
Faulty Clock Detection for Crypto Circuits Against Differential
Faulty Analysis Attack

Pei Luo and Yunsi Fei

Email:silenceluo@coe.neu.edu, yfei@ece.neu.edu

Department of Electrical and Computer Engineering
Northeastern University, Boston, MA 02115

Abstract. Clock glitch based Differential Fault Analysis (DFA) attack is a serious threat to cryp-
tographic devices. Previous error detection schemes for cryptographic devices target improving the
circuit reliability and cannot resist such DFA attacks. In this paper, we propose a novel faulty
clock detection method which can be easily implemented either in FPGAs or integrated circuits
to detect the glitches in system clock. Results show that the proposed method can detect glitches
efficiently while needs very few system resource. It is also highly reconfigurable to tolerant clock
inherent jitters, and will not involve complex design work for different processing technologies.

Keywords: Clock glitch detection, AES, differential fault analysis, side-channel attacks

1 introduction

Cryptosystems that provide encryption, decryption, and hashing functions have become the security
engine of many critical systems and infrastructure. However, their implementations, whether in software
or hardware, are vulnerable to side-channel attacks, which exploit parametric information about crypto-
graphic operations including power consumption, timing information, and electromagnetic emanations
to retrieve the secret key. Differential Fault Analysis (DFA) is a kind of side-channel attack, which in-
tentionally injects transit faults into a cryptosystem and analyzes the difference between the correct
and fault outputs to infer the key. DFA was first invented by Biham et. al. on the block cipher Data
Encryption Standard (DES) [1]. It was later applied to AES and only two pairs of correct and faulty
ciphertexts are required to break the cipher [2]. In [3], the fault model is relaxed to be a random fault
anywhere in one of the four diagonals of the state matrix at the input of the eighth round of AES. It is
shown that even if the fault induction corrupts two or three diagonals, two to four faulty ciphertexts are
enough to retrieve the correct key.

The commonly used physical fault injection methods are clock glitching, supply voltage variation, and
laser radiation. Clock glitching is the most practical and low-cost fault injection method, and therefore
clock glitch based DFA is more controllable and becomes a real security threat. Work in [3] uses clock
glitches to inject faults into cryptographic devices. Work in [4] also demonstrates the effectiveness of
frequency injection attacks on both a microcontroller and a FPGA chip.

Some high-level protection methods for cryptographic systems employ error detection and correction
codes or redundancy [5,6] to improve the reliability of circuits, but cannot resist clock glitch-based DFAs.
Other protection methods try to detect the fault injection sources and therefore prevent DFAs [7].

In [7], a non-logic buffer-based delay chain is inserted, by monitoring the delay along the delay chain,
a possible clock glitch based DFA can be detected. In [8], the authors design a circuit with a master
counter and a slave counter clocked by the clock signal, and their results are compared to determine
whether the difference is at least thus to detect the clock glitch.

In this work, we propose a new clock glitch detection method which makes good use of the existing
modules in ICs and FPGAs. The proposed method can be easily implemented without considering
the complex process technology like in [7]. Meanwhile, comparing with [8], our method is also highly
reconfigurable and can be easily configured according to different requirements of precision and system
variations. What’s more, compare with previous methods, our scheme can make good use of the existing
resources in FPGAs and can also be implemented efficiently in ASICs. Synthesis results show that our

1

proposed method has much lower resource overhead comparing with previous protection schemes like in
[5,6,9].

The rest of the paper is organized as follows. In Section 2, we revisit the basics of DFA attacks and
previous protection methods. In Section 3, we describe the proposed detection method and discuss its
advantages over the previous schemes. In Section 4, we show the synthesis and simulation results of the
proposed method, and compare it with previous protection schemes. Finally we conclude the paper in
Section 5.

2 Background

In this section, we briefly introduce DFAs, and review the existing work on run-time error detection of
crypto circuits.

2.1 Differential Fault Analysis Attacks

As fault analysis is dependent on the algorithm of cryptosystem, we take AES [10] as example. AES-128
algorithm has ten rounds of computation, with the first nine rounds consisting of four steps, SubByte,
ShiftRow, MixColumn, and AddKey, and the last round just three steps - without MixColumn. Previous
work has demonstrated that if faults can be injected between the MixColumn operation in round eight
and SubByte operation in round ten, DFA based on this fault model can recover the last-round key with
just two pairs of correct and faulty ciphertexts.

Fig. 1 depicts the general DFA process. Before introducing faults, the attacker first gets a pair of
plaintext and correct ciphertext (P,C), where P is a randomly chosen plaintext and C is the correspond-
ing ciphertext with the last round key as K10. The attacker then injects faults into the cryptographic
system and obtain a faulty ciphertex, C ′, under the same plaintext P . A fault caused by clock glitch
that falls before the last round computation would result in a faulty input P ′10 to the last round, instead
of correct one P10.

10K

'10P10P

Fig. 1. Differential fault analysis model

2

By examining the difference between C and C ′, the attack can identify the location of the faulty byte
in the 16-byte AES state, denoted as i. The attacker then makes an assumption of the last round key
byte K10

i . For any key guess K10
i , the attacker can inversely compute the last round input P10 and P ′10

from the ciphertext outputs. {
P10 = AES−110 (C,K10

i)
P ′10 = AES−110 (C ′,K10

i)
. (1)

Certain characteristics of the difference between P10 and P ′10 can be used to extract the correct
K10

i . For clock glitch fault injection, illegal clock will cause a setup-time violation since flip-flops are
triggered before the output signals are fixed to a correct value. In [3], the authors show that faults may
happen in either single bytes or multiple bytes, or even in multiple diagonals. They also demonstrate that
relationship among faulty bytes can be used to recover the last round key bytes. Other fault injection
methods would incur more complex fault models and there will be different characteristics among faulty
bytes and such characteristics can be used for attacks [2,11].

2.2 DFA Countermeasures

Previous works against DFAs use redundancy or error detection codes to capture faults at run-time [5,6,9].
This kind of protection schemes can detect any injected faults inside the circuits when the results of the
predictor based on the codes (or a redundant copy) and the compressor of the original copy do not match.
The methods are useful when the faults fall on either the original circuit or the protection circuit, or the
faults injected in both parts result in different errors. However, faults injected by clock glitches fall on
the common input of these two parts and would affect the two circuits simultaneously to generate the
same outputs. It is highly possible that the faults caused by clock glitches will escape these high-level
error detection methods.

For the scheme proposed in [7], a non-logic buffer-based delay chain is inserted into the original design
with propagation delay (Td) predefined during design phase and 1/Td indicates the upper bound of the
clock frequency of the crypto circuit. If the circuit runs too fast (i.e. the applied clock frequency is faster
than 1/Td), timing errors might occur. Thus by monitoring the result on this delay chain, a possible
clock glitch based fault attack might be detected. For this design, the problem is that it involves complex
design work for different process technology and crypto circuits, and the system frequency cannot be
changed after production.

3 Proposed Clock Glitch Detection Method

In this section, we propose a new clock glitch detection method to resist glitch based DFAs. The main
idea is that glitches make the clock irregular, and we design a circuit to monitor the clock pulses and
detect such irregularity at run-time.

Denote the system clock used in the cryptographic circuit as clock. To measure the width of clock
pulses, we introduce another higher-frequency clock source clk. The structure of the proposed scheme is
shown in Fig. 2.

The Width Counters take clock as the input signal and clk as the triggering clock. The counters
measure the width of the high pulse and low pulse of clock in number of clk cycles and store the results
in two Width Registers, one for high and the other for low. Considering two consecutive cycles of clock,
denote the Width Counters’ result as nH0 for the first logic 1, which means the number of cycles of clk
while clock = 1, and define nL0 the number of cycles of clk for clock = 0 in the first cycle. Similarly, use
nH1 and nL1 to denote the width of the logic 1 and logic 0 of the following cycle, shown as in Fig. 3.

If the target clock and the reference clk are both stable, then:{
nL0 = nL1
nH0 = nH1

. (2)

3

Low Pulse
Width Counter

High Pulse
Width Counter

Hn

Ln

Ln1
Ln0

Hn1
Hn0

Crypto
module

Crypto output

Ln

Hn Width Registers

Fig. 2. The block diagram of the clock glitch detection circuit

Hn0
Ln0

Hn1
Ln1

Number of
cycles:

Fig. 3. Counter of the clock glitch detection circuit

For clock with 50% duty cycle, we have:

nL0 = nL1 = nH0 = nH1 . (3)

If the clock is not constant, the width of logic ‘0’ or logic ‘1’ of clock is varying. Such difference
between two consecutive clocks can be used to detect glitches in the system clock. If there is a glitch in
clock shown as in Fig. 4. Then it’s obvious that:{

nL0 6= nL1 , n
L
1 6= nL2

nH0 6= nH1 , n
H
1 6= nH2

, (4)

thus the glitch is detected and Alarm triggered.

Hn0
Ln0 Hn1

Ln1

Number of
cycles:

Hn2 Ln2

Fig. 4. When glitch happens in clock

4

3.1 Implementation of the Proposed Scheme

One key point of the design is to have a stable high frequency reference clock source clk. For FPGA
and other embedded systems, clock generator and phase-locked loop (PLL) can be designed inside the
devices in the design phase. An alternative method is to use existing resources. Take FPGA for example,
a digital clock manager (DCM) or a PLL can be used to generate higher frequency with clock as the
input clock. The Digital Clock Manager (DCM) primitive in Xilinx FPGA is used to implement delay
locked loop, digital frequency synthesizer, digital phase shifter, or a digital spread spectrum [12]. The
PLL in FPGA is used to generate multiple clocks with defined phase and frequency relationships to a
given input clock [13,14].

For example, there are up to 12 DCM modules in Virtex 5 FPGAs and each can be used to generate
utmost 32× higher frequency, and cascaded DCMs can be used to generate even higher frequency output
[15]. Assume one DCM module is used to generate 32× frequency clk, then for stable clock, nL0 = nL1 =
nH0 = nH1 = 16.

For PLL and DCM, if there is a glitch in clock, the glitch will be detected and meanwhile the frequency
generation module will lose LOCK and some operations are needed to reset the module [12,13,14]. The
details will be explained and simulated in Section 4.

3.2 Advantage of the Proposed Scheme

Compared to the previous faulty clock detection schemes, our proposed scheme has several advantages.
Firstly, it has a low resource requirement. It can be easily implemented in FPGAs and ICs, only another
higher frequency clock source or a clock management module (PLL, etc) is needed. Secondly, the proposed
scheme is easily configurable according to the precision requirement of the system. The method in [7]
requires to insert a non-logic buffer-based delay chain to the circuits and the delay cannot be changed
after production. The delay and the delay chain design are also technology dependent and therefore it
increases the design difficulty and complexity. Thirdly, it is easy to control the frequency of reference
clock clk, and higher precision can be achieved by using higher frequency clk. What’s more, our scheme
also has configurable threshold of clock jitter by controlling the comparator. Assume that the clock has
slight variations and the width of clock is not constant, we set the comparator to tolerant different
between nL0 and nL1 (and the difference between nH0 and nH1) below λ, i.e., the variation is not caused by
clock glitching and therefore is acceptable: {

|nL0 − nL1 | < λ
|nH0 − nH1 | < λ

. (5)

For instance, assume the frequency of clk is 32× of clock, we can set λ = 2 such that the variation of
clock can be at most the width of 2×clk. Higher precision can be achieved by using higher frequency clk
and λ can be chosen according to the sensitivity level requirement and clock jitter.

4 Implementation and simulation results

To verify the functionality of the proposed scheme, we use Virtex-5 FPGA and its internal DCM [12,13]
to implement the proposed scheme . The target clock is running at 5 MHz and its duty cycle is 75%. We
use DCM to generate the higher frequency clock clk with the frequency 160 MHz.

The simulation result is shown as in Fig. 5, with an glitch added in clock. The results show that
the proposed scheme can detect glitches efficiently, with an alarm triggered when the glitch is detected.
Meanwhile, the proposed scheme is very robust, which can recover the monitoring higher frequency clock
rapidly after losing LOCK of the target clock.

Details of the simulation result are shown as in Fig. 6. For the above simulation settings, nH0 = nH1 =
24 and nL0 = nL1 = 8 when there is no glitch. The register pre high cnt(nH0) holds value 24 and the
value of pre low cnt(nL0) is 8 if the system clock is stable. When clock glitch happens, the register of the
current result of nH1 is 17 which is smaller than 24, and thus the glitch is detected.

5

Fig. 5. Simulation result of the proposed scheme

Fig. 6. Detailed results of the counter registers

To evaluate the implementation overheads of the proposed glitch detection scheme, we implement a
glitch detection scheme based on the original AES using PLL in Verilog and synthesize it in Cadence
Encounter RTL Compiler with the Nangate 45nm Opencell library version v2009 07. The designs were
placed and routed using Cadence Encounter. The latency, the area overhead of the protection schemes
were estimated using Concurrent Current Source (CCS) model under typical operation condition assum-
ing a supply voltage of 1.1V and a temperature of 25 Celsius degree. The synthesis results are shown in
Table 1.

Table 1. Overhead Evaluation of the
Proposed Detection Method

Circuit Area (um2) Power (mW)

OriginalAES 13987.9 20.4

Proposed 14392.5 22.8

The results show that the proposed glitch detection scheme incurs 2.9% area overhead and consumes
12% more power than the original AES implementation. Comparing with the scheme proposed in [7] with
only about 0.47% area overhead, our proposed method consumes a little more area. But for FPGAs, our
scheme can make good use of internal DCM and PLL modules. What’s more, our method can be very
easy to implement while the scheme in [7] involves complex design work for different FPGA families and
IC process technologies.

5 Conclusion

In this paper, we propose a simple method to detect clock glitches and the results show that the proposed
scheme can detect glitches in clock efficiently while needs much fewer resource overhead than the previous

6

protection schemes. Compared with previous schemes, the proposed scheme is designed specifically for
clock glitch detection and it is highly reconfigurable. The proposed scheme involves no complex work in
design phase for different process technology.

References

1. E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosystems,” in Advances in Cryptolo-
gyCRYPTO’97. Springer, 1997, pp. 513–525.

2. G. Piret and J.-J. Quisquater, “A differential fault attack technique against SPN structures, with application
to the AES and KHAZAD,” in Cryptographic Hardware and Embedded Systems-CHES 2003. Springer, 2003,
pp. 77–88.

3. D. Saha, D. Mukhopadhyay, and D. R. Chowdhury, “A diagonal fault attack on the Advanced Encryption
Standard,” IACR Cryptology ePrint Archive, vol. 2009, p. 581, 2009.

4. S. Skorobogatov, “Synchronization method for SCA and fault attacks,” Journal of Cryptographic Engineering,
vol. 1, no. 1, pp. 71–77, 2011.

5. M. Karpovsky, K. J. Kulikowski, and A. Taubin, “Differential fault analysis attack resistant architectures
for the advanced encryption standard,” in Smart Card Research and Advanced Applications VI. Springer,
2004, pp. 177–192.

6. C.-H. Yen and B.-F. Wu, “Simple error detection methods for hardware implementation of advanced encryp-
tion standard,” Computers, IEEE Transactions on, vol. 55, no. 6, pp. 720–731, 2006.

7. H. Igarashi, Y. Shi, M. Yanagisawa, and N. Togawa, “Concurrent faulty clock detection for crypto circuits
against clock glitch based DFA,” in Circuits and Systems (ISCAS), 2013 IEEE International Symposium on.
IEEE, 2013, pp. 1432–1435.

8. M. Rohleder, T. Koch, V. Litovtchenko, and T. Luedeke, “Clock glitch detection circuit,” Dec. 29 2011, uS
Patent App. 13/131,349. [Online]. Available: http://www.google.com/patents/US20110317802

9. M. Karpovsky, K. J. Kulikowski, and A. Taubin, “Robust protection against fault-injection attacks on smart
cards implementing the advanced encryption standard,” in Dependable Systems and Networks, 2004 Inter-
national Conference on. IEEE, 2004, pp. 93–101.

10. P. FIPS, “197,” Advanced Encryption Standard (AES), vol. 26, 2001.
11. Y. Li, K. Sakiyama, S. Gomisawa, T. Fukunaga, J. Takahashi, and K. Ohta, “Fault sensitivity analysis,” in

Cryptographic Hardware and Embedded Systems, CHES 2010. Springer, 2010, pp. 320–334.
12. DS485: Digital Clock Manager (DCM) Module.
13. DS622: Phase Locked Loop (PLL) Module (v2.00a).
14. Altera Phase-Locked Loop (Altera PLL) Megafunction User Guide.
15. UG190: Virtex-5 FPGA User Guide.

7

http://www.google.com/patents/US20110317802

	Faulty Clock Detection for Crypto Circuits Against Differential Faulty Analysis Attack

