.1.2 directly implies a statistical trapdoor
encryption scheme Π, with a worst-case-input pIO. By the statistical hiding property of the trapdoor
mode of Π, every sampler DSK in the class SΠ corresponding to Π samples circuits C0 = Prog(sk,tpk)

and C1 = tProg(tpk) with statistically close output distributions for every input. Therefore, DSK is
a worst-case-input indistinguishable sampler. In other words, any worst-case-input pIO is a pIO for

4We remind the reader that all variables related with the encryption scheme Π, such as pk, sk, tpk, are generated
using security parameter λ, while the pIO scheme piO and the related samplers all use security parameter s = s(λ).
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the class SΠ. Plugging a lossy encryption and worst-case-input pIO in our general transformation
Proposition 3.2, we obtain:

Corollary 3.7 (LHE from lossy encryption and worst-case-input pIO). Let Pi be a lossy encryption
scheme. Assume the existence of a worst-case-input pIO scheme piO. Then, Π can be transformed
into a leveled homomorphic encryption scheme.

Instantiation 3: CPA Encryption + Dynamic-input pIO for Specific Class. Finally, we
observe that any CPA encryption Π can be turned into a LHE, if there exits a strong notion of
pIO, namely dynamic-input pIO for SΠ. As observed in Claim 3.1.1, any CPA encryption scheme
Π = (Gen,Enc,Dec) directly implies a trapdoor encryption scheme Π′ = (Gen,Enc,Dec, tKeyGen =
Gen) with a computationally hiding trapdoor mode. This implies that every sampler DSK in the
matching class SΠ is a dynamic-input indistinguishable sampler. Therefore,

Corollary 3.8. Let Π be any CPA encryption scheme and Π′ the corresponding trapdoor encryption
scheme. Assume the existence of a dynamic-input pIO scheme piO for SΠ′. Then, Π can be
transformed into a leveled homomorphic encryption scheme.

We note that although general pIO for all dynamic-input indistinguishable samplers is
implausible by [GGHW14], pIO for the specific class of samplers SΠ′ circumvents the implausibility
result. This is because the implausibility of [GGHW14] applies only to a specific class of samplers
that produce (C0, C1, z) where z is an obfuscated program that essentially distinguishes circuits
with the same functionality as C0 from ones with the same functionality as C1 using only their I/O
interfaces. However, samplers in SΠ′ produce auxiliary input that is a public key pk of Π, which
cannot be used to tell apart circuits of functionalities identical to Prog(sk,pk) or tProg(pk) through
only their I/O interfaces, due to the semantic security of Π. Therefore, dynamic-input pIO for SΠ′

circumvents the implausibility. We consider the construction in Conjecture 1 a potential candidate
construction of dynamic-input pIO for SΠ′ .

3.4 From LHE to FHE

In this section, we show how to transform the construction of leveled homomorphic encryption
scheme LHE in Section 3.3 into a fully homomorphic one, without relying on circular security.

Overview: The first observation we have is that in the leveled FHE scheme LHE, the only
dependency on the maximum level L of evaluation is the length of the evaluation key: The
evaluation key evk consists of L obfuscated programs {Λi}i∈[L], one for each layer—call them layer
evaluation keys. Except from the number of layer evaluation keys in evk, all other parameters in
the scheme are independent of L. For instance, the size of each Λi is a fixed polynomial in λ, as
well as the length of the public, secret keys pk0, skL and the length of the ciphertexts Encpk0(b);
their concretes sizes depend only on the parameters of the underlying encryption scheme Π.

Towards enabling fully homomorphic operations, the naive idea is to publish in evk a slightly
super-polynomial number of layer evaluation keys, that is, evk = {Λi}i∈[L], where L = L(λ) =

2ω(log λ) can be any super-polynomial function. Then to homomorphically evaluate a circuit of an
arbitrary polynomial depth, one can simply perform the computation layer by layer as in LHE.
However, this results in an evk of super-polynomial size.
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The challenge is how to “compress” the size of the evaluation key evk. For this we use an idea
developed in the recent works by Lin and Pass [LP14] and Bitansky, Garg and Telang [BGT14].
They used IO obfuscation to construct a succinct garbling scheme for bounded space Turing
machine. Towards their goal, they first work with a non-succinct garbled program for bounded
space Turing machine whose size is proportional to both the space and time complexity of the TM
under consideration. They then “compress” the size of the non-succinct garbled TM, by generating
using IO a “master program” that enables producing the large garbled TM in a “piecemeal fashion”
at evaluation time (as opposed to generating and outputting them at the garbling time). The master
program then becomes the final succinct garbled TM.

In our context, to “compress” the size of evk, we can apply the same idea: Instead of publishing
the super-polynomially long sequence of layer evaluation keys in the evaluation key, we just publish
a “master evaluation key” MEvk that enables the evaluator to generate each layer evaluation keys
“on the fly”, by evaluating MEvk on the index of the layer, Λi = MEvk(i) for every i ∈ [L]. Then,
to evaluate a circuit of arbitrary depth, the evaluator still proceeds layer by layer; for each layer
`, it first generates the layer evaluation key Λ` using the master program, and then evaluates that
layer using Λ` as in LHE.

Recall that each evaluation key Λi is a pIO obfuscation of the program Prog(ski−1,pki) with
randomly generated keys ski−1 and pki of Π. To avoid hurting the semantic security of Π, the
randomness used for generating Λi and ski−1, pki must be hidden. To ensure this, the master
evaluation key MEvk itself will be the obfuscation of a program MProg that generates Λi (and
in turn ski−1, pki). It seems that we can simply use pIO to obfuscate the randomized program
MProg. Unfortunately, this does not go through, because for different inputs, say i and i + 1, the
computation of MProg(i) and MProg(i + 1) relies on correlated randomness in order to generate
consistently pki, ski needed for both Λi and Λi+1 (as they are obfuscation of Prog(ski−1,pki) and
Prog(ski,pki+1) with matching pki, ski). To overcome this problem, as in [LP14, BGT14], we directly
obfuscate using IO a de-randomized version of MProg that internally uses pseudo-random coins
generated using a puncturable PRF in a coordinated way to ensure consistency between the outputs
for different inputs.

Furthermore, to show that the obfuscated program indeed does not reveal more information
than the layer evaluation keys it produces and hence semantic security holds, as in [LP14, BGT14],
we will require all underlying primitives, from the LHE, to IO, to puncturable PRF to have a
distinguishing gap that is much smaller than the inverse of the domain size, namely, bounded
by negl(λ)L(λ)−1. Since the domain has a super-polynomial size L(λ), all primitives needs to
be slightly super-polynomially secure. The reason that this is needed is because the proof of
security goes through a sequence of hybrids that enumerate over all inputs in the domain of the
obfuscated program (much like the exponentially long sequence of hybrids in the security proof
of our construction of X-Ind pIO from sub-exponentially secure IO and OWFs); for the hybrid
argument to go through, we require all underlying primitives to have a distinguishing gap much
smaller than the inverse size of the domain.

3.4.1 The Construction of FHE

We now describe our construction of FHE. The construction is identical to the level homomorphic
scheme LHE, except from how the evaluation key is generated and how the evaluation procedure
proceeds. Let L be any super-polynomial function L(λ) = 2ω(log λ). Our construction of FHE
relies on the following primitives: A trapdoor secure encyrption scheme Π = (KeyGen,Enc,Dec),
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a pIO for the matching class SΠ, an IO for deterministic circuits iO, and a puncturable PRF
(Key,Puncture,PRF), where all primitives are negl(λ)L(λ)−1 indistinguishable.

sk0, k, k′ are strings of length l(λ). i is an integer in [L].

Circuit MProg(sk0,k,k
′)(i):

Compute pseudo-random coins ri−1 = PRF(k, i− 1), ri = PRF(k, i) and r′i = PRF(k′, i);

compute key pairs (pki−1, ski−1) = Gen(1λ; ri−1) and (pki, ski) = Gen(1λ; ri);

compute and output the obfuscated program Λi = piO(1s, Pi; r
′
i), where Pi = Prog(ski−1,pki).

Circuit tMProg(k,k′)(i):

Compute pseudo-random coins ri = PRF(k, i) and r′i = PRF(k′, i);

compute tpki = tKeyGen(1λ; ri);

output obfuscated program tΛi = piO(1s, tPi), where tPi = tProg(tpki).

Circuit hMProg
(k,k′)
` (i):

1. If i < L − `, compute and output Λi as in MProg(sk0,k,k
′).

2. If i = L − `, do:

compute pseudo-random coins ri−1 = PRF(k, i− 1), ri = PRF(k, i) and r′i = PRF(k′, i);

compute key pairs (pki−1, ski−1) = Gen(1λ; ri−1) and tpki = tKeyGen(1λ; ri) ;

compute and output the obfuscated program hΛi = piO(1s, Pi; r
′
i), where Pi =

Prog(ski−1,tpki).

3. If i > L − `, compute and output tΛi as in tMProg(k,k′).

All circuits are padded to their maximum size. Let s′(λ) be an upper bound on their sizes.

Figure 5: Circuits used in the construction of FHE and its analysis

Construction of FHE: The four algorithms of the scheme proceed as follows:

• Key generation: FHE.Keygen(1λ, 1L) does the following:

– sample a pair of keys (pk0, sk0)
$← KeyGen(1λ) of Π;

– sample two PRF keys k, k′
$← Key(1λ).

– obfuscate using IO the circuit MProg(sk0,k,k′) as described in Figure 5, that is, sample

MEvk
$← iO(1s

′
,MProg(sk0,k,k)) where the security parameter s′ = s′(λ) for obfuscation

is an upper-bound on the size of MProg(sk0,k,k′).

Finally outputs pk = pk0, sk = (sk0, k), evk = MEvk.

Note: The PRF keys k, k′ are used to generate the pseudo-random coins for sampling the key
pairs (pki, ski) and the layer evaluation keys Λi for every layer i ∈ [L]. We define,

∀i ∈ [L], pki, ski , Gen(1λ;PRF(k, i)), Λi , piO(1s,Prog(ski−1,pki);PRF(k′, i)) (3)
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We emphasize that these keys are merely well-defined, and are not actually generated nor
published.

• Encryption: FHE.Encpk(m) outputs a fresh encryption of m under pk = pk0 using Π,

c
$← Encpk0(m), and outputs ciphertext (c, 0), where 0 indicates that it is a freshly generated

ciphertext at level 0.

• Decryption: FHE.Decsk((c, i)) decrypts c, by first generating ski as in equation (3) (if i = 0,
sk0 is used), and then obtaining m = Decski(c).

• Homomorphic evaluation: FHE.Evalevk(C, c1, . . . , cm) on input a layered circuit C (consisting
of only NAND gates) of an arbitrary depth ` ≤ L(λ), evaluate C layer by layer; in iteration i,
layer i ∈ [`] is evaluated (the first layer is connected with the input wires) as follow:

– At the onset of this iteration, the values of the input wires of layer i has been
homomorphically evaluated in the previous iteration and encrypted under some key pki−1;
in the first iteration, these encryptions are simply c1, · · · , cm;

– generate the i’th layer evaluation key Λi by evaluating Λi = MEvk(i).

– for each NAND gate g in this layer i, let α(g), β(g) be the encryptions of the values of its
input wires; evaluate g homomorhpically by computing γ(g) = Λi(α(g), β(g)) to obtain an
encryption of the value of g’s output wire under public key pki.

At the end, output the encryption c∗ generated in the last iteration together with the depth `,
(c∗, `).

Note: Jumping ahead, as we show in the proof of homomorphism, when the evaluation proceeds
correctly, pki−1,Λi, pki above are exactly as defined in equation (3).

It follows from the correctness of Π, piO and iO that FHE is correct.

Lemma 3.9. If Π, piO, iO are correct, then FHE has homomorphism.

Proof. Fix any polynomial `(λ) and n(λ), and any sequence of circuits Cλ of depth `(λ) and inputs
m1, . . . ,mn ∈ {0, 1} (where n = n(λ)). We want to show that

Pr [FHE.Decsk(FHE.Evalevk(Cλ, c1, . . . , cn)) 6= Cλ(m1, . . . ,mn)] = negl(λ) ,

where (pk, evk, sk)←FHE.Keygen(1λ) and (ci, 0)←FHE.Encpk(mi).
For every i ∈ [`] (where ` = `(λ)), it follows from the correctness of iO that with overwhelming

probability over the choice of the random coins of iO in the key generation algorithm, the master
evaluation key MEvk satisfies that

Pr[(pk, sk, evk = MEvk)
$← FHE.Keygen(1λ) : MEvk(i) 6= Λi] = negl(λ) ,

where Λi is exactly as in equation (3). That is,

pki, ski = Gen(1λ;PRF(k, i)), Λi = piO(1s,Prog(ski−1,pki);PRF(k′, i))

By a union bound, it holds that

Pr[(pk, sk, evk = MEvk)
$← FHE.Keygen(1λ) : ∀i ∈ [`], MEvk(i) 6= Λi] = negl(λ) .
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Therefore, the homomorphic evaluation procedure computes Λ1, · · · ,Λ` correctly with overwhelm-
ing probability; in this case, the evaluation procedure proceeds identically to that of LHE with a
level bound `, except that the layer evaluation keys {Λi} are generated using pseudo-random coins,
as opposed to truly random coins. Furthermore, the decryption procedure uses sk` to decrypt the
homomorphism evaluated ciphertext, just as in LHE, except from, again, that sk` is generated using
pseudo random coins. Then it follows from the homomorphism of LHE and the pseudo-randomness
of PRF that the probability that decrypted value is not the correct output is negligible.

3.4.2 Proof of Semantic Security of FHE

As in the proof of the semantic security of LHE in Section 3.3.1, the semantic security of FHE relies
on that Π is a trapdoor encryption scheme, and piO is a pIO for the specific class of samplers SΠ.
Additionally, to ensure that it is secure to release the master evaluation key which produces the
layer evaluation keys of LHE, we rely on an IO for circuits and a puncturable PRF. We note that
since the master public key allows producing a slightly super-polynomial number L of layer keys,
to prove it is secure to release it, we need to require all primitives piO, Π, iO and the PRF to have
distinguishing gaps bounded by a slightly inverse super-polynomial negl(λ)L−1(λ). More precisely,

Lemma 3.10. Let L be any slightly super-polynomial function, and µ any function, such that,
µ(λ) = negl(λ) · L(λ)−1. Assume the following primitives with distinguishing gaps bounded by µ:

• Π is a trapdoor encryption scheme,

• piO is a pIO for the class of samplers SΠ,

• iO is an IO for circuits, and

• (Key,Puncture,PRF) is a puncturable PRF.

Then, the scheme FHE described in Section 3.4.1 is semantic secure.

Proof. Fix any polynomial time adversary A. We want to show that for every λ ∈ N, it holds that,

AdvCPA[A] := |Pr[A(pk, evk,FHE.Encpk(0)) = 1]− Pr[A(pk, evk,FHE.Encpk(1)) = 1]| < negl(λ) ,

where (pk, evk, sk)←FHE.Keygen(1λ).
Towards this, we consider two sequences of hybrids Hb

0, · · · , Hb
L for b ∈ {0, 1}, each of super-

polynomial length L = L(λ). Hb
0 is exactly an honest CPA game with the adversary A where it

receives a challenge ciphertext that is an encryption of b; in intermediate hybrids, the adversary A
participates in a modified game. We show that for every two subsequent hybrids Hb

i , H
b
i+1, as well

as H0
L, H

1
L, the views of A are µ′-indistinguishable, for a distinguishing gap µ′ = cµ for a sufficiently

large constant c. Below we formally describe all the hybrids.

Hybrid realb: Hybrid realb is an honest CPA game with A, where A receives (pk, evk, c∗
$←

FHE.Encpk(b)) for freshly sampled (pk, evk, sk)
$← FHE.Keygen(1λ). By construction of FHE,

pk = pk0, evk = MEvk which is an obfuscation of MProg(sk0,k,k′) for randomly sampled k, k′,
and c∗ contains a ciphertext cb of Π and level 0; thus, the view of A is,

view[A]breal =
(
pk0, MEvk

$← iO(1s
′
,MProg(sk0,k,k′))), (Encpk0(b), 0)

)
,

where pk0, sk0, k, k
′ are all randomly sampled.
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Hybrid idealb: Hybrid idealb is identical to realb except that the evaluation key is sampled
in a different way. More specifically, instead of obfuscating the honest master program
MProg(sk0,k,k′), obfuscate the trapdoor master program tMProg(k,k′) as described in Figure 5 to
obtain a trapdoor evaluation key tMEvk. Thus, the view of A is,

view[A]bideal =
(
pk0, tMEvk

$← iO(1s
′
, tMProg(k,k′))), (Encpk0(b), 0)

)
,

where pk0, sk0, k, k
′ are all randomly sampled.

Note that in this hybrid, the view of the adversary is completely independent of the secret key
sk0, and the only difference between the view view[A]0L and view[A]1L is which bit b = 0 or 1 is
encrypted. It follows from the semantic security of Π that these views are µ-indistinguishable.{

view[A]0ideal
}
λ

µ
≈
{
view[A]1ideal

}
λ

Intermediate Hybrids Hb
` for 0 ≤ ` ≤ L: Hybrid Hb

` proceeds identically to Hb
0 except that the

evaluation key is sampled in a different way. More specifically, instead of obfuscating the

honest master program MProg(sk0,k,k′), obfuscate the hybrid master program hMProg
(sk0,k,k′)
`

as described in Figure 5 to obtain a hybrid evaluation key hMEvk`. Thus, the view of A is,

view[A]b` =
(
pk0, hMEvk`

$← iO(1s
′
, hMProg

(sk0,k,k′)
` ), (Encpk0(b), 0)

)
,

where pk0, sk0, k, k
′ are all randomly sampled.

It is easy to see that since hMProg
(sk0,k,k′)
0 has the same functionality as MProg(sk0,k,k′) and

hMProg
(sk0,k,k′)
L has the same functionality as tMProg(k,k′). Therefore, it follows from the µ-

indistinguishability of iO that{
view[A]b0

}
λ

µ
≈
{
view[A]breal

}
λ

{
view[A]bL

}
λ

µ
≈
{
view[A]bideal

}
λ

Therefore, given the indistinguishability of the ideal views of A when b = 0 or 1 shown for
hybrids idealb, to show the indistinguishability of the real views of A, it suffices to show the
indistinguishability of views of A in neighboring hybrids Hb

i and Hb
i+1. More formally,

Claim 3.10.1. For every b ∈ {0, 1} and i ≥ 0,{
view[A]0`

}
λ

µ′

≈
{
view[A]1`+1

}
λ

Before proving Claim 3.10.1, note that by a hybrid argument over the sequence of experiments,
realb, Hb

1, · · ·Hb
L, ideal

b and the indistinguishability of ideal0 and ideal1. We have that the real views
of A are indistinguishable and hence semantic security holds.

Proof of Claim 3.10.1. Fix any b ∈ {0, 1} and i ≥ 0. We want to show that the views of A in Hb
i

and Hb
i+1 are indistinguishable.{

view[A]b` =

(
pk0, hMEvk`

$← iO(1s
′
, hMProg

(sk0,k,k′)
` ), (Encpk0(b), 0)

)}
λ

µ′

≈
{
view[A]b`+1 =

(
pk0, hMEvk`+1

$← iO(1s
′
, hMProg

(sk0,k,k′)
`+1 ), (Encpk0(b), 0)

)}
λ
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The only difference between the views of A lies in which hybrid master program is obfuscated;

furthermore, notice that C0 = hMProg
(sk0,k,k′)
` and C1 = hMProg

(sk0,k,k′)
`+1 differ at only two inputs

w = L − ` and w − 1 = L − `− 1:

• At w, C0 outputs a pIO obfuscation of the hybrid program Prog(skw−1,tpkw), where as C1 outputs
an obfuscation of the trapdoor program tProg(tpkw), all random variables are generated with
pseudo-random coins produced using k, k′.

• At w−1, C0 outputs an obfuscation of the honest program Prog(skw−2,pkw−1), whereas C1 outputs
an obfuscation of the hybrid program Prog(skw−2,tpkw−1).

At all other inputs, C0 and C1 outputs the same.
To show the above indistinguishability, it suffices to show that for every fixed sequence of keys

{(pk0, sk0)}, the following are indistinguishable.{
k, k′

$← Key(1λ), C0 = hMProg
(sk0,k,k′)
` : hMEvk`

$← iO(1s
′
, C0)

}
λ

µ′

≈
{
k, k′

$← Key(1λ), C1 = hMProg
(sk0,k,k′)
`+1 : hMEvk`+1

$← iO(1s
′
, C1)

}
λ

Towards this, we will consider a sequence of hybrids G0 to G6, where G0 and G6 samples
obfuscations of programs Γ0 = C0 and Γ6 = C1 as in the above two ensembles. The intermediate
Gi hybrids produces the obfuscation of some hybrid program Γi as described below:

Hybrid G1: Hybrid G1 obfuscates a program Γ1 constructed as follows: After sampling two PRF
keys k and k′; puncture the PRF key k at points w and w − 1, and k′ at w:

k(w,w − 1) = Puncture(k, {w,w − 1}), k′(w) = Puncture(k′, w) ;

furthermore, let rw−1, rw and r′w be the outputs of the PRF with key k at points w− 1 and w,
and with k′ at w, that is,

rw−1 = PRF(k,w − 1), rw = PRF(k,w), r′w = PRF(k′, w)

Note that in Γ0, rw−1 and rw are only used to generate key pairs for layers w− 1 and w, while
r′w is only used to generate the w’th layer evaluation key. Directly compute the variables that
depend on rw−1, rw, r

′
w:

(pkw−1, skw−1) = Gen(1λ; rw−1), tpkw = tKeyGen(1λ; rw),

hΛw = piO(1s, Pw; r′w), Pw = Prog(skw−1,tpkw)

The program Γ1 is identical to Γ0, except from the following two modifications: (1) instead of
having full keys k, k′ hardwired inside, Γ1 has the punctured keys k(w,w− 1), k′(w) hardwired
in, together with values pkw−1, hΛw; (2) Γ1 proceeds identically to Γ0 for all inputs except from
w − 1, w; for input w, it directly outputs hΛw, and for w − 1, it uses the hardwired key pkw−1

to compute Λw−1 as in Γ0.

Since Γ0 and Γ1 has the same functionality, it follows from the µ-indistinguishability guarantees
of iO that their obfuscation is µ-indistinguishable.

36



Hybrid G2: Hybrid G2 proceeds identically to G1, except that it computes the keys and obfuscated
program to be hardwired using truly random coins, instead of pseudo-random coins, that is,

(pkw−1, skw−1)
$← Gen(1λ), tpkw

$← tKeyGen(1λ),

hΛw
$← piO(1s, Pw), Pw = Prog(skw−1,tpkw)

G2 then obfuscates the program Γ2, which is identical to Γ1 except that it contains pkw−1, hΛw
generated using truly random strings as above.

It follows from the pseudo-randomness of the puncturable PRF that G4 and G5 are µ-
indistinguishable.

Hybrid G3: Hybrid G3 proceeds identically to G2, except that instead of sampling hΛw as in G2,
it samples tΛw that is an obfuscation of the trapdoor program tPw = tProg(tpkw) (instead of
the hybrid program).

tΛw
$← piO(1s, tPw), tPw = tProg(tpkw)

G3 then obfuscates Γ3 that is identical to Γ2 except that tΛw (together with pkw−1) is hardwired
in instead of hΛw.

It follows from the pIO security for the class SΠ that tΛw and hΛw are indistinguishable.
More precisely, consider any fixed sequence of

{
pkw−1, skw−1

}
, and let SK = {skw−1}. The

distribution DSK samples the following tuple:

(Pw = Prog(skw−1,tpkw), tPw = tProg(tpkw), z = tpkw)
$← DSK

s

Thus by pIO security w.r.t. DSK , the following two ensembles are µ-indistinguishable.{
Pw, tPw, hΛw

$← piO(1s, Pw), tpkw

}
λ

µ
≈
{
Pw, tPw, tΛw

$← piO(1s, tPw), tpkw

}
λ

Since this indistinguishability holds for every sequence of
{
pkw−1, skw−1

}
, it directly implies

the µ-indistinguishability of hybrids G3 and G2.

Hybrid G4: Hybrid G4 obfuscates a program Γ4 that is identical to Γ3 except that the hardwired
honest public key pkw−1 is replaced by a trapdoor public key tpkw−1

tpkw−1
$← tKeyGen(1λ)

It follows directly from the µ-indistinguishability between the trapdoor and honest keys of Π
that G4 and G3 are µ-indistinguishable.

Hybrid G5: Hybrid G5 obfuscates a program Γ5 that is identical to Γ4 except that the values
hardwired in Γ5, namely tpkw−1, tΛw are generated using pseudo-random strings rw−1, rw, r

′
w

as in hybrid G1:

tpkw−1 = tKeyGen(1λ; rw−1), tpkw = tKeyGen(1λ; rw),

tΛw = piO(1s, tPw; r′w), tPw = Prog(tpkw)

It follows from the pseudo-randomness of the puncturable PRF that G4 and G5 are µ-
indistinguishable.
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Hybrid G6: Hybrid G6 outputs an obfuscation of Γ6 = C1 = hMProg
(sk0,k,k′)
`+1 , which has the same

functionality as Γ5. Therefore it follows from the indistinguishability guarantee of iO that G5

is µ-indistinguishable from G6

It then follows from a hybrid argument that obfuscation of C0 and C1 are µ′-indistinguishable,
where µ′(λ) = cµ(λ) with a sufficiently large constant c. This concludes the claim.

3.4.3 On the Generality of the Transformation to FHE

Our method of using a slightly super-polynomially secure IO and puncturable PRF to compress
the size of a long sequence of layer evaluation keys can actually be applied generally to any LHE
scheme that has a fixed decryption depth (independent of the maximum level of evaluation). More
specifically,

• we say that a LHE scheme LHE = (LHE.Keygen, LHE.Enc, LHE.Dec, LHE.Eval) has a fixed
decryption depth DLHE.Dec(·), if for every polynomial depth L, every (pk, sk, evk) in the support
of LHE.Keygen(1λ, 1L(λ)), every freshly generated or homomorphically evaluated ciphertext c∗

in the support of LHE.Enc(pk, ·) or LHE.Eval(pk, (C, · · · )) with a depth L(λ) circuit C, the
decryption algorithm LHE.Decsk(c

∗) has depth bounded by DLHE.Dec(λ).

We now sketch a general transformation that turns any LHE scheme with a fixed decryption
depth into a FHE. The transformation follows the same two step approach as the transformation
for our specific LHE based on pIO.

A “imaginary” FHE with a non-succinct evaluation key: In a first step, imagine a FHE
scheme with an evaluation key evk that consists of a super-polynomial number L(λ) of layer
evaluation keys each of size poly(λ). Each layer ` ∈ [L] is associated with a key tuple
(pk`, sk`, evk`) of LHE that supports evaluating circuits of depth D′ = DLHE.Dec + 1; moreover,
for each layer, an encryption of the secret key sk`−1 under the public key pk` is released, that
is,

Λ` = (pk`, evk`, c`), where (pk`, sk`, evk`)
$← LHE.Keygen(1λ, 1D

′
), D′ = DLHE.Dec + 1,

and c` = LHE.Encpk`(sk`−1)

Each Λ` is a layer evaluation key: Given two ciphertexts α, β of bits a and b under pk`−1, we
can obtain an encryption γ of a NAND b under pk`, by evaluating homomorphically over c` the
function fα,β(sk`−1) that decrypts α, β using sk`−1 and computes NAND of the decrypted bits.
Since fα,β has depth exactly DLHE.Dec + 1, the homomorphic computation yields a ciphertext γ
of a NAND b under pk` correctly.

Therefore by publishing a super-polynomially number L of layer evaluation keys evk =
(Λ1, · · ·ΛL), the scheme supports homomorphic evaluation of any polynomial depth circuits.

“Compress” the size of the evaluation key: The next step is to “compress” the size of the
super-polynomially long evaluation key to obtain a FHE with succinct evaluation key. Following
the same approach as before, this step relies on an IO for circuits and a puncturable PRF. The
idea is to obfuscate a master circuit Γ that on input ` ∈ [L] computes the `’th layer evaluation
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key Λ` produced using pseudo-random coins generated with a puncturable PRF and hardwired
PRF keys k, k′. That is,

Λ` = Γ(k,k′)(`), where (pk`, sk`, evk`) = LHE.Keygen(1λ, 1D
′
;PRF(k, `)),

(pk`−1, sk`−1, evk`−1) = LHE.Keygen(1λ, 1D
′
;PRF(k, `− 1)),

c` = LHE.Encpk`(sk`−1;PRF(k′, `))

Λ` = (pk`, evk`, c`)

Since the size of the master program Γ(k,k′) is a fixed polynomial in λ, the new evaluation key

evk
$← iO(1s,Γk,k

′
) is succinct, of a fixed polynomial size in λ (where s an upperbound on the

size of Γ and k, k′ are randomly sampled PRF keys). It follows from essentially the same proof
as in Lemma 3.10 that the semantic security of LHE remains even when the new evaluation key
is additionally released, provided that all primitives from LHE, to iO to PRF all have a slightly
inverse super-polynomially small distinguishing gap µ(λ) = negl(λ)L(λ)−1.

The concrete construction of FHE and its proof of correctness and security are essentially the same
as that for the FHE scheme from our specific construction of LHE from pIO in Section 3.4; therefore,
we here defer the details to the full version.

Finally, we note that any LHE scheme with decryption in NC1 have a fixed decryption depth
(in particular, the depth is bounded by λ). Many known constructions, for example [Gen09,
BV11, BGV12, Bra12, GSW13] satisfy this property. Thus, if these constructions are slightly
super-polynomially secure, by assuming slightly stronger underlying assumptions (for instance
the LHE scheme of [BV11] can be made slightly super-polynomially secure if assuming that
the underlying learning with error assumption is slightly super-polynomially secure), they can
be directly transformed into a FHE assuming slightly super-polynomially secure IO and OWFs
(without assuming circular security).

We also note that our LHE scheme constructed in Section 3.3 has a fixed decryption depth,
since its decryption algorithm is identical to that of the underlying trapdoor encryption scheme.
Therefore, the specific transformation described in Section 3.4 can be derived as a special case of
the above general transformation.

4 Application 2: Bootstrapping Indistinguishability Obfuscation

Putting together a randomized encoding for P/poly and our construction of X-Ind pIO from
sub-exponentially secure IO and OWFs in Section 2.6, we obtain a way to bootstrap an
indistinguishability obfuscator for relatively weak (deterministic) circuit classes (such as TC0 or
NC1) into an indistinguishability obfuscator for P/poly. We note that Garg et al. [GGH+13]
show how to do this assuming the existence of indistinguishability obfuscation for some weak
circuit class WEAK (to be defined below), as well as a fully homomorphic encryption scheme
whose decryption can be computed in WEAK. Such an FHE scheme can be instantiated based
on the LWE assumption [BV11]. Our goal is to perform bootstrapping for indistinguishability
obfuscation, without assuming that FHE schemes exist (but instead assuming sub-exponentially
hard indistinguishability obfuscation for WEAK and sub-exponentially hard puncturable PRF in
WEAK.) Applebaum [App13] shows how to bootstrap VBB obfuscations from WEAK to P/poly
using randomized encodings: our technique below is inspired by his transformation.
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Let WEAK be a class of circuits with the following properties: (1) NC0 ⊆ WEAK; (2)
(Closure under concatenation) If each output bit of a multi-output function f is computable in
WEAK then so is f ; (3) (Closure under composition) If f ∈WEAK and g ∈ NC0, then g ◦ f ∈
WEAK, where ◦ denotes function composition. This definition is the same as in [App13]. Clearly,
WEAK includes well-known low-depth classes such as TC0 and NC1.

Theorem 4.1. Assume the existence of a sub-exponentially hard indistinguishability obfuscator
iOWEAK for a circuit class WEAK as above, a sub-exponentially hard puncturable PRF
computable in WEAK. Then, there is an indistinguishability obfuscator for P/poly.

Proof. Let C be a polynomial size circuit that we wish to obfuscate, and let RE(1λ, C, x) be the
function that takes as input C of size bounded by λ and an input x and produces a randomized
encoding (Ĉ, x̂). From the modern constructions of garbled circuits (see, e.g., [AIK06]), we know
that RE can be implemented in NC0, assuming the existence of a pseudorandom generator in
⊕L/poly. Our obfuscation of C is exactly an X-Ind pIO obfuscator for the probabilistic circuit
RE(1λ

′
, C, ·) using a sufficiently large security parameter λ′ = poly(λ). That is,

C̄
$← iO(1λ, C) : C̄

$← piO(1s, P ) where P = RE(1λ
′
, C, ·)), s = s(λ) = |P |

The function X needs to be sufficiently large; we set it in the security proof of iO below.

To show the security of iO, consider a sampler (C1, C2, z)
$← Dλ over deterministic circuits of

size at most λ, such that, with overwhelming probability C1 and C2 are functionally equivalent.
We want to show that the following ensembles are indistinguishable:{

(C1, C2, z)
$← Dλ : (C1, C2, iO(C1), z)

}
λ
≈
{

(C1, C2, z)
$← Dλ : (C1, C2, iO(C2), z)

}
λ

This follows from the following two observations:

• Assuming that the PRG underlying the randomized encoding RE is subexponentially hard, then
by using a sufficiently large security parameter λ′(λ) = poly(λ), the following ensembles are
µ-indistinguishable for any input x ∈ {0, 1}λ, where µ(λ) = negl(λ)2λ.

{(C1, C2, z)
$← Dλ : (C1, C2,RE(1λ

′
, C1, x), z}λ

µ
≈ {(C1, C2, z)

$← Dλ : (C1, C2,RE(1λ
′
, C2, x), z}λ

Let Pb = RE(1λ
′
, Cb, ·) and s(λ) = |Pb|; set the function X to be such that X(s(λ)) = 2λ. Then

it follows from the above indistinguishability that the modified distribution D′s that samples
(P1, P2, z), where Pb and z correspond to Cb and z sampled according to D, is an X-Ind sampler
over NC0 circuits.

• By Theorem 2.5, using a subexponentially hard indistinguishability obfuscator for the circuit
class WEAK and a subexponentially hard puncturable PRF computable in WEAK, we can
construct an X-Ind pIO scheme piO for the circuit class NC0.

By the definition of X-Ind pIO, and the fact that D′ is an X-Ind sampler, we have{
(P1, P2, z)

$← D′s : (P1, P2, piO(1s, P1), z)
}
s
≈
{

(P1, P2, z)
$← D′s : (P1, P2, piO(1s, P2), z)

}
s
,
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which implies that{
(C1, C2, z)

$← Dλ : (C1, C2, piO(1s,RE(1λ
′
, C1, ·)), z)

}
λ

c
≈
{

(C1, C2, z)
$← Dλ : (C1, C2, piO(1s,RE(1λ

′
, C2, ·)), z)

}
λ

Finally, note that sub-exponentially indistinguishable PRF in NC1 implies a sub-exponentially
hard PRG in ⊕L/poly. This finishes the proof.

The above theorem directly yields the following corollary:

Corollary 4.2. Assume the existence of a sub-exponentially hard indistinguishability obfuscator
iONC1 for the class NC1, subexponential indistinguishable puncturable PRF in NC1. Then, there
is an indistinguishability obfuscator for P/poly.

We note that, so far, there are two constructions of puncturable PRFs in NC1 [BLMR13], based
on the Learning With Error (LWE) problem or the decision linear assumptions on multilinear maps.
Assuming that these underlying assumptions are sub-exponential hard, we get sub-exponentially
indistinguishable puncturable PRF in NC1.

4.1 Bootstrapping Worst-case-input pIO from NC0 to P/poly

Using similar idea as above for bootstrapping IO, we show how to bootstrap worst-case-input pIO
for circuits in NC0 to worst-case-input pIO for P/poly.

Theorem 4.3. Assume the existence of a worst-case-input pIO scheme piONC0 for circuits in
NC0, and a pseudo-random generator in ⊕L/poly. Then, there is a worst-case-input pIO scheme
piOP/poly for P/poly.

Proof. We first present the construction of pIO obfuscator piOP/poly for P/poly, and then analyze
its security. Assuming a pseudo-random generator in ⊕L/poly, there is a randomized encoding
scheme (RE,Decode) for P/poly in NC0.

Construction of piOP/poly: On input 1λ and a probabilistic circuit C(· ; ·) of size at most
λ, our pIO obfuscator proceeds as follows:

1. View C as a deterministic circuit with input x and r. Compute the randomized encoding
circuit Ĉ(x, r ; r′) = RE(1λ, C, (x, r) ; r′); let C̃ be the randomized circuit that views the
second input r of Ĉ as a part of the random input, that is, C̃(x ; r, r′) = Ĉ(x, r ; r′).

We have that the size and depth of C̃ is the same as Ĉ, which are respectively s(λ, |C|)
and c for a fixed polynomial s and constant c associated with the randomized encoding
scheme.

2. Obfuscate the circuit C̃ to obtain Λ = piONC0(c, 1s, C̃), and output circuit C ′ = Decode◦Λ,
that is, C ′(x) = Decode(Λ(x)) for all input x.
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Correctness: Suppose for contradiction that there is a distinguisher D that violates the correctness
of piOP/poly, that is, for an infinite sequence of λ ∈ N, there exists a circuit C of size at most λ,

and auxiliary input z ∈ {0, 1}poly(λ), such that, the advantage of D in distinguishing experiments
Exp1

D(1λ, C, z) and Exp2
D(1λ, C, z) is an inverse polynomial 1/p(λ). (Recall that in Exp1, D has

access to oracle C(·; r) with independently sampled random coins r, and in Exp2, it has access to

oracle Λ(·) $← piOP/poly(1
λ, C)). We derive a contradiction, by building a distinguishers D′ that

violates the correctness of piONC0(c, ·, ·) with respect to security parameter s and circuit C̃.
The distinguisher D′ on input (1s, C̃, z), internally runs D(1λ, C, z) and externally participates

in either Exp1
D(1s, C̃, z) or Exp2

D(1s, C̃, z) w.r.t. piONC1 as follows: In each iteration i, it relays
the input xi chosen by D to its oracle; and upon receiving an output yi, it feeds D the value
Decode(yi); finally, D′ outputs the bit returned by D. By construction, for every i ∈ {1, 2}, the
view of D emulated by D′ when participating in experiment ExpiD′(1

s, C̃, z) (w.r.t. piONC0) is
identical to the view of D in ExpiD(1λ, C, z) (w.r.t. piOP/poly). Thus, by our hypothesis, D′ achieves
an advantage 1/p(λ) = 1/q(s), which violates the correctness of piONC0 and gives a contradiction.

Security: To show the security of piOP/poly, consider a worst-case-input indistinguishable sampler
D. We want to show the following indistinguishability:{

(C1, C2, z)
$← Dλ : (C1, C2, piOP/poly(1

λ, C1), z)
}
λ

≈
{

(C1, C2, z)
$← Dλ : (C1, C2, piOP/poly(1

λ, C2), z)
}
λ

(4)

Towards this, we will reduce the above indistinguishability to the indistinguishability of piONC0

for NC0 w.r.t. a worst-case-input indistinguishability sampler D′ over circuits in NC0 defined as
follows.

(C̃1, C̃2, z)
$← D′s : (C1, C2, z)

$← Dλ, C̃b(x ; r, r′) = RE(1λ, C, (x, r) ; r′)

Since the randomized encoding algorithm RE is in NC0, so are C̃b. Furthermore, we show that D′

is also a worst-case-input indistinguishable sampler. This is because that D is a worst-case-input
indistinguishable sampler, meaning for every adversary (A1,A2), where the former is unbounded
and the latter is PPT, with overwhelming probability over the choice of (C1, C2, z), and the choice

of (x, st)
$← A1(C1, C2, z), the advantage of A2(st, C1, C2, Cb(x), z) in guessing b is negligible. It

follows from the fact that C̃b can be constructed from Cb and the security of the randomized

encoding scheme RE that for any (A′1,A′2), over the randomness of D′ and (x, st)
$← A′1(C̃1, C̃2, z),

no second stage adversary A′2 can tell apart (st, C̃1, C̃2, C̃b(x), z) for b = 1 or 2, as they are
indistinguishable to (st, C̃1, C̃2, Sim(1s, Cb(x; r)), z) where Sim is the simulator for the randomized
encoding.

Then it follows directly from the fact that piONC0 is a worst-case-input pIO and that C̃b are in
NC0 that,{

(C̃1, C̃2, z)
$← D′s : (C̃1, C̃2, piONC0(1s, C̃1), z)

}
s
≈
{

(C̃1, C̃2, z)
$← D′s : (C̃1, C̃2, piONC0(1s, C̃2), z)

}
s

By construction of piOP/poly, this implies Equation (4) and concludes the security of piOP/poly.
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A Preliminaries

We here define cryptographic primitives used in this paper. For simplicity, we only provide
definitions of their security w.r.t. PPT adversaries and, conventional, negligible advantage. In the
paper, we sometimes need sub-exponential security (or µ-security for a small function µ) of these
primitives, which are defined in the same way w.r.t. still PPT adversaries, but sub-exponentially
small advantage (or advantage bounded by µ). For example, a sub-exponentially indistinguishable
(or µ-indistinguishable) PRF is one whose output is sub-exponentially indistinguishable (or µ-
indistinguishable) from random, and a sub-exponentially indistinguishable IO is one, such that,
obfuscation of functionally equivalent circuits are sub-exponentially indistinguishable. We omit the
formal definitions of sub-exponential security for individual primitives.

A.1 Puncturable Pseudo-Random Functions

We recall the definition of puncturable pseudo-random functions (PRF) from [SW14]. Since in this
work, we only uses puncturing at one point, the definition below is restricted to puncturing only
at one point instead of at a polynomially many points.

Definition A.1 (Puncturable PRFs). A puncturable family of PRFs is given by a triple of uniform
PPT machines Key, Puncture, and PRF, and a pair of computable functions n(·) and m(·),
satisfying the following conditions:

Correctness. For all outputs K of Key(1λ), all points i ∈ {0, 1}n(λ), and K−i = Puncture(K, i),
we have that PRF(K−i, x) = PRF(K,x) for all x 6= i.

Pseudorandom at punctured point. For every PPT adversary (A1,A2), there is a neligible
function µ, such that in an experiment where A1(1λ) outputs a point i ∈ {0, 1}n(λ) and a state

σ, K
$← Key(1λ) and K−i = Puncture(K, i), the following holds∣∣Pr[A2(σ,K−i, i,PRF(K, i)) = 1]− Pr[A2(σ,K−i, i, Um(λ)) = 1]

∣∣ ≤ µ(λ)

As observed by [BW13, BGI14, KPTZ13], the GGM tree-based construction of PRFs [GGM86]
from pseudorandom generators (PRGs) yields puncturable PRFs. Furthermore, it is easy to see
that if the PRG underlying the GGM construction is sub-exponentially hard (and this can in turn be
built from sub-exponentially hard OWFs), then the resulting puncturable PRF is sub-exponentially
pseudo-random.

A.2 Randomized Encoding

Below we recall the definition of a randomized encoding for efficiently computatble functions
from [AIK04, AIK06]. We focus on the computational case.

Definition A.2 ((Computational) Randomized Encoding). Let f : {0, 1}∗→{0, 1}∗ be a polynomial
time computable function, and l(n) an output length function such that |f(x)| = l(|x|) for every
x ∈ {0, 1}∗. We say that f̂ : {0, 1}∗×{0, 1}∗→{0, 1}∗ is a randomized encoding of f , if there exists
a negligible function µ, such that, the following holds:

Length Regularity: There exists polynomially-bounded and efficiently computable functions
m(n), s(n), such that for every x ∈ {0, 1}n and r ∈ {0, 1}m(n), we have |f̂(x, r)| = s(n).
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Efficient Evaluation: There exists a polynomial-time evaluation algorithm that on input x ∈
{0, 1}∗ and r ∈ {0, 1}m(|x|) outputs f̂(x, r).

Correctness: There exists a polynomial-time algorithm Decode, called a decoder, such that, for
every input x ∈ {0, 1}n, Pr[Decode(f̂(x, Um(n))) 6= f(x)] ≤ µ(n).

Privacy: There exists a randomized polynomial-time algorithm S, called a simulator satisfying that
for every non-uniform PPT adversary A, there is a negligible function µ′ such that for every
input x ∈ {0, 1}n and auxiliary input z ∈ {0, 1}poly(n),∣∣Pr[A(S(1n, f(x)), z) = 1]− Pr[A(f̂(x, Um(n)), z) = 1]

∣∣ ≤ µ′(n)

.

Definition A.3 ((Uniform) Randomized Encoding Scheme from P/poly to NC0 ). We say that
a pair of uniform polynoimial time algorithms (RE,Decode) is a randomized encoding scheme for
P/poly in NC0, if the following holds:

• There is a polynomial s and constant c, such that, for every n ∈ N and deterministic circuit
C(x) of size at most n, the randomized function RE(1n, C, x; r) is a randomized encoding of C
w.r.t. decoder Decode as in Definition A.2. Moreover, RE(1n, C, x; r) has size s(n) and depth c.

It was shown in [AIK06] that a randomized encoding scheme for P/poly in NC0 exsits based
on the existence of pseudo-random generator (PRG) in ⊕L/poly, which in turn can be based on,
for instance, the intractability of factoring and the learning with error (LWE) problems.

A.3 Homomorphic Encryption – Definitions

We now define homomorphic encryption and its desired properties. Throughout this section (and
this work) we use λ to indicate the security parameter. Below we provide our definition for bit
encryption; the generalization to an arbitrary message space is immediate.

A homomorphic (public-key) encryption scheme HE = (HE.Keygen,HE.Enc,HE.Dec,HE.Eval) is
a quadruple of ppt algorithms as follows.

• Key generation. The algorithm (pk, evk, sk)←HE.Keygen(1λ) takes a unary representation of
the security parameter and outputs a public encryption key pk, a public evaluation key evk and
a secret decryption key sk.

• Encryption. The algorithm c←HE.Encpk(µ) takes the public key pk and a single bit message
µ ∈ {0, 1} and outputs a ciphertext c.

• Decryption. The algorithm µ∗←HE.Decsk(c) takes the secret key sk and a ciphertext c and
outputs a message µ∗ ∈ {0, 1}.

• Homomorphic evaluation. The algorithm cf←HE.Evalevk(f, c1, . . . , c`) takes the evaluation
key evk, a function f : {0, 1}` → {0, 1} and a set of ` ciphertexts c1, . . . , c`, and outputs a
ciphertext cf .

The representation of the function f is an important issue. Since the representation can vary
between schemes, we leave this issue outside of this syntactic definition. In this work, we will
focus on the circuits consisting of only NAND gates.
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The only security notion we consider in this work is semantic security, namely security w.r.t.
passive adversaries. We use its widely known formulation as IND-CPA security, defined as follows.

Definition A.4 (CPA security). A scheme HE is IND-CPA secure if for any polynomial time
adversary A it holds that

AdvCPA[A] := |Pr[A(pk, evk,HE.Encpk(0)) = 1]− Pr[A(pk, evk,HE.Encpk(1)) = 1]| = negl(λ) ,

where (pk, evk, sk)←HE.Keygen(1λ).

We move on to define the homomorphism property. Note that we do not define the “correctness”
of the scheme as a separate property, but rather (some form of) correctness will follow from our
homomorphism properties.

We start by defining C-homomorphism, which is homomorphism with respect to a specified class
C of functions. This notion is sometimes also referred to as “somewhat homomorphism”.

Definition A.5 (C-homomorphism). Let C = {Cλ}λ∈N be a class of functions (together with their
respective representations). A scheme HE is C-homomorphic (or, homomorphic for the class C) if
for any sequence of functions fλ ∈ Cλ and respective inputs µ1, . . . , µ` ∈ {0, 1} (where ` = `(λ)), it
holds that

Pr [HE.Decsk(HE.Evalevk(f, c1, . . . , c`)) 6= f(µ1, . . . , µ`)] = negl(λ) ,

where (pk, evk, sk)←HE.Keygen(1λ) and ci←HE.Encpk(µi).

We point out two important properties that the above definition does not require. First of
all, it does not require that the ciphertexts ci are decryptable themselves, only that they become
decryptable after homomorphic evaluation.5 Secondly, it does not require that the output of HE.Eval
can undergo additional homomorphic evaluation.6

Next, we define full homomorphism and its relaxation. Before that, we first introduce the notion
of compactness.

Definition A.6 (compactness). A homomorphic scheme HE is compact if there exists a polynomial
s = s(λ) such that the output length of HE.Eval(· · · ) is at most s bits long (regardless of f or the
number of inputs).

Note that a C-homomorphic scheme is not necessarily compact. We now provide a minimal
definition of a fully homomorphic encryption.

Definition A.7 (fully homomorphic encryption). A scheme HE is fully homomorphic if it is both
compact and homomorphic for the class of all circuits consisting of only NAND gates.

An important relaxation of fully homomorphic encryption is the following.

Definition A.8 (leveled fully homomorphic encryption). A leveled fully homomorphic encryption
scheme is a homomorphic scheme where the HE.Keygen gets an additional input 1L (now
(pk, evk, sk)←HE.Keygen(1λ, 1L)) and the resulting scheme is homomorphic for all depth-L binary
arithmetic circuits. The bound s(λ) on the ciphertext length must remain independent of L.

5Jumping ahead, while this may seem strange at first, this notion of somewhat homomorphism is all that is really
required in order to bootstrap into full homomorphism and it also makes our schemes easier to describe. Lastly, note
that one can always perform a “blank” homomorphic operation and then decrypt, so functionality is not hurt.

6This is termed “1-hop homomorphism” in [GHV10].
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In this work, we show that a leveled fully homomorphic encryption scheme can be constructed
from a pIO obfuscator and a vanilla CPA-secure public key encryption scheme. Similar to previous
constructions of leveled fully homomorphic encryption schemes, the only parameter of our scheme
that becomes dependent on L is the bit-length of the evaluation key evk.

B Missing Proofs from the Body

B.1 Proof of Proposition 2.3

Proof. Indeed, assume that there exists D ∈ SX-Ind such that D /∈ Smw-Ind. In particular, this
means that there exists a non-uniform memory-less worst-case-input adversary A = (A1,A2),
where A1 is computationally unbounded and A2 is computationally bounded, and a polynomial p,
such that for infinitely many values λ, A achieves non-negligible advantage 1/p(λ) in Experiment
worst-case-input-INDDA(1λ). As we are in the non-uniform setting, we can assume without loss
of generality that A is deterministic. In this proof, we are going to construct a new non-uniform
adversaryA′ = (A′1,A′2) which achieves advantage 1

16p2(λ)X(λ)
in Experiment static-input-INDDA′(1

λ)

for infinitely many λ, which contradicts the fact that D ∈ SX-Ind.
Fix λ for which A achieves advantage 1/p(λ). As D ∈ SX-Ind, let Xλ be the corresponding

differing domain. The adversary A′ = (A′1,A′2) operates as follows, for security parameter λ:

• The adversary A′1 outputs a random string x∗ from the differing domain Xλ, and passes empty
state st = ⊥ to A′2. (Note that the sampling may make A′1 not necessarily polynomial-time,
but the resulting adversary can be de-randomized without loss of generality, and the sampling
can be replaced by the optimal choice of x∗.)

• Given (⊥, C0, C1, x
∗, y∗ = Cb(x

∗), z), the adversary A′2 first tests the performance of A2 by
running multiple independent copies of A2 on input (C0, C1, z, x

∗, Cb∗i (x
∗)) for fresh independent

bits b∗1, . . . , b
∗
k and freshly sampled Cb∗i (x

∗), where k = poly(λ) is appropriately set to be large
enough. Each one of these copies outputs a guess b′i, and if the fraction of correct guesses b′i = b∗i
is at least 1

2 + 1
4p(λ) , then A′2 runs A2(⊥, C0, C1, x

∗, y∗, z) and outputs the corresponding bit.

Otherwise, A′2 outputs a random bit.

Note that A1 (which is computationally unbounded) is never run by the reduction. Since A1 is
deterministic, for every C0, C1, z, there exists a unique x = xC0,C1,z which is output by A1 on input
C0, C1, z. Also, we call a triple (C0, C1, z) good if A2(C0, C1, x = xC0,C1,z, Cb(x), z), for a random
bit b, guesses the bit with probability at least 1

2 + 1
2p(λ) . (Here, probability is over the computation

of Cb(x), as A2 is deterministic.) Note that the probability that Dλ samples a good triple is at
least 1

2p(λ) by a Markov argument. Finally, note that for a good triple C0, C1, z, it must be that

xC0,C1,z ∈ X , as otherwise there is no way that A2 could ever achieve a positive advantage over 1
2 .

Now, let us turn to the analysis of A′ = (A′1,A′2) in Experiment static-input-INDDA′(1
λ). We

first note that A′2 – using A2 – is going to always guess the right bit with probability at least
1
2 −

1
16p(λ) on any given input. This is because if A2(⊥, C0, C1, x

∗, y∗, z) succeeds with probability

less than 1
2 , than we are going to detect this (and take a random guess) except with probability

1
8p(λ) (by choosing k = Ω(p(λ)2 log p(λ)) and using the Chernoff bound), and thus overall, the guess

is going to be correct with probability at least 1
2 −

1
16p(λ) .
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Then, for a triple (C0, C1, z)
$← Dλ, consider the event that xC0,C1,z = x∗, and (C0, C1, z) is

good. Note that this occurs with probability at least 1
2p(λ)X . Then, in this case, A2 guesses correctly

with probability at least 1
2 + 1

2p(λ) , and the probability that this is not detected by A′2 can be made

as small as 1
4p(λ) by an appropriate choice of k = poly(λ), using the Chernoff bound. Thus when

(C0, C1, z) is good, A′2 always guesses with probability at least 1
2 + 1

4p(λ)

Putting things together, in Experiment static-input-INDDA′(1
λ), with b′ denoting the output of

A′, we have, using X = X(λ),

Pr[b = b′] ≥ 1

2p(λ)X
·
(

1

2
+

1

4p(λ)

)
+

(
1− 1

2p(λ)X

)(
1

2
− 1

16p(λ)

)
≥ 1

2
+

1

16p(λ)2X
,

which concludes the proof.

B.2 Proof of Theorem 2.5

Next we provide the complete proof of Theorem 2.5 showing that X-pIO can be constructed from
sub-exponentially secure IO and OWFs. For completeness, we repeat the construction in the proof
of the theorem below.

Proof. We first present the construction of X-piO and then analyze its correctness and security.
Recall that by our assumption, both iO and the puncturable PRF (Key,Puncture,PRF) have a
2−λ

ε
distinguishing gap for some constant ε ∈ (0, 1) and any non-uniform PPT distinguisher. Also,

in the following, we implicitly identify strings with integers (via their binary encoding) and vice
versa.

Construction X-piO: On input 1λ and a probabilistic circuit C of size at most λ,
proceed as follows:

1. Let λ′ = λ′(λ) = (λ log2(λ))1/ε. Sample a key of the PRF function K ← Key(1λ
′
).

2. Construct deterministic circuit E(C,K) as described in Figure 2. By construction the
size of E(C,K) is bounded by a polynomial p(λ′) ≥ λ′ in λ′.

3. Let λ′′ = p(λ′) ≥ λ′. Obfuscate E(C,K) using iO, Λ
$← iO(1λ

′′
, E(C,K)).

4. Output Λ.

Correctness of X-piO: It is easy to see that the output circuit Λ has size polynomial in λ
and |C|. Next, we show that no distinguisher can tell apart whether it is receiving outputs of a

probabilistic circuit C or output of the obfuscated circuit Λ
$← X-piO(1λ, C). Towards this, fix any

distinguisher D, λ ∈ N and C with |C| ≤ λ. We show that the advantage of D in distinguishing
experiments Exp1

D(1λ, C, z) (where it receives outputs of C) and Exp2
D(1λ, C, z) (where it receives

outputs of Λ) is negligible. Consider the hybrid experiment ẼxpD(1λ, C, z): A random key K of
the PRF is sampled; whenever D(1λ, C, z) chooses an input xi (that is different from all previous
inputs), it is fed with the output E(C,K)(xi). It follows from the security of PRF function that the

view of D in Exp1
D and ẼxpD are indistinguishable, since distinct PRF inputs yield outputs which

are indistinguishable from independently sampled random coins. Furthermore, it follows from the
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correctness of the indistinguishability obfuscator iO that the obfuscated circuit Λ computes the
same functionality as E(C,K), thus the view of D in Exp2

D and ẼxpD are identical. Therefore, we
conclude that the advantage of D in Exp1

D and Exp2
D is negligible.

Security of X-piO: Fix a X-Ind sampler D ∈ SX-Ind. We need to prove that for every non-uniform
PPT machine A, there exists a negligible function µ such that for all λ ∈ N,

∆(λ) =
∣∣Pr[(C1, C2, z)

$← Dλ : A(C1, C2, X-piO(1λ, C1), z) = 1]−

− Pr[(C1, C2, z)
$← Dλ : A(C1, C2, X-piO(1λ, C2), z) = 1]

∣∣ = µ(λ) .

Now, assume instead towards a contradiction that there exists a polynomial p such that ∆(λ) ≥
1/p(λ) for infinitely many λ ∈ N. Let us fix such λ ∈ N, and in particular, let us fix X = Xλ as in
the Definition of X-Ind samplers. Also, let < be some ordering of the strings, and enumerate the
X elements of X as x1 < x2 < · · · < xX . Recall that X ≤ 2λ, as the circuits have size at most λ.

We now consider a series of hybrids H ′1,
{
H0
i , H

1
i , · · · , H4

i

}
0≤i<X , H

0
X , H

′
2, where in each hybrid

the adversary A receives the obfuscation of a different circuit: In H ′1 it receives the honestly
generated obfuscation of C1, and in H ′2 it receives that of C2; in intermediate hybrids, it receives
the obfuscation of “hybrid circuits” that evaluates part of its inputs using C1 and the rest using C2.
Let hybji (1

λ) be the output of A in hybrid Hj
i and hyb′i(1

λ) that in H ′i. The hybrids are formally
defined below:

Hybrid H ′1, H
′
2: In H ′i, sample a tuple (C1, C2, z)

$← Dλ and a PRF key K
$← Key(1λ

′
); obfuscate

the circuit E(Ci,K) (described in Figure 2) to obtain Λ′i
$← iO(1λ

′′
, E

(Ci,K)
i ). Finally, Output

A(C1, C2,Λ
′
i, z). By definition of H ′i, we have

∆ =
∣∣Pr[hyb′1(1λ) = 1]− Pr[hyb′2(1λ) = 1]

∣∣ ≥ 1

p(λ)
.

Hybrid H0
i : H

0
i proceeds identically to H ′1, H

′
2, except that the circuit E

(C1,C2,K)
i (as described in

Figure 2) instead of E(CiK) is obfuscated using iO.

Recall that circuit E
(C1,C2K)
i evaluates the first inputs x < xi using circuit C2, and the rest

x ≥ xi using circuit C1 (both are fed with pseudo-random coins PRF(K,x)). By construction,

E
(C1,C2,K)
0 computes the same function as E(C1,K), and E

(C1,C2,K)
X computes the same function

as E(C2,K). Thus by the fact that the indistinguishability obfuscator iO has 2−λ
′′ε

-distinguishing
gap for security parameter λ′′ and that λ′′ ≥ λ′ = (λ log2 λ)1/ε, we have that:∣∣Pr[hyb′1(1λ) = 1]− Pr[hyb0

0(1λ) = 1]
∣∣ ≤ 1

X2log2 λ∣∣Pr[hyb′2(1λ) = 1]− Pr[hyb0
X(1λ) = 1]

∣∣ ≤ 1

X2log2 λ

Hybrid H1
i : H

1
i proceeds identically as H0

i except that, H1
i additionally generates a key K−i that

is punctured at input i (i.e., K−i = Puncture(K, i)) and replaces the circuit E
(C1,C2,K)
i with

E
(C1,C2,K,y1i )
i for y1

i = C1(xi ; PRF(K,xi)).
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We note that for every 0 ≤ i < X, circuits E
(C1,C2,K)
i and E

(C1,C2,K,y1i )
i computes the same

function. This follows from the fact that the punctured key K−i computes the same pseudo-

random coins for every input x 6= i, and for input x = i, E
(C1,C2,K,y1i )
i outputs y1

i which is

exactly the same output E
(C1,C2,K)
i produces on input x = i. Thus as argued above, it follows

from the indistinguishability of iO that, for every 0 ≤ i < X,∣∣Pr[hyb0
i (1

λ) = 1]− Pr[hyb1
i (1

λ) = 1]
∣∣ ≤ 1

X2log2 λ

Hybrid H2
i : H

2
i proceeds identically as H1

i except that, it uses circuit E
(C1,C2,K,y2i )
i with value

y2
i

$← C1(xi ; r∗), produced using truly random coins r∗.

It follows from the pseudo-randomness of the puncturable PRF that the pseudo-random coins
PRF(K,xi) is indistinguishable from truly random coins r∗, even if punctured key K−i is public.
Furthermore, since the distinguishing gap of the PRF function is 2−λ

′ε
for security parameter

λ′ = (λ log2 λ)1/ε, we have:∣∣Pr[hyb1
i (1

λ) = 1]− Pr[hyb2
i (1

λ) = 1]
∣∣ ≤ 1

X2log2 λ

Hybrid H3
i : H

3
i proceeds identically as H2

i except that, it uses circuit E
(C1,C2,K,y3i )
i with value

y3
i = C2(xi ; r∗), produced by evaluating C2 instead of C1 (still with truly random coins).

Then, we define

Gap(i, λ) :=
∣∣Pr[hyb2

i (1
λ) = 1]− Pr[hyb3

i (1
λ) = 1]

∣∣ .
Hybrid H4

i : H
4
i proceeds identically as H3

i except that, it uses circuit E
(C1,C2,K,y4i )
i with value

y4
i = C2(xi ; PRF(K,xi)), produced using pseudo-random coins (still evaluating C2).

It follows from the same argument as in H2
i that by the pseudo-randomness of the puncturable

PRF function, we have:∣∣Pr[hyb3
i (1

λ) = 1]− Pr[hyb4
i (1

λ) = 1]
∣∣ ≤ 1

X2log2 λ

Hybrid H0
i+1: H

0
i+1 proceeds according to the description of H0

i above but using i + 1 instead.

Comparing with H4
i , it differs in that the circuit E

(C1,C2,K,y)
i+1 is used instead of E

(C1,C2,K,y4i )
i

with y4
i = C2(xi ; PRF(K,xi)).

It follows from the same argument as in H1
i that by the indistinguishability of iO, we have:∣∣Pr[hyb4

i (1
λ) = 1]− Pr[hyb0

i+1(1λ) = 1]
∣∣ ≤ 1

X2log2 λ

52



We can use the above inequality, repeatedly applying the triangle inequality, to derive the following
lower bound

X−1∑
i=0

Gap(i, λ) =
X−1∑
i=0

∣∣Pr[hyb2
i (1

λ) = 1]− Pr[hyb3
i (1

λ) = 1]
∣∣

≥

(
X−1∑
i=0

∣∣Pr[hyb1
i (1

λ) = 1]− Pr[hyb4
i (1

λ) = 1]
∣∣)− 2

2log2 λ

≥

(
X−1∑
i=0

∣∣Pr[hyb0
i (1

λ) = 1]− Pr[hyb0
i+1(1λ) = 1]

∣∣)− 4

2log2 λ

≥
∣∣∣Pr[hyb0

0(1λ) = 1]− Pr[hyb0
X(1λ) = 1]

∣∣∣− 4

2log2 λ

≥
∣∣∣Pr[hyb′1(1λ) = 1]− Pr[hyb′2(1λ) = 1]

∣∣∣− 4X + 2

X2log2 λ
≥ 1

p(λ)
− 4X + 2

X2log2 λ
≥ 1

2p(λ)

for sufficiently large λ.
Thus for every sufficiently large λ, there must exist one input i = iλ for which Gap(iλ, λ) ≥

1
2Xp(λ) . We are now going to build a static adversary (A1,A2) in Experiment static-input-INDDA(1λ)

achieving distinguishing gap at least 1
4Xp(λ) , and hence contradicting the fact that D ∈ SX-Ind.

The non-uniform PPT machine A1 has xi = xiλ hard-wired in and this is the value which is
output, together with state st = ⊥. Then, on input (⊥, C1, C2, z, xi, y), A2 emulates the execution of
A in H2

i or H3
i with the difference that it uses the supplied value y, and obfuscates E(C1,C2,K,y); and

finally, A2 returns the output of A. By construction of A2, for every b ∈ {1, 2}, when (C1, C2, z) are
sampled from D and y computed by evaluating Cb(xi ; r∗) using fresh random coins, A2 emulates
the view of A in Hb+1

i perfectly. Thus, we have:

∣∣Pr[(C1, C2, z)
$← Dλ : A2(⊥, C1, C2, z, xi, C1(xi)) = 1]

− Pr[(C1, C2, z)
$← Dλ : A2(⊥, C1, C2, z, xi, C2(xi)) = 1]

∣∣ = Gap(iλ, λ) ≥ 1

2Xp(λ)
.

This in particular implies that the advantage over 1
2 is 1

2Xp(λ) , contradicting the fact that D ∈
SX-Ind.
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