
Fast Evaluation of Polynomials over Binary
Finite Fields and Application to Side-channel

Countermeasures?

Jean-Sébastien Coron1, Arnab Roy1,2, Srinivas Vivek1

1 University of Luxembourg
{jean-sebastien.coron, srinivasvivek.venkatesh}@uni.lu

2 Technical University of Denmark
arroy@dtu.dk

Abstract. We describe a new technique for evaluating polynomials over
binary finite fields. This is useful in the context of anti-DPA counter-
measures when an S-box is expressed as a polynomial over a binary
finite field. For n-bit S-boxes our new technique has heuristic complexity
O(2n/2/

√
n) instead of O(2n/2) proven complexity for the Parity-Split

method. We also prove a lower bound of Ω(2n/2/
√
n) on the complexity

of any method to evaluate n-bit S-boxes; this shows that our method is
asymptotically optimal. Here, complexity refers to the number of non-
linear multiplications required to evaluate the polynomial corresponding
to an S-box.

In practice we can evaluate any 8-bit S-box in 10 non-linear multiplica-
tions instead of 16 in the Roy-Vivek paper from CHES 2013, and the
DES S-boxes in 4 non-linear multiplications instead of 7. We also eval-
uate any 4-bit S-box in 2 non-linear multiplications instead of 3. Hence
our method achieves optimal complexity for the PRESENT S-box.

1 Introduction

The implementations of cryptographic algorithms on devices like PCs, micro-
controllers, smart cards, etc. leak secret information to an adversary. Typical
examples of such leakages are electro-magnetic emissions, power consumption
and even acoustic emanations. An adversary can use this information to recover
the secret key by applying different statistical techniques. Differential Power
Analysis (DPA) – the most widely known and powerful technique – is based on
statistical analysis of the power consumption of a device [KJJ99]. Other tech-
niques including Template Attacks, Correlation Power Analysis Attacks (CPA),
etc. were proposed in the past [CRR02,BCO04]. More recently, a side-channel at-
tack on RSA was proposed using the acoustic emanations from a device [GST13].

? This paper has been published at CHES 2014. The final publication is available at
www.springerlink.com. This is the full version.

Masking. A well known technique to protect implementations against power
analysis based side-channel attacks is to mask internal secret variables. This is
done by XORing any internal variable with a random variable r, for e.g., x′ = x⊕
r. However, this will make the implementation secure against first-order attacks
only. Second-order attacks against such counter-measures is proposed in [Mes00].
In this type of attack the adversary combines the information obtained from two
internal variables. This will require more data (power consumption traces) in
practice, which could make the attack infeasible in certain cases. In general the
above masking technique can be extended to secure an implementation against
higher-order attacks. This can be achieved by splitting an internal variable x into
d shares, say, x =

⊕d
i=1 xi. Using this idea it is easy to compute any linear/affine

function ` in a secured way, since it is enough to compute yi = `(xi) for 1 ≤ i ≤ d.
However, it is not obvious how to do this for non-linear functions. In practice,
nearly every cryptographic primitive includes some non-linear function, e.g., S-
box, modular addition, etc.

Generic Higher-Order Masking. The Rivain-Prouff masking scheme is the
first provably secure higher-order masking technique for AES [RP10]. The main
idea of this method is to perform secure monomial evaluation with d shares of
a secret variable using the previously known ISW scheme [ISW03]. Namely the
(non-linear part of) AES S-box can be represented by the monomial x254 over
F28 . Prouff and Rivain showed that this monomial can be evaluated securely us-
ing 4 non-linear multiplications and a few linear squarings. By using this scheme
the AES S-box can be masked for any order d.

This method was extended to a generic technique for higher-order masking,
in [CGP+12], by Carlet, Goubin, Prouff, Quisquater and Rivain (CGPQR). Any

given n-bit S-box can be represented by a polynomial
∑2n−1
i=0 ai x

i over F2n using
Lagrange’s interpolation theorem. Hence, any S-box can be masked by secure
evaluation of this polynomial with d shares of a secret variable. This is the
first generic technique to mask any S-box for any order d. In this technique a
polynomial evaluation in F2n is split into simple operations over F2n : addition,
multiplication by constant, and regular multiplication of two elements. Note that
multiplication of two same elements (i.e. squaring) and multiplication by a con-
stant – both are linear operations over F2n , hence easy to mask. For performing
a secure multiplication of two distinct elements, i.e. a non-linear multiplication,
the CGPQR masking scheme uses the ISW method as in [RP10].

Asymptotically, the running time of the Rivain-Prouff and CGPQR masking
schemes is dominated by the number of non-linear multiplications required to
evaluate a polynomial over F2n . Namely with d shares, using the ISW method
an affine function can be masked with only O(d) operations over F2n , whereas
a non-linear multiplication requires O(d2) operations. Note that for achieving
d-th order security the Rivain-Prouff scheme requires at least 2d+ 1 shares.1

1 Originally it was claimed in [RP10] that the scheme is secure against d-th order
attack with d + 1 shares. However, an attack of order d/2 was shown in [CPRR13]

Efficient Polynomial Evaluation for Masking. The CGPQR masking sche-
me can be made efficient by optimizing the number of multiplications required
for the polynomial evaluation in F2n . In [CGP+12] two techniques – Parity-Split
and Cyclotomic Class, are used for optimizing the number of such non-linear
multiplications. For arbitrary n-bit S-box, or equivalently for evaluating any
polynomial over F2n , the Parity-Split method has proven complexity O(2n/2).
Here complexity refers to the number of non-linear multiplications required to
evaluate the polynomial corresponding to an S-box. For the particular case of
monomials (e.g. AES S-box) the Cyclotomic Class method gives the optimal
number of multiplications in F2n .

At CHES 2013, Roy and Vivek [RV13] adapted a generic method for im-
proving the efficiency of polynomial evaluation in F2n . They demonstrated the
technique for the polynomials corresponding to several well known S-boxes in-
cluding DES, PRESENT and CLEFIA. In particular, the Roy-Vivek method
reduces the number of non-linear multiplications for DES to 7 (from 10), for
CLEFIA to 16 (from 22) and for CAMELLIA to 15 (from 22). This technique
also achieves the optimal number of 4 multiplications for the monomial corre-
sponding to the AES S-box.

Our Results. In this article we propose an improved generic technique for
fast polynomial evaluation in F2n . For arbitrary n-bit S-box our method has
heuristic complexity O(2n/2/

√
n), compared to the O(2n/2) proven complexity

for the Parity-Split method from [CGP+12].
Our method is as follows. We first generate a set L of monomials xα, including

all the monomials from a cyclotomic class. We then randomly generate a fixed
set of “basis” polynomials qi(x), whose monomials are all in the precomputed
set L. Then given a polynomial P (x) over F2n we try to write P (x) as:

P (x) =

t−1∑
i=1

pi(x) · qi(x) + pt(x) (mod x2
n

+ x), (1)

where pi(x) are polynomials with monomials also in the set L, and t is some
parameter. Since the qi(x) polynomials are fixed, the coefficients of the pi(x)
polynomials can be obtained by solving a system of linear equations in F2n .
Then to evaluate P (x) one first evaluates all the monomials in the set L; the
polynomials pi(x) and qi(x) can then be evaluated without any further non-
linear multiplication. The polynomials P (x) is then evaluated from (1) with
t− 1 additional non-linear multiplications.

The number of monomials in the set L must be carefully chosen. Namely
the larger the basis set L of monomials, the more degrees of freedom we have
in solving (1), with fewer polynomials pi(x) and therefore fewer additional non-
linear multiplications; however the number of non-linear multiplications to build
L will increase. Therefore the number of monomials in the basis set L must be

against the scheme. The authors of [CPRR13] also showed a d-th order secure scheme
with d+ 1 shares for some subset of S-boxes.

optimized to minimize the total number of non-linear multiplications, namely
the non-linear multiplications for building the set L, and the additional t − 1
non-linear multiplications for evaluating P (x).

As a concrete application of our new method above, we show that for the
generic higher-order masking of several well known S-boxes, e.g. DES, CLEFIA,
PRESENT, etc., our method reduces the number of multiplications compared to
the previously known methods [CGP+12,RV13]. In particular, using our method
PRESENT can be masked with 2 multiplications (instead of 3), and DES with
4 multiplications (instead of 7), see Table 1. Our method achieves optimal com-
plexity for the PRESENT S-box since it was proved in [RV13] that 2 non-linear
multiplications are necessary to evaluate it. In Table 5, we report the timing
results for DES masked using our technique.

S-box
Methods DES PRESENT SERPENT CAMELLIA CLEFIA

Parity-Split [CGP+12] 10 3 3 22 22

Roy-Vivek [RV13] 7 3 3 15 15,16

Our Method (Sec. 4) 4 2 2 10 10

Table 1. Number of non-linear multiplications required for the CGPQR generic higher-
order masking scheme.

We also prove a lower bound of Ω(2n/2/
√
n) for the complexity of any method

to evaluate n-bit S-boxes, a.k.a. masking complexity ; this shows that our method
is asymptotically optimal. Our new lower bound significantly improves upon the
previously known bound of Ω(log2 n) from [RV13].

2 Generic Polynomial Evaluation Technique

Before we describe our improved method to evaluate polynomials over F2n , let
us first recollect in Section 2.1 the method proposed by Roy and Vivek [RV13,
Section 4] to evaluate the polynomials (over F26) corresponding to the DES
S-boxes. Their method requires 7 non-linear multiplications. The method in
[RV13] is based on the Divide-and-Conquer strategy, which is an adaptation
of a polynomial evaluation technique by Paterson and Stockmeyer [PS73]. The
technique consists in decomposing the polynomial to be evaluated in terms of
polynomials having their monomials from a precomputed set. Our method is
partly based on this idea.

2.1 The Roy-Vivek Method for DES S-boxes

Let PDES(x) ∈ F26 [x] be the Lagrange interpolation polynomial corresponding
to a DES S-box. Here the 4-bit output of a DES S-box is identified as a 6-bit out-
put with two leading zeroes, and hence these bit strings are naturally identified

with the elements of F26 . Note that for all the DES S-boxes, deg (PDES(x)) = 62.
Write

PDES(x) = q(x) · x36 +R(x),

where deg(R) ≤ 35 and deg(q) = 26. Then divide the polynomial R(x)− x27 by
q(x):

R(x)− x27 = c(x) · q(x) + s(x),

where deg(c) ≤ 9 and deg(s) ≤ 25, which gives

PDES(x) =
(
x36 + c(x)

)
· q(x) + x27 + s(x).

Next decompose the polynomials q(x) and x27 + s(x) in a similar way but,
instead, dividing first by x18, and then using x9 as the “correction term”. One
gets

q(x) = (x18 + c1(x)) · q1(x) + x9 + s1(x),

x27 + s(x) = (x18 + c2(x)) · q2(x) + x9 + s2(x)

where deg(q1) = 8, deg(c1) ≤ 9, deg(s1) ≤ 7, deg(q2) = 9, deg(c2) ≤ 8, and
deg(s2) ≤ 8. Finally,

PDES(x) =(x36 + c(x)) ·
(

((x18 + c1(x)) · q1(x)) + (x9 + s1(x))
)

+
(

(x18 + c2(x)) · q2(x) + (x9 + s2(x))
)
.

(2)

In [RV13], the monomials x, x2, x3, x4, x5, x6, x7, x8, x9, x18, x36 are first
evaluated using 4 non-linear multiplications. Namely a non-linear multiplication
is required for each of the monomials x3, x5, x7 and x9; the rest of the monomials
can be evaluated using linear squarings only. Each of the individual polynomials
in the above expression such as x36 + c(x), x18 + c1(x), q1(x), and so on, can
then be evaluated for free, that is without further non-linear multiplications. To
evaluate PDES(x) from (2), 3 more non-linear multiplications are needed, and
hence totally 7 non-linear multiplications are sufficient to evaluate a DES S-box.

To sum up, the basic idea behind the above technique is to precompute a
set of monomials, and then obtain a decomposition of the required polynomial
in terms of polynomials having their monomials only from the precomputed set.
Note that the said decomposition is obtained in a “fixed” way that depends only
on the degree of the polynomial, which is required to be of the form k (2p − 1)±c,
for some parameters k, p and c; we refer to [RV13] for more details.

In the new method we propose next, we also precompute a set of monomials
as above, but we also include every other monomial that can be computed for free
by the squaring operation; that is we always generate the full cyclotomic class for
any computed monomial. Then we try to decompose the polynomial as a sum
of product of two polynomials having their monomials from the precomputed
set. One of the two polynomials in every summand is randomly chosen, and we
try to determine the other polynomial by solving (for unknown coefficients) the
system of linear equations obtained by evaluating the polynomial at every point
of the domain F2n . This approach of determining the unknown coefficients of
the polynomials is similar to the Lagrange interpolation technique.

2.2 Our New Generic Method

Let us first recollect the notion of cyclotomic class over F2n and introduce some
notations. The cyclotomic class of α w.r.t. n (n ≥ 1 , 0 ≤ α ≤ 2n − 2), denoted
by Cα, is defined as the set of integers

Cα =
{
α · 2i (mod 2n − 1) : i = 0, 1, . . . , n− 1

}
.

Intuitively, Cα corresponds to the exponents of all the monomials that can be
computed from xα ∈ F2n [x] using only the squaring operations (modulo x2

n

+x).
Since our goal is only to evaluate polynomials over F2n , we will be actually
working in the ring F2n [x]/(x2

n

+ x), which is an abuse of the notation F2n [x].
In other words, we treat any polynomial P (x) ∈ F2n [x] to be the same as P (x)
modulo x2

n

+ x; hence P (x) has degree at most 2n − 1.

By d
$← D we denote an element d chosen uniformly at random from a

set D. For any subset Λ ⊆ {0, 1, . . . , 2n − 2}, xΛ denotes the set of monomials
xΛ =

{
xi : i ∈ Λ

}
⊆ F2n [x]. Finally we denote by P(xΛ) the set of all polyno-

mials in F2n [x] whose monomials are only from the set xΛ.

Description. Consider an n-bit to n-bit S-Box represented by a polynomial
P (x) ∈ F2n [x]. We consider a collection S of ` cyclotomic classes w.r.t. n:

S = {Cα1=0, Cα2=1, Cα3
, . . . , Cα`} . (3)

Also, define L as the set of all integers in the cyclotomic classes of S:

L = ∪
Ci∈S

Ci. (4)

We choose the set S of ` cyclotomic classes in (3) so that the set of corre-
sponding monomials xL from S can be computed using only ` − 2 non-linear
multiplications. We require that every monomial x0, x1, . . . , x2

n−1, can be writ-
ten as product of some two monomials in P(xL). Moreover, we try to choose
only those cyclotomic classes with the maximum number of n elements (except
C0 which has only a single element). This gives

|L| = 1 + n · (`− 1) . (5)

Next, we generate t− 1 random polynomials qi(x)
$← P(xL) that have their

monomials only in xL. Suitable values for the parameters t and |L| will be
determined later. Then, we try to find t polynomials pi(x) ∈ P(xL) such that

P (x) =

t−1∑
i=1

pi(x) · qi(x) + pt(x). (6)

It is easy to see that the coefficients of the pi(x) polynomials can be obtained
by solving a system of linear equations in F2n , as in the Lagrange interpolation

theorem. More precisely, to find the polynomials pi(x), we solve the following
system of linear equations over F2n :

A · c = b (7)

where the matrix A is obtained by evaluating the R.H.S. of (6) at every element
of F2n , and by treating the unknown coefficients of pi(x) as variables. This matrix
has 2n rows and t · |L| columns, since each of the t polynomials pi(x) has |L|
unknown coefficients. The matrix A can also be written as a block concatenation
of smaller matrices:

A = (A1|A2| . . . |At), (8)

where Ai is a 2n × |L| matrix corresponding to the product pi(x) · qi(x). Let
aj ∈ F2n (j = 0, 1, . . . , 2n − 1) be all the field elements and pi(x) consists of
the monomials xk1 , xk2 , . . . , xk|L| ∈ xL. Then, the matrix Ai has the following
structure:

Ai =



ak10 · qi(a0) ak20 · qi(a0) . . . a
k|L|
0 · qi(a0)

ak11 · qi(a1) ak21 · qi(a1) . . . a
k|L|
1 · qi(a1)

ak12 · qi(a2) ak22 · qi(a2) . . . a
k|L|
2 · qi(a2)

...
... . . .

...

ak12n−1 · qi(a2n−1) ak22n−1 · qi(a2n−1) . . . a
k|L|
2n−1 · qi(a2n−1)


(9)

The unknown vector c in (7) corresponds to the unknown coefficients of the
polynomials pi(x). The vector b is formed by evaluating P (x) at every element of
F2n . Note that since P (x) corresponds to an S-box, the vector b can be directly
obtained from the corresponding S-box lookup table.

If the matrix A has rank 2n, then we are able to guarantee that the decom-
position in (6) exists for every polynomial P (x). To be of full rank 2n the matrix
must have a number of columns ≥ 2n. This gives us the necessary condition

t · |L| ≥ 2n. (10)

We stress that (10) is only a necessary condition. Namely we don’t know
how to prove that the matrix A will be full rank when the previous condition is
satisfied; this makes our algorithm heuristic. In practice for random polynomials
qi(x) we almost always obtain a full rank matrix under condition (10).

From (5), we get the condition

t · (1 + n · (`− 1)) ≥ 2n (11)

where t is the number of polynomials pi(x) and ` the number of cyclotomic
classes in the set S, to evaluate a polynomial P (x) over F2n .

We summarize the above method in Algorithm 1 below. The number of non-
linear multiplications required in the combining step (6) is t− 1. As mentioned

earlier, we need `−2 non-linear multiplications to precompute the set xL. Hence
the total number of non-linear multiplications required is then

Nmult = `− 2 + t− 1 = `+ t− 3. (12)

where t is the number of polynomials pi(x) and ` the number of cyclotomic
classes in the set S.

Algorithm 1 New generic polynomial decomposition algorithm

Input: P (x) ∈ F2n [x].

Output: Polynomials pi(x), qi(x) such that P (x) =
t−1∑
i=1

pi(x) · qi(x) + pt(x).

1: Choose ` cyclotomic classes Cαi : L ←
l⋃
i=1

Cαi , and the basis set xL can be

computed using `− 2 non-linear multiplications.
2: Choose t such that t · |L| ≥ 2n.

3: For 1 ≤ i ≤ t, choose qi(x)
$← P

(
xL
)
.

4: Construct the matrix A ← (A1|A2| . . . |At), where each Ai is the 2n × |L| matrix
given by (9).

5: Solve the linear system A ·c = b, where b is the evaluation of P (x) at every element
of F2n .

6: Construct the polynomials pi(x) from the solution vector c.

Remark 1. If A has rank 2n, then the same set of basis polynomials qi(x) will
yield a decomposition as in (6) for any polynomial P (x). That is, the matrix A
is independent from the polynomial P (x) to be evaluated.

Remark 2. Our decomposition method is heuristic because for a given n in F2n

we do not know how to guarantee that the matrix A has full rank 2n. However
for typical values of n, say n = 4, 6, 8, we can definitely check that the matrix
A has full rank, for a particular choice of random polynomials qi(x). Then any
polynomial P (x) can be decomposed using these polynomials qi(x). In other
words for a given n we can once and for all generate the random polynomials
qi(x) and check that the matrix A has full rank 2n, which will prove that any
polynomial P (x) ∈ F2n [x] can then be decomposed as above. In summary our
method is heuristic for large values of n, but can be proven for small values of n.
Such proof requires to compute the rank of a matrix with 2n rows and a slightly
larger number of columns, which takes O(23n) time using Gaussian elimination.

Asymptotic Analysis. Substituting (12) in (11) to eliminate the parameter `,
we get

t · (1 + n · (Nmult − t+ 2)) ≥ 2n,

=⇒ Nmult ≥
2n

n · t
+ t−

(
2 +

1

n

)
. (13)

The R.H.S. of the above expression is minimized when t ≈
√

2n

n , and hence we

obtain

Nmult ≥ 2 ·
√

2n

n
−
(

2 +
1

n

)
. (14)

Hence, our heuristic method requires O(
√

2n/n) non-linear multiplications, whi-
ch is asymptotically slightly better than the Parity-Split method [CGP+12],
which has proven complexityO(

√
2n). If one has to rigorously establish the above

bound for our method, then we may have to prove the following statements,
which we leave as open problems:

• We can sample the collection S of cyclotomic classes in (3), each having
maximal length n (other than C0), using at most `− 2 non-linear multipli-
cations.

• The condition t · |L| ≥ 2n suffices to ensure that the matrix A has full rank
2n.

Table 2 lists the expected minimum number of non-linear multiplications,
as determined by (14), for binary fields F2n of practical interest. It also lists
the actual number of non-linear multiplications that suffices to evaluate any
polynomial, for which we have verified that the matrix A has full rank 2n, for a
particular random choice of the qi(x) polynomials. We also provide a performance
comparison of our method with that of the Cyclotomic Class and the Parity-
Split methods from [CGP+12]. Here we do not compare with the results from
[RV13] since that work is mainly concerned with the optimization of specific
S-boxes and polynomials of specific degrees; however such comparison will be
made for specific S-boxes in Section 4. In Appendix B, we list the specific choice
of parameters t and L that we used in this experiment.

n 4 5 6 7 8 9 10

Cyclotomic Class method [CGP+12] 3 5 11 17 33 53 105

Parity-Split method [CGP+12] 4 6 10 14 22 30 46

Expected minimum value of Nmult (cf. (14)) 2 3 5 7 10 13 19

Achievable value of Nmult 2 4 5 7 10 14 19

Table 2. Minimum values of Nmult

Counting the Linear Operations. From (5) and (6), we get (2t− 1) · (|L| −
1) + (t − 1) as an upper-bound on the number of addition operations required
to evaluate P (x). This is because each of the 2t− 1 polynomials pi(x) and qi(x)
in (6) have (at most) |L| terms, and there are t summands in (6). From (10), we
get:

(2t− 1) · (|L| − 1) + (t− 1) ≤ 2 t |L| ≈ 2 · 2n

Similarly, we get (2t − 1) · |L| ≈ 2 · 2n as an estimate for the number of scalar
multiplications. Since the squaring operations are used only to compute the list
L, we need |L| − ` ≤ |L| ≈

√
n · 2n many of them (cf. (13)).

Remark 3. The above count of the linear operations can be significantly reduced
if the linear operations are replaced by table lookups as much as possible. Such an
approach is particularly well suited for application in the higher-order masking
scheme of [CGP+12], where we need to evaluate a given polynomial with many
shares and that the processing of linear polynomials with shares is particularly
straightforward. More specifically, we can write each pi(x) as a sum of F2-linear
polynomials pi,j , one for each cyclotomic class in the pre-computed set S (cf.
(3), (4)):

pi(x) =
∑

Cαj∈S
pi,j (xαj) .

The ` polynomials pi,j are F2-linear and hence are of the form
n−1∑
k=0

γk x
2k . Sim-

ilarly, the polynomials qi(x) can also be expressed in the above form. If we
tabulate the values of each of the linear polynomials pi,j and qi,j , then it suffices
to evaluate xαj for each cyclotomic class Cαj ∈ S using only NLMs. Then the
polynomials pi,j and qi,j can be evaluated by just table lookups, and then each of
the 2t−1 polynomials pi and qi can be eventually evaluated with `−1 additions
each. Finally, we need t − 1 more additions in the step (6). Hence, we need no
scalar multiplications nor squarings using this table lookup technique. The total
number of additions we need is

(2t− 1) · (`− 1) + t− 1 ≈ 2 · 2n

n
.

Note that this technique is not very effective for the evaluation method of [RV13]
since nearly every linear polynomial that appears has at most two non-zero
terms.

3 New Lower Bound for Polynomial Evaluation

In this section, we show that our method from the previous section is asymp-
totically optimal. More precisely, we show that to evaluate any polynomial over
F2n , any algorithm must use at least O(

√
2n/n) non-linear multiplications. This

improves the previously known bound of Ω (log2 n) from [RV13].
To establish our lower bound we first need a formal model that describes

polynomial evaluation over F2n . Such a model, the F2n -polynomial chain, has
been described in [RV13, Section 3]. For the sake of completeness, we briefly
recollect the definition in Appendix A.

Previous Result. Let us recollect in slightly more details the previous lower
bound ofΩ (log2 n). The following proposition gives a lower bound on the number

of non-linear multiplications necessary to evaluate a polynomial P (x), a.k.a.
non-linear complexity of P (x), as the maximum of the quantity necessary to
evaluate its monomials. LetM(P (x)) denote the non-linear complexity of P (x).
If P (x) corresponds to an n-bit S-box S, thenM(P (x)) is also called the masking
complexity of S.

Proposition 1. [[RV13], Proposition 3] Let P (x) :=
∑2n−1
i=0 ai x

i be a polyno-
mial in F2n [x]. Then

M(P (x)) ≥ max
0≤i<2n−1

ai 6=0

mn(i),

where mn(i) is the length of the shortest cyclotomic-class (CC) addition chain
of i w.r.t. n.

The following result gives a lower bound on the value of mn(i) in terms of the
Hamming weight of i.

Proposition 2. [[RV13], Proposition 1] mn(i) ≥ dlog2(ν(i))e, where ν(i) is the
Hamming weight of the binary representation of i (0 ≤ i ≤ 2n − 2).

Since ν (2n − 2) = n−1, hence polynomials having the monomial x2
n−2 will have

non-linear complexity at least log2 (n− 1). Hence Ω (log2 n) is a lower bound on
the number of necessary non-linear multiplications required to evaluate polyno-
mials over F2n .

New Lower Bound. Our technique to prove the lower bound of Ω(
√

2n/n)
on the non-linear complexity is similar to the one used in the proof of [PS73,
Theorem 2]. But we would like to emphasize that their result is not applicable
to our setting since they work over the integers and the cost model used there
is different from the one used in our case.

Proposition 3. There exists a polynomial P (x) ∈ F2n [x] such that M(P (x)) ≥√
2n

n − 2.

Proof. At a more abstract level, an F2n -polynomial chain evaluating P (x) ∈
F2n [x] that uses r non-linear multiplications (r ≥ 0) can be equivalently de-
scribed as a sequence Z of polynomials z−1, z0, . . ., zr, where

z−1 = 1,

z0 = x,

zk =

βk,−1 +

k−1∑
i=0

n−1∑
j=0

βk,i,j z
2j

i

 ·
β′k,−1 +

k−1∑
i=0

n−1∑
j=0

β′k,i,j z
2j

i


(mod x2

n

+ x), (15)

where k = 1, 2, . . . , r, βk,−1, β
′
k,−1, βk,i,j , β

′
k,i,j ∈ F2n . Lastly,

P (x) = βr+1,−1 +

r∑
i=0

n−1∑
j=0

βr+1,i,j z
2j

i (mod x2
n

+ x), (16)

where again βr+1,−1, βr+1,i,j ∈ F2n . .
Since the squaring operation is F2-linear in F2n , and that x2

n

= x for all
x ∈ F2n , it is easy to see that any polynomial that can be evaluated using at
most t non-linear multiplications will be of the form as given in (16).

The number of parameters βk,−1, β′k,−1, βk,i,j , β
′
k,i,j in (15) for a given value

of k (k = 1, . . . , r) is 2 · (k · n+ 1). In (16), the number of parameters βr+1,−1,
βr+1,i,j is (r + 1) · n+ 1. Totally, the number of parameters are

(r + 1)n+ 1 +

r∑
k=1

2 (kn+ 1) .

Since there are only |F2n |2
n

distinct polynomials in F2n [x] (i.e. up to evaluation),
and a given set of values for the parameters enables to evaluate a single polyno-
mial only, we get the following necessary condition to evaluate all polynomials
over F2n [x]

|F2n |
(r+1)n+1+

r∑
k=1

2(kn+1)
≥ |F2n |2

n

,

=⇒ (r + 1)n+ 1 +

r∑
k=1

2 (kn+ 1) ≥ 2n,

=⇒ n · r2 + (2n+ 2) · r − (2n − n− 1) ≥ 0,

=⇒ r ≥
√

2n

n
− 2. (17)

Hence there exists polynomials over F2n that require Ω(
√

2n/n) non-linear mul-
tiplications to evaluate them. ut

The above proposition shows that our new method from Section 2.2 is asymp-
totically optimal.

Concrete Lower Bound. In Table 3 we compare, for various values of n,
the previously known lower bound for non-linear complexity with the new lower
bound as determined by (17).

n 4 5 6 7 8 9 10 11 12

Previous lower bound [CGP+12,RV13] 2 2 3 3 4 4 4 4 4

Our lower bound (cf. (17)) 0 1 2 3 4 6 9 12 17

Table 3. Lower bound for non-linear complexity in F2n .

Note that there is still a gap between the lower bound from Table 3 and
the achievable value of Nmult for our method in Table 2. This is because in our

method the decomposition of P (x) as

P (x) =

t−1∑
i=1

pi(x) · qi(x) + pt(x) (18)

is performed by first generating the polynomials qi(x) randomly and indepen-
dently of P (x), in order to have a linear system of equations over the coefficients
of pi(x). Instead one could try to solve (18) for both the pi(x) and the qi(x)
polynomials simultaneously; however this gives a quadratic system of equations,
which is much harder to solve.

4 Application to various S-boxes

In this section, we apply the generic method described in Section 2, to several
well known S-boxes. Using our new method, we reduce the number of non-
linear multiplications required in each case, resulting in an improvement over
the previously known techniques.

We stress that in our method for an n-bit S-box, the maximum number of
non-linear multiplications required is invariant of the choice of the S-box when
n is fixed. Hence, the number of non-linear multiplications obtained for a fixed
n actually provides an upper bound on the masking complexity of an S-box of
size n.

4.1 CLEFIA and Other 8-bit S-boxes

The CLEFIA block cipher has two 8-bit S-boxes [SSA+07]. Let us denote the
S-box lookup table for either of the S-boxes as Sclefia. We choose

L = C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C87 ∪ C251. (19)

This implies that after choosing t = 6, and then 5 basis polynomials qi
$← P(xL)

(1 ≤ i ≤ 5), the following system of equations is constructed in F28 :

Sclefia[xj] =

5∑
i=1

pi(xj) · qi(xj)︸ ︷︷ ︸
Q

+p6(xj) j = 0, . . . , 255. (20)

We have checked that for some random choice of the polynomials qi(x) the
corresponding matrix A has full rank 256, and therefore we can determine the
polynomials pi(x). Given the solution to the above system, the S-box evaluation
is then the same as evaluating the polynomial Q(x) + p6(x). To evaluate all
the monomials in {x, x3, x7, x29, x87, x251} we need 5 non-linear multiplications,
implying that any monomial in xL, any qi(x) (randomly chosen from P(xL))
and any pi(x) can all together be evaluated with 5 non-linear multiplications.
Moreover the evaluation of Q(x) requires 5 additional non-linear multiplications.

Therefore the total number of non-linear multiplications required for evaluating
the S-box is 10.

Note that it requires at least 4 non-linear multiplications to evaluate the
polynomials corresponding to the two S-boxes of CLEFIA by any method. This
is because these two polynomials over F28 have degrees 252 (S-box S0) and 254
(S-box S1), and the result follows from Proposition 1.

Invariance. If we choose some other 8-bit S-box, then the matrix corresponding
to the resulting system remains the same. Hence, we will still get a solution to
the system for the same set of polynomials qi(x). This implies that we can use
the same set of basis polynomials to obtain polynomials pi(x) for any other 8-bit
S-box. Hence, for any S-box of size 8, the number of non-linear multiplications
is at most 10.

4.2 PRESENT and Other 4-bit S-boxes

For the 4-bit S-box of PRESENT [BKL+07], we choose t = 2 and L = C0 ∪
C1 ∪ C3. By selecting q1

$← P(xL), we construct the following linear system of
equations:

Spresent[xj] = p1(xj) · q1(xj) + p2(xj) (21)

The monomials used to construct q1(x), q2(x) are {x, x2, x4, x8, x3, x6, x12, x9}.
All of these monomials can be evaluated with a single non-linear multiplication
and to evaluate p1(x) · q1(x) we need only one more non-linear multiplication.
Hence, the PRESENT S-box evaluation requires 2 multiplications. As in the case
of 8-bit S-boxes, this proves that with the same q1(x) any 4-bit S-box can be
evaluated with 2 multiplications. Table 4 gives the corresponding polynomials
for the PRESENT S-box.

The polynomial corresponding to the PRESENT S-box has degree 14 and
hence, from Proposition 1, its masking complexity is at least 2 [RV13]. This im-
plies that our evaluation method achieves optimal complexity for the PRESENT
S-box.

4.3 (m,n)-bit S-box: Application to DES

We now consider S-boxes whose output size n is smaller than the input size m,
as for the DES S-boxes with m = 6 and n = 4. We can view an (m,n)-bit S-box
(m > n) as a mapping from F2m to F2n . Given any such S-box table S, we want
to construct a system of linear equations

S[xj] =

t−1∑
i=1

pi(xj) · qi(xj) + pt(xj)︸ ︷︷ ︸
G(x)

(22)

Basis Polynomial

q1 (a3 + a2 + 1) · x12 + (a3 + a2 + a+ 1) · x9 + a2 · x8 + x6 + (a3 + a2 + a) ·
x4 + x2 + (a3 + a) · x+ a

Solution to linear System

p1 (a3 + a) · x12 + x9 + (a3 + a2) · x8 + (a2 + 1) · x6 + (a3 + a2 + 1) · x4 +
(a3 + a2 + a+ 1) · x3 + (a2 + 1) · x2 + (a2 + 1) · x+ a2

p2 (a2 +1) ·x8 +(a3 +a2 +1) ·x6 +(a+1) ·x4 +a ·x3 +x2 +(a3 +1) ·x+a2

Table 4. Basis polynomial q1(x) for 4-bit S-boxes, and solutions p1(x), p2(x) to
PRESENT S-box. The irreducible polynomial is a4 + a+ 1 over F2.

Note that each S[xj] is an element of the smaller field F2n , but each G(xj) is
an element in the larger field F2m . One trivial way to remove this inconsistency
is to consider S[xj] as an element of the larger field F2m , by padding the most
significant bit of the S-box output with 0’s. Then, we determine the polynomials
pi(x) by solving the corresponding system A · c = S, as described in Section
2.2. However intuitively this is not optimal, since we are creating an artificial
constraint to be satisfied by the coefficients of the polynomials pi(x), namely
that the m − n most significant bits of G(x) must be 0, while eventually these
most significant bits will simply be discarded after the evaluation of G(x), since
to get S(x) we only keep the n least significant bits of G(x).

Instead, we consider the representations of the unknown coefficients of the
polynomials pi(x) in F2 instead of F2m , and we transform the system of linear
equations (22) over F2m , into a system of linear equations over F2. By doing
this, from each constraint G(xj), we generate m equations over F2, instead of
one equation over F2m . Note that each of these m equations will be an affine
combination of the unknown bits of the coefficients of the polynomials pi(x).
Only n of these equations are actually necessary, since the output of the S-box is
of size n bits. By equating each of these equations to the corresponding output
bit of the S-box, we get a transformed system of linear equations B · c = S,
where B is an (n · 2m)× (t · |L| ·m) matrix over F2 and L is the set of elements
from the chosen cyclotomic classes. By solving this transformed system over F2

we determine the polynomials pi(x).

Example of DES. The DES block cipher has 8 (6, 4)-bit S-boxes [oST93]. A
DES S-box is a mapping from F26 to F24 . In [RV13], the authors consider the
S-boxes as a mapping from F26 to F26 , where the two most significant bits of
the output of S-box are fixed to 0, and as recalled in Section 2.1 the evaluation
can be done with 7 non-linear multiplications. Also, for the same representation,
there is a lower bound of 3 non-linear multiplications necessary to evaluate each
DES S-box [RV13]. From Table 2, using our generic method over F26 we can
perform the evaluation with 5 non-linear multiplications. Below we show that

by working over F2 as explained above, only 4 non-linear multiplications are
required.

We choose L = C0 ∪ C1 ∪ C3 ∪ C7, t = 3, and q1(x), q2(x)
$← P(xL). Then

using our method we transform the following linear system of equations

Sdes[xj] =

2∑
i=1

pi(xj) · qi(xj)︸ ︷︷ ︸
Q(x)

+ p3(xj) (23)

to a system over F2. That is, instead of embedding Sdes into F26 , we write the
system of equations over F2. This can be done by considering the binary repre-
sentation of xα evaluated at any given value in F26 . This will give 6 equations
over F2 for each equation Q(xj)+p3(xj). Out of these 6 equations only 4 will be
necessary since the output of DES S-box has 4-bit values. By solving this new
system of linear equations over F2 we can determine pi(x) for each i.

The number of multiplications required to evaluate q1(x), q2(x) is 2, and Q(x)
can be evaluated with 2 additional multiplications. Hence, the total number of
non-linear multiplications required is only 4. In Appendix C we give an example
of basis polynomials q1(x), q2(x) for DES and the solution polynomials pi(x)
corresponding to the system of linear equations for the first DES S-box S1.

As previously, once we obtain a full rank matrix for a set of randomly fixed
q1(x), q2(x), for any other (6, 4)-bit S-box we can use this basis to find the
corresponding polynomials pi(x), since the matrix A is independent from the
S-box. Hence we can conclude that the masking complexity of any (6, 4)-bit
S-box is at most 4.

4.4 Implementation Results: DES

We have performed a software implementation of the CGPQR countermeasure
[CGP+12] for DES that incorporates our new polynomial evaluation technique
requiring only 4 NLMs. We have implemented this in C on a Dell Latitude
13 notebook running Ubuntu 12.04 Linux. The processor is Intel Core 2 Duo
(32-bit architecture) running at 1.3 GHz. Our implementation is based on the
source code available from [Cor13]. The present implementation is also publicly
available at [Cor13]. We have used the technique of tabulating linear polynomials
from Remark 3 in the implementation of our polynomial evaluation method. Note
that these tables corresponding to the linear polynomials need to be stored only
in the ROM.

In Table 5, we have compared the above timing results with that of the CG-
PQR countermeasure implemented with the Roy-Vivek technique [RV13] that
requires 7 NLMs, and also compared with that of the higher-order table recom-
putation method of Coron [Cor14]. In Table 5, the parameter t′ refers to the
order of security and n′ refers to the number of shares in the full security model
of [ISW03]. Note the relation n′ = 2t′ + 1. The (RAM) memory requirement
(in bytes) is provided only for the S-box computations and the overall execution

time for a DES encryption is in milliseconds. The penalty factor (PF) gives the
ratio of the execution time of a given method to that of an unprotected imple-
mentation. The number of calls to the random number generator is 1000 times
that of the reported quantity.

Table 5. Comparison of secure implementations of DES.

Method t′ n′ Rand ×103 Mem (bytes) Time (ms) PF

Unprotected 0.008 1

CGPQR+RV 1 3 2752 72 0.552 69

Table Recomputation 1 3 8512 423 0.279 34

CGPQR+this work 1 3 2368 40 0.166 20

CGPQR+RV 2 5 9152 118 0.966 120

Table Recomputation 2 5 33472 691 0.612 76

CGPQR+this work 2 5 7872 64 0.336 42

CGPQR+RV 3 7 19200 164 1.507 188

Table Recomputation 3 7 74880 959 1.091 136

CGPQR+this work 3 7 16512 88 0.591 73

CGPQR+RV 4 9 32896 210 2.167 270

Table Recomputation 4 9 132736 1227 1.696 212

CGPQR+this work 4 9 28288 112 0.905 113

Acknowledgements

We would like to thank Matthieu Rivain for suggesting us the technique of
tabulating linear polynomials described in Remark 3.

References

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power anal-
ysis with a leakage model. In Marc Joye and Jean-Jacques Quisquater,
editors, CHES, volume 3156 of Lecture Notes in Computer Science, pages
16–29. Springer, 2004.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
Present: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer
Science, pages 450–466. Springer, 2007.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and
Matthieu Rivain. Higher-order masking schemes for S-Boxes. In Anne Can-
teaut, editor, FSE, volume 7549 of Lecture Notes in Computer Science, pages
366–384. Springer, 2012.

[Cor13] Jean-Sebastien Coron. https://github.com/coron/htable/, 2013.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-
15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science,
pages 441–458. Springer, 2014.

[CPRR13] Jean-Sebastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas
Roche. Higher-order side channel security and mask refreshing. In FSE,
2013. To appear.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, CHES,
volume 2523 of Lecture Notes in Computer Science, pages 13–28. Springer,
2002.

[GST13] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via
low-bandwidth acoustic cryptanalysis. IACR Cryptology ePrint Archive,
2013:857, 2013.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hard-
ware against probing attacks. In Dan Boneh, editor, CRYPTO, volume 2729
of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer, 1999.

[Mes00] Thomas S. Messerges. Using second-order power analysis to attack DPA
resistant software. In Çetin Kaya Koç and Christof Paar, editors, CHES,
volume 1965 of Lecture Notes in Computer Science, pages 238–251. Springer,
2000.

[oST93] National Institute of Standards and Technology. FIPS 46-3: Data Encryp-
tion Standard, March 1993. Available via csrc.nist.gov.

[PS73] Mike Paterson and Larry J. Stockmeyer. On the number of nonscalar multi-
plications necessary to evaluate polynomials. SIAM J. Comput., 2(1):60–66,
1973.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order mask-
ing of AES. In Stefan Mangard and François-Xavier Standaert, editors,
CHES, volume 6225 of Lecture Notes in Computer Science, pages 413–427.
Springer, 2010.

[RV13] Arnab Roy and Srinivas Vivek. Analysis and improvement of the generic
higher-order masking scheme of FSE 2012. In Guido Bertoni and Jean-
Sébastien Coron, editors, CHES, volume 8086 of Lecture Notes in Computer
Science, pages 417–434. Springer, 2013.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-bit blockcipher CLEFIA (extended abstract). In Alex Biryukov,
editor, FSE, volume 4593 of Lecture Notes in Computer Science, pages 181–
195. Springer, 2007.

A F2n-Polynomial Chain

Definition 1. [[RV13], Definition 4] An F2n-polynomial chain S for a polyno-
mial P (x) ∈ F2n [x] is defined as

λ−1 = 1, λ0 = x, . . . , λr = P (x) (24)

where

λi =


λj + λk −1 ≤ j, k < i,
λj · λk −1 ≤ j, k < i,
αi � λj −1 ≤ j < i, αi is a scalar,
λ2j −1 ≤ j < i.

Though · and � both perform multiplication in F2n , the operator “�” is reserved
for the multiplication by a scalar. A step such as λj · λk denotes a non-linear
multiplication. Let the number of non-linear multiplications involved in a chain
S be denoted as N (S). Then the non-linear complexity of P (x), denoted by
M(P (x)), is defined as M(P (x)) = min

S
N (S).

B Heuristics for choosing parameters t and L

n t L |L|
4 2 C0 ∪ C1 ∪ C3 9

5 3 C0 ∪ C1 ∪ C3 ∪ C7 16

6 3 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C11 25

7 4 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C11 ∪ C15 36

8 6 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C87 ∪ C251 49

9 8 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C45 ∪ C119 ∪ C191 ∪ C255 73

10 11 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C45 ∪ C119 ∪ C191 ∪ C155 ∪ C255 ∪ C339 101

C Evaluation Polynomials for DES S-boxes

In Table 6 we give an example of basis polynomials q1(x), q2(x) for DES and
Table 7 shows the solution polynomials pi(x) corresponding to the system of
linear equations for the first DES S-box S1.

Basis Polynomials

q1 (a5 + a4 + 1) ·x56 + (a5 + 1) ·x49 + (a2 + a) ·x48 + (a4 + a3) ·x35 + (a5 +
a4 +a2) ·x33 +(a5 +a+1) ·x32 +(a3 +a) ·x28 +a2 ·x24 +(a5 +1) ·x16 +
(a4 + a+ 1) · x14 + x12 + (a4 + a3 + a2 + 1) · x8 + (a5 + a3 + a2 + a+ 1) ·
x7 + (a5 + a4 + a3 + a2 + 1) ·x6 + (a5 + a4 + a3 + 1) ·x4 + (a5 + a2 + a+
1) · x3 + (a3 + a2 + a) · x2 + (a4 + a2 + a+ 1) · x+ a5 + a4 + a3 + a2 + a

q2 (a+1) ·x56 +(a5 +1) ·x49 +(a+1) ·x48 +a ·x35 +(a+1) ·x33 +(a4 +a3 +
a+1) ·x32+(a3+a2+a)·x28+(a5+a3+a+1)·x24+(a3+1) ·x16+(a4+
a2+1)·x14+(a+1)·x12+(a5+a4+1)·x8+(a5+a4+a3+a+1)·x7+(a5+
a4+a3)·x6+(a+1)·x4+(a5+a3+a2+a)·x2+a·x+a5+a4+a3+a2+1

Table 6. Basis polynomials q1, q2 obtained from P(xL), for DES.

Solution to linear system

p1 (a5+a4+a3+a2+1)·x56+(a5+a2+1)·x49+a4 ·x48+(a4+a3+a)·x35+
(a5+a4+a2)·x33+(a5+1)·x32+a·x28+(a4+a2)·x24+(a5+a)·x16+(a5+
a2)·x14+(a5+a+1)·x12+(a5+a4+a3+a)·x8+(a5+a4+a3+a)·x7+(a5+
a4+a3)·x6+(a2+a+1)·x4+(a5+a4+a)·x2+(a5+a4+1)·x+a4+a3+a2

p2 (a5 + a2) · x49 + (a3 + 1) · x48 + (a5 + a3 + a+ 1) · x35 + (a4 + a2 + 1) ·
x33 + (a5 + a4 + 1) · x32 + (a5 + a4 + a3 + a+ 1) · x28 + (a3 + a2) · x24 +
(a2 + a+ 1) · x16 + (a5 + a4 + a3) · x14 + (a4 + a3 + a+ 1) · x12 + (a4 +
a3) ·x8 + (a5 + a) ·x7 + (a5 + a4) ·x6 + (a5 + a4 + a3 + a2 + a+ 1) ·x4 +
(a5 + a4 + a) · x3 + (a5 + a3 + a+ 1) · x2 + (a5 + a) · x+ a5 + a4 + a2 + a

p3 a · x7 + a · x6 + (a4 + a+ 1) · x4 + (a5 + a2 + a) · x3 + (a5 + a4 + a+ 1) ·
x2 + (a4 + a2) · x

Table 7. Solution to the system of linear equations for DES S-box (S1). The irreducible
polynomial is a6 + a+ 1 over F2.

