
Conversion from Arithmetic to Boolean Masking with Logarithmic
Complexity

Jean-Sébastien Coron1, Johann Großschädl1, Mehdi Tibouchi2, and Praveen Kumar Vadnala1

1 University of Luxembourg,
{jean-sebastien.coron,johann.groszschaedl,praveen.vadnala}@uni.lu

2 NTT Secure Platform Laboratories, Japan
tibouchi.mehdi@lab.ntt.co.jp

Abstract. A general method to protect a cryptographic algorithm against side-channel attacks consists in
masking all intermediate variables with a random value. For cryptographic algorithms combining Boolean
operations with arithmetic operations, one must then perform conversions between Boolean masking and
arithmetic masking. At CHES 2001, Goubin described a very elegant algorithm for converting from Boolean
masking to arithmetic masking, with only a constant number of operations. Goubin also described an algorithm
for converting from arithmetic to Boolean masking, but with O(k) operations where k is the addition bit size.
In this paper we describe an improved algorithm with time complexity O(log k) only. Our new algorithm is
based on the Kogge-Stone carry look-ahead adder, which computes the carry signal in O(log k) instead of O(k)
for the classical ripple carry adder. We also describe an algorithm for performing arithmetic addition modulo
2k directly on Boolean shares, with the same complexity O(log k) instead of O(k). We prove the security of
our new algorithms against first-order attacks.

Keywords: side-channel attack, first-order countermeasure, arithmetic to Boolean conversion.

1 Introduction

Side-channel attacks. Side-channel attacks belong to the genre of implementation attacks and exploit
the fact that any device performing a cryptographic algorithm leaks information related to the secret
key through certain physical phenomena such as execution time, power consumption, EM radiation, etc.
Depending on the source of the information leakage and the required post-processing, one can distinguish
different categories of side-channel attacks, e.g. timing attacks, Simple Power Analysis (SPA) attacks,
and Differential Power Analysis (DPA) attacks [KJJ99]. The former uses data-dependent (i.e. plaintext-
dependent) variations in the execution time of a cryptographic algorithm to deduce information about
the secret key involved in the computation of the ciphertext. In contrast, power analysis attacks require
the attacker to measure the power consumption of a device while it executes a cryptographic algorithm
[PMO07]. To perform an SPA attack, the attacker typically collects only one (or very few) power trace(s)
and attempts to recover the secret key by focusing on differences between patterns within a trace. A DPA
attack, on the other hand, requires many power traces and employs sophisticated statistical techniques
to analyze differences between the traces [MOP07].

Even though DPA was first described using the DES algorithm as an example, it became soon clear
that power analysis attacks can also be applied to break other secret-key algorithms, e.g. AES as well
as public-key algorithms, e.g. RSA. A DPA attack normally exploits the principle of divide and conquer,
which is possible since most block ciphers use the secret key only partially at a given point of time.
Hence, the attacker can recover one part of the key at a time by studying the relationship between the
actual power consumption and estimated power values derived from a theoretical model of the device.
During the past 15 years, dozens of papers about successful DPA attacks on different implementations
(hardware, software) of numerous secret-key cryptosystems (block ciphers, stream ciphers, keyed-hash
message authentication codes) have been published. The experiments described in these papers confirm



the real-world impact of DPA attacks in the sense that unprotected (or insufficiently protected) imple-
mentations of cryptographic algorithms can be broken in relatively short time using relatively cheap
equipment.

The vast number of successful DPA attacks reported in the literature has initiated a large body of
research on countermeasures. From a high-level point of view, countermeasures against DPA attacks
can be divided into hiding (i.e. decreasing the signal-to-noise ratio) and masking (i.e. randomizing all
the sensitive data) [MOP07]. Approaches to hiding-style countermeasures attempt to “equalize” the
power consumption profile (i.e. making the power consumption invariant for all possible values of the
secret key) or to randomize the power consumption so that a profile can no longer be correlated to any
secret information. Masking, on the other hand, conceals every key-dependent intermediate result with
a random value, the so-called mask, in order to break the correlation between the “real” (i.e. unmasked)
intermediate result and the power consumption.

The masking countermeasure. Though masking is often considered to be less efficient (in terms of
execution time) than hiding, it provides the key benefit that one can formally prove its security under
certain assumptions on the device leakage model and the attacker’s capabilities. The way masking is
applied depends on the concrete operations executed by a cipher. In general, logical operations (e.g. xor,
shifts, etc.) are protected using Boolean masking, whereas additions/subtractions and multiplications
require arithmetic and multiplicative masking, respectively. When a cryptographic algorithm involves a
combination of these operations, it becomes necessary to convert the masks from one form to the other
in order to get the correct result. Examples of algorithms that perform both arithmetic (e.g. modular
addition) and logical operations include two SHA-3 finalists (namely Blake and Skein) as well as all four
stream ciphers in the eSTREAM software portfolio. Also, ARX-based block ciphers (e.g. XTEA [NW97]
and Threefish) and the hash functions SHA-1 and SHA-2 fall into this category. Therefore, techniques
for conversion between Boolean and arithmetic masks are of significant practical importance.

Conversion between Boolean and arithmetic masking. At CHES 2001, Goubin described a very
elegant algorithm for converting from Boolean masking to arithmetic masking, with only a constant
number of operations, independent of the addition bit size k. Goubin also described an algorithm for
converting from arithmetic to Boolean masking, but with O(k) operations. A different arithmetic to
Boolean conversion algorithm was later described in [CT03], based on precomputed tables; an extension
was described in [NP04] to reduce the memory consumption. At CHES 2012, Debraize described a
modification of the table-based conversion in [CT03], correcting a bug and improving time performances,
still with asymptotic complexity O(k).

Karroumi et al. recently noticed in [KRJ14] that Goubin’s recursion formula for converting from
arithmetic to Boolean masking can also be used to compute an arithmetic addition z = x + y mod 2k

directly with masked shares x = x1⊕x2 and y = y1⊕y2. The advantage of this method is that one doesn’t
need to follow the three step process, i.e. converting x and y from Boolean to arithmetic masking, then
performing the addition with arithmetic masks and then converting back from arithmetic to Boolean
masks. The authors showed that this can lead to better performances in practice for the block cipher
XTEA. However, as their algorithm is based on Goubin’s recursion formula, its complexity is still O(k).

New algorithms with logarithmic complexity. In this paper we describe a new algorithm for
converting from arithmetic to Boolean masking with complexity O(log k) instead of O(k). Our algorithm
is based on the Kogge-Stone carry look-ahead adder [KS73], which computes the carry signal in O(log k)
instead of O(k) for the classical ripple carry adder. Following [KRJ14] we also describe a variant algorithm



for performing arithmetic addition modulo 2k directly on Boolean shares, with complexity O(log k)
instead of O(k). We prove the security of our new algorithms against first-order attacks.

2 Goubin’s Algorithms

In this section we first recall Goubin’s algorithm for converting from Boolean masking to arithmetic
masking and conversely [Gou01], secure against first-order attacks. Given a k-bit variable x, for Boolean
masking we write:

x = x′ ⊕ r

where x′ is the masked variable and r ← {0, 1}k. Similarly for arithmetic masking we write

x = A+ r mod 2k

In the following all additions and subtractions are done modulo 2k, for some parameter k.

The goal of the paper is to describe efficient conversion algorithms between Boolean and arithmetic
masking, secure against first-order attacks. Given x′ and r, one should compute the arithmetic mask
A = (x′ ⊕ r) − r mod 2k without leaking information about x = x′ ⊕ r; this implies that one cannot
compute A = (x′ ⊕ r) − r mod 2k directly, as this would leak information about the sensitive variable
x = x′⊕ r; this means that all intermediate variables in the computation should be properly randomized
so that no information is leaked about x. Similarly given A and r one should compute the Boolean mask
x′ = (A+ r)⊕ r without leaking information about x = A+ r.

2.1 Boolean to Arithmetic Conversion

We first recall the Boolean to arithmetic conversion method from Goubin [Gou01]. One considers the
following function Ψx′(r) : F2k → F2k :

Ψx′(r) = (x′ ⊕ r)− r

Theorem 1 (Goubin [Gou01]). The function Ψx′(r) = (x′ ⊕ r)− r is affine over F2.

Using this affine property, the conversion from Boolean to arithmetic masking is straightforward.
Given x′, r ∈ F2k we must compute A such that x′ ⊕ r = A + r. From the affine property of Ψx′(r) we
can write:

A = (x′ ⊕ r)− r = Ψx′(r) = Ψx′(r ⊕ r2)⊕
(
Ψx′(r2)⊕ Ψx′(0)

)
for any r2 ∈ F2k . Therefore the technique consists in first generating a uniformly distributed random r2
in F2k , then computing Ψx′(r⊕ r2) and Ψx′(r2)⊕ Ψx′(0) separately, and finally performing Xor operation
on these two to get A. The technique is clearly secure against first-order attacks; namely the left term
Ψx′(r ⊕ r2) is independent from r and therefore from x = x′ ⊕ r, and the right term Ψx′(r2) ⊕ Ψx′(0) is
also independent from r and therefore from x. Note that the technique is very efficient as it requires only
a constant number of operations (independent of k).

2.2 From Arithmetic to Boolean Masking

Goubin also described in [Gou01] a technique for converting from arithmetic to Boolean masking, secure
against first-order attacks. However it is more complex than from Boolean to arithmetic masking; its
complexity is O(k) for additions modulo 2k. It is based on the following theorem.



Theorem 2 (Goubin [Gou01]). If we denote x′ = (A + r) ⊕ r, we also have x′ = A ⊕ uk−1, where
uk−1 is obtained from the following recursion formula:{

u0 = 0
∀k ≥ 0, uk+1 = 2[uk ∧ (A⊕ r)⊕ (A ∧ r)] (1)

Since the iterative computation of ui contains only XOR and AND operations, it can easily be protected
against first-order attacks. We refer to Appendix A for the full conversion algorithm.

3 A New Recursive Formula based on Kogge-Stone Adder

Our new conversion algorithm is based on the Kogge-Stone adder [KS73], a carry look-ahead adder that
generates the carry signal in O(log k) time, when addition is performed modulo 2k. In this section we
first recall the classical ripple-carry adder, which generates the carry signal in O(k) time, and we show
how Goubin’s recursion formula (1) can be derived from it. The derivation of our new recursion formula
from the Kogge-Stone adder will proceed similarly.

3.1 The Ripple-Carry Adder and Goubin’s Recursion Formula

We first recall the classical ripple-carry adder. Given three bits x, y and c, the carry c′ for x+ y + c can
be computed as c′ = (x ∧ y)⊕ (x ∧ c)⊕ (y ∧ c). Therefore, the modular addition of two k-bit variables x
and y can be defined recursively as follows:

(x+ y)(i) = x(i) ⊕ y(i) ⊕ c(i) (2)

for 0 ≤ i < k, where{
c(0) = 0

∀i ≥ 1, c(i) = (x(i−1) ∧ y(i−1))⊕ (x(i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y(i−1)) (3)

where x(i) represents the ith bit of the variable x, with x(0) being the least significant bit.
In the following, we show how recursion (3) can be computed directly with k-bit values instead of

bits, which enables us to recover Goubin’s recursion (1). For this, we define the sequences xj , yj and vj
whose j + 1 least significant bits are the same as x, y and c respectively:

xj =

j⊕
i=0

2ix(i), yj =

j⊕
i=0

2iy(i), vj =

j⊕
i=0

2ic(i) (4)

for 0 ≤ j ≤ k − 1. Since c(0) = 0 we can actually start the summation for vj at i = 1; we get from (3):

vj+1 =

j+1⊕
i=1

2ic(i) =

j+1⊕
i=1

2i
(

(x(i−1) ∧ y(i−1))⊕ (x(i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y(i−1))
)

vj+1 = 2

j⊕
i=0

2i
(

(x(i) ∧ y(i))⊕ (x(i) ∧ c(i))⊕ (c(i) ∧ y(i))
)

vj+1 = 2
(
(xj ∧ yj)⊕ (xj ∧ vj)⊕ (yj ∧ vj)

)
which gives the recursive equation:{

v0 = 0
∀j ≥ 0, vj+1 = 2 (vj ∧ (xj ⊕ yj)⊕ (xj ∧ yj))

(5)



Therefore we have obtained a recursion similar to (3), but with k-bit values instead of single bits. Note
that from the definition of vj in (4) the variables vj and vj+1 have the same least significant bits from
bit 0 to bit j, which is not immediately obvious when considering only recursion (5). Combining (2) and
(4) we obtain xj + yj = xj ⊕ yj ⊕ vj for all 0 ≤ j ≤ k − 1. For k-bit values x and y, we have x = xk−1
and y = yk−1, which gives:

x+ y = x⊕ y ⊕ vk−1
We now define the same recursion as (5), but with constant x, y instead of xj , yj . That is, we let{

u0 = 0
∀j ≥ 0, uj+1 = 2 (uj ∧ (x⊕ y)⊕ (x ∧ y))

(6)

which is exactly the same recursion as Goubin’s recursion (1). It is easy to show inductively that the
variables uj and vj have the same least significant bits, from bit 0 to bit j. Let us assume that this is
true for uj and vj . From recursions (5) and (6) we have that the least significant bits of vj+1 and uj+1

from bit 0 to bit j + 1 only depend on the least significant bits from bit 0 to bit j of vj , xj and yj , and
of uj , x and y respectively. Since these are the same, the induction is proved.

Eventually for k-bit registers we have uk−1 = vk−1, which proves Goubin’s recursion formula (1),
namely:

x+ y = x⊕ y ⊕ uk−1
As mentioned previously, this recursion formula requires k−1 iterations on k-bit registers. In the following,
we describe an improved recursion based on the Kogge-Stone carry look-ahead adder, requiring only log2 k
iterations.

3.2 The Kogge-Stone Carry Look-Ahead Adder

In this section we first recall the general solution from [KS73] for first-order recurrence equations; the
Kogge-Stone carry look-ahead adder is a direct application.

General first-order recurrence equation. We consider the following recurrence equation:{
z0 = b0
∀i ≥ 1, zi = aizi−1 + bi

(7)

We define the function Q(m,n) for m ≥ n:

Q(m,n) =
m∑

j=n

 m∏
i=j+1

ai

 bj (8)

We have Q(0, 0) = b0 = z0, Q(1, 0) = a1b0 + b1 = z1, and more generally:

Q(m, 0) =

m−1∑
j=0

 m∏
i=j+1

ai

 bj + bm = am

m−1∑
j=0

 m−1∏
i=j+1

ai

 bj + bm = amQ(m− 1, 0) + bm

Therefore the sequence Q(m, 0) satisfies the same recurrence as zm, which implies Q(m, 0) = zm for all
m ≥ 0. Moreover we have:

Q(2m− 1, 0) =

2m−1∑
j=0

2m−1∏
i=j+1

ai

 bj =

2m−1∏
j=m

aj

m−1∑
j=0

 m−1∏
i=j+1

ai

 bj +

2m−1∑
j=m

2m−1∏
i=j+1

ai

 bj



which gives the recursive doubling equation:

Q(2m− 1, 0) =

2m−1∏
j=m

aj

Q(m− 1, 0) +Q(2m− 1,m)

where each term Q(m − 1, 0) and Q(2m − 1,m) contain only m terms ai and bi, instead of 2m in
Q(2m− 1, 0). Therefore the two terms can be computed in parallel. This is also the case for the product∏2m−1

j=m aj which can be computed with a product tree. Therefore by recursive splitting with N processors
the sequence element zN can be computed in time O(log2N), instead of O(N) with a single processor.

The Kogge-Stone Carry Look-Ahead Adder. The Kogge-Stone carry look-ahead adder [KS73] is a
direct application of the previous technique. Namely writing ci = c(i), ai = x(i) ⊕ y(i) and bi = x(i) ∧ y(i)
for all i ≥ 0, we obtain from (3) the recurrence relation for the carry signal ci:{

c0 = 0
∀i ≥ 1, ci = (ai−1 ∧ ci−1)⊕ bi−1

which is similar to (7), where ∧ is the multiplication and ⊕ the addition. We can therefore compute the
carry signal ci for 0 ≤ i < k in time O(log k) instead of O(k).

More precisely, the Kogge-Stone carry look-ahead adder can be defined as follows. For all 0 ≤ j < k
one defines the sequence of bits:

P0,j = x(j) ⊕ y(j), G0,j = x(j) ∧ y(j) (9)

and the following recursive equations:{
Pi,j = Pi−1,j ∧ Pi−1,j−2i−1

Gi,j = (Pi−1,j ∧Gi−1,j−2i−1)⊕Gi−1,j
(10)

for 2i−1 ≤ j < k, and Pi,j = Pi−1,j and Gi,j = Gi−1,j for 0 ≤ j < 2i−1. The following lemma shows that
the carry signal cj can be computed from the sequence Gi,j .

Lemma 1. We have (x+ y)(j) = x(j) ⊕ y(j) ⊕ cj for all 0 ≤ j < k where the carry signal cj is computed
as c0 = 0, c1 = G0,0 and cj+1 = Gi,j for 2i−1 ≤ j < 2i.

To compute the carry signal up to ck−1, one must therefore compute the sequences Pi,j and Gi,j up
to i = dlog2(k − 1)e. For completeness we provide the proof of Lemma 1 in Appendix B.

3.3 Our New Recursive Algorithm

We now derive a recursion formula with k-bit variables instead of single bits; we proceed as in Section
3.1, using the more efficient Kogge-Stone carry look-ahead algorithm, instead of the classical ripple-
carry adder for Goubin’s recursion. We prove the following theorem, analogous to Theorem 2, but with
complexity O(log k) instead of O(k). Given a variable x, we denote by x � ` the variable x left-shifted
by ` bits, keeping only k bits in total.

Theorem 3. Let x, y ∈ {0, 1}k and n = dlog2(k − 1)e. Define the sequence of k-bit variables Pi and Gi,
with P0 = x⊕ y and G0 = x ∧ y, and{

Pi = Pi−1 ∧ (Pi−1 � 2i−1)
Gi =

(
Pi−1 ∧ (Gi−1 � 2i−1)

)
⊕Gi−1

(11)

for 1 ≤ i ≤ n. Then x+ y = x⊕ y ⊕ (2Gn).



Proof. We start from the sequences Pi,j and Gi,j defined in Section 3.2 corresponding to the Kogge-Stone
carry look-ahead adder, and we proceed as in Section 3.1. We define the variables:

Pi :=
k−1∑

j=2i−1

2jPi,j Gi :=
k−1∑
j=0

2jGi,j

which from (9) gives the initial condition P0 = x⊕ y and G0 = x ∧ y, and using (10):

Pi =

k−1∑
j=2i−1

2jPi,j =
k−1∑

j=2i−1

2j(Pi−1,j ∧ Pi−1,j−2i−1) =

 k−1∑
j=2i−1

2jPi−1,j

 ∧
 k−1∑

j=2i−1

2jPi−1,j−2i−1


We can start the summation of the Pi,j bits with j = 2i−1 − 1 instead of 2i − 1, because the other
summation still starts with j = 2i − 1, hence the corresponding bits are ANDed with 0. This gives:

Pi =

 k−1∑
j=2i−1−1

2jPi−1,j

 ∧
 k−1∑

j=2i−1

2jPi−1,j−2i−1


= Pi−1 ∧

k−1−2i−1∑
j=2i−1−1

2j+2i−1
Pi−1,j

 = Pi−1 ∧ (Pi−1 � 2i−1)

Hence we get the same recursion formula for Pi as in (11). Similarly we have using (10):

Gi =
k−1∑
j=0

2jGi,j =
k−1∑

j=2i−1

2j
(
(Pi−1,j ∧Gi−1,j−2i−1)⊕Gi−1,j

)
+

2i−1−1∑
j=0

2jGi−1,j

=

 k−1∑
j=2i−1

2j
(
Pi−1,j ∧Gi−1,j−2i−1

)⊕Gi−1 =
(
Pi−1 ∧ (Gi−1 � 2i−1)

)
⊕Gi−1

Therefore we obtain the same recurrence for Pi and Gi as (11). Since from Lemma 1 we have that
cj+1 = Gi,j for all 2i−1 ≤ j < 2i, and Gi,j = Gi−1,j for 0 ≤ j < 2i−1, we obtain cj+1 = Gi,j for all
0 ≤ j < 2i. Taking i = n = dlog2(k − 1)e, we obtain cj+1 = Gn,j for all 0 ≤ j ≤ k − 2 < k − 1 ≤ 2n. This
implies:

k−1∑
j=0

2jcj =

k−1∑
j=1

2jcj = 2

k−2∑
j=0

2jcj+1 = 2

k−2∑
j=0

2jGn,j = 2Gn

Since from Lemma 1 we have (x+y)(j) = x(j)⊕y(j)⊕cj for all 0 ≤ j < k, this implies x+y = x⊕y⊕(2Gn)
as required. ut

The complexity of the previous recursion is only O(log k), as opposed to O(k) with Goubin’s recursion.
The sequence can be computed using the algorithm below; note that we do not compute the last element
Pn since it is not used in the computation of Gn. Note that the algorithm below could be used as a
O(log k) implementation of arithmetic addition z = x + y mod 2k for processors having only Boolean
operations.



Algorithm 1 Kogge-Stone Adder

Input: x, y ∈ {0, 1}k, and n = dlog2(k − 1)e.
Output: z = x+ y mod 2k

1: P ← x⊕ y
2: G← x ∧ y
3: for i := 1 to n− 1 do
4: G← (P ∧ (G� 2i−1))⊕G
5: P ← P ∧ (P � 2i−1)
6: end for
7: G← (P ∧ (G� 2n−1))⊕G
8: return x⊕ y ⊕ (2G)

4 Our New Conversion Algorithm

Our new conversion algorithm from arithmetic to Boolean masking is a direct application of the Kogge-
Stone adder in Algorithm 1. We are given as input two arithmetic shares A, r of x = A+ r mod 2k, and
we must compute x′ such that x = x′ ⊕ r, without leaking information about x.

Since Algorithm 1 only contains Boolean operations, it is easy to protect against first-order attacks.
Assume that we give as input the two arithmetic shares A and r to Algorithm 1; the algorithm first
computes P = A⊕ r and G = A∧ r, and after n iterations outputs x = A+ r = A⊕ r⊕ (2G). Obviously
one cannot compute P = A ⊕ r and G = A ∧ r directly since that would reveal information about the
sensitive variable x = A + r. Instead we protect all intermediate variables with a random mask s using
standard techniques, that is we only work with P ′ = P ⊕ s and G′ = G ⊕ s. Eventually we obtain a
masked x′ = x⊕ s as required, in time O(log k) instead of O(k).

4.1 Secure Computation of AND

Since Algorithm 1 contains AND operations, we first show how to secure the AND operation against
first-order attacks. The technique is essentially the same as in [ISW03]. With x = x′ ⊕ s and y = y′ ⊕ s,
we have for any t:

x ∧ y = (x′ ⊕ s) ∧ (y′ ⊕ s) =
(
(x′ ⊕ t)⊕ (s⊕ t)

)
∧ (y′ ⊕ s)

=
(
(x′ ⊕ t) ∧ y′

)
⊕
(
(x′ ⊕ t) ∧ s

)
⊕
(
(s⊕ t) ∧ y′

)
⊕
(
(s⊕ t) ∧ s

)
which gives the masked output (x ∧ y)⊕ s as:

(x ∧ y)⊕ s =
(
(x′ ⊕ t) ∧ y′

)
⊕
(
(x′ ⊕ t) ∧ s

)
⊕
(
(s⊕ t) ∧ y′

)
⊕ (t ∧ s)

This gives the following algorithm:

Algorithm 2 SecAnd
Input: x′, y′, s, t, u such that x′ = x⊕ s and y′ = y ⊕ s.
Output: z′ such that z′ = (x ∧ y)⊕ s.
1: x′′ ← x′ ⊕ t
2: z′ ← u⊕ (x′′ ∧ y′)
3: z′ ← z′ ⊕ (x′′ ∧ s)
4: z′ ← z′ ⊕

(
(s⊕ t) ∧ y′

)
5: z′ ← z′ ⊕ (t ∧ s)
6: z′ ← z′ ⊕ u
7: return z′



We see that the SecAnd algorithm requires 11 Boolean operations. The following Lemma shows that
the SecAnd algorithm is secure against first-order attacks.

Lemma 2. When s, t and u are uniformly and independently distributed in F2k , all intermediate variables
in the SecAnd algorithm have a distribution independent from x and y.

Proof. This is straightforward. ut

4.2 Secure Computation of Xor

Similarly we show how to secure the Xor computation of Algorithm 1. With x = x′ ⊕ s and y = y′ ⊕ s,
the masked result (x⊕ y)⊕ s can be written as:

(x⊕ y)⊕ s = x′ ⊕ y′ ⊕ s = (((x′ ⊕ t)⊕ y′)⊕ s)⊕ t

for any k-bit mask t. This gives the following algorithm:

Algorithm 3 SecXor
Input: x′, y′, s, t, such that x′ = x⊕ s and y′ = y ⊕ s.
Output: z′ such that z′ = (x⊕ y)⊕ s.
1: z′ ← x′ ⊕ t
2: z′ ← z′ ⊕ y′
3: z′ ← z′ ⊕ s
4: z′ ← z′ ⊕ t
5: return z′

We see that the SecXor algorithm requires 4 Boolean operations. The following Lemma shows that
the SecXor algorithm is secure against first-order attacks.

Lemma 3. When s and t are uniformly and independently distributed in F2k , all intermediate variables
in the SecXor algorithm have a distribution independent from x and y.

Proof. This is straightforward. ut

4.3 Secure Computation of Shift

Finally we show how to secure the Shift operation in Algorithm 1 against first-order attacks. With
x = x′ ⊕ s, the masked result y′ = (x� j)⊕ s can be written as:

(x� j)⊕ s =
(
(x′ ⊕ s)� j

)
⊕ s = (x′ � j)⊕ (s� j)⊕ s

This gives the following algorithm.

Algorithm 4 SecShift
Input: x′, s and j such that x′ = x⊕ s and j > 0.
Output: y′ such that y′ = (x� j)⊕ s.
1: y′ ← x′ � j
2: y′ ← y′ ⊕ s
3: y′ ← y′ ⊕ (s� j)
4: return y′



We see that the SecShift algorithm requires 4 Boolean operations. The following Lemma shows that
the SecShift algorithm is secure against first-order attacks.

Lemma 4. When s is uniformly and independently distributed in F2k , all intermediate variables in the
SecShift algorithm have a distribution independent from x.

Proof. At Step 2 we have
y′ = (x′ � j)⊕ s = (x� j)⊕ (s� j)⊕ s

Therefore the sensitive variable x � j is masked by (s � j) ⊕ s. It is easy to see that for j > 0 and
uniformly random s ∈ F2k , the variable (s� j)⊕ s is also uniformly distributed in F2k . ut

4.4 Our New Conversion Algorithm

Finally we can convert Algorithm 1 into a first-order secure algorithm by protecting all intermediate
variables with a random mask.

Algorithm 5 Kogge-Stone Arithmetic to Boolean Conversion

Input: A, r ∈ {0, 1}k and n = dlog2(k − 1)e.
Output: x′ such that x′ ⊕ r = A+ r mod 2k.
1: Let s← {0, 1}k, t← {0, 1}k, u← {0, 1}k.
2: P ′ ← A⊕ s
3: P ′ ← P ′ ⊕ r . P ′ = (A⊕ r)⊕ s = P ⊕ s
4: G′ ← s⊕

(
(A⊕ t) ∧ r

)
5: G′ ← G′ ⊕ (t ∧ r) . G′ = (A ∧ r)⊕ s = G⊕ s
6: for i := 1 to n− 1 do
7: H ← SecShift(G′, s, 2i−1) . H = (G� 2i−1)⊕ s
8: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2i−1)

)
⊕ s

9: G′ ← SecXor(U,G′, s, t) . G′ =
(
(P ∧ (G� 2i−1))⊕G

)
⊕ s

10: H ← SecShift(P ′, s, 2i−1) . H = (P � 2i−1)⊕ s
11: P ′ ← SecAnd(P ′, H, s, t, u) . P ′ =

(
P ∧ (P � 2i−1)

)
⊕ s

12: end for
13: H ← SecShift(G′, s, 2n−1) . H = (G� 2n−1)⊕ s
14: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2n−1)

)
⊕ s

15: G′ ← SecXor(U,G′, s, t) . G′ =
(
(P ∧ (G� 2n−1))⊕G

)
⊕ s

16: x′ ← A⊕ 2G′ . x′ = (A+ r)⊕ r ⊕ 2s
17: x′ ← x′ ⊕ 2s . x′ = (A+ r)⊕ r
18: return x′

Since the SecAnd subroutine requires 11 operations, the SecXor subroutine requires 4 operations, and
the SecShift subroutine requires 4 operations, lines 7 to 11 require 2 · 11 + 3 · 4 = 34 operations, hence
34·(n−1) operations for the main loop. The total number of operations is then 7+34·(n−1)+11+2·4+4 =
34 · n− 4. In summary, for a register size k = 2n the number of operations is 34 · log2 k − 4, in addition
to the generation of 3 random numbers. Note that the same random numbers s, t and u can actually be
used for all executions of the conversion algorithm in a given execution. The following Lemma proves the
security of our new conversion algorithm against first-order attacks.

Lemma 5. When r is uniformly distributed in F2k , any intermediate variable in Algorithm 5 has a
distribution independent from x = A+ r mod 2k.

Proof. The proof is based on the previous lemma for SecAnd, SecXor and SecShift, and also the fact that
all intermediate variables from Line 2 to 5 and in lines 16 and 17 have the uniform distribution. ut



5 Addition Without Conversion

Karroumi et al. recently noticed in [KRJ14] that Goubin’s recursion formula (1) can be used to compute
an arithmetic addition z = x+ y mod 2k directly with masked shares x′ = x⊕ r and y′ = y ⊕ r, that is
without first converting x and y from Boolean to arithmetic masking, then performing the addition with
arithmetic masks, and then converting back from arithmetic to Boolean masks. They showed that this
can lead to better performances in practice for the block cipher XTEA.

In this section we describe an analogous algorithm for performing addition directly on the masked
shares, based on the Kogge-Stone adder instead of Goubin’s formula, to get O(log k) complexity instead
of O(k). More precisely, we receive as input the shares x′, y′ such that x′ = x ⊕ r and y′ = y ⊕ r,
and the goal is to compute z′ such that z′ = (x + y) ⊕ r. For this it suffices to perform the addition
z = x + y mod 2k as in Algorithm 1, but with the masked variables x′ = x ⊕ r and y′ = y ⊕ r instead
of x, y, while protecting all intermediate variables with a Boolean mask; this is straightforward since
Algorithm 1 contains only Boolean operations.

Algorithm 6 Kogge-Stone Masked Addition

Input: x′, y′, r ∈ {0, 1}k
Output: z′ such that z′ = (x+ y)⊕ r, where x = x′ ⊕ r and y = y′ ⊕ r
1: Let s← {0, 1}k, t← {0, 1}k, u← {0, 1}k.
2: P ′ ← x′ ⊕ s
3: P ′ ← P ′ ⊕ y′ . P ′ = (x⊕ y)⊕ s = P ⊕ s
4: G′ ← SecAnd(x′, y′, r, t, u) . G′ = (x ∧ y)⊕ r = G⊕ r
5: G′ ← G′ ⊕ s
6: G′ ← G′ ⊕ r . G′ = (x ∧ y)⊕ s = G⊕ s
7: for i := 1 to n− 1 do
8: H ← SecShift(G′, s, 2i−1) . H = (G� 2i−1)⊕ s
9: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2i−1)

)
⊕ s

10: G′ ← SecXor(U,G′, s, t) . G′ =
(
(P ∧ (G� 2i−1))⊕G

)
⊕ s

11: H ← SecShift(P ′, s, t, 2i−1) . H = (P � 2i−1)⊕ s
12: P ′ ← SecAnd(P ′, H, s, t, u) . P ′ =

(
P ∧ (P � 2i−1)

)
⊕ s

13: end for
14: H ← SecShift(G′, s, t, 2n−1) . H = (G� 2n−1)⊕ s
15: U ← SecAnd(P ′, H, s, t, u) . U =

(
P ∧ (G� 2n−1)

)
⊕ s

16: G′ ← SecXor(U,G′, s, t) . G′ =
(
(P ∧ (G� 2n−1))⊕G

)
⊕ s

17: z′ ← SecXor(x′, y′, r, t) . z′ = (x⊕ y)⊕ r
18: z′ ← z′ ⊕ (2G′) . z′ = (x+ y)⊕ 2s⊕ r
19: z′ ← z′ ⊕ 2s . z′ = (x+ y)⊕ r
20: return z′

As previously the main loop requires 34 · (n− 1) operations. The total number of operations is then
15 + 34 · (n − 1) + 27 = 34 · n + 8. In summary, for a register size k = 2n the number of operations
is 34 · log2 k + 8, with additionally the generation of 3 random numbers; as previously those 3 random
numbers can be reused for subsequent additions within the same execution. The following Lemma proves
the security of Algorithm 6 against first-order attacks.

Lemma 6. For a random r ∈ {0, 1}k, any intermediate variable in the Kogge-Stone Masked Addition has
the uniform distribution.

Proof. The proof is similar to the proof of Lemma 5 and is therefore omitted. ut



6 Comparison With Goubin’s Algorithms

We compare in Table 1 the complexity of our new algorithms with Goubin’s algorithms for various
addition bit sizes k. We give the total number of elementary operations. Goubin’s original conversion
algorithm from arithmetic to Boolean masking required 5k+5 operations and a single random generation.
This was recently improved by Karroumi et al. down to 5k + 1 operations [KRJ14]. The authors also
provided an algorithm to compute first-order secure addition on Boolean shares using Goubin’s recursion
formula, requiring 5k + 8 operations and a single random generation. See Appendix A for more details.

Algorithm k = 8 k = 16 k = 32 k = 64 k

Goubin’s A→B conversion 41 81 161 321 5k + 1

New A→B conversion 98 132 166 200 34 log2 k − 4

Goubin’s addition [KRJ14] 48 88 168 328 5k + 8

New addition 110 144 178 212 34 log2 k + 8

Table 1. Number of operations (Nop) and randoms (Rand) required for Goubin’s algorithms and for our new algorithms.

We see that our algorithms outperform Goubin’s algorithms for k ≥ 64. In practice, most crypto-
graphic constructions performing arithmetic operations use addition modulo 232; for example HMAC-
SHA-1 [NIS95] and XTEA [NW97]. There also exists cryptographic constructions with additions modulo
264, for example Threefish used in the hash function Skein, a SHA-3 finalist.

References

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switching from arithmetic to boolean masking.
In CHES, pages 89–97, 2003.

[Gou01] Louis Goubin. A sound method for switching between boolean and arithmetic masking. In CHES, pages 3–15,
2001.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks. In
CRYPTO, pages 463–481, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In CRYPTO, pages 388–397, 1999.
[KRJ14] Mohamed Karroumi, Benjamin Richard, and Marc Joye. Addition with blinded operands. In COSADE, 2014.
[KS73] Peter M Kogge and Harold S Stone. A parallel algorithm for the efficient solution of a general class of recurrence

equations. Computers, IEEE Transactions on, 100(8):786–793, 1973.
[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks - revealing the secrets of smart

cards. Springer, 2007.
[NIS95] NIST. Secure hash standard. In Federal Information Processing Standard, FIPA-180-1, 1995.
[NP04] Olaf Neiße and Jürgen Pulkus. Switching blindings with a view towards idea. In CHES, pages 230–239, 2004.
[NW97] Roger M. Needham and David J. Wheeler. Tea extentions. In Technical report, Computer Laboratory, University

of Cambridge, 1997.
[PMO07] Thomas Popp, Stefan Mangard, and Elisabeth Oswald. Power analysis attacks and countermeasures. IEEE Design

and Test of Computers, 24(6):535–543, 2007.

A Goubin’s Arithmetic-to-Boolean Conversion

From Theorem 2, one obtains the following corollary.

Corollary 1 ([Gou01]) For any random γ ∈ F2k , if we assume x′ = (A + r) ⊕ r, we also have x′ =
A⊕ 2γ ⊕ tk−1, where tk−1 can be obtained from the following recursion formula:{

t0 = 2γ
∀i ≥ 0, ti+1 = 2[ti ∧ (A⊕ r)⊕ ω]

(12)



where ω = γ ⊕ (2γ) ∧ (A⊕ r)⊕A ∧ r.

Since the iterative computation of ti contains only XOR and AND operations, it can easily be protected
against first-order attacks. This gives the algorithm below.

Algorithm 7 Goubin A→B Conversion
Input: A, r such that x = A+ r
Output: x′, r such that x′ = x⊕ r
1: γ ← rand(k)
2: T ← 2γ
3: x′ ← γ ⊕ r
4: Ω ← γ ∧ x′
5: x′ ← T ⊕A
6: γ ← γ ⊕ x′
7: γ ← γ ∧ r
8: Ω ← Ω ⊕ γ
9: γ ← T ∧A

10: Ω ← Ω ⊕ γ
11: for j := 1 to k − 1 do
12: γ ← T ∧ r
13: γ ← γ ⊕Ω
14: T ← T ∧A
15: γ ← γ ⊕ T
16: T ← 2γ
17: end for
18: x′ ← x′ ⊕ T

We can see that the total number of operations in the above algorithm is 5k + 5, in addition to
one random number generation. Karroumi et al. recently improved Goubin’s conversion scheme down to
5k + 1 operations [KRJ14]. More precisely they start the loop in (12) from i = 2 instead of i = 1, and
compute t1 directly with a single operation, which decreases the number of operations by 4.

Karroumi et al. also provided an algorithm to compute first-order secure addition on Boolean shares
using Goubin’s recursion formula, requiring 5k + 8 operations and a single random generation. More
precisely, given two sensitive variables x and y masked as x = x1 ⊕ x2 and y = y1 ⊕ y2, their algorithm
computes two shares z1, z2 such that z1 ⊕ z2 = x + y mod 2k using Goubin’s recursion formula (1); we
refer to [KRJ14] for more details.

B Proof of Lemma 1

We consider again recursion (7): {
z0 = b0
∀i ≥ 1, zi = aizi−1 + bi

The recursion for ci is similar when we denote the AND operation by a multiplication, and the XOR
operation by an addition: {

c0 = 0
∀i ≥ 1, ci = ai−1ci−1 + bi−1



Therefore we obtain ci+1 = zi for all i ≥ 0. From the Q(m,n) function given in (8) we define the sequences:

Gi,j := Q
(
j,max(j − 2i + 1, 0)

)
Pi,j :=

j∏
v=max(j−2i+1,0)

av

We show that these sequences satisfy the same recurrence (10) from Section 3.2. From (8) we have the
recurrence for j ≥ 2i−1:

Gi,j =

j∑
u=max(j−2i+1,0)

(
j∏

v=u+1

av

)
bu =

j−2i−1∑
u=max(j−2i+1,0)

(
j∏

v=u+1

av

)
bu +

j∑
u=j−2i−1+1

(
j∏

v=u+1

av

)
bu

=

 j∏
v=j−2i−1+1

av

 j−2i−1∑
u=max(j−2i+1,0)

j−2i−1∏
v=u+1

av

 bu +Q(j, j − 2i−1 + 1)

= Pi−1,j ·Q
(
j − 2i−1,max(j − 2i + 1, 0)

)
+Gi−1,j = Pi−1,j ·Gi−1,j−2i−1 +Gi−1,j

We obtain a similar recurrence for Pi,j when j ≥ 2i−1:

Pi,j =

j∏
v=max(j−2i+1,0)

av =

 j−2i−1∏
v=max(j−2i+1,0)

av

 ·
 j∏

v=j−2i−1+1

av

 = Pi−1,j−2i−1 · Pi−1,j

In summary we obtain for j ≥ 2i−1 the relations:{
Gi,j = Pi−1,j ·Gi−1,j−2i−1 +Gi−1,j

Pi,j = Pi−1,j · Pi−1,j−2i−1

which are exactly the same as (10) from Section 3.2. Moreover for 0 ≤ j < 2i−1, as in Section 3.2, we have
Gi,j = Q(j, 0) = Gi−1,j and Pi,j = Pi−1,j . Finally we have the same initial conditions G0,j = Q(j, j) =
bj = x(j) ∧ y(j) and P0,j = aj = x(j) ⊕ y(j). This proves that the sequence Gi,j defined by (10) in Section
3.2 is such that:

Gi,j = Q
(
j,max(j − 2i + 1, 0)

)
This implies that we have G0,0 = Q(0, 0) = z0 and Gi,j = Q(j, 0) = zj for all 2i−1 ≤ j < 2i. Moreover as
noted initially we have cj+1 = zj for all j ≥ 0. Therefore the recurrence from Section 3.2 indeed computes
the carry signal cj , with c0 = 0, c1 = G0,0 and cj+1 = Gi,j for 2i−1 ≤ j < 2i. This terminates the proof
of Lemma 1. ut


