
Accountable Storage

Giuseppe Ateniese∗ Michael T. Goodrich† Vassilios Lekakis‡

Charalampos Papamanthou§ Evripidis Paraskevas§ Roberto Tamassia¶

Abstract

We introduce Accountable Storage (AS), a framework allowing a client with small local space to outsource n file blocks
to an untrusted server and be able (at any point in time after outsourcing) to provably compute how many bits have been
discarded by the server. Such protocols offer “provable storage insurance” to a client: In case of a data loss, the client
can be compensated with a dollar amount proportional to the damage that has occurred, forcing the server to be more
“accountable” for his behavior. The insurance can be captured in the SLA between the client and the server.

Although applying existing techniques (e.g., proof-of-storage protocols) could address the AS problem, the related costs
of such approaches are prohibitive. Instead, our protocols can provably compute the damage that has occurred through an
efficient recovery process of the lost or corrupted file blocks, which requires only sublinear O(δ logn) communication,
computation and local space, where δ is the maximum number of corrupted file blocks that can be tolerated. Our technique
is based on an extension of invertible Bloom filters, a data structure used to quickly compute the distance between two sets.

Finally, we show how our AS protocol can be integrated with Bitcoin, to support automatic compensations proportional
to the number of corrupted bits at the server. We also build and evaluate our protocols showing that they perform well in
practice.

1 Introduction
Cloud computing is revolutionizing the entire field of information technology, but it is also posing new security and privacy
challenges. On the one hand, clients expect to gain reliability and availability from having their data stored remotely, but,
on the other hand, remote storage forces their data to live outside their control and protection. Organizations are therefore
reluctant to outsource their databases for fear of having their data lost or damaged, but they also do not want the burden
of fully managing all their data themselves. Thus, they would benefit from technologies that would allow them to manage
their risk of data loss, much in the same way that insurance allows them to manage their risk of physical or financial losses,
e.g., from fire or liability.

As a first step, a client needs a mechanism for verifying that a cloud provider is storing her entire database intact,
even the portions rarely accessed, and, fortunately, a series of proofs-of-storage protocols have been proposed to solve
this problem. These techniques include Provable Data Possession (PDP) (e.g., [4, 11, 13]) and Proofs of Retrievability
(POR) [10, 19, 28, 29, 30], both conceived as a solution to the integrity problem of remote databases. A PDP/POR scheme
can verify whether an untrusted server possesses the entire database originally uploaded by the client. This is achieved by
having the server generate a proof in response to a challenge. In addition, a client is typically required to store a constant
amount of metadata to verify the server’s proof.

Proof-of-storage schemes have witnessed remarkable improvements over the years and are now considered to be well
established. Still, they leave unsettled several risk management issues. Arguably, the most important question of all is

What happens if a proof-of-storage scheme shows that a client’s outsourced database has been damaged?

Clearly, the cloud is liable for this damage, and the client should be compensated for her loss. But to assess this damage
and receive compensation, two significant hurdles must be overcome:
• The client may not be able to reliably and quickly assess the damage, because she no longer stores her database

locally.
• The client has no technological way to automatically receive compensation and must instead follow cumbersome

legal procedures, specified in a service level agreement (SLA), in order to be compensated for her loss.
∗Department of Computer Science, John Hopkins University. Email: ateniese@cs.jhu.edu
†Department of Computer Science, University of California, Irvine. Email: goodrich@uci.edu
‡Department of Computer Science, University of Maryland College Park. Email: lex@cs.umd.edu
§Department of Electrical and Computer Eng., University of Maryland College Park. Email: cpap,evripar@umd.edu; Corresponding Author
¶Department of Computer Science, Brown University. Email: rt@cs.brown.edu

1

The objective of this work is to design new efficient protocols that address the above challenges. Our framework is inten-
tionally modular in that we address both challenges independently and we merge the solutions only afterwards. In this way,
it is possible to improve a solution to one challenge without significantly affecting the other.

1.1 Quantifying Data Loss
To be more precise, suppose a client, Alice, outsources her file blocks, b1, b2, . . . , bn, to a potentially malicious cloud
storage provider, Bob. Since Alice does not trust Bob, she wishes, at any point in time, to be able to compute the amount of
damage, if any, that her file blocks have undergone, by engaging in a simple challenge-response protocol with Bob.

For instance, she may wish to quickly and verifiably compute the value of a damage metric, such as

d =

n∑
i=1

||bi ⊕ b′i|| , (1)

where b′i is the file currently stored by Bob at the time of the challenge and ||.|| denotes Hamming distance. If d = 0,
then Alice is entitled to no dollar credit, as Bob stores Alice’s data intact. Bob can easily prove to Alice that this is the case
through existing proof-of-storage protocols, as noted above. If d > 0, however, then Alice should receive a compensation
proportional to the damage d, which should be provided automatically (proof-of-storage protocols cannot help here).

Such a quantitative protocol (one that Alice could use to compute the damage d) would force the cloud provider, Bob,
to be more “accountable”, since it places a monetary liability on loss based on damage size. Moreover, such fine-grained
compensation models, which work at the bit level as opposed to at the file block level, beneficially allow Alice to better
manage her risk for damage even within the same file. For example, compensation for an unusable movie stored by Bob
could be larger than that for an usable movie whose resolution has deteriorated by just 5%.

Note that it is imperative that a protocol for the computation of the damage d be efficient. Alice should not need to
download the entire file collection and compare it to some local or remote backup to calculate the value of d. Moreover,
computation of the damage d should also be verifiable, so that it is computationally infeasible for Bob to persuade Alice (or
a third party) that the current damage is less than the actual damage.

1.2 Our Contributions
The contributions of this work are as follows:

(1) We introduce and formally define Accountable Storage (AS), a new framework where a client, Alice, outsources n
file blocks to an untrusted server, Bob, so that later Alice can provably recover up to δ blocks that cannot be extracted by
accessing Bob’s storage (e.g., due to random failures or malicious behavior)—see Section 3. Recovering the lost blocks
directly enables the client to compute the damage d as defined in Relation 1. Such a framework enforces accountability for
storage servers, since the client can demand a compensation proportional to the damage d.

(2) We construct an efficient AS protocol—see Section 4. Our protocol runs in one round, requires Alice to store just
O(δ log n) local state, and has O(δ log n) bandwidth, where δ is the maximum number of corrupted file blocks that can be
tolerated.

(3) We provide an open-source prototype implementation of our AS construction and perform a thorough experimenta-
tion at Section 6. Our final system is practical: E.g., for a 4GB file system, we can process a small proof to provably locate
and recover 6MB of lost data (that can be scattered in any location within the file) in about 100 seconds.

(4) We show how to integrate our AS protocol with Bitcoin [1] to enable an automatic compensation to Alice propor-
tional to the damage, d. See Section 5.

1.3 Related Work and Potential Approaches
We are not aware of any existing work on Accountable Storage.1 The work of Yumerefendi and Chase [34] provides
“accountability” for network storage, but only in the sense of detection, not for assessing damage. There are also some
ways to use the techniques described below to achieve properties similar to those of Accountable Storage, but these result
in inefficient protocols.
Using PDP. A provable data possession (PDP) protocol [4, 5, 11, 13, 31] enables a server to prove to a client that all of
the client’s data is stored intact. One could design an AS protocol by using a PDP protocol only for the portion of storage

1We note here that our notion of accountability focuses on quantifying the amount of damage d that has occurred at a remote repository. However, in
general, providing accountability can help a cloud provider identify specific reasons that caused the damage such as hardware failures or insider attacks.
These are outside the scope of this work.

2

that the server possesses. This could determine the damage, d. The problem with such an approach, however, is that it
requires use of PDP at the bit level, computing one tag for each bit of our file collection. PDP tags are usually 2048 bits [4];
therefore, it is impractical to keep that many extra bits for every bit of initial storage.
Using error-correcting codes. To overcome the above problem, one could use PDP at the block level, but at the same time
keep some redundancy locally. Specifically, before outsourcing the n blocks at the server, the client could store δ extra check
blocks locally (the check blocks could be computed with a simple error correcting code such as Reed-Solo-mon). The client
could then verify through PDP that a set of at most δ blocks have gone missing and retrieve the lost blocks by executing
the decoding algorithm on the remote intact n − δ data blocks and the δ local check blocks (then the recovered blocks can
be used to compute d). However, this procedure would require O(n) communication, since the n − δ intact blocks at the
server must be sent to the client. A system that could operate along these lines, for example, is IRIS [30]. IRIS employs
O(
√
n log n) client side redundancy, with which δ =

√
n file blocks can be recovered. Although IRIS is fully-dynamic

(our construction supports only append-only updates), the bandwidth and computation for retrieving
√
n corrupted blocks

is linear in the number of the file blocks, as the whole file system needs to be streamed from the server to the client. To
reduce communication to O(δ) the client could send his δ check blocks to the server. However, this does not work either,
since the server would recover the file blocks and pretend that no damage ever occured.

1.4 Overview of Our Techniques

AS construction. Our protocol for assessing the damage d from Relation 1 is based on recovering the actual blocks
b1, b2, . . . , bδ and subsequently“XORing” them with the corrupted blocks b′1, b

′
2, . . . , b

′
δ returned by the server. For recovery

(described in Section 4), we use the invertible Bloom filter (IBF) data structure, introduced by Eppstein et al. [12] and
Goodrich and Mitzenmacher [15]. An IBF is an array of t cells and can store a set of O(t) elements. Unlike traditional
Bloom filters [6], the elements of an IBF can be enumerated with high probability.

Let B = {b1, b2, . . . , bn} be the set of blocks outsourced by the client and let δ be the maximum number of corrupted
blocks that the client can tolerate. In the preprocessing phase, the client computes an IBF TB that has O(δ) cells, on the
blocks b1, . . . , bn. The client stores TB locally. Computing TB is similar to computing a plain Bloom filter: every cell of
TB is mapped to a sum over a set of at most n blocks, thus the local storage is O(δ log n).

To outsource the blocks, we modify the IBF specification so that the client computes homomorphic tags, Ti, for each
file block, bi. Incidentally, we use the same tags as in the original PDP scheme by Ateniese et al. [4]. The client then stores
(bi,Ti) with the cloud and deletes the blocks b1, b2, . . . , bn from local storage. In the challenge phase (i.e., when the client
wants to provably compute the damage d), the client asks the server to construct a randomized IBF TK (again, of O(δ)
cells) on the set of blocks K that the server currently possesses. The IBF TK comprises the “proof” that the server sends to
the client.

Note that since δ < n, both TB and TK “lose” information. Therefore sets B and K cannot be enumerated only by
processing TB and TK . However, one property of the IBFs is the fact that if the size of the difference B − K is at most
δ, then the client can take the algebraic difference TL = TB − TK and, with high probability, recover the elements of the
difference B − K by only working with TL (note that TL has O(δ) cells). Recovering the blocks in B − K enables the
client to compute damage d by using Relation 1.
Bitcoin protocol. We note here that in the above protocol, Bob (the server) is malicious and is trying to persuade Alice
that the weighted damage of her file blocks is d′ < d. However, the cryptographic tags that we use ensure that Bob cannot
succeed in that (except with negligible probability) and therefore Alice will eventually find out the exact damage, d. After
that stage, compensation proportional to d must be sent to Alice. But Bob could try to cheat again.

Specifically, Bob could try to give Alice a compensation less than required or, even worse, disappear. To deal with this
problem, we develop a modified version of the recently-introduced timed commitment in Bitcoin [3]. At the beginning of
the AS protocol, Bob deposits a large amount, A, of bitcoins, where A is contractually agreed on and is typically higher
than the maximum possible damage to Alice’s file blocks. The Bitcoin-integrated AS protocol of Section 5 ensures that
unless Bob fully and timely compensates Alice for damage d, then A bitcoins are automatically and irrevocably transferred
to Alice. At the same time, if Alice tries to cheat (e.g., by asking for compensation higher than the contracted amount), our
protocol ensures that she gets no compensation at all while Bob gets back all A of his bitcoins.

2 Preliminaries
We let τ denote the security parameter, δ denote an upper bound on the number of corrupted blocks that can be tolerated
by the client, n denote the number of file blocks, and b1, b2, . . . , bn denote the file blocks. We use [n] to denote the set
{1, 2, . . . , n} and PPT stands for “probabilistic polynomial time”.

3

Algorithm T← update(bi,T, z)
for each j = 1, . . . , k do

Set ind = hj(i);
Set T[ind].count = T[ind].count + z;
Set T[ind].dataSum = T[ind].dataSum + zbi;
Set T[ind].hashProd = T[ind].hashProd× f(bi)

z;
return T;

Figure 1: Update in an IBF. The input z ∈ {−1, 1} determines whether we insert bi into or delete bi from the IBF.

Blocks b1, b2, . . . , bn do not contain only data. They also encode the respective index of the block as the first log n most
significant bits, i.e., bi = i||βi where i is the index and βi is an m-bit data block. Such representations i||βi can be viewed
as integers belonging to a universe U . When we refer to a block bi, we imply that one can retrieve its index by “stripping
out” its log n most significant bits, which we denote as i = index(bi). Therefore, the block requires log n+m bits.

2.1 Invertible Bloom filters (IBFs)
An Invertible Bloom Filter (IBF) can be used to compactly store a set of blocks {b1, b2, . . . , bn}. Like the counting Bloom
filter [6, 8], an IBF allows both insertions and deletions, and it allows the number of inserted elements to far exceed the
capacity of the data structure as long as most of the inserted elements are deleted later. But, unlike the counting Bloom
filter, the IBF allows the elements of the set to be enumerated. These properties make it possible to represent two large sets
as small IBFs, and to quickly determine the elements in the symmetric difference of the sets. In the following, we describe
the IBF data structure of Eppstein et al. [12], slightly modified to fit our setting.
IBF setup. An IBF is essentially a table (array) T of t cells, for a given parameter t = (k + 1)δ—we refer to table T in
detail in the next section. To set up and maintain an IBF, we need the following functions: (1) A set of k hash functions,
h1, h2, . . . , hk chosen at random from a universal family of functionsH [9], which map any integer in [n] (corresponding to
the index of block bi) to k distinct cells in T, i.e., hi : [n]→ {1, 2, . . . , t} . Functions hi are used to insert a block bi indexed
i to the IBF, by computing the positions hj(i) (j = 1, . . . , k) in T and subsequently updating the respective fields (see
Figure 1); (2) A function f : U → {0, 1}τ log δ , which maps any block bi ∈ U to a random value in the range {0, 1}τ log δ

(recall τ is the security parameter). In our work we carefully choose this function as

f(bi) = gaibi mod N , (2)

where N is an RSA modulus of τ log δ bits and ai = θs(i), where θs is a pseudorandom function that takes input a secret s.
Note that, for a specific input bi, f(bi) depends on randomness ai = θs(i).
The table T of the IBF. As we mentioned earlier, an IBF consists of table T of t cells. Each cell of the IBF’s table T
contains the following fields:

1. count: an integer count of the number of items mapped to this cell through functions hi;
2. dataSum: a sum of all the blocks b mapped to this cell through functions hi;
3. hashProd: a product of f(b) values for all blocks b mapped to this cell through functions hi.

In the dataSum field, we employ arithmetic over the integers. In the hashProd field, we employ arithmetic modulo N .
The hashProd field is used to distinguish between two IBFs having a cell i with identical dataSum value which however

corresponds to different underlying blocks.
IBF algorithms. An IBF supports several simple algorithms for insertion, deletion, and enumeration of its contents.

To build an IBF TB for a set of blocks B we insert each block bi ∈ B in the IBF via algorithm update in Figure 1, i.e.,
by executing update(bi,TB , 1) for all bi ∈ B. Similarly, if we want to delete a block bi, we can execute the same algorithm
with argument z = −1, which employs subtractions instead of additions (for the field dataSum) and divisions instead of
multiplications (for the field hashProd). Note that the above algorithm is similar to the counting Bloom filters algorithms,
with the difference that we also perform operations on the fields dataSum and hashProd.

The most interesting IBF operation (one we exploit in our setting) is the algebraic difference of two IBFs. Namely, we
can take the algebraic difference of one IBF TA representing a set of blocks A and IBF TB representing a set of blocks
B, to produce an IBF TD representing the symmetric difference D = A − B ∪ B − A. In the new IBF TD, produced
by subtract(TA,TB) in Figure 2, items in A − B have positive signs for their cell fields in TD and items in B − A have
negative signs for their cell fields in TD.

4

Algorithm TD ← subtract(TA,TB)

for each i = 1, . . . , t do
TD[i].count = TA[i].count− TB [i].count;
TD[i].dataSum = TA[i].dataSum− TB [i].dataSum;
TD[i].hashProd = TA[i].hashProd/TB [i].hashProd;

return TD;

Figure 2: Subtracting TA and TB . The resulting IBF TD = TA − TB encodes the symmetric difference A−B ∪B −A.

Finally, given the IBF TD, produced by a subtract operation, we can enumerate its contents by using algorithm listDiff
in Figure 9 in the Appendix, which was presented in previous work [12]. Algorithm listDiff repeatedly looks for cells
TD[i] with count fields of +1 or −1 and deletes these items for those cells if they pass a test for consistency. This test of
consistency, described in [12], identifies if a cell positively or negatively pure. The definition of such a cell is the following:

Definition 1 (Pure cells) Let TD be an IBF of t cells. A cell TD[i] ∈ {1, 2, . . . , t} is pure iff TD[i].count = ±1 and

TD[i].hashProd = f(TD[i].dataSum) .

Depending on whether TD[i].count is +1 or −1, TD[i] is called positively or negatively pure cell respectively.

As we will see, for algorithm listDiff to succeed with high probability, we require the size of all the IBFs involved to be
O(δ), where δ is an upper bound on the size of the symmetric difference of sets A and B, which does not depend on the
size of the sets A and B.

In the following we give an important result from [12]:

Lemma 1 (Eppstein et al. [12]) Let A and B be two sets having at most δ blocks in their symmetric difference, and let
TA and TB be IBFs, which are constructed by algorithm update(bi,TA, 1) for all bi ∈ A and update(bj ,TB , 1) for all
bj ∈ B. The IBFs TA and TB have t = (k + 1)δ cells and employ the function f : U → {0, 1}Ω(τ) where τ ≥ k log δ is
the security parameter. Then with probability O(δ−k), algorithm listDiff(TA,TB) will output reject, failing to recover the
symmetric difference A−B ∪B −A.

2.2 Bitcoin
As we mentioned in the introduction, we enable automatic compensation to the client, after she figures out the damage, d.
It turns out that an ideal way to do that is through Bitcoin [23].2

Bitcoin is a decentralized digital currency system that does not rely on financial entities. Transactions are recorded
on a public ledger (the blockchain) and are verified through the collective effort of miners. A bitcoin address is the hash
of a ECDSA public key and transactions are signed and verified by anyone in the system. Transactions are all linked to
each other using hash chains. Let A and B two bitcoin addresses. A standard transaction contains a signature from A and
mandates that a certain amount of bitcoins is to be transferred from A to B. If A’s signature is valid, the transaction is
inserted into a block which is then stored in the blockchain.

But Bitcoin allows for more expressive conditions than just a signature. In particular,A can specify a series of conditions
that have to be satisfied before transferring bitcoins to B. To list such conditions, A uses the bitcoin scripting language
which is a purposely-simple stack-based language that provides basic cryptographic functions, such as hashes and digital
signatures, conditional statements, and operations on numbers and strings. In addition, each transaction specifies a locktime
which may contain a block number or a timestamp at which the transaction is locked (before this timestamp, even if
the conditions are satisfied, the transaction is not finalized). Slightly changing the notation from [3], a transaction Tx is
represented as a table:

Prev :
InputsToPrev :
Conditions :
Amount :
Locktime :

,

2It is worth noting that although Bitcoin’s price is volatile, recent work (e.g., LOCKS [2]) aims to eliminate this problem.

5

where Prev represents the transaction (say Ty) that Tx is redeeming, InputsToPrev are inputs that Tx is sending to Ty so
that Ty’s redeeming can take place, Conditions is a program written in the Bitcoin scripting language (outputting a boolean)
controlling whether Tx can be redeemed or not (given inputs from another transaction), Amount is the value in bitcoins,
and Locktime is the locktime. For standard transactions, InputsToPrev is just a signature with the sender’s secret key,
and Conditions implements a signature verification with the recipient’s public key. Moreover, standard transactions have
locktime set to 0, meaning they are locked and final.

Andrychowicz et al. [3] describe an ingenious bitcoin contract mechanism to realize timed commitments [7] through the
blockchain. With timed commitments in place, they show that it is possible to run fairly any secure multi-party protocols
with the stipulation that parties pay a fine in bitcoins if they cheat, that is, if all parties follow the protocol specification
then a function on private inputs is computed otherwise any party that deviates from (e.g., interrupts) the protocol will
inescapably pay a sum of bitcoins to the others.

3 Accountable Storage model
In this section, we introduce the AS model. As we will see below, an AS sheme does not allow the client to compute
damage d directly. Instead, it allows the client to use the server’s proof to compute the blocks L that cannot be extracted
by accessing the server’s storage (i.e., the ones that got lost). By having the server send the current blocks he stores in the
position of blocks in L (in addition to the proof), computing the damage d is straightforward.

Definition 2 (δ-AS scheme) A δ-AS scheme P is the collection of six polynomial-time algorithms:
1. (pk, sk)← KeyGen(1τ) is a key generation algorithm that is run by the client to setup the scheme. It takes a security

parameter τ as input and returns a pair of matching public and secret keys (pk, sk);
2. Ti ← TagBlock(pk, sk, bi) is an algorithm run by the client to generate verification metadata for a block bi. It takes

as inputs a public key pk, a secret key sk, and a file block bi and returns the tag Ti;
3. state← GenState(pk, B, δ) is an algorithm run by the client to generate local state state. Its inputs are a public key

pk, a set of file blocks B = {b1, b2, . . . , bn} and the parameter δ. It returns the local state;
4. chal← GenChal(1τ) is an algorithm run by the client to generate a challenge for the server;
5. V ← GenProof(pk, B,Σ, chal) is run by the server in order to generate a proof of accountability. It takes as inputs

a public key pk, an ordered collection B of blocks and an ordered collection Σ which is the verification metadata
corresponding to the blocks in B. It returns a proof of accountability V for the blocks in B;

6. {reject,L} ← CheckProof(pk, sk, state,V, chal) is run by the client. It takes as inputs a public key pk, a secret key
sk and a proof of accountability V . It returns a list of blocks L or reject.

An AS protocol between a client and a server can be constructed from a δ-AS scheme as follows. First, the client has
blocks B = {b1, b2, . . . , bn} in local storage, runs {pk, sk} ← KeyGen(1τ) and stores the pair (sk, pk). Then he computes:

1. The tags Ti ← TagBlock(pk, sk, bi)∀i = 1, . . . , n;
2. The state state← GenState(pk, B, δ).

The client sends pk, B,Σ = (T1,T2, . . . ,Tn) to the server and may delete the blocks B and the verification metadata
Σ—but he locally stores the state state.

During the challenge phase, the client generates chal ← GenChal(1τ) and sends it to the server which runs V ←
GenProof(pk, B,Σ, chal) and returns the proof of accountability V . The client can check the proof V by executing,
{reject,L} ← CheckProof(pk, sk, state, V, chal) the client checks the proof V . If the algorithm CheckProof does not
reject, then L is the set of blocks that cannot be extracted by accessing the server’s storage, which can be used to compute
d and define the compensation.
AS correctness and security. Let B be the set of n initial blocks and L ⊂ B be another set of at most δ < n blocks. A
δ-AS scheme is correct if algorithm CheckProof, on input a proof V output by algorithm GenProof that executes correctly
on the set of blocks B − L outputs the blocks L. We now formalize this:

Definition 3 (δ-AS scheme correctness) Let P be a δ-AS sche-me consisting of the algorithms of Definition 2. P is correct
if for all τ ∈ N, for all {pk, sk} output by KeyGen(1τ), for all sets of blocks B, for all sets of tags Σ output by TagBlock
where Σ = {Tj ← TagBlock(pk, sk, bj) : bj ∈ B}, for all states state output by GenState(pk, B, δ), for all set of blocks
L ⊂ B such that |L| ≤ δ, for all challenges chal output by GenChal(1τ), for all proofs V output by GenProof(pk, B −
L,Σ, chal), the probability that L ← CheckProof(pk, sk, state,V, chal) is 1− 1/poly(δ).

As we are going to see the correctness of our scheme is based on Lemma 1 that we presented before.

6

To define the security of a δ-AS scheme, we introduce a game between a challenger C and an adversary A. The game
is set up in such a way so that the adversary asks the challenger to compute tags on a set of blocks B of his liking. After
the adversary gets access to the tags, his goal is to output a proof V , so that if L is output by algorithm CheckProof, where
|L| ≤ δ, then (a) either L is not a subset of the original set of blocks B; (b) or the adversary does not store all remaining
blocks in B − L intact.

Such a proof is invalid since it would allow the verifier to either recover the wrong set of blocks (e.g., a set of blocks
whose Hamming distance from the corrupted blocks is a lot smaller) or to accept a corruption of more than δ file blocks
(i.e., the file blocks in B − L).

Definition 4 (δ-AS scheme security) Let P be a correct δ-AS scheme consisting of the algorithms of Definition 2, A be a
PPT adversary and C be a challenger. Consider the following δ-AS game between A and C:

1. Initialization. C runs {pk, sk} ← KeyGen(1k), sends pk to A and keeps sk secret;
2. Query. For j = 1, . . . , n, A chooses a block bj and sends it to C. C computes the tag Tj output by

TagBlock(pk, sk, bj) and sends Tj to A. A stores (bj ,Tj) and C stores the block bj;
3. Computing local state. Let B = {b1, b2, . . . , bn} be the set of blocks that were chosen by the adversary above. Then
C computes the
local state state← GenState(pk, B, δ);

4. Challenge. C outputs chal← GenChal(1k) and requests A to provide a proof of accountability for challenge chal;
5. Forge. A computes a proof of accountability V and returns V .

The adversary A wins the δ-AS game if

L ← CheckProof(pk, sk, state,V, chal) .

We say that the δ-AS scheme P is secure if for any PPT adversary A the probability that A wins the δ-AS game is
negligibly close to the probability that (i) L ⊂ B and (ii) the challenger can extract all the remaining file blocks in B − L
by means of a PPT knowledge extractor E , where where |L| ≤ δ.

Note here that if the set L is empty, then the above definition is equivalent with the original PDP security definition [4].

4 Our construction
We first give an infomal overview of our construction: Suppose the client wishes to outsource to the server blocks b1,
b2, . . . , bn. At setup phase the client computes the tag Ti for each block bi. Then he produces the local state as a partial
IBF of these blocks. We call this IBF partial because it does not store the hashProd field. The hashProd field is changing
every time the client challenges the server and is computed by using the proof returned by the server.

After the end of the setup phase, the server stores the blocks and the tags. At the challenge phase, the client picks a
random k-bit integer s and sends it to the server. To generate a proof of accountability (see Figure 4), the server partitions
the set of indices [n] = {1, 2, . . . , n} into two sets, the set Kept of blocks that the server stores and the set Lost of blocks
that the server has lost. The server then computes a partial IBF TK on the set of blocks {bi : i ∈ Kept}, along with a proof
of data possession [4] on the same set of blocks. For the computation of the PDP proof, the server uses randomness derived
from the challenge s.3

The goal of the client is to output the blocks {bi : i ∈ Lost}, after he verifies possession of blocks {bi : i ∈ Kept}.
To achieve that, the client takes the difference TL = TB − TK and executes algorithm recover from Figure 5, which is a
modified version of listDiff from Figure 9 in the Appendix.

However, the IBF TL = TB − TK is still partial, being the difference of two partial IBFs TL and TK . Recall now
that in order to enumerate the elements of TL, we require access to the hashProd field, which is now absent. To confront
this issue, the proof generated by the server also contains the necessary information (e.g., a few combined tags) that will
allow the client to recover the field hashProd of the IBF TL, without having to explicitly divide the hashProd fields of
the individual IBFs TB and TK—it only requires access to the tags of the lost blocks, and not the blocks themselves. The
detailed algorithms of our construction are in Figure 3.

Finally, we note here that as we mentioned before, algorithm recover (Figure 5) is a slight modification of algorithm
listDiff from Figure 9. The main difference is that algorithm recover does not check for negatively pure cells. This is
because we know ahead of time that the set K − B (that is created through negatively pure cells in Figure 9) is always
empty since, before executing algorithm recover, we have already verified that K ⊆ B, through a PDP-style verification
(see Relation 5). Therefore, Lemma 1 holds for algorithm recover as well.

3Note that if Kept = [n], then the server has not lost anything and our protocol becomes a plain PDP protocol.

7

Alg. (pk, sk)← KeyGen(1τ). Let N = pq be an RSA modulus, e, d be primes such that ed = 1 mod φ(N), g be a generator of QRN
and v be a τ -bit string chosen randomly. Also, a set H of k random hash functions H = {h1, h2, . . . , hk} such that hi : N → [t]
t = (k + 1)δ], a PRF θs : {0, 1}τ × {0, 1}logn → {0, 1}k and a random oracle h : {0, 1}∗ → QRN , are initialized. Output
pk = (N, g,H, h, θs) and sk = (e, d, v).

Alg. Ti ← TagBlock(pk, sk, bi). Parse pk as (N, g,H, h, θs), sk as (e, d, v). For block bi set Wi = v||i and compute tag Ti =(
h(Wi)g

bi
)d

mod N . Note that we use the same tags as in the original work of Ateniese et al. [4].

Alg. state← GenState(pk, B, δ). Parse pk as (N, g,H, h, θs) and B as {b1, b2, . . . , bn}. Compute the partial IBF TB on the set of
blocks B by executing update(bi,TB , 1) for all bi (see Figure 1) and by setting TB [j].hashProd = 1 for all j = 1, . . . , t. Output
state = TB .

Alg. chal← GenChal(1k). Pick a random s ∈ {0, 1}k and output chal = s.

Alg. V ← GenProof(pk, B,Σ, chal). Parse pk as (N, g,H, θs), B as {b1, b2, . . . , bn}, Σ as T1,T2, . . . ,Tn and chal = s ∈ {0, 1}k.
Let Kept be a set of at least n − δ indices corresponding to blocks in B (it is to the best interest of the server to make Kept as large as
possible—ideally, Kept contains all indices). Set Lost = [n]− Kept. Compute a combined tag T along with a combined sum S as

T =
∏
i∈Kept

Taii and S =
∑
i∈Kept

aibi, where ai = θs(i) is the randomness corresponding to block i. (3)

Following, compute the partial IBF TK on the set of blocks {bi : i ∈ Kept} by executing update(bi,TK , 1) for all i ∈ Kept (see
Figure 1) and by setting TK [i].hashProd = 1 for i = 1, . . . , t, i.e., the output IBF uses only fields count and dataSum.
Finally, consider the t sets of indices Qr , for r = 1, . . . , t, where

Qr = {i ∈ Lost : ∃j ∈ [k] : hj(i) = r} . (4)

These sets represent the positions of the lost blocks in the IBF (for an illustrative example, see Figure 4). Compute t com-
bined tags L1,L2, . . . ,Lt (t is the size of the IBF) such that Lr =

∏
i∈Qr T

ai
i for r = 1, . . . , t. The proof V is the tuple

{Lost,T, S,TK ,L1, . . . ,Lt}.
Alg. {reject,L} ← CheckProof(pk, sk, state,V, chal). Parse pk as (N, g,H, θs), sk as (e, d, v), state as TB and the proof V as V =
{Lost,T, S,TK ,L1, . . . ,Lt}. Accept (and output the set of blocks L) if all of the following tests are true:
• Lost is a subset of [n] of size at most δ;
• It is

Te∏
i∈Kept h(Wi)ai

= gS , where ai = θs(i). (5)

• (recovering the lost blocks) For the final test, we have: For r = 1, . . . , t compute

lostSumr =
Ler∏

i∈Qr h(Wi)ai
. (6)

Note that the sets Qr can be easily computed given the set of indices Lost (see Equation 4). Then compute TL = TB − TK and
set TL[r].hashProd = lostSumr for all r = 1, . . . , t. Then execute algorithm recover(TL, Lost,H) from Figure 5. If it does not
reject, output the set of blocks L and accept.

Figure 3: Our δ-AS scheme construction.

Correctness, security and efficiency. Our proof of security is in the random oracle and is based on the RSA assumption
(see Definition 6 in the Appendix). Due to space limitations, detailed proofs of correctness and security are given in the
Appendix.

The local state that the client must keep is an IBF of t = (k+ 1)δ cells. Each cell stores a counter (which can be at most
n) and the sum of at most nm-bit blocks. Therefore the asymptotic size of the state isO((k+1)δ(log n+m)) = O(δ log n).
For the size of the proof V , the tag T has sizeO(1), the sum S has sizeO(log n+m), the partial IBF TK has sizeO(δ log n)
and the tags Lr (r = 1, . . . , t) have size O(t) = O(δk) since each tag Lr is of constant size. Overall, the size of V is
O(δ log n).

For the proof computation, note that algorithm GenProof must first access n − δ blocks in order to compute the PDP
proof and then compute an IBF over the remaining blocks, therefore the time is O(n + δ log n). Likewise, the verification
algorithm needs to verify a PDP proof for a linear number of blocks and to process a proof of size O(δ log n), thus its
computation time is again O(n+ δ log n) (note that algorithm recover takes time O(δ), however computing the difference
TB − Tk takes time O(δ log n)).

Theorem 1 (δ-AS scheme) Let n be the number of blocks. For all δ ≤ n, there exists a δ-AS scheme such that: (1) It is

8

b1 b2 b3 b4 b5 b6 b1 b4 b6

TB

2

1 b1+b3+b4+b5+b6

b1+b2+b5

3 b2+b3+b4+b6

TK

2

1 b1+b4+b6

b1

3 b4+b6

b2 b3 b5

TB – TK

2

1 b3+b5

b2+b5

3 b2+b3

Figure 4: (Left) On input six blocks b1, b2, . . . , b6, the client outputs an IBF TB of three cells, i.e., t = 3. For this example,
we use two hash functions h1 and h2. (Middle) The server loses blocks b2, b3 and b5, i.e., Lost = {2, 3, 5}. To provide a
proof of accountability, the server computes TK on blocks b1, b4, b6. (Right) The client receives TK and computes TB−TK
which gives an IBF that enables him to recover the lost blocks b2, b3, b5.

Algorithm {L, reject} ← recover(TL, Lost,H)

while there is a positively pure cell TL[i] (i ≤ t) do
val = TL[i].dataSum;
ind = index(TL[i].dataSum);
if ind /∈ Lost then return reject;
add val to L;
call delete(val,TL);
Lost := Lost− {ind};

for i = 1, . . . , t do
if TL[i].count 6= 0 or

TL[i].dataSum 6= 0 or
TL[i].hashProd 6= 1 or

then return reject;
if Lost is not empty then return reject;
return L;

Figure 5: Recovering the lost blocks.

correct according to Definition 3; (2) It is secure in the random oracle model based on the RSA assumption and according to
Definition 4; (3) The proof has size O(δ log n) and its computation at the server takes O(n+ δ log n) time; (4) Verification
at the client takes O(n+ δ log n) time and requires local state of size O(δ log n); (5) The space at the server is O(n).

Streaming and appending blocks. We note here that our construction assumes the client has all the blocks available in the
beginning, computes the local state and then outsources the blocks to the server. This is not necessary. Our construction
applies to a streaming setting as well (e.g., [27]), where the blocks bi are coming one at a time, the client easily updates its
local state with algorithm update(bi,T, 1) from Figure 1, computes the new tag Ti and sends the pair (bi,Ti) to the server
for storage. This also means that our construction is partially-dynamic, supporting append-only updates. Modifying a block
is not so straightforward due to replay attacks. However techniques from various fully-dynamic PDP schemes could be
potentially used for this problem (e.g., [13]).

4.1 An optimized construction
In the previous construction, the server and client run in O(n + δ log n) time. In this section we present two algorithmic
optimizations that can be used to eventually reduce the server and client performance to O(δ log n).
Randomized PDP checking. Recall that the main overhead of algorithms CheckProof and GenProof is due to a verification
of a PDP proof that has been computed over n− δ blocks. To reduce this overhead, we can use randomized block checking
as proposed by Ateniese et al. [4] in their original work. To incorporate this optimization, our protocol must be modified in
the following ways:

1. Set λ = 2 ·max{δ, τ}, where τ is the security parameter;
2. The algorithm GenChal, apart from the challenge s ∈ {0, 1}k (that is used to produce randomness ai) outputs another

challenge s′ ∈ {0, 1}k to be used as an input to a new PRF that is going to output a random subset R ⊆ [n] of λ

9

indices;
3. The server runs algorithm GenProof as before. However, instead of computing the PDP proof over all the blocks in

Kept (see Relation 3), the server computes the PDP proof on the blocks in a smaller set, i.e., the set Y = R ∩ Kept,
where R was produced by the challenge s′ picked at random by the client. Note that, by the way that λ is computed
in Item 1, it is always τ ≤ |Y| ≤ 2 ·max{δ, τ}.

4. Finally, the client runs the verification algorithm as is, with the difference that he checks the PDP proof only for the
blocks in Y = R ∩ Kept. Namely, instead of computing the product over all the blocks in Kept

∏
i∈Kept h(Wi)ai ,

he now needs to compute the product
∏
i∈Y h(Wi)ai which takes time O(τ + δ) (instead of O(n)). Given that τ is a

constant (i.e., not dependent on n), the verification now takes time O(δ log n+ τ + δ) = O(δ log n).
However, the theoretical guarantees of such an approach are not that good. This is because, it could be the case, that the
index of some block that has been tampered with and belongs to the set Kept is not included in the set of random indices Y .
If the set Kept contains f such blocks, the probability pf that all indices in Y “land” in locations different than the locations
of the f tampered file blocks (which will cause the PDP verification to accept) is at most

pf =

(
n− δ − f
n− δ

)|Y|
≤
(
n− δ − f
n− δ

)τ
,

since |Y| = Ω(τ) and (n − δ − f)/(n − δ) < 1, for any f > 0. As such, the probability pf is a lot larger than neg(τ).
However, for all practical purposes, Ateniese et al. [4] showed that the guarantees of such an approach can be acceptable.
For example, one can always adjust this probability if one increases the number of λ, even in the case of small f—and of
course the best guarantees are achieved when f is a constant fraction of n.
Segment tree. The technique we described in the previous section allows the server to compute the PDP proof (which
is part of the accountability proof) a lot faster. However, apart from the PDP proof, an accountability proof contains the
IBF TK over the blocks with indices in Kept. Unfortunately, computing the IBF TK requires accessing n − δ blocks and
therefore the server time remains still linear. In this section, we show how to compute the IBF TK in O(δ log n) time, by
using a data structure called segment tree [26].

A segment tree TB is a binary search tree that stores a set B of n key-value pairs (i, bi) at the leaves of the tree, ordered
by the key. Let v be an internal node of the tree TB . Denote with cover(v) the set of keys that are included in the leaves
of the subtree rooted on node v. Every internal node v of the tree has a label label(v) that stores the sum of the values
corresponding to the keys in cover(v). Namely label(v) =

∑
i∈cover(v) bi. By using the segment tree, one can compute

the sum S of any subset of n − α values (blocks) in O(α log n) time (instead of taking O(n − α) time): To see that, if
i1, i2, . . . , iα are the indices of the omitted α blocks, the desired sum can be written as

∑
i6={i1,i2,...,iα}

bi =

i1−1∑
i=1

bi +

i2−1∑
i=i1+1

bi + . . .+

n∑
i=iα+1

bi

and each one of the above partial sums can be computed in O(log n) time by accessing a logarithmic number of internal
nodes of the segment tree.

We modify our protocol in order to use the above data structure as follows. First, the server maintains one segment tree
Tl per IBF cell l = 1, . . . , t. Namely, whenever the client uploads a block bj , the server inserts bj to the k segment trees
Thi(j) for i = 1, . . . , k. Note that such an operation (i.e., updating the segment tree) takes O(log n) time.

The server can now use the segment trees to compute the IBF TK , i.e., for each cell i of TK the server uses the segment
tree Ti to compute the sum over a set of n− αi blocks (specifically this is the subset of the blocks in Kept that map to cell
i), where i = 1, . . . , t and

∑t
i=1 αi = δk. This task takes time

t∑
i=1

αi log n = log n

t∑
i=1

αi = O(δ log n) .

This optimization, combined with the previous one, brings the computation of the server down to O(δ log n).

5 Bitcoin Integration
After the client computes the damage d using the AS protocol described in the previous section, we would like to enable
automatic compensation by the server to the client in the amount of d bitcoins. The server initially makes a “security
deposit” of A bitcoins by means of a special bitcoin transaction that automatically transfers A bitcoins to the client unless

10

the server transfers d bitcoins to the client before a given deadline. Here, the amount A is a parameter that is contractually
established by the client and server and is meant to be larger than the maximum damage that can be incurred by the server.
Specifically, we have designed a variation of the AS protocol integrated with bitcoin that, upon termination, achieves one
of the following outcomes within an established deadline:
• If both the server and the client follow the protocol, the client gets exactly d bitcoins from the server and the server

gets back his A bitcoins.
• If the server does not follow the protocol (e.g., he tries to give fewer than d bitcoins to the client, fails to respond in a

timely manner, or tries to forge an AS proof), the client gets A bitcoins from the server automatically.
• If the client does not follow the protocol (e.g., she requests more than d bitcoins from the server), the server receives

all A deposited bitcoins back and the client receives nothing.
To guarantee the above outcomes, we implement the security deposit of A bitcoins by the server via a special Bitcoin

transaction safeGuard(x, t), and the related transactions retBtcs and fuse, described in Section 5.3 and depicted with a
diamond in Figure 6. This transaction is based on the timed commitment over Bitcoin recently introduced by Andrychowicz
et al. [3], where x is the committed value and t is the bitcoin locktime.

The functionality associated with safeGuard(x, t) guarantees the following: (1) if x is known by the server then
safeGuard(x, t) can be opened and the server (and only the server) can get his A bitcoins back; (2) after time t all A
bitcoins will go to the client. Namely, until either x is revealed or t has passed, the bitcoins of the cloud in the transaction
safeGuard(x, t) are effectively frozen. We emphasize here that the safeGuard transaction we are implementing has an im-
portant difference from the one introduced in [3]: the committed value x is chosen by the verifier (client) and not by the
committer (server).

We now describe our protocol in detail, as depicted in Figure 6. Let S denote the server and C the client. Our protocol
involves a trusted “Bitcoin Arbitrator” (BA). However, we note that the BA is only contacted by S and never by the client
C (more on this later). For each step i = 1, . . . , 7, there is a deadline, ti, to complete the step, where timelock t >> t7.
We also assume neither the client nor the sever can forge the timestamped transcript of the protocol, which can be verified
by BA. This can be accomplished via standard techniques: all messages are inside a single authenticated session where
messages are signed by both parties, and contain nonces and a summary (typically a hash) of all previous messages to avoid
tampering.
• Step 1: C picks a random secret x and sends the following items to S: (i) an encryption EncP(x) of x under BA’s

public key, P; (ii) a cryptographic hash of x, H(x); and (iii) a zero-knowledge proof, ZKP1, that H(x) and EncP(x)
encode the same secret x. If ZKP1 does not verify, S aborts the protocol.

• Step 2: S posts bitcoin transaction safeGuard(x, t) for A bitcoins with timelock t, as done in [3]. If this transaction
is not posted within time t2 (the server is not following the protocol), C aborts the protocol.

• Step 3: S and C run the AS protocol from the previous section, which results in C computing the damage, d. If the
AS protocol rejects or S delays it past time t3, C jumps to Step 9.

• Step 4: C notifies S that the damage is d and sends a zero-knowledge proof, ZKP2, to S for that. If C fails to do so
by time t4 or ZKP2 does not verify, S jumps to Step 6.

• Step 5: S sends d bitcoins to C. If S has not done so by time t5, C jumps to Step 9.
• Step 6: C sends secret x to S. If S has not received x by t6, S contacts BA and sends the timestamped transcript of

the protocol up to that moment. BA checks the transcript and if it is valid, BA sends x to S. Note that the transcript
must be tamper-proof and should contain the encryption of x and all messages exchanged up to that moment.

• Step 7: If S has secret x, S posts transaction retBtcs (i.e., S opens the timed commitment using x).
• Step 8: If transaction retBtcs is valid, S receives A bitcoins before timelock t.
• Step 9: C waits until time t and posts transaction fuse.
• Step 10: If transaction fuse is valid, C receives A bitcoins.

It is easy to see that when the above protocol terminates, one of the three outcomes described at the beginning of this
section is achieved. Also, we note here that for the zero-knowledge proofs ZKP1 and ZKP2, we can use a SNARK with
zero-knowledge [25], that was recently implemented and shown to be practical.

5.1 Global safeGuard
The protocol above protects the client at each AS challenge. But the cloud provider could simply disappear and never be
reachable by the client. Our accountable framework thus establishes that there must be a global safeGuard transaction at
the time the client and the server initiate their business relationship (i.e., when the client uploads the original file blocks and
they both sign the SLA). This global transaction is meant to protect the client if: (1) the server cannot be reached at all or
(2) refuses to post the safeGuard transaction during any AS challenge, or (3) posts the safeGuard transaction but asks BA to
recover the bitcoins in it without participating in the AS challenge. The global safeGuard transaction has the same format

11

CLIENT C
SERVER S

BA

x

t

EncP(x) and H(x) and ZKP1

x

damage d and ZKP2

d

x

1

7

4

5

6

A (T > t) A (T ≤ t)
8

EncP(x)

x6.1

6.2

2

AS challenge

3

9

10

Figure 6: Integration of the AS protocol with Bitcoin to enable an automatic compensation of the client in the case of data
loss.

as the per-challenge safeGuard transaction and can be handled by the same BA. The only significant difference is that now
the BA must mediate and interact with both the client and the server before returning any bitcoins to the server and, in case,
reinitiate a new global safeGuard transaction between the client and the server.

5.2 Removing the Bitcoin Arbitrator
Even though the client never communicates with the BA as per our goal, it is preferable to remove it completely. Unfor-
tunately, this seems impossible to achieve efficiently given the limitations of the Bitcoin scripting language. However, it is
possible to remove the BA, at least in theory, via a secure two-party protocol. In a secure two-party protocol (2PC), party A
inputs x and party B inputs y and they want to compute fA(x, y) and fB(x, y) respectively, without learning each other’s
input other than what can be inferred from the output of the two functions. Yao’s seminal result [33] showed that oblivious
transfer implies 2PC secure against honest-but-curious adversaries. This result can be extended to generically deal with
malicious adversaries through zero-knowledge proofs at each stage of the 2PC or more efficiently via the cut-and-choose
method of Lindell and Pinkas [20] or LEGO and MiniLEGO by Nielsen and Orlandi [24] and by Frederiksen et al. [14]
(other efficient solutions have been proposed by Woodruff [32] and Jarecki and Shmatikov [18]).

To remove the BA, it is enough to create a symmetric version of our original scheme where both parties create a
safeGuard transaction and then exchange the secrets of both commitments through a fair exchange protocol embedded
into a 2PC. The secrets must be verifiable in the sense that the fair exchange must ensure that the secrets open the initial
commitments or fail (as in “committed 2PC” by Jarecki and Shmatikov [18]). Unfortunately, generic techniques for 2PC
results in quite impractical schemes and this is the reason why we prefer a practical solution with an arbiter. An efficient
2PC protocol with Bitcoin is proposed in [22] but it does not provide fairness as it is claimed since the 2PC protocol can be
interrupted at any time by one of the parties. In the end, since this generic approach is too expensive in practice, we will not
elaborate on it any further in this paper.

5.3 The safeGuard transaction
In this section, we describe the safeGuard(x, t) is detail. The scheme is set up so that safeGuard(x, t) is created by S but
where x is known only to C—S only knows h = H(x). This is feasible to achieve through the first step on the protocol
described in Figure 6. We now describe the bitcoin transactions using the notation in Section 2.2. Since S knows h, he
makes the following Bitcoin transaction, which we call safeGuard:

Prev : aTransaction
InputsToPrev : sigS([safeGuard])

Conditions :

body, σ1, σ2, x :
H(x) = h ∧ verS(body, σ1)
∨
verS(body, σ1) ∧ verC(body, σ2)

Amount : A B
Locktime : 0

.

12

The above transaction redeems a transaction called aTransaction that has at least A B as value and can be redeemed by
transactions whose InputsToPrev are of the type body, σ1, σ2, x (i.e., two signatures on the same transaction and an integer
x) and satisfy the conditions specified.

Once the client reveals x to the server, the server posts the following transaction retBtcs to recover his A bitcoins.

Prev : safeGuard
InputsToPrev : [retBtcs], sigS([retBtcs]),⊥, x

Conditions :
body, σ :
verS(body, σ)

Amount : A B
Locktime : 0

.

If the server does not cooperate (e.g., see Step 5 in the protocol description), the client publishes the transaction fuse
after time t and receives a compensation of A bitcoins from the server.

Prev : safeGuard
InputsToPrev : [fuse], sigS([fuse]), sigC([fuse]),⊥

Conditions :
body, σ :
verC(body, σ)

Amount : A B
Locktime : t

.

It is very important to notice here that the locktime of the above transaction is t, meaning that if the transaction is posted
earlier than t, it is not going to be accepted. This is what enables A B to be transferred to C if the server does not know
x (which C controls!). Finally we note that the transaction Fuse is possible only because client C has already the server’s
signature sigS([fuse] on the body [fuse], which includes the locktime t. We can assume that this signature is obtained in the
beginning of the protocol.

6 Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

100 1000 10000 100000 500000

T
im

e
 (

se
c)

Number of blocks

1K
2K
4K
8K

 0
 0.5

 1
 1.5

 2
 2.5

100

 0
 2
 4
 6
 8

 10
 12
 14

1000

 0
 20
 40
 60
 80

 100
 120

10000

(a) Tag Generation. (b) Local IBF Generation.

Figure 7: Preprocessing overheads.

We prototyped the proposed δ-AS scheme in Python 2.7.5. Our implementation consists of 4K lines of source code.
We use the pycrypto library 2.6.1 [21] and an RSA modulus N of size 1024 bits. We serialize the protocol messages using
Google Protocol Buffers [16] and performed all the modulo exponentation operations using GMPY2 [17], which is a C-
coded Python extension module that supports fast multiple precision arithmetic (the use of GMPY2 gave us 60% speedup
in exponentiations in comparison with the regular python arithmetic library).

We divide the prototype in two major components. The first is responsible for data pre-processing, issuing proof chal-
lenges and verifying proofs. The second produces proof every time it receives a challenge. Both modules utilize the IBF

13

Figure 8: Proof Generation and Recover time.

Table 1: Memory Footprint of the δ-AS Scheme (KB)

n Tag Size (KB) Proof Size (KB)
1KB 2KB 4KB 8KB

102 49 578 1140 2254 4515
103 409 1787 3526 7003 13955
104 4375 4111 8114 16118 32125
105 42206 12983 25629 50913 101482

5 ∗ 105 204910 29047 57328 113904 227029

data structure to produce and verify proofs. Our prototype uses parallel computing via the Python multiprocessing module
to carry out many of the heavy, but independent, cryptographic operations simultaneously. We used a single-producer,
many-consumers approach to divide the available tasks in a pool of [8-12] processes-workers. The workers use message
passing to coordinate and update the results of their computations. This approach significantly enhanced the performance
of preprocessing as well as the proof generation and checking phase of the protocol. Our parallel implementation provides
an approximate 5x speedup over a sequential implementation.
Experimental Setup: Our experimental setup involves two nodes, one implementing a server and another implementing a
client functionality. The two nodes communicate through a Local Area Network (LAN). The two machines are equipped
with an Intel 2.3 Ghz Core i7 processor and have 16 GB of RAM.

Our data are randomly generated filesystems. Every file-system includes different number of equally-sized blocks. The
number of blocks ranges from 100 to 500000. The total filesystem size varies from 100
KByte to 4.1 Gbyte. Our experiments consist of 10 trials of challenge/proof exchanges between the client and the server for
different filesystems. Throughout the evaluation we report the average values over these 10 trials.
Preprocessing Overheads: We first examine the memory overhead of the preprocessing phase, which is shown in Table 1.
The first column describes the available number of blocks in a filesystem and the second represents the total size of the tags
needed. The preprocessing memory overhead is proportional to the number of blocks in a filesystem.

Figure 7 shows the CPU-time-related overheads of the preprocessing of the protocol. These overheads are divided to
tag generation and the creation of the client state represented by the partial IBF TB . The tag generation time (Figure 7a)
increases linearly with both the available number of blocks. While this cost is significant for large file systems, it is an
operation that client performs only once. On the other hand, the cost of construction of the partial IBF (Figure 7b) is
negligible; the IBF construction of our biggest filesystem only takes 7 seconds. The construction cost does not significantly
increase with the number of blocks because it does not involve any cryptographic operations.
Challenge-proof Overheads: We now examine memory and CPU related overheads for the challenge-proof exchange and
the recovery phase. The last four columns show the proof sizes (in KB) for δ =

√
n, which increase proportionally to the

block size (unlike the tags size).
Every subgraph of Figure 8 shows how different block sizes affect the performance of the challenge-proof exchange for

a given number of blocks. The solid bars represent the baseline construction (see Section 4), with the left bar showing the
proof generation time and the right bar the proof check along with the time to recover the lost blocks. Longer block sizes

14

increase the time-overhead of challenge-proof exchange due to the expensive modulo exponentiations that are dominant in
this stage of the protocol.

Figure 8 demonstrates an important trade-off between efficiency and performance. The baseline version of the protocol
produces and verifies a proof by scanning all the available blocks in a filesystem. This provides low probability of PDP
proof failure; this approach, however, is quite expensive.

One way to mitigate the cost of the baseline scheme is to reduce the amount of data scanned during the proof gener-
ation/check steps of the protocol, as we explain in Section 4.1. The randomized PDP checking (Section 4.1) serves this
purpose. The hatched parts in Figure 8 show the performance of this randomized approach, which consistently outperforms
the baseline version, especially for larger filesystems. We noticed a speedup of 9× in the proof generation for the case of
5 ∗ 105 blocks with 8KB of block sizes. It achieves that by examining a random subset λ of the available blocks. Figure 8
shows the performance of the randomized approached when λ = 15% of the available blocks n. Despite its efficiency, this
approach comes with a higher probability of PDP proof failure. For example, for δ = 13, n = 10, 000 and f = 10 then the
probability pf for PDP proof failure is 0.12.

The good performance properties of the randomized sche-me makes the scheme appealing for real-life applications. For
example, in a cloud based scenario, a client may use it to verify, in real time, if the cloud provider meets the SLA guarantees.
δ-tolerance: To examine the actual effect of the parameter δ on our implementation, we experimented with a larger value
of δ on both the baseline and the randomized version of the protocol. Table 2 reports the average values over 10 trials of
challenge/proof exchange for three important steps of the protocol. The parameter δ affects only the recovery process of the
δ-AS scheme. This is expected, since the other two parts (proof check and proof generation) operate over the total number
of available blocks in the filesystem. The same principles hold for the memory related overheads.

Table 2: Effect of δ for n = 500, 000 and Block size 8KB for baseline (B) and randomized (R) versions of δ-AS scheme.

δ = 18 δ = 707
Proof Proof Proof Proof

Size (KB) Recovery (sec) Size (KB) Recovery (sec)
B 5799.0 2.6 227029.0 Kb 107.2
R 5591.0 2.2 209011.0 Kb 100.13

7 Conclusions
In this paper we put forth the notion of accountability in cloud storage. Unlike existing work such as proof-of-storage
schemes and verifiable computation, we design protocols that respond to a verification failure, enabling the client to assess
the damage that has occurred in a storage repository. We also present a protocol that enables automatic compensation of the
client, based on the amount of damage, and is implemented over Bitcoin. Our implementation shows that our system can
be used in practice.

References
[1] https://bitcoin.org/bitcoin.pdf.

[2] Locks. http://www.coindesk.com/coinapult-launches-locks-tool-eliminate-bitcoin-price-volatility/ .

[3] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Secure multiparty computations on bitcoin. In
IEEE SSP, 2014.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song. Provable data possession at
untrusted stores. In ACM CCS, pages 598–609, 2007.

[5] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient provable data possession. In Se-
cureComm, pages 9:1–9:10, 2008.

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Comm. ACM, 13:422–426, 1970.

[7] D. Boneh and M. Naor. Timed commitments. In CRYPTO, pages 236–254, 2000.

[8] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese. An improved construction for counting Bloom
filters. In ESA, volume 4168, pages 684–695, 2006.

15

https://bitcoin.org/bitcoin.pdf

[9] I. L. Carter and M. N. Wegman. Universal classes of hash functions. In ACM STOC, pages 106–112, 1977.

[10] D. Cash, A. Küpçü, and D. Wichs. Dynamic proofs of retrievability via oblivious ram. In EUROCRYPT, pages
279–295, 2013.

[11] R. Curtmola, O. Khan, R. C. Burns, and G. Ateniese. MR-PDP: Multiple-replica provable data possession. In ICDCS,
pages 411–420, 2008.

[12] D. Eppstein, M. T. Goodrich, F. Uyeda, and G. Varghese. What’s the difference?: efficient set reconciliation without
prior context. In SIGCOMM, pages 218–229, 2011.

[13] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia. Dynamic provable data possession. In ACM CCS, pages
213–222, 2009.

[14] T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and C. Orlandi. Minilego: Efficient secure two-party
computation from general assumptions. In EUROCRYPT, pages 537–556. 2013.

[15] M. T. Goodrich and M. Mitzenmacher. Invertible Bloom Lookup Tables. ArXiv e-prints, January 2011.

[16] Google. Google protocol buffers. https://developers.google.com/protocol-buffers/.

[17] C. V. Horsen. Gmpy2: Mupltiple-precision arithmetic for python. https://gmpy2.readthedocs.org/en/
latest/intro.html/.

[18] S. Jarecki and V. Shmatikov. Efficient two-party secure computation on committed inputs. In EUROCRYPT, pages
97–114. 2007.

[19] A. Juels and J. Burton S. Kaliski. PORs: proofs of retrievability for large files. In ACM CCS, pages 584–597, 2007.

[20] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious adver-
saries. In EUROCRYPT, pages 52–78. 2007.

[21] D. C. Litzenberger. Pycrypto - the python cryptography toolkit. https://www.dlitz.net/software/
pycrypto/.

[22] D. M. Marcin Andrychowicz, Stefan Dziembowski and L. Mazurek. Fair two-party computations via the bitcoin
deposits. In FC. 2014.

[23] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf.

[24] J. B. Nielsen and C. Orlandi. LEGO for two-party secure computation. In Theory of Cryptography, pages 368–386.
2009.

[25] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable computation. In IEEE
Symposium on Security and Privacy, pages 238–252, 2013.

[26] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, 3rd edition, Oct. 1990.

[27] D. Schröder and H. Schröder. Verifiable data streaming. In ACM CCS, pages 953–964, 2012.

[28] H. Shacham and B. Waters. Compact proofs of retrievability. In ASIACRYPT, pages 90–107, 2008.

[29] E. Shi, E. Stefanov, and C. Papamanthou. Practical dynamic proofs of retrievability. In ACM CCS, pages 325–336,
2013.

[30] E. Stefanov, M. van Dijk, A. Oprea, and A. Juels. Iris: A scalable cloud file system with efficient integrity checks. In
ACSAC, 2012.

[31] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling public verifiability and data dynamics for storage security in
cloud computing. In ESORICS, pages 355–370, 2009.

[32] D. P. Woodruff. Revisiting the efficiency of malicious two-party computation. In EUROCRYPT, pages 79–96. 2007.

[33] A. C.-C. Yao. How to generate and exchange secrets. In SFCS, pages 162–167, 1986.

[34] A. R. Yumerefendi and J. S. Chase. Strong accountability for network storage. TOS, 3(3), 2007.

16

https://developers.google.com/protocol-buffers/
https://gmpy2.readthedocs.org/en/latest/intro.html/
https://gmpy2.readthedocs.org/en/latest/intro.html/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/

Appendix
Definition 5 (Negligible function) Function λ : N→ R is neg(τ) iff for any nonzero polynomial p(τ) there is N such that
for all τ > N it is λ(τ) < 1/p(τ).

The security of our construction is based on the RSA assumption and holds in the random oracle model. The RSA
assumption is stated as follows:

Definition 6 (RSA assumption) Let N = pq be an RSA modulus, where p and q are two τ -bit primes. Given N , e and
y, where y is randomly chosen from Z∗N and e is a a prime of Θ(τ) bits, there is no PPT algorithm that can output y1/e

mod N , except with negligible probability neg(τ).

Algorithm {(D+, D−), reject} ← listDiff(TA,TB)

TD = subtract(TA,TB);
while there is a pure cell TD[j] (j = 1, . . . , t) do
Set bi = TD[j].dataSum; (i is the block index)
if TD[j] is positively pure then
add bi to D+;
call delete(bi,TD);

else
add −bi to D−;
call insert(−bi,TD);

for j = 1, . . . , t do
if TD[j].count 6= 0 or

TD[j].dataSum 6= 0 or
TD[j].hashProd 6= 1

then return reject;
return (D+, D−);

Figure 9: Listing the data blocks that are contained in the symmetric difference A − B ∪ B − A. For example, if A =
{b1, b2, b3} and B = {b2, b5}, it is D+ = A−B = {b1, b3} and D− = B −A = b5.

Proof of correctness
We prove correctness by contradiction. Suppose there exist a k ∈ N, a pair {pk, sk} output by KeyGen(1k), a set of blocks
B, a set of tags Σ output by algorithm TagBlock, i.e., Σ = {Tj ← TagBlock(pk, sk, bj) : bj ∈ B}, a state state output by
algorithm GenState(pk, B), a set L ⊆ B that contain at most δ blocks, a challenge chal output by algorithm GenChal(1k),
a proof V output by algorithm GenProof(pk, B − L,Σ, chal), such that the probability that
L′← CheckProof(pk, sk, state,V, chal)∧L * L′ is greater than neg(k). Note that algorithm GenProof executes of the set
of blocks B − L, therefore, by insepcting the code of GenProof, set Lost always contains a superset of the indices of the
blocks in L. Let now V = {Lost,T, S,TK ,L1, . . . ,Lt} be the proof that algorithm GenProof outputs, where

1. T =
∏
i∈Kept T

ai
i ;

2. S =
∑
i∈Kept aibi;

3. TK is the partial IBF on the set of blocks {bi : i ∈ Kept} which is computed by executing insert(bi,TK) for all
i ∈ Kept (see Figure 1). Set TK .hashProd = 1, i.e., the output IBF uses only fields count and dataSum;

4. Lr =
∏
i∈Qr T

ai
i for r = 1, . . . , t, where Qr is defined in Relation 4.

Note now that if one takes the difference TL = state− TK and then set

TL[r].hashProd =
Ler∏

i∈Qr h(Wi)ai
,

it is easy to see that TL corresponds to the IBF representing blocks in Lost, namely a set of blocks L′ ⊇ L. Executing
algorithm recover(TL, Lost,H) will produce that set of blocks L′, with probability at least 1− neg(k), by Lemma 1. This
is a contradiction and concludes the proof. �

17

Proof of security
To prove security, we play the game given in Definition 4 between a challenger C and the adversary A. Eventually, we
show how the challenger will break the RSA assumption with the help of the adversary. The challenger C simulates a PDR
environment for A as follows:
Initialization. C computes g = y2 mod N ∈ QRN , picks a set of k random hash functions H and sets the public key
pk = (N, g,H, h, θs). Note that h(.) is modeled here as a random oracle, which is programmed by the challenger. Finally
C generates a random secret value v ∈ {0, 1}k and a large secret prime e.
Query. C answers A’s tagging queries using a random oracle as follows. When C receives a tagging query for a block b
indexed 1 ≤ i ≤ n, in the case that a previous tagging query for that block has occurred before, C retrieves the stored tuple
(b, i, ri,Wi) and returns Ti = ri. Otherwise, the challenger C picks a random ri ∈ QRN , computes Wi = v||i, stores the
tuple (b, i, ri,Wi) and returns Ti = ri. Also, when hash queries for input x are made for the first time by A, C picks a
random value ωx ∈ QRN and returns h(x) = ωx. He also stores the tuple (x, ωx) so that he can answer consistently the
next time he is asked to return h(x). Finally, C programs the random oracle h() such that, on input Wi it gives

h(Wi) = rei g
−bi mod N ,

where bi is the block indexed i chosen by the adversary.
Computing local state. After all the tagging queries for blocksB = {b1, b2, . . . , bn} have been made, C stores all the blocks
B = {b1, b2, . . . , bn}. Finally, C computes the state state = TB as in algorithm GenState. C keeps the state state locally.
Challenge. C requests A to provide a proof of data recovery for blocks b1, b2, . . . , bn and sends a challenge chal, which is
a random s ∈ {0, 1}k.
Forge. A computes a proof of data recovery V and returns V . Parse V as {Lost,T, S,TK ,L1, . . . ,Lt}. Suppose algorithm
CheckProof accepts. This means that algorithm recover(TL, Lost,H) also accepts, outputting a set of blocks L. Suppose
for contradiction that L * B. This means there exists at least one block bj ∈ L such that bj /∈ B. Since the blocks in
L have indices in [n] (this is due to the fact that algorithm recover only adds to L blocks with indices in Lost and Lost is
always a subset of [n]), this means that there exists a block b′j ∈ B such that b′j 6= bj . Namely set B contains a block with
index j (i.e., the correct index) but different value b′j .

Let z ∈ {1, . . . , t} be an index of the IBF such that j maps to z, i.e., there is u for some u = 1, . . . , k such that h(j) = z.
Consider the remaining block indices i1, i2, . . . iw mapping that index z and define Qz as

Qz = {i1, i2, . . . iw, j} .

By the verification Equation 6, it needs to hold

lostSumz =
Lez∏

i∈Qz h(Wi)ai
=

Lez∏
i∈Qz r

e
i g
−aibi

. (7)

However, for recover to accept, lostSumz should be equal to 1 at the end of the algorithm. Since lostSumz is updated
through delete, the initial value of lostSumz is

lostSumz = gS̄ , where S̄ =

w∑
u=1

aiub
′
iu + ajb

′
j ,

where {b′i1 , b
′
i2
, . . . , b′iw , b

′
j} ⊆ L. Therefore Equation 7 can be written as

gS̄ =
Lez∏

i∈Qz r
e
i g
−aibi

⇔ gS̄−S =
Lez∏
i∈Qz r

e
i

, (8)

where S =
∑w
u=1 aiubiu + ajbj and {bi1 , . . . , biw , bj} are the original blocks. But we know that bj 6= b′j therefore the

probability of S̄ = S is negligible (since the ai’s are picked at random). Therefore it is S̄ 6= S and Equation 8 can be written
as

gS̄−S =
Lez∏
i∈Qz r

e
i

=

(
Lz∏
i∈Qz ri

)e
= Ze .

Therefore we have Ze = gS̄−S = y2(S̄−S). Now, note that it is gcd(e, 2(S̄−S)) = 1 with overwhelming probability (since
e is a large prime unknown to A). Therefore we can apply “Shamir’s trick”, and use the extended Euclidean algorithm to
find integers α and β such that α× e+ β × 2(S̄ − S) = 1. This gives y1/e = yαZβ , breaking the RSA assumption. �

18

	Introduction
	Quantifying Data Loss
	 Our Contributions
	Related Work and Potential Approaches
	Overview of Our Techniques

	Preliminaries
	Invertible Bloom filters (IBFs)
	Bitcoin

	Accountable Storage model
	Our construction
	An optimized construction

	Bitcoin Integration
	Global safeGuard
	Removing the Bitcoin Arbitrator
	The safeGuard transaction

	Evaluation
	Conclusions

