
Hardware implementation of secure Shamir’s secret
sharing scheme

Pei Luo and Andy Yu-Lun Lin
Reliable Computing Lab

Electrical and Computer Engineering, BU
Boston, USA

Email: luopei,ayllin@bu.edu

Zhen Wang
Mediatek Wireless, Inc

Boston, USA
Email: wang.zhen.mtk@gmail.com

Mark Karpovsky*
Reliable Computing Lab

Electrical and Computer Engineering, BU
Boston, USA

Email: markkar@bu.edu

Abstract—Shamir’s secret sharing scheme is an effective way to
distribute secret to a group of shareholders. But this scheme is
vulnerable to cheaters and attackers and thus how to protect
the system from cheating and attacks is a big problem. In
this paper, we proposed to use robust codes and algebraic
manipulation detection (AMD) codes to protect the secret sharing
module. Simulation and synthesis results show that the proposed
architecture can improve the security level significantly even
under strong cheating and attack models with some extra area
and timing overheads.

Keywords-Shamir’s secret sharing; security; error detection
codes; hardware implementation;

I. INTRODUCTION

A secret sharing scheme is a method of hiding a secret
among several shadows such that the secret can be retrieved
only by some subsets of these shadows. Secret sharing is useful
in many cryptographic applications, especially in sharing the
key among some shareholders [1], [2], [3], [4].

In 1979, Blakley [1] and Shamir [2] independently intro-
duced secret sharing schemes. In a secret sharing scheme,
a secret S is divided into L shares and distributed to L
shareholders by a trusted dealer. The shared secret S can
only be recovered when l (l ≤ L) or more than l shares are
available. Such a scheme is called an (l, L) secret sharing.

Shamir’s secret sharing scheme [2] is not immune to
cheating and other kinds of attacks. If there are dishonest
shareholders, they could purposely distort their shares such
that honest participants can only obtain a fake secret. What’s
more, the attacker can retrieve the real secret based on the
fake secret and the errors injected [3], [4]. Therefore, in order
to protect the cryptographic devices against the attackers, it
is important to design a scheme to protect the secret sharing
module such that it is still secure even under cheating and
other kinds of attacks.

In prior works, various methods have been proposed to
protect the secret sharing schemes against the attacks and
cheating. In [3], Tompa and Woll showed that the cheater may
cheat successfully with a high probability in Shamir’s secret
sharing scheme. They made some modification to Shamir’s
scheme and the successful cheating probability can be reduced

*The work of the fourth author is sponsored by the NSF grant CNS
1012910. This work is equally contributed by the first two authors.

dramatically. The authors in [4] proposed to use a scheme that
takes more than l participants to decode the secret for a (l, L)
secret sharing scheme thus to identify the cheaters. In [5], the
authors proposed to use the idea of sub-secrets and sub-shares
distributed by the shareholders such that each shareholder is
also a dealer.

At the same time, some other secret sharing schemes
resistant to cheating are also proposed. In [6], the authors
proposed to apply a one-way hashing function along with the
use of arithmetic coding to detect cheating and identify the
cheaters. In [7], the authors proposed a computationally secure
scheme based on RSA assumption for secret sharing.

Previous papers also deal with cheater identification in
different secret sharing schemes [4], [7], [8], [9]. There are
several methods for cheater identification. The dealer can gen-
erate and distribute additional information, such as using check
vectors and certificate vectors for each shareholder. Error-
correcting codes can also be introduced for cheater detection
and identification such that faked shares can be treated as error
codes to be detected and corrected [4], [10], [11]. In [4], the
authors proposed to use more than l shareholders during the
secret reconstruction thus the redundant shares can be used for
cheater detection and identification in a (l, L) Shamir’s secret
sharing schemes.

In this paper, we propose to use error detection codes
(EDC) to detect cheating and identify the cheaters thus to
improve the security level of the system. At the same time,
the proposed architecture can also detect most of the fault
injection attacks with very low probability of missing an error.
Cheater identification methods for the proposed schemes are
also discussed in this paper. The proposed schemes will not
change the basic conception and operation of Shamir’s secret
sharing scheme and thus it’s compatible with the previous
schemes based on Shamir’s secret sharing.

We construct the secret reconstruction and error detection
modules in Verilog and synthesize in Cadence Encounter RTL
Compiler with the Nangate 45nm Opencell library version
v2009 07. We run simulation for different cheating models
and inject faults into the system to test the security level. The
results show that the proposed schemes can detect the cheating
and attacks with a very high probability while incur slightly
larger timing and area overhead than the non-protected scheme



at the same time.
The rest of this paper is organized as following: In Sec-

tion II, basic conceptions of Shamir’s secret sharing will be
reviewed, and several different kinds of cheating models used
in this paper will be introduced. In Section III, we will discuss
the architecture of the proposed schemes based on roust and
AMD codes and discuss their security level under different
cheating models. In Section IV, we will discuss the cheater
identification for the proposed schemes and compare our
methods with previous ones. In Section V, cheating and fault
injection simulations are implemented to verify the security
level of the proposed schemes. Synthesis results are given
to evaluate the area and timing overheads of the proposed
architectures.

II. BASIC CONCEPTIONS

A. Shamir’s (l, L) secret sharing

In a Shamir’s (l, L) secret sharing [2], there are L share-
holders P = {P0, P1, · · · , PL−1} and a trusted dealer D.
We use the shareholders’ IDs (z0, z1, · · · , zL−1) to denote
each participant. Secret is generated and distributed to share-
holders by the dealer D. Secret can be reconstructed based
on Lagrange interpolation polynomial by taking any l shares
(αi0 , · · · , αil−1

) of participants and their IDs (zi0 , · · · , zil−1
)

where {i0, · · · , il−1} ⊆ {0, 1, · · · , L− 1} [2], [3], [4].
Shamir’s secret sharing scheme provides a method of hiding

this secret such that any l or more participants would be able to
reconstruct the original secret but any less than l participants
would not be able to reconstruct the original secret. Assume
all the computation are in GF (2n) (L ≤ 2n), in which n is the
number of bits of the secret, Shamir’s secret sharing scheme
consists of two algorithms [2], [4]:

1) Share generation algorithm Construct a polynomial
α(z) = S0 + S1z + S2z

2 + · · · + Sl−1z
l−1 where

Si(i ∈ {0, 1, · · · , l − 1}) and z belong to GF (2n).
Si(i ∈ {0, 1, · · · , l − 2}) are randomly generated in
GF (2n) and Sl−1 is the secret. Each shareholder with
ID zi receives a share α(zi) and we assume the IDs
zi are publicly known and unique for each different
shareholder. We denote α(zi) as αi, and zij as zj for
simplicity in this paper.

2) Secret reconstruction algorithm For a polynomial of
degree l − 1, with knowledge of at least l data points,
we can reconstruct the exact polynomial using Lagrange
interpolation in GF (2n) and thus reconstruct the secret
Sl−1.

In this paper, we choose Sl−1 as the secret for simplicity,
and thus the equation for secret reconstruction is as following:

Sl−1 =

l−1∑
i=0

αi∏l−1
j=0,j 6=i(zi + zj)

, (1)

and equivalently

Sl−1 = c0α0 + c1α1 + · · ·+ cl−1αl−1, (2)

where ci =
∏l−1

j=0,j 6=i(zi + zj)
−1. For a shareholder zi, we

can represent the cheating performed by the shareholders as
α̃i = αi+ei, where ei is the error injected by zi. A cheater can
inject errors into his share and generate a fake secret S̃L−1 =
SL−1 + e and he can precisely control the error e when the
IDs zi are publicly known.

B. Cheating models

For Shamir’s secret sharing, we assume that the dealer
is honest and the shares distributed to the shareholders are
not distorted. According to the definition of Shamir’s secret
sharing and the description above, any of these l shareholders
can distort the secret by submitting a false share. Accodring
to the discussion in Section II-A, a cheater can inject errors
into his share and generate a fake secret S̃L−1 = SL−1 + e
and he can precisely control the error e when the IDs zi are
publicly known. Then the attacker can calculate the real secret
using the fake secret according to (1).

Thus we must protect the secret sharing system against the
cheaters and in this section we will deal with several different
kinds of strong cheating models to improve the security level
of the proposed schemes. We assume that up to l shareholders
can cooperate to generate a fake secret.

At the same time, we also deal with two different cases
about whether the cheaters can get information of the re-
constructed secret. In the first case, the output of the secret
reconstruction module is hidden from the participants and thus
the participants have no knowledge of the reconstructed secret;
in the other case, the shareholders are able to gain knowledge
of the output, thus they can try to cheat according to the
information they get.

In order to emulate the real cheating situations and estimate
the security level of the proposed schemes, we will consider
several different kinds of cheating models in this design:

• Type 1 Less than l shareholders are cheating and the
output of the secret reconstruction module is hidden from
the participants;

• Type 2 Less than l shareholders are cheating but there is
a feedback from the output such that the cheaters can get
information of the secret to help them to generate a fake
secret in the next round;

• Type 3 All of the l shareholders are cheating and the
output of the secret reconstruction module is hidden from
the participants;

• Type 4 All of the l shareholders are cheating and there
is a feedback from the output such that the cheaters can
gain some knowledge of the secret to help them to cheat
in the next round.

Besides the cheating models above, we assume that the
attackers can also inject faults into the hardware of the system
to affect the working of the circuits. Advanced attackers can
cause stuck-at-1 and stuck-at-0 faults or flip the output of the
gates [12], [13], [14]. Our architecture can detect such fault
injection attacks with very high probability.



III. CONSTRUCTION OF THE PROPOSED SCHEMES

In this section we will describe the proposed architecture
which is resistant to stronger cheating models and fault
injection attacks. The proposed architecture is composed of
two parts, the first stage is the secret reconstruction module
implementing an (l, L) Shamir’s secret sharing scheme and
the second stage is the error checking module shown as in
Figure 1.

Secret 
Reconstruction

Error 
Checking

0z

1lz

0
~

1
~
l

error

secret

n

n

n

n

n n

.

.

.

.

.

.

Attacks

Fig. 1: Architecture of the secret sharing scheme

Different from the previous schemes, we divide the output
of the secret reconstruction module into two parts, the real
secret y and the redundant part R, and thus the original output
of the secret reconstruction module is Sl−1 = {y,R} for our
proposed schemes. In this paper, we denote the size of y as
k (y ∈ GF (2k)), and the size of R as r (R ∈ GF (2r)),
and the size of Sl−1 as n = k + r (Sl−1 ∈ GF (2n)). For
an error detection code C, Sl−1 is a codeword of C in the
proposed schemes (Sl−1 ∈ C), and the error checking module
will verify if the reconstructed secret Sl−1 ∈ C or not.

For the error checking stage, the reconstructed secret may
be distorted and we denote it as S̃l−1 = {ỹ, R̃}, and S̃l−1 will
be input into the error checking module. The error checking
module then checks if S̃l−1 is a codeword of C. The error
signal is set and there will be no output at the secret output
port when errors are detected in S̃l−1.

In this section, different kinds of error detection codes will
be implemented for detection of cheating and the results will
be compared in Section V to find the best solution for the
protection of secret sharing under different cheating models.

In this paper, we assume the size of the unprotected secret
is 96 bits for the original secret sharing module without
redundancy, which means k = 96 and y ∈ GF (296). For the
architecture with error detection module, we assume the size of
redundancy is 32 bits, r = 32 and R ∈ GF (232). Thus the size
of the output of the proposed scheme is n = k+r = 128. The
redundancy will increase the security of the target platform
significantly while incur some extra area and timing overhead.

A. Why Linear code is not enough

In this section, we will discuss the secure secret sharing
scheme based on linear codes. For the system based on linear
code C, the secret Sl−1 generated by the dealer should be a
codeword of C (Sl−1 ∈ C). In secret reconstruction stage,
errors can be injected into the shares by the shareholders, thus
to generate a fake secret S̃l−1, S̃l−1 = Sl−1 + e. For linear
codes, the error is masked or undetected if S̃l−1 is also a
codeword of C (S̃l−1 ∈ C).

For a linear (n, k) code C used in this architecture, k is
the number of information bits (secret), and n is the size
of the codeword including both the information bits and the
redundancy.

If the attacker has no knowledge of the code used in this
architecture, he will successfully cheat the system with a
probability of 2k

2n = 2−r in the worst case assuming that he
injects error e in Sl−1 with the same probability. However, one
major weakness of linear codes used for security is that the
sum of any two codewords is also a codeword. Therefore if the
attacker has knowledge of the code C used in this architecture,
he can bypass the detection with a probability 1 by injecting
an error ei into si such that e ∈ C. Thus the secret sharing
scheme based on linear code is not secure enough against
strong attackers.

For example, if z0 is cheating, then he can inject an error
e0 into his share such that e = c0e0 ∈ C (see (2)). So,
with the knowledge of the code C used, any attacker out of l
participants can cheat the system into reconstructing a wrong
secret and bypass the detection with a probability of 1.

Example 3.1: Use a (5,2,3) Hamming code C =
{00000, 11001, 10111, 01110} and l = 3 as a simple example.
For the secret generation stage, denote the secret distribution
polynomial as α(z) = S0+S1z+S2z

2, where S2 is the secret.
If we assume the attacker knows the code that is being used,
he also knows the equation for reconstructing the secret is

α0
1

(z0 + z1)(z0 + z2)
+ α1

1

(z0 + z1)(z1 + z2)

+ α2
1

(z0 + z2)(z1 + z2)
= S2. (3)

Assume the attacker z0 can inject error e0 into his share, the
resulting output becomes

α̃0
1

(z0 + z1)(z0 + z2)
+ α1

1

(z0 + z1)(z1 + z2)

+ α2
1

(z0 + z2)(z1 + z2)
= (α0 + e0)

1

(z0 + z1)(z0 + z2)

+ α1
1

(z0 + z1)(z1 + z2)
+ α2

1

(z0 + z2)(z1 + z2)

= S2 + e0
1

(z0 + z1)(z0 + z2)
, (4)

where e = e0
1

(z0+z1)(z0+z2)
.

The probability of missing an error is 1
23 if the attacker has

no information about the system. However, since z0, z1 and z2
are publicly known, in order to bypass the protection by linear



codes, the attacker only has to find out e0 such that e ∈ C. By
injecting this e0, the attacker can guarantee that his cheating
will be successful with probability 1.

B. Detection with Robust code
According to the discussion in Section III-A, it’s obvious

that linear codes are insufficient for the protection of a secure
secret sharing module under strong cheating models. In order
to improve the security level of the system, we will use robust
codes [15], [16], [17] to protect the secret sharing module in
this section.

For robust codes, the codewords have the form of (y, f(y))
y ∈ GF (2k), f(y) ∈ GF (2r). Error e = (ey, ef ), (ey ∈
GF (2k)), ef ∈ GF (2r) is masked for a given y if

f(y + ey) = f(y) + ef . (5)

For good robust codes, the fraction of y satisfying (5) is very
small for any error (ey, ef ) [15], [16], [17].

For the system with k = 96 information bits based on
robust codes, we divide y into 3 parts (y0, y1, y2) and yi ∈
GF (232), i = 1, 2, 3. We use modified robust quadratic code

R = f(y) = y0y1 + y32 (6)

in this paper. This modified robust quadratic code contains 96
information bits (y0, y1, y2) (y0, y1, y2 ∈ GF (232)) and 32
redundant bits f(y) (f(y) ∈ GF (232)).

If error (e0, e1, e2, ef ) (ei, ef ∈ GF (232)) is injected, the
error masking equation is

(y0 + e0)(y1 + e1) + (y2 + e2)
3 = f(y) + ef , (7)

then

y0e1 + y1e0 + y22e2 + y2e
2
2 + e32 + e0e1 + ef = 0. (8)

Thus the probability of a nonzero error being masked assuming
equiprobable y is Qrq(e) = Qrq(e0, e1, e2, ef ) = 2−r+1 =
2−31 [15], [16], [17].

Example 3.2: In this example, we will show why Robust
code is sufficient for Type 1 cheating model, but fails for Type
2-4 models. Under Type 1 cheating model, the attacker does
not know S2 = (y, f(y)) and thus cannot predict an error that
can be injected without being detected with certainty.

In this example, we will use a system with 9 bits original
secret and 3 bits redundancy to explain the robust code based
system. The polynomial for GF (23) is f(x) = x3+x+1 and
f(x) = x12+x3+1 is the primitive polynomial for GF (212).
If we take y = (010111101), in which y0 = (010), y1 =
(111) and y2 = (101), then f(y) = y0y1 + y32 = (011).
Thus the secret with redundancy is S2 = (010111101011).
For this robust code based system, any random error will have
a probability of being undetected of 2−r+1 = 1

4 .
In Type 2 cheating model, if the attacker can obtain in-

formation of S2 from the feedback, they can calculate the
error to inject thus to produce an undetectable error. For ex-
ample, if z0 = (100011111110), z1 = (001010000110), z2 =
(011001110101) are the participants during the secret recon-
struction, and z0 is the cheater with knowledge of S2, he can

inject an error e0 such that 1
(z0+z1)(z0+z2)

e0 + S2 ∈ C to
bypass the protection of the error checking module based on
robust code, where C is the set of codewords of the robust
code in equation (6). Since z0, z1, z2, S2, C are all known, it is
easy to work out the error e0 which will cause an undetectable
error.

For instance, to distort the secret into S̃2 =
(011100011101), the attacker needs to introduce an error
such that e = (001011110110) = e0

1
(z0+z1)(z0+z2)

. It is not
difficult for z0 to find out that an error e0 = (101001111110)
can be introduced into his share to achieve this.

Similarly, under Type 3 cheating model, the l shareholders
can collaborate to work out the secret S2 and thus inject
undetectable errors into the system. Once S2 is known, it will
be easy for the attackers to inject an error which can bypass
the error checking module. Under Type 4 cheating model, the
attackers can get information of S2 either from the feedback or
collaboration. So the robust code based scheme is not secure
under Type 2-4 cheating models.

C. Detection with AMD code

In this section, we will construct an architecture based
on algebraic manipulation detection (AMD) codes [18], [19],
[20], [21], [22] and discuss the proposed architecture under
Type 2-4 cheating models.

For AMD code, a random vector x ∈ GF (2m),m =
tr, t ∈ (1, 2, 3, · · · ) will be generated and stored securely in
the device such that it cannot be read by the attacker without
destroying the device itself.

It is generally not a good idea to store the information bits
y in the secure memory since if an attacker reads the secure
memory by destroying it, they can obtain knowledge of the
secret y. This would allow outside attackers to gain access
to the secret without knowledge of the secret sharing scheme
itself. However, if we only store the random bits x in the
secure memory, even if this memory is read and the attackers
gain knowledge of x by destroying the secret sharing module,
our secret still remains secure.

The codewords (y, x, f(x, y)) of AMD consist of three
parts, the message y ∈ GF (2k), random vector x ∈ GF (2m),
and redundant bits f(x, y) ∈ GF (2r). Since x is stored in
the system and thus the secret Sl−1 is (y, f(x, y)). For this
architecture, when the secret is reconstructed, the device will
retrieve x from the secure memory and check if

f(x̃, ỹ) = f̃(x, y) (9)

where ỹ and f̃(x, y) are from the distorted secret, x̃ is the
distorted random number x.

With knowledge of y and f(x, y), as well as the polynomial
used to construct f(x, y), the attackers could work out a
set of possible values for x. If x ∈ GF (2m),m = r, and
f(x, y) =

∑b
i=1 yix

i + xb+2 where yi, x ∈ GF (2r) and
y = (y1, · · · , yb), then the size of the set of possible x is
at most b+2 [18], [19], [20]. To increase the security level of
our system, the size of the random number in this system can
be m = tr where t ≥ 2 [18], [19], [20]. Here we use AMD



code with t = 2 and thus x = (x0, x1), x0, x1 ∈ GF (232).
Then the size of the set of possible x = (x0, x1) will be much
larger and thus improve the security level of the system. The
same as robust code based scheme, y is also divided into three
parts (y0, y1, y2) (y0, y1, y2 ∈ GF (232)) in AMD code based
system. Thus the encoding polynomial used for AMD code in
this system is

f(x0, x1, y) = y0x0 + y1x1 + y2x0x1 + x30 + x31, (10)

where y = (y0, y1, y2), assume the attackers can inject errors
into their shares and be able to inject faults into the hardware
system as well to distort x0, x1. Assume the error for a set of
(y0, y1, y2, x0, x1, f) is (e0, e1, e2, ex0 , ex1 , ef ), then the error
masking equation is:

(y0 + e0)(x1 + ex1) + (y1 + e1)(x1 + ex1)

+(y2 + e2)(x0 + ex0)(x1 + ex1) + (x0 + ex0)
3

+(x1 + ex1)
3 = f(x0, x1, y) + ef . (11)

Note that all the computation are in GF (2r), Equivalently

y0ex0 + x0e0 + e0ex0 + y1ex1 + x1e1 + e1ex1

+y2x0ex1 + y2x1ex0 + y2ex0ex1 + e2x0x1

+e2x0ex1 + e2ex0x1 + e2ex0ex1 + x20ex0 + e2x0
x0

+e3x0
+ x21ex1

+ e2x1
x1 + e3x1

+ ef = 0. (12)

Since y is known and the errors are injected and controlled
by the attackers, (12) can be rewritten as

x20ex0 + x21ex1 + e2x0x1 +Ax0 +Bx1 + C = 0, (13)

where A,B,C are constants based on y and the errors ac-
cording to (12). Since the attackers have no knowledge of x0
and x1, we have from (13) that the probability of successful
attacks is at most 2−r+1

Example 3.3: Let S2 = (y0, y1, y2, R) and random bits x0,
x1 are stored securely in hardware. Choose (y0, y1, y2) =
(001001100) and x0 = (010), x1 = (110), then R =
f(x0, x1, y) = (001). S2 = (001001100001). The attackers
wish to choose an error e such that S̃2 = S2 + e ∈ C. To do
this with complete certainty, the attackers need knowledge of
x0, x1 to determine valid codewords in C. In the worst case
scenario, the attackers need to generate a list of all sets of
(x0, x1) for the specific secret S2. In this case, there are 5 sets
of (x0, x1) which satisfy the parameters above: (001, 101),
(010, 110), (100, 101), (011, 111), (101, 101). Thus, the prob-
ability of successfully cheating is 1

5 , which is less than the
upper bound 2−r+1 = 1

4 [18], [19], [20].
Since random bits x0 and x1 are stored securely, the attacker

has no knowledge of these information. Without knowing x0
and x1, the attackers cannot guarantee a successful undetected
attack in our system.

So according to the above discussion, the AMD based
system has very high security level even under Type 2-4
cheating models. The proposed AMD based architecture will
still maintain a very high security level even under strong
cheating models and threatened by fault injection attacks.

IV. CHEATER IDENTIFICATION

As opposed to those approaches described in [8], [7], [4],
[9], we will present an approach for identification of cheaters
in this section. This approach will provide for an efficient
hardware implementations for the case when the number of
cheaters m is less than l.

This approach is based on an increase in the number of
participants from l to N = l + I and computing not one
(probably distorted) secret, but A secrets based on A different
subsets of l shareholders out of the set of N shareholders. Let’s
construct an (A×N) matrix M = (Mij) such that Mij = 1
if shares of participant i (i = 0, 1, · · · , N − 1) are used to
reconstruct the secret j (j = 0, 1, · · · , A − 1). We note that
the number of 1s in very row of M is exactly l.

Example 4.1: Let m = 1, l = 4 and N = 5, then we can
select the matrix M1 as

M1 =

∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1

∣∣∣∣∣∣∣∣ .
Then the first secret β(z0) is reconstructed using z1, z2, z3, z4
and β(z1) using z0, z2, z3, z4, β(z2) using z0, z1, z3, z4 and
β(z3) using z0, z1, z2, z4. In this example, if β(z0), β(z2) and
β(z3) are detected to be distorted (not codewords of the robust
code C), then obviously z1 is cheating. If all four secrets are
distorted, then z4 is cheating.

We note that the (A × N) matrix M provide for identi-
fication of up to m cheaters if and only if componentwise
OR of up to m columns of M are all different and not equal
to the column of all zero′s. These matrices are known as
m−disjunct or m−separable matrix and are closely related
to superimposed codes. Methods of construction of these
matrices and bounds on the minimal number of rows in these
matrices can be found in [23], [24], [25].

The minimal number N to identify m cheaters (m < l)
is N = l + m. In this case, number of computed secret is
A =

(
l+m
l

)
−1. To compute these secrets we use all subsets of

l out of N participants except for one subset, {z0, · · · , zl−1}
as an example.

Example 4.2: For m = 2, l = 4, N = 6, we select the
following (14 × 6) matrix M2 for subsets selection. If, for
example, all computed secrets are distorted except for the row
7 for which z0, z2, z4 are used to compute a secret, then z0
and z3 are cheating.



M2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1 1 1 1
0 1 0 1 1 1
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 0 1
1 0 1 1 1 0
1 1 0 0 1 1
1 1 0 1 0 1
1 1 0 1 1 0
1 1 1 0 0 1
1 1 1 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We note that there is a trade off between the number of
participants N and the number of secrets A which should be
computed for identification of cheaters. Minimizing A results
in a minimal complexity of hardware for cheater identification.

Example 4.3: Here are are the matrix M3 and M4 minimiz-
ing A for l = 4,m = 1 and l = 4,m = 2, correspondingly

M3 =

∣∣∣∣∣∣
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

∣∣∣∣∣∣ ,

M4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 1 1 1 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 1 0
0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 0 1 0
0 1 0 1 0 0 0 0 1 0 0 1
0 0 1 0 1 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

For m = 1, l = 4, number of participants N for M3 is 7
(N = 5 for M1), but number of secrets A = 3 is smaller than
the one for M1. Comparing M2 and M4 for l = 4,m = 2, we
can see that N is increasing from 6 to 12 but A is decreasing
from 14 to 9. For the case m = 1, the minimal number of
secrets for cheater identification is A = plog2lq and N =
2l − 1.

V. SIMULATION AND SYNTHESIS RESULTS OF THE
PROPOSED SCHEMES

In this section, we will provide the synthesis results for
the proposed schemes and the unprotected Shamir’s secret
sharing architecture to compare the required timing and area
redundancy. Then we will run the cheating and fault injection
simulation to verify the security level of the proposed archi-
tectures.

We note that in this paper, the generator polynomial we use
for GF (232) is f(x) = x32 + x7 + x3 + x2 +1, the generator
polynomial used for GF (296) is f(x) = x96+x6+x5+x3+
x2+x+1, and the generator polynomial used for GF (2128) is
f(x) = x128+x7+x2+x+1. All the simulation and synthesis

are based on the architectures with parameters l = 3, k = 96
and r = 32.

A. Synthesis results for the proposed architectures

The proposed secure secret sharing architecture is composed
of two parts, the secret reconstruction module and the error
checking module. These two modules have been modeled in
Verilog and synthesized in Cadence Encounter RTL Compiler
with the Nangate 45nm Opencell library version v2009 07.
The designs were placed and routed using Cadence Encounter.
The latency, the area overhead of the proposed schemes
were estimated using Concurrent Current Source (CCS) model
under typical operation condition assuming a supply voltage
of 1.1V and a temperature of 25 Celsius degree. The synthesis
results for different secret sharing schemes are shown in Table
I.

TABLE I: Resource requirement for the proposed schemes

Area Latency Power
(um2) (ns) (mW )

Original Secret sharing 66,217.0 1.227 77.61(96 bits) I

AMD based 112,591.7 1.336 145.7secret sharing II

Robust based 108,920.4 1.433 147.3secret sharing III

I Original secret sharing architecture without error checking module,
the size of the secret is 96

II Secret sharing module based on AMD code, the size of the information
bits of the secret is 96 and redundancy is 32 bits

III Secret sharing module based on robust code, the size of the informa-
tion bits of the secret is 96 and redundancy is 32 bits

Besides the resource overhead listed in Table I, we note that
the Robust and AMD modules also need extra clock cycles
to finish the error checking operation. For the original secret
sharing module, the clock cycles needed to reconstruct the
secret is 13+2∗96, in which 13 clock cycles are used for the
control logic and 96 is for the inverter in GF (296). For the
proposed architecture, the secret reconstruction module needs
13+2∗128 clock cycles and the error checking module based
on AMD codes needs 7 extra clock cycles while the one based
on Robust codes needs 5 extra clock cycles.

From Table I, we can see that for a 96 bits secret, the
proposed AMD based architecture (composed of the 128
bits secret reconstruction and the AMD module) will need
70.3% more area than the original architecture (the 96 bits
secret reconstruction module). The proposed robust code based
architecture will need 64.5% more area than the original
architecture.

For this architecture, we use serial inverters and fully
parallel multipliers in finite field [26], [27], [28] for all the
computations. Synthesis results show that while the secret
reconstruction module takes 123, 025 gates, the multiplier in
GF (2128) takes 86, 039 gates. The multiplier in GF (232)
takes 4, 431 gates while the AMD module takes 8, 472 gates



and the robust module takes 6, 291 gates. So, in our construc-
tions, the multipliers take most of the resource of the whole
architecture.

B. The simulation results for cheating

In this section, two simulations to verify the security level
of the proposed schemes will be discussed. According to the
discussion in Section III, the robust code based architecture
should be able to provide a high security level under Type 1
cheating model, and the AMD code based architecture will
provide high security levels under Type 2-4 cheating models.

1) Robust system: In the proposed robust code based
scheme, the construction polynomial we use is f(y) = y0y1+
y32 as described in Section III-B. Under Type 1 cheating model,
the number of attackers is less than l and the attackers have
no knowledge of the secret Sl−1, which means they have no
knowledge of the information bits (y0, y1, y2).

For the simulation, we randomly choose 800 sets of IDs
and errors, then run 20 million trials of cheating for each set.
The simulation is as following:

1) Randomly generate a group of IDs and shares, randomly
generate random errors to be injected by 1 to l − 1
cheaters, the counter increases by 1;

2) Randomly generate 20 million shares and for each secret
generate shares for the IDs selected in Step 1. Inject
errors in Step 1 into the shares and reconstruct the
distorted secret, then check how many of the distorted
secrets can pass the error checking module;

3) Go back to Step 1 until counter arrives 800.
The result shows that out of these 16 billion trials, there

were 5 errors undetected by the error checking module based
on robust code. This result is consistent with the upper bound
of robust code, which is the probability of missing an error
[15], [16], [17].

2) AMD system: For the AMD based architecture, the basic
assumption is that y is known to the cheaters while the random
numbers x0, x1 are unknown. Cheaters attempting to cheat the
device will have to guess the values of x0, x1.

Similar to the simulation for the architecture based on robust
codes, we ran 800 sets of new secrets and 20 million trials for
each set. For each set, we perform the following actions:

1) Randomly select a new polynomial for Shamir’s secret
sharing with a new random secret;

2) Randomly generate l = 3 IDs for l participants and
generate their shares using the new polynomial;

3) Randomly generate up to l = 3 random errors for the
shareholders and inject the errors into their shares.

For each trial, x0 and x1 are randomly generated for the
AMD module. The result shows that there are 7 undetected
errors out of 16 billion trials.

The cheating simulation results of the two proposed archi-
tectures are shown as in Table II.

From the above cheating simulation results we can see that
the proposed schemes are resistant to cheating and have very
high security level.

TABLE II: Results of cheating simulation

Cheating Undetected errors
AMD

16 billion 7based architecture
Robust

16 billion 5based architecture

C. Fault injection at gate level attacks simulation

Besides cheating, the attackers may also directly inject faults
into the hardware thus to distort the output [12], [13], [14].
So the proposed architecture should also be resistant to fault
injection attacks. Advanced attackers may have knowledge
of the architecture of the target platform and they can use
such knowledge to inject faults into the target and bypass the
protection of the proposed schemes. In this section, we will
describe the fault injection simulation results of the proposed
architectures to verify the security level of the proposed
architecture under fault injection attacks.

In fault injection simulation, we inject faults into the mul-
tiplier in GF (232) which is the major component of error
checking module and the multiplier in GF (2128) which is the
major component in the secret reconstruction module.

1) fault injection into robust code based architecture: We
randomly select 1−5 gates in the hardware and flip the output
of these gates. The simulation composed of several steps:

1) Randomly select 1−5 gates and flip the output of these
gates;

2) Randomly choose a legal set of input/output parameters
(z0, z1, z2, s0, s2, s3, y, R);

3) Input the legal set into the system with the faults
generated in step 1);

If the error signal is set, then it means the injected fault
is detected; if the error signal is not set and the output is
the original secret y, then it means the fault is masked; if
the error signal is not set and the output is not the original
secret y, then it means the attacker successfully generated an
undetectable error. For the architecture based on robust code,
we run 50.3 million rounds of the above simulation and the
result shows that only one error is undetected.

2) fault injection into AMD based architecture: For
AMD code, the simulation is almost the same as
the one for robust code except for each legal set is
(z0, z1, z2, s0, s2, s3, x0, x1, y, R) which contains two more
random numbers x0, x1 ∈ GF (232).

For the AMD based architecture, we run 52.3 million
rounds of the fault injection simulation, and the AMD module
detected all the errors.

The fault injection simulation results of the AMD and robust
based schemes are shown as in Table III.

Table III shows that the proposed schemes based on robust
and AMD codes can also provide high security level under
fault injection attacks. The proposed schemes can detect most
of the injected errors with very low probability of missing



TABLE III: Fault injection simulation results

Injected faults Undetected errors
AMD

52.3 million 0based architecture
Robust

50.3 million 1based architecture

an error and thus improve the security level of the system
significantly.

VI. CONCLUSION

In this paper, we described a kind of secure and reliable
secret sharing architectures which are resistant to cheating
and fault injection attacks based on robust and AMD codes.
We analyzed the security level of the the proposed schemes
under different cheating models and also ran fault injection
simulation to test the security level of the proposed schemes.
Results show that the robust code based architecture is se-
cure under Type 1 cheating model. The AMD code based
architecture is secure even under Type 2-4 cheating models.
Both architectures can detect the injected faults with very high
probability.

At the same time, we also implement the proposed schemes
in Verilog and ran synthesis to estimate the overhead. Results
show that the proposed architectures need slightly larger
overhead than the unprotected architecture.

REFERENCES

[1] G. R. Blakley, “Safeguarding Cryptographic Keys,” in Proceedings of
the 1979 AFIPS National Computer Conference, vol. 48, Jun. 1979, pp.
313–317.

[2] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[3] M. Tompa and H. Woll, “How to share a secret with cheaters,” in
Proceedings on Advances in cryptology—CRYPTO ’86. London, UK,
UK: Springer-Verlag, 1987, pp. 261–265.

[4] L. Harn and C. Lin, “Detection and identification of cheaters in (t, n)
secret sharing scheme,” Des. Codes Cryptography, vol. 52, no. 1, pp.
15–24, Jul. 2009.

[5] Y.-X. Liu, L. Harn, C.-N. Yang, and Y.-Q. Zhang, “Efficient (n, t, n)
secret sharing schemes,” Journal of Systems and Software, vol. 85, no. 6,
pp. 1325 – 1332, 2012.

[6] T.-C. Wu and T.-S. Wu, “Cheating detection and cheater identification
in secret sharing schemes,” Computers and Digital Techniques, IEE
Proceedings -, vol. 142, no. 5, pp. 367–369, 1995.

[7] H.-Y. Lin and L. Harn, “A generalized secret sharing scheme with
cheater detection,” in Proceedings of the International Conference on
the Theory and Applications of Cryptology: Advances in Cryptology,
ser. ASIACRYPT ’91. London, UK, UK: Springer-Verlag, 1993, pp.
149–158.

[8] D. Pasaila, V. Alexa, and S. Iftene, “Cheating detection and cheater
identification in crt-based secret sharing schemes.” IACR Cryptology
ePrint Archive, vol. 2009, p. 426, 2009.

[9] T. Araki, “Efficient (k, n) threshold secret sharing schemes secure against
cheating from n - 1 cheaters,” in Proceedings of the 12th Australasian
conference on Information security and privacy, ser. ACISP’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 133–142.

[10] C. Blundo, A. D. Santis, L. Gargano, A. De, S. L. Gargano, and
U. Vaccaro, “Secret sharing schemes with veto capabilities,” in in:
Proceedings of French-Israeli Workshop in Algebraic Coding. Springer-
Verlag, 1994, pp. 82–89.

[11] R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-
solomon codes,” Commun. ACM, vol. 24, no. 9, pp. 583–584, Sep.
1981. [Online]. Available: http://doi.acm.org/10.1145/358746.358762

[12] S. Skorobogatov, “Optical fault masking attacks,” in Fault Diagnosis
and Tolerance in Cryptography (FDTC), 2010 Workshop on, 2010, pp.
23–29.

[13] ——, “Local heating attacks on flash memory devices,” in Hardware-
Oriented Security and Trust, 2009. HOST ’09. IEEE International
Workshop on, 2009, pp. 1–6.

[14] S. P. Skorobogatov, “Semi-invasive attacks – A new approach to hard-
ware security analysis,” University of Cambridge, Computer Laboratory,
Tech. Rep. UCAM-CL-TR-630, Apr. 2005.

[15] M. Karpovsky, K. Kulikowski, and A. Taubin, “Robust protection against
fault-injection attacks on smart cards implementing the advanced encryp-
tion standard,” in Dependable Systems and Networks, 2004 International
Conference on, june-1 july 2004, pp. 93 – 101.

[16] M. Karpovsky and A. Taubin, “New class of nonlinear systematic error
detecting codes,” Information Theory, IEEE Transactions on, vol. 50,
no. 8, pp. 1818 – 1819, aug. 2004.

[17] K. Kulikowski, Z. Wang, and M. Karpovsky, “Comparative analysis
of robust fault attack resistant architectures for public and private
cryptosystems,” in Fault Diagnosis and Tolerance in Cryptography,
2008. FDTC ’08. 5th Workshop on, aug. 2008, pp. 41 –50.

[18] Z. Wang, M. Karpovsky, and A. Joshi, “Nonlinear multi-error correction
codes for reliable mlc nand flash memories,” Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, vol. 20, no. 7, pp. 1221
–1234, july 2012.

[19] Z. Wang and M. Karpovsky, “Algebraic manipulation detection codes
and their applications for design of secure cryptographic devices,” in
On-Line Testing Symposium (IOLTS), 2011 IEEE 17th International,
july 2011, pp. 234 –239.

[20] ——, “Reliable and secure memories based on algebraic manipulation
correction codes,” in On-Line Testing Symposium (IOLTS), 2012 IEEE
18th International, june 2012, pp. 146 –149.

[21] R. Cramer, Y. Dodis, S. Fehr, C. Padr, and D. Wichs, “Detection of
algebraic manipulation with applications to robust secret sharing and
fuzzy extractors,” in Advances in Cryptology C EUROCRYPT 2008, ser.
Lecture Notes in Computer Science, N. Smart, Ed. Springer Berlin /
Heidelberg, 2008, vol. 4965, pp. 471–488.

[22] L. Pei, W. Zhen, and K. Mark, “Secure nand flash architecture resilient
to strong fault-injection attacks using algebraic manipulation detection
code,” in The 2013 International Conference on Security and Manage-
ment, 2013.

[23] E. Porat and A. Rothschild, “Explicit nonadaptive combinatorial
group testing schemes,” IEEE Trans. Inf. Theor., vol. 57,
no. 12, pp. 7982–7989, Dec. 2011. [Online]. Available:
http://dx.doi.org/10.1109/TIT.2011.2163296

[24] V. V. R. A. G. D’yachkov, “Bounds on the length of disjunctive codes,”
in Problems Inform. Transmission, vol. 18. Springer-Verlag, 1982, pp.
7–13.

[25] Z. Füredi, “On r-cover-free families,” J. Comb. Theory Ser. A,
vol. 73, no. 1, pp. 172–173, Jan. 1996. [Online]. Available:
http://dx.doi.org/10.1006/jcta.1996.0012

[26] N. Jachimiec, N. Iliev, and J. Stine, “Strategies for vlsi implementations
of finite field inversion algorithms,” in Circuits and Systems, 2005. 48th
Midwest Symposium on, 2005, pp. 1589–1592 Vol. 2.

[27] Z. Yan and D. Sarwate, “Modified euclidean algorithm for finite field
inversions,” in Information Theory, 2002. Proceedings. 2002 IEEE
International Symposium on, 2002, pp. 203–.

[28] J. Fan and I. Verbauwhede, “Extended abstract: Unified digit-serial
multiplier/inverter in finite field gf(2m),” in Hardware-Oriented Security
and Trust, 2008. HOST 2008. IEEE International Workshop on, 2008,
pp. 72–75.


