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Abstract. This paper explores the approximation of addition mod 2n by addition mod 2w, where
1 ≤ w ≤ n, in ARX functions that use large words (e.g., 32-bit words or 64-bit words). Three main areas
are explored. First, pseudo-linear approximations aim to approximate the bits of a w-bit window of the
state after some rounds. Second, the methods used in these approximations are also used to construct
truncated differentials. Third, branch number metrics for diffusion are examined for ARX functions
with large words, and variants of the differential and linear branch number characteristics based on
pseudo-linear methods are introduced. These variants are called effective differential branch number

and effective linear branch number, respectively. Applications of these approximation, differential, and
diffusion evaluation techniques are demonstrated on Threefish-256 and Threefish-512.

1 Introduction

Modern block ciphers are expected to be resilient to linear cryptanalysis [18], which relies on the existence
of linear distinguishers: probabilistic linear relationships over Z2, among plaintext, ciphertext, and key bits.
In order to protect against effective linear cryptanalysis, some block ciphers have employed a combination
of addition modulo 2n, rotation and exclusive-or (ARX), preventing the existence of linear relations over
Z2 among single bits. In this paper, we present pseudo-linear cryptanalysis, which approximates strings of
bits using addition in underlying structures other than Z2 and is hence a more effective analytical tool for
ARX designs. We illustrate the use of pseudo-linear analysis by applying it to the Threefish block cipher of
the Skein design [9], one of five finalists in the SHA-3 competition. The paper also presents metrics for the
evaluation of diffusion in ARX designs, to predict vulnerability to pseudo-linear cryptanalysis. In keeping
with the tradition of linear cryptanalysis and the terminology common in the cryptanalytic community, in
this paper, the words “linear” and “linearity” will refer to linearity over Z2.

ARX designs are simple, efficient and easy to implement. Desktop computers easily support 32-bit words,
and many newer architectures support 64-bit words, all of which leads to cheap and efficient processing.
In addition, the use of addition modulo 2n reduces the memory footprint that may otherwise be used for
substitution box table lookups. Computing the non-linear function in memory is also a means of defense
against memory inspection techniques that look for certain structures in memory, such as lookup tables, to
identify the use of cryptography. ARX-based block ciphers can also be used to design secure hash functions;
in fact, two of the five finalists in the SHA-3 competition were ARX-based. Distinguishers of the block
cipher could be used in hash function analysis to discover preimages and collisions. Given their flexibility
and efficiency, it is expected that ARX designs will continue to be popular. However, the ARX approach has
not been analyzed extensively and any general framework for analyzing ARX functions will have impact on
future cipher designs.

This paper presents an approach to analyzing and measuring the security of ARX-based block ciphers.
Its focus is on the analytical approach in contrast to the “breaking” of a single cipher. The key idea in the
approximation is to examine a window (grouping of contiguous bits) of size w for w < n. We make the follow-
ing simple observations. First, addition modulo 2n on the window can be approximated by addition modulo
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2w. Second, this addition gives a perfect approximation if the carry into the window is estimated correctly.
The probability of correctness of the approximations depends exclusively on the probability distribution of
the carry, and this probability is independent of w; in fact, for uniformly distributed addends it is 1

2 +2−i−1,
where i ≥ 0 is the position of the least significant bit in the window. Third, the probability of correctness
for a random guess of the value of the window decreases exponentially with w; it is 1

2w . Hence, the bias of
the approximation (the difference between the probability of correctness of our approximation and that of a
random guess) increases with w.

When w = 1, pseudo-linear cryptanalysis provides a correctness probability exactly that of linear crypt-
analysis with a bias of 2−i−1, which is small for large i (larger values of i imply the bit being approximated is
more significant). It is hence correct to assume that ARX ciphers are not very vulnerable to traditional linear
cryptanalysis. On the other hand, pseudo-linear cryptanalysis for large w and small i results in a correctness
probability greater than 1

2 for a string of w bits, providing considerable advantage over guessing at random.
This paper presents pseudo-linear cryptanalysis and simple results about the approximations in terms

of w. We show how approximations can be combined over a number of rounds. Because the estimate of the
carries significantly affects the output, one may compensate for mispredicted carries by adding an offset to
the approximated string and looking at an interval around the string. This paper also provides extensions of
the branch number diffusion metric used in the design strategy of the Advanced Encryption Standard (AES)
to better analyze ARX functions that use 32 and 64-bit word sizes. The application of pseudo-linear analysis
and extended diffusion metrics is demonstrated on Threefish-512, the ARX block cipher found in the main
submission of SHA-3 finalist Skein [9]. It is worth noting that pseudo-linear cryptanalysis presumes one of
the weakest adversaries in the literature: the adversary has access to plaintext/ciphertext pairs, but has no
power over the selection of plaintext, ciphertext, or keys, and does not assume any relationships between
samples.

This paper is organized as follows. Section 2 presents related work. Section 3 presents pseudo-linear
cryptanalysis and section 4 demonstrates links with differential cryptanalysis. Section 5 presents diffusion
metrics and section 6 applies all results to the Threefish cipher of the Skein hash function entry to the SHA-3
competition. The conclusion is presented in section 7. Some of this work has been presented at the second
SHA-3 conference [19] and a pre-reviewed version of that paper is available as a technical report [20]. In
addition to the material in that paper, this paper also presents pseudo-linear results on Threefish-512, links
between pseudo-linear and differential cryptanalysis with results on Threefish-512, and an exploration of how
the branch number metric applies to ARX ciphers that perform operations on large words.

Notation: Throughout this paper, the following notation is used.

⊞ addition modulo 2n, where n is the word size in bits
⊞w addition modulo 2w, where 1 ≤ w ≤ n

⊕ exclusive-or
≪r r-bit left word rotation
≫r r-bit right word rotation
x

j
i word i of state x at round j

xi the bit at position 0 ≤ i < n of word x

x(i) bits xi, . . . , x(i+w−1) mod n of word x, for i ≤ 0 < n and 1 ≤ w ≤ n

2 Related Work

Linear cryptanalysis consists of approximating a function using linear expressions. This method was created
to attack DES, and as such, was designed for approximating functions using exclusive-or, or addition modulo
2. An approximation of the relationship among plaintext, ciphertext and key bits would be of the form
p1 ⊕ p2 ⊕ . . . ⊕ pn ⊕ ci ⊕ . . . ⊕ cm = k1 ⊕ . . . ⊕ ks, where each pi is a bit of plaintext, each ci is a bit of
ciphertext, and each ki is a bit of key. Results can be improved using multiple linear approximations to
perform linear cryptanalysis [11]. In recent years, the concept of linear cryptanalysis has been generalized to
encompass non-binary ciphers [2].
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The use of addition mod 2n in cryptographic algorithms has inspired several researchers to study the
linear properties involved in integer addition. The carry function has been shown to be biased, based on
position [29]. In addition to position, addition also has bias properties based on the number of inputs [23].
The probability distribution of the carry function in integer addition with an arbitrary number of inputs
has been investigated[24]. The carry distribution of two neighboring bits during addition modulo 232 – has
also been studied[5]. Nyberg and Wallén have made considerable contributions in linear approximations of
addition and understanding the carry function [23][26][27][28][22][21].

Differential cryptanalysis exploits relations between pairs of inputs, and often requires the adversary
to have power over choosing the plaintext or choosing the ciphertext. That is, the adversary chooses two
message, M and M ′, that are related by some known value, ∆, such that M ′ = M ⊕∆. A generalization
of a differential characteristic called a truncated differential characteristic [14] requires a difference to be
satisfied in a subset of state bits, rather than the entire state. Higher order differentials [14] do not restrict
differences to linear relationships. Higher order differential cryptanalysis extends analysis beyond the first
order derivative[15].

More complex differential attacks, such as boomerang attacks, have been described[25]. Related-key
boomerang attacks have been applied to Threefish, the block cipher in Skein’s [8] compression function
[4][1]. Impossible differential attacks use knowledge of differences that can never happen to learn secret
information.

Rotational cryptanalysis [13] is a recent differential technique based on two properties that always hold,
independent of the cipher.

Pr[
−−−−→
X ⊕ Y =

−→
X ⊕

−→
Y ] = 1

Pr[
−−−−→
X ⊞ Y =

−→
X ⊞

−→
Y ] =

1

4
(1 + 2r−n + 2−r + 2−n)

where
−→
X is a right rotation of n-bit word X by r positions and ⊞ is addition modulo 2n.

This attack requires a very strong adversary who has the ability to manipulate key and data pairs. As
such, the meaning and applicability of this type of attack is not clear. If a block cipher is part of a hash
function, where keys are derived from some portion of the state, this could be a valid attack. As an attack
on a standalone block cipher, however, the model may not be as valid.

A relationship between linear and differential cryptanalysis has been shown [3]. Linear and differential
methods have been combined into a single attack, called Differential-Linear Cryptanalysis[16].

Mod n cryptanalysis[12] is a different sort of partitioning attack that exploits properties in ciphers based
on addition and rotation. One key observation is that addition modulo 2n, where n is the word length in bits,
can be approximated by a smaller word size. A mod 3 attack was shown for RC5P where the distribution of
mod 3 values was distinguishable from a uniform distribution using a χ2 test.

Branch number[6][7] is a metric that gives a lower bound on the diffusion of a transformation. It is part
of the wide-trail strategy that was used to design the Rijndael block cipher – the winner of the Advanced
Encryption Standard (AES) competition — and is now a widely adopted standard. The metric has been
defined for linear and differential trails over any partition [6], as well as a specific type of partition used in
AES[7].

3 Pseudo-Linear Cryptanalysis

Pseudo-linear cryptanalysis aims to overcome limitations of traditional linear cryptanalysis by approximating
addition modulo 2n with addition modulo 2w, 1 ≤ w ≤ n. This differs from linearization (used by linear
cryptanalysis), which approximates the addition with exclusive-or i.e. addition modulo 2.

More specifically, pseudo-linear approximations use addition modulo 2w and exclusive-or over w-bit strings
of contiguous bits (windows). Let part(x, s, e) represent bits of word x in the range [s, e), where 0 ≤ s < n,
0 ≤ e < n, and the least significant bit is at index 0. Note that if e < s, the range will include bits both
above s and below e.

3



Consider the scenario presented in figure 1, where the adversary desires to approximate the middle
byte of word z = 0x68ACF0 in terms of addends x = 0x012345 and y = 0x6789AB. The approximation
part(z, s, e) = part(x, s, e) ⊞w part(y, s, e) is true because the carry into the window is predicted correctly.
However, if x = 0x0123FF, the approximation would not be correct because of the carry into the middle
byte.

0x012345 0x002300

⊞ 0x6789AB→ ⊞ 0x008900

0x68ACF0 0x00AC00

Fig. 1. Approximation of a window of z = x ⊞ y, where x = 0x012345 and y = 0x6789AB.

3.1 Addition Windows: Simple Analytical Results

Properties of addition, such as position-based bias, can be leveraged to increase the accuracy of carry pre-
diction. A simple case to analyze is the addition of n-bit words that are sampled from a uniformly random
distribution.

Consider two n-bit words, x and y, selected uniformly at random, and a window size w < n.

Lemma 1. Let 0 ≤ s < s+w < n. Then Pr[part(x⊞y, s, s+w) = part(x, s, s+w)⊞w part(y, s, s+w)] > 1
2 .

Proof. If there is no carry into bit s, then the equation is true. If there is a carry into bit s, then the equation
is false. For the addition of two s-bit integers, there are 22s−1 + 2s−1 of 22s operand combinations that will
not produce a carry in the output. This is because for each value of x ∈ {0, . . . , 2n− 1}, there are 2s − x− 1

possible values of y ∈ {0, . . . , 2n − 1} such that x + y does not produce a carry, giving
∑2s

i=1 2s − i possible
addend combinations that do not produce a carry. Therefore the probability that the carry into bit s is 0 is
1
2 + 2−s−1, which agrees with the bias presented in [29].

Lemma 2. Pr[part(x ⊞ y, 0, w) = part(x, 0, w) ⊞w part(y, 0, w)] = 1.

Proof. Because this is the least significant window, there are no carry bits into the sum. Therefore the
approximation is always correct.

Corollary 1 Let 0 ≤ s < n and (s + w) mod n < s. Pr[part(x ⊞ y, s, (s + w) mod n) = part(x, s, (s +
w) mod n) ⊞w part(y, s, (s + w) mod n)] > 1

2 .

Proof. The main difference in this case is that the window may wrap around from the higher end of the
n-bit word to the lower end. If the window does not wrap around, this is equivalent to Lemma 1. If it does,
then there is one carry that is not propagated; namely the carry out of the n-bit sum. Split the window in
two: part(x, s, n) ⊞w part(y, s,n) and part(x, 0, (s + w) mod n) ⊞w part(y, 0, (s + w) mod n). The first sum is
true by Lemma 1 and the second is true by Lemma 2.

Corollary 2 Pr[part(x⊟ y, s, (s+w) mod n) = part(x, s, (s+w) mod n)⊟w part(y, s, (s+w) mod n)] > 1
2 .

Proof. Let x ⊟ y = z. Then y ⊞ z = x, and part(y ⊞ z, s, (s + w) mod n) = part(y, s, (s + w) mod n) ⊞w

part(z, s, (s+w) mod n) with probability greater than 1
2 by Corollary 1. Then we have part(x, s, (s+w) mod

n) = part(y, s, (s + w) mod n) ⊞ part(z, s, (s + w) mod n), which is the same as part(x, s, (s + w) mod n) ⊟

part(y, s, (s + w) mod n) = part(z, s, (s + w) mod n), with probability greater than 1
2 .

Lemma 3. Pr[part(x ⊕ y, s, (s + w) mod n) = part(x, s, (s + w) mod n)⊕ part(y, s, (s + w) mod n)] = 1.
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Proof. This follows directly from the bitwise nature of exclusive-or.

Using these equations, one can easily approximate windows derived from a single addition. However, this
is not a realistic scenario for approximations over an iterated cipher. After the first approximated addition,
the input distribution of all subsequent additions changes. In particular, the distribution is dependent on the
input distribution of the operand bits preceding the target window. To see how the distribution may change,
consider the equation z = x ⊞ y. Suppose we are interested in approximating the window of z starting with
the third least significant bit, and assume that x and y are selected at random from the uniform distribution.
Since the carry into the addition window depends on the preceding bits, the distribution of all bits preceding
the target window are important. These bits are also considered unknown if they are not a part of the
approximation.

Suppose there were no carry into the addition window. Ten of the sixteen possible input combinations
produce this result. The possible values for (z0, z1) are found in table 1, along with the probability of
occurrence and the operands that produce each of the values. The distribution is clearly no longer uniform,
and is biased towards larger values.

z1 z0 x1 x0 y1 y0 Probability

0 0 0 0 0 0 1/10

0 1 0 0 0 1 2/10
0 1 0 0

1 0 0 0 1 0 3/10
0 1 0 1
1 0 0 0

1 1 0 0 1 1 4/10
0 1 1 0
1 0 0 1
1 1 0 0

Table 1. Possible values for bits of x, y, and z preceding
the target window z(2) - no carry into addition window

z1 z0 x1 x0 y1 y0 Probability

0 0 1 1 0 1 1/2
1 0 1 0
0 1 1 1

0 1 1 1 1 0 1/3
1 0 1 1

1 0 1 1 1 1 1/6
Table 2. Possible values for bits of x, y, and z preceding
target window z(2) - carry into addition window

Now suppose that there was a carry into the addition window. Six operand combinations produce this
result. The possible values for (z0, z1) are found in table 2, along with the probability of occurrence and
operands that produce those values. Again, z0 and z1 do not belong to the uniform distribution. Unlike the
previous case, the values are now biased towards smaller values.

This can be understood more generally as follows. If integer addends X and Y , both in [0, n − 1], are
added, the distribution of the result is the discrete convolution of the distributions of X and Y , and it takes
on values in [0, 2n− 2]. Further, if the distributions on X and Y are both uniform, then the probability of
the sum increases linearly from its smallest value of 1

n2 at the value 0 to a maximum at n − 1 and then
decreases linearly to 1

n2 at the maximum value of the sum, 2n− 1. This may be understood by noting that
many combinations of values x and y of the addends X and Y will give a sum of n−1, while only one pair of
x and y give each of the values 0 and 2n− 2. Thus, if one looks at the variable z, the remainder of the sum
modulo n, the value n− 1 has the largest probability, and it only occurs when the carry is zero, i.e. z < n.
Further, when z ≥ n (the carry is one) the largest value of the remainder (n− 2, corresponding to the sum
of 2n−2) has the smallest probability, and the probability increases as the value of the remainder decreases,
while the converse is true when the carry is one (see Figure 2). Thus, when addends are themselves the
result of an addition, their distribution depends on the carry of the previous addition. In particular, after
one addition of uniformly distributed values, the carry is slightly more likely to be zero than one. On adding
two values, each the result of an addition of two uniformly distributed values, the result is more likely than
not to produce a carry. Thus, while a zero carry is more likely when adding two uniformly distributed values,
a sequence of zero carries for a sequence of additions is not always an optimal guess.
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Fig. 2. Carries and addend distribution

3.2 Creating Approximations

Three aspects of the pseudo-linear approach are important.

Base Approximation The simplest approximation is formed by deriving the target window in terms of all
the windows it depends on. All exclusive-or operations are preserved. Addition modulo 2n operations are
preserved as well, but the addends are incomplete. After each addition, bits outside the active windows are
cleared (set to zero). For each unknown carry into a window, no carry is assumed.

Carry Patterns A carry pattern is a series of carry values, ci ∈ {0, 1}, where each i denotes an approximated
addition window that may have a carry into it. Stated differently, there is a ci for every approximated
addition window that does not start with the least significant bit of the word. One can construct multiple
carry patterns that overlay the base approximation such that 1 is added to approximated addition window
i if ci = 1.

Let Cj = (c0 . . . cm−1) represent the carry pattern for m approximated addition windows. Then each base
approximation overlaid with a distinct carry pattern, base + Cj , represents a distinct approximation. By
applying several carry patterns to the same input/output pairs and obtaining several likely approximations,
one can increase the probability of hitting upon the correct one, which in turn increases the bias.

The best carry pattern for a particular set of plaintexts depends on the input distribution. For example,
the carry pattern for low Hamming-weight inputs will have fewer carries than for high Hamming-weight
inputs. Note that this knowledge could potentially be used to find the Hamming weight of keys.

Offsets Another method of compensating for mispredicted carries is through the use of offsets. Recall that
the central limit theorem says that probability distribution function of the sum of many random variables
tends towards the gaussian function. We hence expect that the final values will be gaussian distributed about
a mean, and that, in fact, strings close to the mean will be more likely to be correct than those away. While
the expressions get complicated too quickly for a theoretical analysis, we see this is true in simulations,
and it justifies the use of an integer offset∈ {0, · · · , 2w−1 − 1} which is added to and subtracted from an
approximated window value, approx. If every valid value of offset is tried and the number of observed correct
guesses are plotted, the result is a bell-shaped curve with a peak at offset = 0, like the one shown in figure
3. The horizontal line shows the probability of guessing correctly at random (in this case, 1

256 ).
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Fig. 3. An example: observed probability of correctly guessing window of ARX target over several offsets. Plot created
with window isolation (section 3.4), the base approximation presented in section 6.1, and w = 8. Further details in
section 6.

Computing Bias The improvements outlined above increase the probability of the approximation being
correct, but also increase the probability of guessing correctly at random. That is, a random guess with
cp different carry patterns will be correct with probability cp

2w instead of 1
2w since each pattern represents a

different approximation. Therefore, we need to adjust the bias calculation when using multiple carry patterns
and/or offsets. Let T be the number of times the guess is correct, and P be the number of plaintext-ciphertext
pairs. Let cp be the number of patterns used, and let f be the offset. Then the bias is calculated according
to equation 1.

bias = T −
cp(2f + 1)

2w
P (1)

3.3 Comparison to Linear Cryptanalysis

The main advantage of pseudo-linear cryptanalysis when compared with linear cryptanalysis is that it allows
the adversary to create approximations that have higher bias than those that could be achieved by only
considering approximations in the boolean vector space.

Another significant advantage is that pseudo-linear analysis leads to flexible approximations. Once a base
approximation has been established, it can easily be modified through the use of offsets and carry patterns to
accommodate different scenarios. For example, a change in the input distribution does not require a change
to the base approximation, only a change to the carry pattern and/or offsets. It is also trivial to change
the window size, since only the position of the least significant bit of the window is important. The most
significant bit can be computed dynamically based on the desired w.

There are disadvantages that come with this method as well. The most notable is that approximations do
not use a function of the key bits (such as the parity of some bits in linear cryptanalysis) but use the key bits
themselves. As a result, pseudo-linear cryptanalysis has a higher attack complexity than linear cryptanalysis.
This is because the two operations — exclusive-or and addition modulo 2w — do not distribute. Because
of this, one cannot combine all key bits in an approximation into a single function of the key. With linear
cryptanalysis, on the other hand, the use of a single operation — exclusive-or — allows all key bits in an
approximation to be combined into a single function of key bits. Pseudo-linear approximation requires the
adversary to try all key bits used in the approximation. Even so, one can obtain attacks more efficient than
brute force because pseudo-linear approximations enable us to reduce the number of key bits from those
required by the cipher. One can approximate one of exclusive-or and addition modulo 2w using the other,
but this only works reasonably well when w is small, which is precisely when pseudo-linear approximations
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provide the weakest assistance. The larger w is, the less accurate approximating addition modulo 2w with
exclusive-or (or visa versa) becomes.

3.4 Implementation Methods

There are two implementations of pseudo-linear approximations over ARX functions that are demonstrated
here.

1. Each window stored in its own word (window isolation)
2. All windows for a word stored in the same word (word isolation)

The first is useful for developing approximations, but the latter is much better in practice. This is because
the first case provides a way to isolate windows that simplifies the debugging process. However, when windows
are adjacent or overlap, there is carry information that is not used due to the high level of isolation. It also
becomes possible for a single bit to take on multiple values in multiple windows, which is clearly not correct
and will reduce the bias. In the second method, bits may no longer take on multiple values, and the attacker
can take advantage of the extra carry information to obtain stronger biases.

The first approach also has another drawback. Because there is an addition performed for each addition
window, the number of additions increases rapidly with each round. The second method uses at most twice
the number of additions (1 for word addition, 1 for carry addition).

It is also essential that window position is preserved. When an addition is performed on windows that wrap
around a word, it is important that the carry out of position n− 1 is not propagated. Both implementation
methods respect this. We stored windows in 64-bit words (regardless of isolation) in the following manner.
The bits in a window were set to their correct value in the corresponding position, and all other bits set to
0. Let x(i) indicate the window beginning at position i in word x, and consider 64-bit words. With window
isolation, x(8) =0x2E would be represented as 00000000 00002E00, and all other windows would have their
own distinct 64-bit word. With word isolation and two 16-bit windows, x(8) = 0x5678 and x(40) = 0x1234,
the word would be represented as 00123400 00567800.

When using word isolation, the inactive bits may all be set to zero after each addition. Alternatively,
they may remain after all operations, and be used throughout the cipher. The latter may be difficult to
implement correctly depending on the method of deciding whether or not to add 1 when a carry is guessed.
The first approach has been found to be more beneficial overall, although there were drops in bias at certain
w values.

4 Truncated Differentials

Pseudo-linear methods are directly applicable to truncated differential attacks. A typical differential attack
relies on differential characteristics, which are sequences of input and output differences over one or multiple
rounds. A differential trail can be created by chaining characteristics to cover more rounds.

Pseudo-linear approximations can be used to discover differential trails – particularly truncated differen-
tial trails. Unlike a traditional differential which uses the entire state, a truncated differential works with a
portion of the state. A common practice in differential calculation is to linearize the function (replace addi-
tion/subtraction modulo 2n with exclusive-or). We propose to eliminate the linearization step and instead
follow the differentials in windows.

Lemma 4. Let x and x′ be two n-bit words, x′ ⊕ x = δ, x > x′. Let w be the window size in bits. Then
Pr[part(x − x′, s, (s + w) mod n) = part(x, s, (s + w) mod n) ⊟w part(x′, s, (s + w) mod n)] > 1

2

Proof. This follows directly from Corollary 2.

Figure 4 depicts a simple ARX function with a 1-bit difference in one of the words. The windows in the
trace are highlighted in grey, with the difference labeled on top. In this example, the left word contains a
1-bit difference inside a window. There are no differences in the windows on the right. After one application
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Fig. 4. Simple view of tracing differences

of addition, rotation, and exclusive-or, there is a 1-bit difference in the left window and in the right window,
with some probability. After another addition, there is still a 1-bit difference, with some probability.

The differences can be traced from word to word throughout the function. How a difference in the
input affects each window in the trace depends on the location of the differences relative to the windows.
In particular, a difference occurring in less significant bits than a window has less impact as the distance
between the start of the window and the difference increases. This is because the probability of the difference
introduced by the carry function propagating to the window decreases as the distance between the difference
and the window increases.

Consider the example in figure 4, but allow the possibility that there are differences outside the window
which are possibly unknown. If the input difference of the left word is 11112, the difference of the addition
will propagate differently than than if the input difference is 10002. If the window begins at the fourth least
significant bit, then both result in a difference inside the window of 1, but the differences before the window
produce different carry distributions, thereby affecting the difference propagation inside the window. If the
window begins much farther away from other differences, then the impact will be smaller. For example, if
the window began in position 32, and the difference outside the window only occurred in the least significant
bit, then the probability of that difference affecting the window after one addition is much smaller because
the probability of the carry function reaching that far is much smaller.

4.1 Difference in Addition

We now investigate how different operators affect the trail. First, consider how differences affect the approx-
imation addition modulo 2w.

Difference in one addend Let us start by considering two n-bit words, x and x′, x′ = x⊕ 1, and a third
word y. When z = x ⊞ y and z′ = x′ ⊞ y, there is a difference in the first addend, but there is no difference
in the second addend. We can say something about the resulting difference z ⊕ z′.

The simplest claim we can make is that the last bit of z ⊕ z′ is the same as the last bit of x⊕ x′. When
x ⊕ x′ is even, this claim is straightforward. When x ⊕ x′ is odd, this may be deduced as follows. Without
loss of generality, let x be even and x′ be odd, such that x⊕ x′ is odd. If y0 (the least significant bit of y) is
0, then z0 = 0 and z′0 = 1. If y0 = 1, then z0 = 1 and z′0 = 0. In both cases, z ⊕ z′ = 1.

More interesting to consider is how carries propagate. In particular, there are cases where strings of ones
can be created or broken due carries. To see this, let us examine z′. Suppose x⊕x′ = 1 and that y is selected
from the uniform distribution at random. Then pr[z′0 = 0] = 1

2 . If y0 = 1, then carry0 = 1 and z′1 = z1.
Similarly, if carry1 = 1 then z′2 = z2. This continues until carryi = 0. All of the other bits are the same in
both x0 and x′

0 for bits i + 1, . . . , n− 1, and therefore produce the same values going forward. This can be
generalized for a difference starting in any bit position.
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If the input difference has a run of multiple ones (e.g. 3, 7, F, but not 1), some of the ones may turn to
zeros in the output difference. For example, let x = 11112 and x′ = 11002, giving x⊕x′ = 112. Let y = 11012.

1 1 1 1 1 1 0 0
⊞ 1 1 0 1 ⊞ 1 1 0 1

1 1 0 0 1 0 0 1

For x⊞y, carries result from positions 0, 1, and 2. For x′⊞y, carries result from position 2 only. The resulting
difference characteristic here is ∆ = 00112 → δ = 01012, and the string of ones is broken.

In both addends It may be the case that both addends have difference patterns. For example, let x′ = x⊕∆,
and y′ = y ⊕ Γ . Addition is performed as z = x ⊞ y, and z′ = x′ ⊞ y′, and z ⊕ z′ = δ for some value δ.

While the structure of the output difference is going to vary greatly by input differences, one can easily
say something about the least significant bit of the difference pattern.

Consider some difference pattern 000XXX000 in ∆ and Γ where X marks a possibly nonzero difference.
Since there is no difference coming into the bits marked by X, the carry function into that region behaves the
same way in both additions. Therefore we eliminate the zero regions from consideration and only consider
XXX. One can say something about the least significant bit of XXX based on the least significant bit of the
input difference patterns.

Lemma 5. If both inputs have an even (odd) difference pattern, then the sum will have an even difference
pattern. If one input has an odd difference pattern and the other an even difference pattern, then the sum
will have an odd difference pattern.

Proof. Let the function lsb(d) return the least significant bit of the difference window. If the difference in
both input windows is even, lsb(x) = lsb(x′) and lsb(y) = lsb(y′). Hence,

lsb(z)⊕ lsb(z′) = (lsb(x)⊕ lsb(y))⊕ (lsb(x′)⊕ lsb(y′)) = (lsb(x)⊕ lsb(x′))⊕ (lsb(y)⊕ lsb(y′)) = 0

Now suppose the difference in both input windows is odd, so lsb(x) = lsb(x′) and lsb(y) = lsb(y′). Hence,

lsb(z)⊕ lsb(z′) = (lsb(x)⊕ lsb(y))⊕ (lsb(x′)⊕ lsb(y′)) = (lsb(x)⊕ lsb(x′))⊕ (lsb(y)⊕ lsb(y′)) = 1⊕ 1 = 0

Finally, suppose one addend has an odd difference pattern and the other an even difference pattern.
Without loss of generality suppose lsb(x) = lsb(x′) and lsb(y) = lsb(y′). Hence:

lsb(z)⊕ lsb(z′) = (lsb(x)⊕ lsb(y))⊕ (lsb(x′)⊕ lsb(y′)) = (lsb(x)⊕ lsb(x′))⊕ (lsb(y)⊕ lsb(y′)) = 0⊕ 1 = 1

4.2 Difference in Exclusive-Or

When a difference occurs in only one of the operands, that difference is preserved by exclusive-or. Consider
n-bit words a, a′ = a⊕∆, and b, and let c = a⊕ b and c′ = a′ ⊕ b. Then a′ ⊕ b = a⊕∆⊕ b→ c′ ⊕ c = ∆.

4.3 Differences Over Round Functions

The simplest cases to analyze are those with low Hamming weight differences. Consider x′ = x ⊕ 2i, i ∈
{0, . . . , n− 1}.

The difference characteristics between rounds can be traced by following the effect of the carry. The input
difference will affect the differential in varying ways depending on its position. For example, cryptanalysts
have placed the difference in the most significant bit of a word, since this minimizes the effect of the carry.
This is because during an addition operation, no combination of addends will produce a carry out of that bit
due to modular addition. In other words, addition of the most significant bit of a word behaves like exclusive-
or in addition modulo 2n. However, this practice becomes ineffective after some time as the rotation will
move the difference to a position where the carry will matter. That is, a difference that was outside the target
and thus was ignored should eventually affect the target window as the trail covers more rounds because the
rotation will move the difference bits into a position that affects the window. Note that this may not be true
when rotation amounts are poorly selected.
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4.4 Windows and Truncated Differentials

A differential trail, truncated or otherwise, typically covers r − 1 of r rounds. The adversary chooses inputs
P and P ⊕∆, and receives their encryptions C and C′. Next, the adversary guesses portions of the key that
are needed to compute the target window (where the target difference occurs), and backs up one round to
obtain T and T ′. If T ⊕ T ′ = δ, where δ is the target difference, then increment a counter for those key bit
values. At the end, the guessed key bits that produced T ⊕ T ′ = δ at the expected rate are the most likely
candidates.

Windowing is used differently for differentials than for pseudo-linear approximations. This is because
higher accuracy is required when working with differentials. Specifically, target windows should be formed
such that no subtraction is left to chance. The word should be covered from the least significant bit to the
highest position across all relevant windows so that all borrows are known.

One strategy is to start with small windows, say w = 4. Once all the bits involved with that window size
have been found, increase w. The window position does not change, but more of the unknowns are slowly
added to the windows. This proceeds until all n bits of a key word are active and the entire word has been
guessed, or the correct key is no longer distinguishable from incorrect keys. This can happen if all the new
key bits guessed do not change the probability of resulting in the target difference. Note that the difference
in a word is the difference over the entire n bit word, where inactive bits are zero.

5 Evaluating ARX Functions

Diffusion in ARX is achieved primarily through rotation, and secondarily by the carry function of the
addition. There is little work which describes how to construct a good round function, and how to determine
how good an existing round function is. Branch number is a metric currently in use, and was used in the
design strategy for the Advanced Encryption Standard (AES) [7].

5.1 Branch Numbers

The differential branch number and linear branch number metrics are measures of diffusion that apply to
any mapping. Here, their use is restricted to the context of key-alternating round functions. Branch numbers
provide lower bounds for the amount of diffusion in a round function, allowing simpler analysis of the weight
(or probability) of a trail over several rounds. The metrics have been defined for any partition [6], as well as
a specific type of partition [7]. In [7], branch numbers are defined as part of an m-bit partition of the state,
consisting of bundles. Bundles are adjacent and do not overlap, such that the state is divided into nb bundles
and nbm is the size of the state in bits.

A bundle is called active when it is part of a differential or linear trail. That is, when a difference or
selection pattern is non-zero for that bundle in a differential or linear trail, respectively. The bundle weight
of a state is defined as the number of active bundles in that state. The bundle weight of state a is written
wb(a).

Branch number metrics are defined differently for differential and linear trails [7]. As the number of
rounds increases, the branch number becomes more complex and difficult to reason about. However, it has
been shown that properties of round functions can be derived by looking at two-round trails, and viewing
2r rounds as a sequence of r two-round trails[7]. Therefore, only two-round trails will be discussed here.

For input vectors a and b, the differential branch number for round transformation φ is defined as [7]:

Bd(φ) = min
a,b6=a

{wb(a⊕ b) + wb(φ(a)⊕ φ(b))} (2)

Generally speaking, this is the minimum bundle weight of the input difference to φ added to that of the
output difference of φ. This is meaningful because it provides a lower bound on the propagation of the input
difference pattern to the output of φ, and thus illustrates a lower bound on the diffusion of a single bundle
or set of bundles.
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Linear branch number is similar. For an input selection pattern α, output selection pattern β, correlation
function C(.), and input x, the linear branch number of a round transformation φ is defined as [7]:

Bl(φ) = min
α,β,C(αT x,βT φ(x)) 6=0

{wb(α) + wb(β)} (3)

Generally speaking, this is the minimum of the sum of bundle weights for the inputs and outputs of φ over
all selection masks, where the active input and output to the φ function are correlated.

Branch Numbers in ARX This metric works well for states that are comprised of a sufficient number
of bundles. However, diffusion in ARX round functions comprised of few large bundles (e.g., four 32-bit or
64-bit words) may be difficult to accurately capture with this metric.

To see why, consider the scenario in figure 5, where two round transformations have approximately the
same amount of diffusion, but one round function is an SPN that operates on bytes (figure 5(a)) and the
other is an ARX function using 32-bit words (figure 5(b)). In both round functions, the same bits are part
of a linear or differential trail. Portions of the state (byte or word) that contain at least one bit of the trail
are called active, and are colored grey in figure 5. When operations are performed in 32-bit words, each word
covers four bytes. As a result, all of state 1 appears active in 5(b), whereas only 3

8 of state 1 is active in
5(a). Similarly, 5

8 of state 2 is active in figure 5(a), while again being completely active in figure 5(b). In
this example, it appears that the diffusion is far better in 5(b), when it really is not. A state composed of
few large words can produce branch numbers that are misleading.

round transformation

round transformation

state 0

state 1

state 2

(a) 8-bit operations

round transformation

round transformation

state 0

state 1

state 2

(b) 32-bit operations

Fig. 5. Trail in two transformations with approximately the same amount of diffusion

We propose two approaches to more accurately measure diffusion in this type of round function. The
first proposal is based on the idea of breaking large words into smaller ones, and modeling addition as data
dependent substitution boxes. The second approach leverages concepts of pseudo-linear analysis.

S-Box Representation Addition modulo 2n can be represented as a series of smaller data-dependent
substitution boxes, as shown in figure 6. There are two kinds of S-boxes:

S0: ai = ai + bi

S1: ai = ai + bi + 1

Each bundle may be thought of as a window. Starting with the least significant window, apply S0 to a0.
Note that the result is also dependent on the bundle b0. Moving from the least significant bundle towards
the most significant bundle, use S0(ai) when there is not a carry out of the previous bundle addition. When
there is a carry out of the previous bundle addition, S1(ai) is used. This gives the same result as the original
function.
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Fig. 6. S-box representation of an ARX function Fig. 7. Threefish mix function; rotation varies by
state and position

A bundle is not considered active in a differential trail unless there is a non-zero difference in the input
to the corresponding S-box. That is, if there is a non-zero difference in the input of an S-box step, but one
input is to S0 and the other is to S1, the bundle will not be considered active. The rationale for this is that
branch number provides a lower bound, so only the minimum number of S-boxes affected is considered here.

Alternate Metric Pseudo-linear analysis lends itself to another possibility for application of the branch
number metrics. If the restriction that bundles be non-overlapping adjacent portions of the state were re-
moved, then bundles would strongly resemble windows in a pseudo-linear system. In fact, when this restriction
is removed, pseudo-linear approximations are directly applicable to the bundles to trace dependencies and
influence. It is this idea that motivates an alternate metric for diffusion in ARX rounds, called effective
branch number.

The very first step is to determine the proper window (bundle) size. In pseudo-linear cryptanalysis, the
bounds on window size w are defined as 1 ≤ w < n.

Just as the original branch number metrics used bundle weight, these variants use effective bundle weight,
denoted ewb. Effective bundle weight is calculated as the ceiling of the total number of active bits divided
by the bundle size.

Example 1. Consider a round function and approximation with five active input windows, but all five win-
dows start one bit off from another. That is, we have windows starting in positions i, i + 1, i + 2, i + 3, and
i + 4. The only bits that are not contained in multiple windows are the first bit of window x(i) and the last
bit of window x(i + 4). The bit range covered by these windows is [i . . . i + 4 + w). The number of state bits
in this range is 4 + w.

If w = 2, then the effective bundle weight is ⌈ 62⌉ = 3. If w = 4, then the effective bundle weight is ⌈ 84⌉ = 2.
If w = 8, then the effective bundle weight is ⌈ 128 ⌉ = 2.

The definitions for linear and differential effective branch number are simple extensions of the branch
number metrics from [7]. They only differ in that effective bundle weight is used in place of bundle weight.
We denote the differential effective branch number as EBd and pseudo-linear effective branch number as
EBpl.

Over two-round trails, the differential effective branch number of a transformation φ is derived by equation
4. Recall from equation 2 that a and b are input vectors to the first round, and φ(a)⊕ φ(b) is the difference
at the input to the second round.

EBd(φ) = min
a,b6=a,w

{ewb(a⊕ b) + ewb(φ(a) ⊕ φ(b))} (4)

Similarly, the pseudo-linear effective branch number of a transformation φ is derived by equation 5. The
selection mask of the input to the first round is α, the selection mask at the input to the second round is
β, and C(.) is a correlation function over the masks and an input vector, x. Note that the linear effective
branch number is the pseudo-linear effective branch number where w = 1.
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EBpl(φ) = min
α,β,C(αT x,βT φ(x)) 6=0,w

{ewb(α) + ewb(β)} (5)

The matter of selecting an appropriate w has yet to be addressed. The minimum useful window size is
that which allows a round function to be distinguished from a random permutation. This in turn depends on
the number of additions required to compute a target window, denoted by n⊞. If windows do not overlap,
then the effective branch number should be equivalent to the branch number calculations of [7]. To satisfy
this requirement, w should divide the number of bits in the state. Thus, for state width that is a power of 2,
let w = 2⌊lg(n⊞)⌋. Note that only the additions occurring in the key-independent portion of a round function
should be used to derive the appropriate w.

6 Application: Threefish

Threefish[8] is the tweakable[17] block cipher inside the compression function of SHA-3 finalist Skein[10].
Two variants are discussed here: Threefish-256 and Threefish-512. The state and key are comprised of 64-bit
words, where there are B bits in the state and the key of Threefish-B. The cipher consists of 72 rounds,
where each round contains two main steps: mix and permute.

The mix function, shown in figure 7, is an ARX function where addition is performed modulo 264 and
the rotation depends on the mix inputs and round. Each mix is numbered by 0, 1, 2, or 3, where each
is computed as mix0(x0, x1), mix1(x2, x3), mix2(x4, x5), and mix3(x6, x7), in Threefish-512. Threefish-256
requires only mix0(x0, x1) and mix1(x2, x3).

The rotational values for each mix in each round can be found in tables 3 and 4.

Round mod 8 Mix 0 Mix 1

0 5 56

1 36 28

2 13 46

3 58 44

4 26 20

5 53 35

6 11 42

7 59 50

Table 3. Threefish-256 Rotation Constants (round 2)

Round mod 8 Mix 0 Mix 1 Mix 2 Mix 3

0 46 36 19 37

1 33 27 14 42

2 17 49 36 39

3 44 9 54 56

4 39 30 34 24

5 13 50 10 17

6 25 29 39 43

7 8 35 56 22

Table 4. Threefish-512 Rotation Constants (round 2)

The permutation step of the round function is straightforward. Each 64-bit word is mapped to another
position according to the mapping, π, given in table 6. That is, xi ← xπ(i).

i 0 1 2 3

π(i) 0 3 2 1
Table 5. Threefish-256 Permutation, π

i 0 1 2 3 4 5 6 7

π(i) 2 1 4 7 6 5 0 3
Table 6. Threefish-512 Permutation, π

Every four rounds, a round key is injected via addition modulo 264. Threefish has a simple key schedule
that is quick to compute and has a small footprint. The secret key is 256 bits for Threefish-256 and 512 bits
for Threefish-512, organized as four and eight 64-bit words, respectively. Let N denote the number of 64-bit
words in the key and state. The exclusive-or of all N words and a constant form an additional key word, the
parity word N + 1. In addition to the N + 1 key words, there are three tweak words. Two tweak words, t0
and t1, are given as input and the third tweak word, t2, is the result of t0 ⊕ t1. In the hash function, these
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words store information about what has been done so far (bits processed, level in the hash tree, etc.). No
structure of the tweak words is assumed when the cipher is considered on its own.

The Threefish key schedule is given by equations 6-9, where constant is a constant that was changed
between the first [8] and final [10] submissions to NIST. For the purpose of this work, the value of the
constant is not relevant1. Therefore, it is left as a variable to include all submitted versions of the algorithm.
RKi is round key i ∈ {0, . . . , 18}, where RK0 is the whitening key. Each round key is derived from the N +1
key words (denoted kj , j ∈ {0, . . . , 8}) and three tweak words (t0, t1, t2).

kN = constant⊕
N−1
⊕

i=0

ki (6)

t2 = t0 ⊕ t1 (7)

Round key i for Threefish-256 is derived by

RKi = ki mod 5||k(i+1) mod 5 + ti mod 3||k(i+2) mod 5 + t(i+1) mod 3||k(i+3) mod 5 + i (8)

Similarly, the key schedule for Threefish-512 is expressed by

RKi = ki mod 9||k(i+1) mod 9||k(i+2) mod 9||k(i+3) mod 9||k(i+4) mod 9 (9)

||k(i+5) mod 9 + ti mod 3||k(i+6) mod 9 + t(i+1) mod 3||k(i+7) mod 9 + i

6.1 Pseudo-Linear Attacks on Threefish-256

Approximation Over Modified 8 Rounds The application of pseudo-linear attacks to a modified version
of Threefish-256 is presented in this section. The modified version has a fixed tweak schedule of zero, is reduced
to 8 rounds, and does not include the injection of a whitening key. This approximation covers the modified
cipher from the key injection of round 4 to the key injection at round 8, inclusive.

Let xi denote the ith word of the plaintext and x
j
i the ith word after round j. Let x

j
i (m) denote the

window of word x
j
i with its least significant bit in position m. That is, x

j
i (m) = part(xj

i , m, (m+w) mod 64).

When a single word contains multiple active windows, a0 . . . am, let x
j
i (a0, . . . , am) be the same as

x
j
i (a0), . . . , x

j
i (am). Ki(m) denotes the window starting at position m of the ith word of the key schedule.

The approximation for x8
0(0) is presented in figure 8. The active addition windows are listed to the upper

left of each ⊞ symbol. rotl(r) represents a left rotation by r bits of a 64-bit string.
Computations before the fourth round key addition can be performed by following the cipher operations,

and are not included here. The number of key bits needed in this approximation depends on the window
size. For example, w = 3 requires 58 key bits, w = 4 requires 75 key bits, and w = 5 requires 92 key bits.

Empirical results for bias were obtained with varying window sizes, using 20,000,000 pseudorandomly
generated (data, key) pairs and tweak schedule fixed to 0. This methodology is based on the one used in
the original Skein submission to the SHA-3 competition [8], where differential biases were computed using
20,000,000 pseudorandom (data, key, tweak) tuples.

As mentioned in section 3.4, there were two methods of implementation used – the less efficient and less
accurate but easier to debug window isolation, and the more accurate and more efficient but more difficult
to debug word isolation.

For simplicity, a carry pattern Ci is represented as an array Ci
jk, where j is the round number and k is

the word number. In these experiments, if a word k of round j contained multiple windows, the same carry
guess Ci

jk was applied to all of those windows.

1 This is in contrast to rotational cryptanalysis, which is a differential technique that relies the same properties of
the carry functions as this work. The original constant of repeated bytes only had two values under all rotations,
and was changed to prevent rotational cryptanalysis of Threefish.
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Fig. 8. Approximation for x8

0(0), without whitening

Fig. 9. Approximation for 12 rounds, meeting at
x10

0 (0), without whitening
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Fig. 11. x8

0(0) approximation with word isolation and
different carry patterns (cp)

Figure 10 demonstrates the effect of offsets on an approximation, with both the correct and incorrect
key values, where observed bias is computed according to equation 1. Offsets increase the probability of
correctness for wrong values considerably because they also result in larger solution sets. On the other hand,
correct values continue to have a higher bias on average. The same is true when multiple carry patterns
are used, and the resulting solution set consists of all the solutions resulting from the carry patterns used.
Figure 10 also shows that there is a maximum bias that can be achieved with window isolation, where the
maximum probability of correctness is strictly smaller than 1.

Figure 11 presents some results obtained using word isolation and offset=0. It demonstrates that word
isolation provides better results, as expected, and that the correctness probability grows to 1 as w increases.
This causes the bias to approach 1, since the probability of correctness for a random guess drops closer to
zero as w increases. Finally, it shows how different carry patterns can affect the approximation. The two
carry patterns used here were:

C0
j k = 0, C1

j k =

{

0 if j is even
1 if j is odd

When a large enough number of key bits is to be guessed, the bias values for different carry patterns converge
(here, this happens at w = 12). If multiple carry patterns are used together, as they were here, the resulting
bias may be smaller than the bias obtained by using a single, stronger carry pattern.

Approximation Over Modified 12 Rounds The application of pseudo-linear attacks to a modified
version of Threefish-256 is presented in this section. The modified version has a fixed tweak schedule of zero,
is reduced to 12 rounds, and does not include the injection of a whitening key. This approximation covers
the modified cipher from the key injection of round 4 to the key injection at round 12, inclusive.

Figure 12 contains results from the 12 round approximation with carry pattern C1 and different offsets
using word isolation. It shows that the correct key bits are indistinguishable for w < 5. With w = 5, 232 of
256 bits of key are involved in the approximation.

To demonstrate key recovery using pseudo-linear approximations, a smaller attack was performed with
the 8 round approximation for x8

0(0). Again, this gives an attack on 11 rounds of Threefish-256, since there
is not another key injection until round 12.
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0 1 2 3 4 5 6 7 8
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

ob
se

rv
ed

 b
ia

s

offset

 

 

w=1 (linear)
w=5
w=6
w=7

Fig. 13. Observed bias for Threefish-512 8 round dis-
tinguisher

If w = 3, then the attack on 11 rounds requires 58 bits of key (as compared to 256 bits for a brute force
attack) to be guessed. Without expending too much energy on computation, in order to observe the kinds
of errors that might result, we attempted to determine 18 key bits assuming that the other 40 were known.

Because the carry function is difficult to determine with incomplete knowledge of the operands, the
correct value of the key is not always among the top few candidates. In these experiments, the goal was
to eliminate 90% of the possible key values, with the correct value in the remaining 10%. We ran 500
independent key recovery attacks, each with a pseudorandomly generated key and 10,000 pseudorandomly
generated plaintexts. The results are summarized in table 7, where we note when the correct key value has
the maximum bias, as well as when the correct value is in the top 10% of key estimates ranked by bias.

offset=0 offset=1 offset=2 offset=3

correct 11% 12.2% 14.4% 7.2%

in top 10% 92.6% 97.4% 96.8% 92.2%
Table 7. 500 attacks, 10,000 pairs

Key Recovery These approximations can be used for key recovery with known plaintext and ciphertext.
Because there is no key injection in rounds 15 through 13, the output of round 15 can be decrypted to derive
the output of round 12 correctly. The input up to the fourth round key injection can also be computed
precisely because the modified cipher does not include the whitening key injection. In this scenario, the 12
round approximation could be used to determine some of the key bits from 15 rounds.

These results show that it is possible to eliminate many of the incorrect values while keeping the correct
key bits with high probability, using only a portion of the key. While a larger value of the offset always helps
in the task of approximating the output of the cipher, it does not always help in estimating key bits. This
is because a larger offset is not necessarily more accurate, it simply encompasses a larger number of values.
This will be true for incorrect key bits as well as correct key bits. For this reason, a larger window does not
always help to effectively distinguish among correct and incorrect key bits. This can be seen in table 7 when
the offset increases from 2 to 3. At offset=3, the number of values is so large that it becomes less effective
in distinguishing the correct key bits.
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Fig. 15. Observed bias for 12 round Threefish-512 dis-
tinguisher, low Hamming weight messages

6.2 Pseudo-Linear Attacks on Threefish-512

In the previous two attacks, a modified Threefish-256 was used where the whitening step was eliminated.
In the following approximations, the only modification made is the number of rounds. That is, the first key
injection considered is the key whitening.

Approximation Over Modified 8 Rounds An 8-round approximation was constructed with a meet-in-
the-middle approach. It meets at word 1 at the end of the fourth round. The addition (subtraction) windows
for this distinguisher are presented in Appendix A, table 13. There are no subtraction windows in the fifth
round because no subtractions are needed to obtain x4

1(0).
Empirical results for this distinguisher are presented in figure 13. These results were obtained using

20,000,000 randomly chosen (plaintext, key) pairs with the carry pattern where carries are assumed every
other round. It is clear from the plot that eight rounds of Threefish-512 are distinguishable for w ≥ 5.

The number of key bits required by this distinguisher for window sizes w = 5, w = 6, and w = 7 are 310,
355, and 391, respectively. Recall that for a distinguisher from Threefish-256, eight rounds with w = 5 (seen
in the modified 12 round distinguisher, section 6.1) required 232 of the 256 bits, or about 90%. In this eight
round distinguisher for Threefish-512, a window size of 5 requires only about 60% of the 512 key bits to be
guessed. The principal reason for this is that with the increased state size, diffusion between words is slower.
Specifically, it takes more applications of the permute function, and therefore more rounds, to mix all eight
state words.

12 Round Approximation A 12-round approximation can be obtained in a similar fashion to the 8 round
one. In particular, one was constructed that meets in the middle at word 1 of the seventh round. The addition
(subtraction) windows for this distinguisher are presented in Appendix A, table 14.

The key bits that need to be guessed for w = 4 and w = 5 are 509 and 511, respectively. Beyond that,
all 512 bits need to be guessed for this distinguisher.

Empirical results are presented in figure 14 and 15 for two different plaintext selection criteria. In figure
14, 20,000,000 (plaintext, key) pairs are chosen at random. The alternating carry pattern was used. In figure
15, key is still chosen at random, but the plaintexts are chosen such that they have a hamming weight of 1.
For each randomly selected key, 512 plaintexts are used. Carries are assumed in rounds 6 and 8.

Figure 14 shows that one cannot effectively distinguish the correct key from incorrect keys when w ≤ 5
and plaintexts are selected at random. When w > 5, all 512 bits need to be guessed.

However, when the model changes to allow the adversary to only choose low Hamming weight messages,
the results improve. Figure 15 shows that when the message has a Hamming weight of 1, the correct key can
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be distinguished from a random permutation with w = 4 and offset ≤ 6. However, it cannot be distinguished
from a random permutation for w ≤ 3, so 509 bits is the minimum that must be guessed for this distinguisher.

6.3 Truncated Differentials for Threefish-512

In this section, we construct a truncated differential attack on four rounds of Threefish-512. This is a single-
key chosen-plaintext attack with a pre-determined difference between pairs of plaintexts. The focus is on
differences in window bits. Differences in bits outside the window are ignored.

Let the input be x′
0 = x0 ⊕ 1, x′

i = xi for i ∈ {1 . . . 7}, and the target window be x3
3(55). The size of the

window will begin small, such as w = 4, and then increase as the adversary gains more information.
The target window location is not arbitrary. Recall from section 4.4 that we need to remove uncertainty

introduced by the carry by working with the least significant window for all subtractions. Since there is a
right rotation by 9 after the key subtraction, we have (0 − 9) mod 64 = 55, so the target window for x3

3

starts at position 55.
To see how the target window is affected by the input difference, it is helpful to observe how the difference

propagates through the trail for x3
3. The first three rounds of Threefish-512 are shown in figure 16. The trail

is marked with thick arrows.

Fig. 16. Three rounds of Threefish-512

First Round The first round begins with the key whitening. The same key will be added to both plaintexts,
x and x′, which are equal except in the least significant bit of word 0. Words 1 through 7 have no difference
before and after the key injection.

In word 0, after key injection, the difference will consist of a string of n − t zeros followed by t ones,
1 ≤ t ≤ n. The reason for this is as follows (recall section 4.1). Without loss of generality, let x0 be even and
x′

0 be odd. Then x0 ⊞k0 = x∗
0 will not cause a carry out of position 0 regardless of the value of k. If the least

significant bit of k0 (denote this as k0[0]) is 0, then x′∗
0 [0] = 1. If k0[0] = 1, then x′∗

0 [0] = 0. Assuming that
k is selected from the uniform distribution at random, then pr[x∗

0 [0] = 0] = 1
2 . If k0[0] = 1, then carry0 = 1

and x′∗
0 [1] = x∗

0[1]. This continues until carryt−1 = 0. Bits in position t, . . . , n− 1, are identical in x0 and x′
0

and thus the run of ones ends at after t bits.
A short list of possible difference values is provided in table 8. The approximated probabilities were

obtained empirically over 20,000,000 randomly selected (x, key) pairs, where x′ was derived from x.
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Word Input difference (∆x0
) Output difference (δ) Pr[δ|∆x0

] (approx)

x∗

0

1 2−1

3 2−2

1 7 2−3

F 2−4

1F 2−5

Table 8. Key whitening difference probabilities

The first key injection is followed by the mix and permute steps. Recall that Threefish-512 computes
four mix functions in parallel, where each mix function consists of an addition, word rotation, and exclusive-
or. After mix function i ∈ {0, 1, 2, 3} has been applied to words 2i and 2i + 1, the words of the state are
permuted to facilitate diffusion. There is no difference between words 1 in the two texts before the addition
of the mix, but the words 0 differ by a string of ones. The rotation is performed on words 1, but there is no
difference between them and thus there is still a zero difference after rotation. The final step of the mix is
the exclusive-or of the rotated words 1 and result of the addition modulo 2n. As a result, the words 0 still
differ by a string of ones after the mix, and this string of ones is also the difference between the words 1
after the mix because these words differ from the corresponding words 0 only in that they are xored with
the same string.

Permutation does not change the value of a difference within a word, only the word that it appears in.
In particular, the string of ones forming the difference in word 0 after the mix step moves to word 6 after
permutation, and the zero difference in word 2 moves to word 0 (see table 6). Word 1 maps to itself during
this step, so at the end of round 1, the only non-zero difference bits are in words 1 and 6.

Some of the higher probability characteristics are summed up in table 9. These probabilities are dependent
on the input difference to the first round mix function. That is, they are conditional probabilities where the
result depends on the difference after the whitening step.

Second Round The incoming differences are in x1
6 and x1

1. x1
6 will affect output windows x2

4 because word
6 will be permuted to word 4 after the addition, and x2

3 because word 7 will be swapped with word 3. x1
1 will

affect x2
6 as in the first round, because the zeroth word is permuted to the sixth position, and the first word

is not affected by the permutation, and x2
1. However, x2

1, x2
3, and x2

4 are not in the dependency path for x3
3,

as can be seen by following the words x3
3 is derived from, and can be ignored for this differential. This leaves

only x2
6.

x2
6 (derived from x1

0 and x1
1) is interesting because the format of the words is different from those we’ve

seen before. In previous rounds, the differences in the left words have been strings of ones, but neither of the
texts, at this part of the cipher, themselves contained the difference runs in the corresponding words. For
example, a difference of 3 would be achieved by having the least significant bits 012 in one word and 102 in
the other. In the input word x1

1, one of the words contains the difference. That is, one word contains ∆x1

1

in the least significant bits, while the other contains zeros. For a difference of 3, this would be 112 in one
word and 002 in the other. Section 4.1 showed how the run of ones in the difference pattern can break in
this scenario. Because of this, differences that are not runs of ones are possible, such as 0x05 and 0x0B.

Third Round Only one word in the trail has a difference into round 3: x2
6. x2

6 affects x3
3.

Again, a difference in the right input creates more interesting transitions. The output difference proba-
bilities for x3

3 do not all contain perfect powers of 2 in the denominator. A subset of the possible transitions
is shown in table 10.

We have showed the effect of the input difference throughout three rounds of a trail. This information
can be used to construct a truncated differential attack on four rounds.

The trail covers the first three rounds – from the key whitening to the output of the third round.
This is reflected in figure 16, where thicker lines indicate part of the trail. To perform the attack, the
adversary guesses the round key of the target window. In this case the adversary guesses part of k1 and
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Word Input
differ-
ence
(∆x

∗

0
)

Output
differ-
ence
(δ)

Pr[δ|∆]
(approx)

x1

6 and x1

1

1 2−1

3 2−2

1 7 2−3

F 2−4

1F 2−5

1 2−1

3 2−2

3 7 2−3

F 2−4

1F 2−5

1 2−1

3 2−2

7 7 2−3

F 2−4

1F 2−5

1 2−1

3 2−2

F 7 2−3

F 2−4

1F 2−5

Table 9. Round 1 difference probabilities

Word Input
differ-
ence
(∆

x
2

6

)

Output
differ-
ence
(δ)

Pr[δ|∆]
(approx)

x3

3

1 2−1

3 2−2

1 7 2−3

F 2−4

1F 2−5

1 2−1.32

3 2−2

5 2−4.32

3 7 2−3

D 2−5.32

F 2−4

1D 2−6.32

1F 2−5

3 2−2.32

5 2−2

7 2−3

5 D 2−3

F 2−4

1B 2−6.32

1D 2−4

1F 2−5

Table 10. Round 3 difference probabilities

k8, subtracts it from the ciphertext pairs, reverses the fourth round permute and mix, and calculates the
difference x3

3(55) ⊕ x′3
3 (55). If the difference equals the expected difference at a rate close to expected, the

guess is a candidate. If not, then it cannot be correct and is eliminated as a candidate.
The target difference will change as the window size changes. In particular, the target difference is zero

when w < 10. As the window size increases, the target difference will change as more bits are included in
the window.

The adversary begins by taking a greedy approach and choose the highest probability output at each
step, given the appropriate input differential. Tables 8 to 10 show that 1 is the highest probability outcome
at each step: that is, the most likely difference at each step is a difference only in the last bit of the string
being considered. However, all paths that result in the target difference contribute to the actual probability.
That is, one must calculate the total probability (equation 10) for each round to find the probability of
output difference δ occurring given all possible input differences, ∆i.

Pr[δ] =
∑

i

Pr[δ|∆i]Pr[∆i] (10)

The window size will start small, and gradually increase until all of both k1 and k8 have been guessed.
Let us start with w = 4. Then 8 bits of key need to be guessed for the target window. Since the target
window starts at position 55, and 55 + 4− 1 < 64, the target difference in the window is 0. Once the target
window includes the least significant bit, the target difference will be 1.

Empirical results are shown in table 11. Once the adversary knows 9 bits of k1 and 9 bits of k8, increasing
w to include new bits will not help the adversary gain new information. This happens because the newly
guessed key bits are positioned such that they do not affect the differential, and therefore will not be
distinguishable from incorrect key bits.

This could be remedied by using a longer difference pattern, such as 0x1F. Although this difference pattern
occurs with lower probability, it allows the adversary to find more of the key. In particular, the adversary
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w ∆3 Probability with right key Key bits right Probability with wrong key

4 0 1 0 0.562455

8 0 1 4 0.781984

12 1 0.375138 4 0.256083

12 1 0.375138 8 0.307487

16 1 0.333555 8 0.237504

16 1 0.333555 9 0.238292

16 1 0.333555 10 0.333471
Table 11. Probabilities for ∆

x
3

3

= 1

can find up to 14 bits of each key word using this difference. Observed probabilities for this difference are
given in table 12.

w ∆3 Probability with right key Key bits right Probability with wrong key

4 0 1 0 0.562455

8 0 1 4 0.781897

12 7 0.250082 8 0.244532

16 1F 0.030764 12 0.026866

20 1F 0.030572 16 0.030526
Table 12. Probabilities for ∆

x
3

3

= 1F

6.4 Diffusion

In this section, the application of metrics discussed in section 5.1 to Threefish-512 (version 2) [9] are compared.
There are 512 bits, and thus 512 possible windows, in the state. For computing linear and pseudo-linear
branch numbers, only the windows that start in the least significant bit of a word are considered here as
active at the input to the second Round. Furthermore, only words with even index (0, 2, 4, 6) were used due
to the higher window dependency of odd-indexed words.

The computation for differential branch numbers is done in a slightly different manner. Because branch
number is concerned with the lower bound of diffusion, minimum diffusion should be ensured to derive the
bound as accurately as possible. To this end, a one-bit difference shall be used in even index words.

The Threefish round function does not exactly fit the definition of a key-alternating round function
presented in [7], but can easily be converted to one. First, the key injection is performed by addition modulo
2n rather than exclusive-or. Since carry propagation is not considered to change activity, this does not impact
the branch number or variants proposed in this paper. The main concern is that instead of applying one
key-independent function and then one key injection in alternation, Threefish performs four key-independent
functions and then one key injection.

Let round be the key-independent portion of a Threefish round function, and write Round = round ◦
round ◦ round ◦ round. Now the alternation of Round and key injection follows the definition of a key-
alternating block cipher.

Branch Number: Word View Consider a two-round trail that has a difference in least significant bit
of the first word, depicted in figure 17. The input bundle weights (state 0) are wb(a ⊕ b) = 1, since only
one word is active. At the input to the second Round (state 1), all eight words are active and therefore
wb(Round(a) ⊕ Round(b)) = 8. It follows that Bd(Round) ≤ 9. Note that the upper bound on the branch
number in this case is 9.
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Fig. 17. Differential trail for Threefish-512, round 2 submission

Fig. 18. Linear trail for Threefish-512, round 2 submission

Consider a linear approximation where one bit is active at the output of the first Round (state 1). Such
an approximation is shown in figure 18. The 64-bit word encompassing that bit depends on all words at the
input to the first Round (state 0). It follows that Bl(Round) ≤ 9.

Branch Number: S-box Representation Using the S-box representation of modular addition (section 5.1) for
Threefish-512, a different set of linear and differential branch numbers can be derived.

Consider the differential trail in figure 17, where the difference is located in the least significant bit of
the first word. The S-box representation, where a byte is a bundle, is shown in figure 19. In the input to the
first round, one bundle is active, so wb(a⊕ b) = 1. At the input to the second Round (state 1), 21 bundles
are active. Thus the bound Bd(Round) ≤ 22.

In this view, with a byte as bundle, the upper bound for differential branch number is 65. Compare this
to the differential branch number obtained by looking at 64-bit words in section 6.4. In section 6.4, all of
state 1 was active, whereas in the S-box representation, the same difference pattern only activates much
less of the state. Using the S-box representation, it is apparent that the lower bound on diffusion is not as
good as it was before. That is, a one-bit input difference in the S-box representation produced differential
branch number of at most 22, whereas the word view produced a differential branch number of at most 9,
where 9 is the maximum possible for the word model. Calculating the differential branch number in the S-box
representation reveals more information about the propagation of an input difference by showing portions
of the state where the difference does not propagate. Therefore, the S-box representation provides a more
informative upper bound over the same difference pattern.

Figure 20 depicts a linear trail, with Threefish-512 using the S-box representation. At the input to the
first Round (state 0), 26 bundles are active, giving wb(α) = 26. After one Round (state 1), there is only
one bundle active, so wb(β) = 1. This gives an upper bound on the linear branch number of Bl(Round) ≤ 27.

Fig. 19. Differential trail for Threefish-512, S-box representation
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Fig. 20. Linear trail for Threefish-512, S-box representation

The pseudo-linear branch number can easily be derived from the linear approximation by increasing w.
It was previously shown that this approximation can be distinguished from a random permutation when
w ≥ 5. This will not alter the number of active bundles in β, the input to the second Round, but it will
change the number of active bundles of the input. Because a bundle is a byte of the state and the active
5-bit window of β starts at the least significant bit, only one bundle is active. On the other hand, the weight
of the input selection pattern, α, increases because some 5-bit windows do not align with bundles. That
is, one 5-bit window can span, and therefore activate, two bundles. This results in an input bundle weight
wb(α) = 32, giving Bpl(Round, 5) ≤ 33.

Effective Branch Number Let x be the input to the mix function and y be the output. Write xl for the
left input and xr for the right input, and similar for y. yr = (xl ⊞ xr) ≪ constant, but (xl ⊞ xr) can be
written as yl. Therefore, we only consider each mix function to contain one addition.

Consider the 8 round trail of section 6.2, where a single window is computed in the forward and backward
direction. There are 11 additions (excluding key additions) in the trail over the first Round (rounds 1-4). In
Round 2 (rounds 5-8), there are 7 subtractions in the trail. Since the number of subtractions of the second
Round is less than the number of additions in the first Round and branch number gives a lower bound, let
w = 7. Overall, this yields ⌊lg(7)⌋ = 2 and w = 4.

Consider an input difference of 1 in the least significant bit of the first word, with the same differential
trail as in figures 17 and 19. Then ewb(a⊕ b) = ⌈ 14⌉ = 1. At the input to the second Round, 111 active bits
are in the trail, giving an effective bundle weight ewb(Round(a) ⊕ Round(b)) = ⌈ 1114 ⌉ = 28. This gives a
bound on effective differential branch number, EBd(Round) ≤ 29.

Consider the approximation of section 6.2. At the input to the first Round, 113 bits are part of the trail.
This gives effective bundle weight ewb(α) = 29. There are four active bits (one window) at the output of
Round, giving ewb(β) = 1. Therefore, EBpl(Round) ≤ 30.

7 Conclusion

This paper has shown that pseudo-linear approximations may be applicable to round functions that are
composed of addition modulo 2n, exclusive-or, rotation, and word permutations. When permutation is per-
formed on the word level, approximations may be constructed that apply to windows with size less than
or equal to the word size. In particular, pseudo-linear approximations trace dependencies of w-bit target
windows throughout a function, using addition modulo 2w to approximate addition modulo 2n. Reducing
n-bit word addition to w-bit word addition allows the adversary to reduce the number of key bits that
need to be guessed, and thus reduces overall attack complexity. The carry function will either add one to a
window or not, depending on the sum of preceding bits. The carry function is independent of the window
size. By increasing the size of the window, the expected number of times an approximation holds at random
decreases, while the number of times the approximation holds for the cipher remains unchanged. Hence, the
bias increases. It is important to note that, as with traditional linear cryptanalysis, high diffusion and a large
enough number of rounds can be used to cause approximations over an entire cipher to become infeasible.
In this situation, too many key bits would typically need to be guessed, and the search space would swiftly
approach that of a brute force search.
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This work has also shown that the approximations may be used to find truncated differentials. In addition,
the branch number metric has been revisited to provide a more focused idea of diffusion in functions that
use large words.

It would be interesting to understand the generality of such attacks, and also the types of ciphers that
are more and less resilient to these attacks. The following are among open questions that come from this
work. First, a question arises that is similar to that in linear cryptanalysis, where one computes the parity
of some key bits from related input and output bits. Is there a simple function of the internal key bits in the
pseudo-linear approximations of several ARX rounds? If such a function were found, the adversary would
need only to compute this function, rather than find the key bits themselves. Second, how can one improve
carry pattern selection for different input distributions? Third, are there other properties of linearity that
can be leveraged to improve bias? Fourth, are larger words more or less secure than smaller words?
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A Addition Masks for Approximations

Round Mix 0 Mix 1 Mix 2 Mix 3

1 0, 3, 14, 20, 31, 34,
47, 51

0, 3, 20, 22, 47 0, 20 0, 20

2 0, 3, 20, 47 0 0 0

3 0, 20 0 – –

4 0 – – –

5 – – – –

6 – – – 39

7 – – 39, 56 52

8 21 14, 31, 39, 56 31, 52 13
Table 13. Addition masks for 8 round approximation, mix functions
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Round Mix 0 Mix 1 Mix 2 Mix 3

1 0, 1, 3, 7, 8, 10, 12,
14, 15, 18 ,20, 21,
23, 25, 26, 28, 31,
32, 34, 38, 39, 40,
43, 45, 46, 47, 51,
54, 55, 56, 59, 63

0, 3, 7, 8, 9, 10, 12,
15, 20, 22, 23, 25,
28, 30, 31, 32, 34,
37, 40, 45, 47, 51,
54, 55, 59

0, 1, 7, 8, 10, 12,
14, 16, 20, 24, 25,
26, 28, 31, 32, 37,
38, 40, 45, 50, 51,
55, 56, 60

0, 1, 4, 7, 8, 10, 12,
13, 16, 20, 24, 25,
28, 29, 31, 32, 37,
38, 40, 45, 49, 51,
53, 55, 56, 62

2 0, 3, 7, 8, 12, 15,
20, 25, 28, 31, 32,
34, 40, 45, 47, 51,
54, 55, 59

0, 1, 7, 12, 16, 20,
25, 31, 32, 40, 45,
51, 55, 56

0, 8, 10, 12, 25, 28,
38, 40, 51

0, 8, 10, 12, 15, 23,
25, 40, 51

3 0, 7, 12, 20, 25, 32,
45, 51

0, 8, 12, 25, 51 0, 10, 40, 51 0, 31, 40, 51, 55

4 0, 12, 25, 51 0, 40, 51 0 0

5 0, 51 0 0 0

6 0 0 – –

7 0 – – –

8 – – – 0

9 – – 0, 22 –

10 58 0, 19, 22, 41 – –

11 0, 4, 19, 22, 27, 41,
46, 49

33, 55 36 27, 58

12 18, 21, 33, 40, 55 5, 8, 27, 36 2, 21, 24, 27, 33,
43, 58

0, 2, 4, 17, 19, 21,
22, 27, 36, 39, 41,
44, 46, 49, 58, 63

Table 14. Addition masks for 12 round approximation, mix functions
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