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Abstract. Secure two-party computation cannot be fair in general against malicious
adversaries, unless a trusted third party (TTP) or a gradual-release type super-constant
round protocol is employed. Existing optimistic fair two-party computation protocols
with constant rounds are either too costly to arbitrate (e.g., the TTP may need to re-do
almost the whole computation), or require the use of electronic payments. Furthermore,
most of the existing solutions were proven secure and fair via a partial simulation, which,
we show, may lead to insecurity overall.
We propose a new framework for fair and secure two-party computation that can be
applied on top of any secure two party computation protocol based on Yao’s garbled
circuits and zero-knowledge proofs. We show that our fairness overhead is minimal,
compared to all known existing work. Furthermore, our protocol is fair even in terms
of the work performed by Alice and Bob. We also prove our protocol is fair and secure
simultaneously, through one simulator, which guarantees that our fairness extensions do
not leak any private information. Lastly, we ensure that the TTP never learns the inputs
or outputs of the computation. Therefore, even if the TTP becomes malicious and causes
unfairness by colluding with one party, the security of the underlying protocol is still
preserved.

Keywords: two party computation, garbled circuit, Yao’s protocol, fair computation, op-
timistic model

1 Introduction
In two-party computation (2PC), Alice and Bob intend to evaluate a shared function with their
private inputs. The computation is called secure when the parties do not learn anything beyond
what is revealed by the output of the computation. Yao [63] introduced the concept of secure
2PC and gave an efficient protocol; but this protocol is not secure against malicious parties
who try to learn extra information from the computation by deviating from the protocol.
Many solutions [53, 62, 38, 46] are suggested to strengthen Yao’s protocol against malicious
adversaries.

When one considers malicious adversaries, fairness is an important problem. A fair compu-
tation should guarantee that Alice learns the output of the function if and only if Bob learns.
This problem occurs since in the protocol one party learns the output earlier than the other
party; therefore (s)he can abort the protocol after learning the output, before the other party
learns it.

There are two main methods of achieving fairness in 2PC: using gradual release [57, 41, 58]
or a trusted third party (TTP) [13, 44]. The gradual release based protocols [23, 11, 7] let
the parties gradually (bit by bit, or piece by piece) and verifiably reveal the result. Malicious
party will have one bit (or piece) advantage if the honest party starts to reveal the result first.
Yet, if the malicious party has more computational power, he can abort the protocol earlier
and learn the result via brute force, while the honest party cannot. In this case, fairness is not
achieved. Another drawback is the necessity of many rounds.

The TTP approach employs a third party that is trusted by both Alice and Bob. A simple
solution would be to give the inputs to the TTP, who computes the outputs and distributes
fairly. In terms of efficiency and feasibility though, the TTP should be used in the optimistic
model [4], where he gets involved in the protocol only when there is a dispute between Alice and
Bob. It is very important to give the TTP the minimum possible workload because otherwise
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the system will have a bottleneck. Another important concern is privacy. In an optimistic
solution, if there is no dispute, the TTP should not even know a computation took place, and
even with a dispute, the TTP should never learn the inputs or outputs, or even identities. We
achieve all these efficiency and privacy requirements on the TTP.

Another problem regarding fairness in secure two-party computation is the proof method-
ology. In previous works [41, 13, 58], fairness and security (with abort) were proven separately,
only partially simulating the protocol (partial simulation). However, it is important to simulate
everything together to ensure that the fairness solution does not leak any information beyond
the original secure two-party computation requirement. Therefore, as in the security of the
secure two-party computation, there should be ideal/real world simulation (see Section 2) that
covers both fairness and security (full simulation). In other words, the simulator should
learn the output in the real world only after it is guaranteed that both parties can
learn the output in the real world to achieve ideal and real world indistinguishability of
the outputs.

Our Contributions: The main achievement of this work is an efficient framework for
making secure 2PC protocols fair, such that it guarantees fairness and security together, and
can work on top of secure two party computation protocols extending Yao’s garbled circuits to
the malicious setting via zero-knowledge proofs (e.g., [38, 13, 29]). Note that the state-of-the-art
optimistic fairness solution [13] is also based on zero-knowledge proofs.
– We use a simple-to-understand ideal world definition to achieve fairness and security to-

gether, and prove our protocol’s security and fairness with full simulation which
means proving security and fairness together.

– We show that proving security and fairness separately via only partial simulation is not
necessarily secure (see Section 5).

– Our framework employs a trusted third party (TTP) for fairness, in the optimistic model.
The TTP’s load is very light: verification of signatures and commitments, and decryp-
tion only. If there is no dispute, the TTP does not even know a computation took place,
and even with a dispute, the TTP never learns the inputs, outputs, or even identities of
Alice and Bob. So, a semi-honest TTP is enough in our construction to achieve fairness.

– If the TTP becomes malicious (e.g., colludes with one of the parties), it does not
violate the security of the underlying 2PC protocol; only the fairness property of the
protocol is contravened.

– Our framework is also fair about the work done by Alice and Bob, since both of them
perform the same steps in the protocol.

– The principles for fairness in our framework can be adopted by any 2PC protocol based on
Yao’s garbled circuits, employing zero knowledge proofs for the malicious setting, thereby
achieving fairness with little overhead.

– We compare our framework with related fair secure two-party computation work and show
that we achieve better efficiency and security.

2 Related Works
Cachin and Camenisch [13] present a state-of-the-art fair two-party computation protocol in
the optimistic model. The protocol consists of two intertwined verifiable secure function eval-
uations. In the case of an unfair situation, the honest party interacts with the TTP. The job
of the TTP can be as bad as almost repeating the whole computation, linear in the circuit
size, creating a bottleneck in the system. Lindell [44] constructs a framework that can be
adopted by any two-party functionality with the property that either both parties receive the
output, or one party receives the output while the other receives a digitally-signed check (i.e.,
monetary compensation). However, one may argue that one party obtaining the output and
the other obtaining the money may not always be considered fair, since we do not necessarily
know how valuable the output would be before the evaluation. Kılınç and Küpçü [39] construct
a fair multi-party computation (MPC) protocol in the optimistic model. While 2PC can be a
special case of MPC, our solutions are optimized for the two-party case and hence are more
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efficient compared to applying their work to the two-party setting (e.g., they increase input
and output sizes).

Secure Two-Party Computation: Yao [63] presented a secure and efficient protocol for
two-party computation in the semi-honest model, where the adversary follows the protocol’s
rules but he cannot learn any additional information from his view of the protocol. Since
this protocol is not secure against malicious behavior, new methods were suggested based on
proving parties’ honesty via zero-knowledge proofs [28, 13, 38] or via cut-and-choose techniques
[46, 53, 62, 45].

Another problem in Yao’s protocol is fairness. The general solutions are based on gradual
release timed commitments [57, 41, 58] or a trusted third party (TTP) [13, 44].

Gradual Release: Pinkas [57] presents a method where the evaluation of the garbled
circuit is executed on the commitments of the garbled values rather than the original gar-
bled values. It uses cut-and-choose to prevent malicious behavior of the constructor and blind
signatures [16] for the verification of the evaluator’s commitments. However, this protocol is
expensive because of the gradual release timed commitments. Moreover, the majority circuit
evaluation can reveal the constructor’s input values, as shown by Kiraz and Schoenmakers
[41], who improve Pinkas’s construction by removing the majority circuit computation and the
blind signatures, and using OR-proofs instead [21]. Yet, the other inefficiency problems remain.
Similarly, Ruan et al. [58] use the Jarecki and Shmatikov construction [38], and instead of the
proof of the correct garbled circuit, they employ the cut-and-choose technique. Gradual release
in these protocols constitutes the weak part regarding the efficiency.

Security Definitions: Pinkas [57] protocol does not have proofs in the ideal-real world
simulation paradigm. The importance of ideal-real world simulation is explained by Lindell and
Pinkas [47]. The standard simulation definition [31] does not include fairness because of the
impossibility result of fairness without honest majority [18]. Garay et al. [26] relax the notion
of fairness and define a “commit-prove-fair-open” functionality to simulate gradual release to
prove security and fairness together. Then, Kiraz and Schoenmakers [41] and Ruan et al. [58]
use this functionality in their security proofs, but the output indistinguishabilty of the ideal and
real worlds is not satisfied in their proofs because fairness is proven separately, using partial
simulation. Therefore, none of these protocols has a full simulation proof in ideal-real world
simulation paradigm that shows the protocol is both secure and fair. Cachin and Camenisch [13]
give an ideal-real world definition that includes full simulation (fairness and security together)
for the protocols that employ a TTP. This definition considers also malicious TTP but the
definition does not use TTP in optimistic model since the universal trusted party in the ideal
world contacts with the real world TTP in their ideal world definition. Interestingly, they do
not prove their proposed protocol according to their definition. Lindell [44] defines a new ideal
world definition that captures security and fairness as defined above (i.e., exchanging money
in return is considered fair as well [6, 42]) and proves fairness and security according to this
definition. Kılınç and Küpçü [39] prove their fair and secure MPC protocol with full simulation.
In Section 5, we show that proving fairness and security separately via partial simulation do
not necessarily yield to fair and secure protocols. The security and fairness definition we use
follows the same intuition as that of Canetti [15].

Relaxed Fairness: Because of the impossibility result on general fairness, alternative
definitions arise as partial fairness [26, 5, 34, 30] and fairness in rational settings [54, 35, 36, 49,
1, 55].

Fairness for Specific Functionalities: Finally, there are very efficient constructions for
specific functionalities [33, 9, 24, 2, 3, 19], but we are interested in computing general function-
alities efficiently. We achieve this goal, fairly, in the malicious setting.
Definition 1 (Ideal World). It consists of the corrupted party C, the honest party H, and
the universal trusted party U (not the TTP). The ideal protocol is:
1. U receives input x or the message abort from C, and y from H. If the inputs are invalid

or C sends the message abort, then U sends ⊥ to both of the parties and halts.
2. Otherwise U computes f(x, y) = (fc(x, y), fh(x, y)). Then, he sends fc(x, y) to C and

fh(x, y) to H.
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The outputs of the parties in an ideal execution between the honest party H and an adversary A
controlling C, where U computes f , is denoted IDEALf,A(w)(x, y, s) where x, y are the respective
inputs of C and H, w is an auxiliary input of A, and s is the security parameter.

The standard secure two-party ideal world definition [47, 31] lets the adversary A to abort
after learning his output but before the honest party learns her output. Thus, proving protocols
secure using the old definition would not meet the fairness requirements.

Definition 2 (Real World). The real world consists of, besides the parties, an adversary A
that controls one of the parties, and the TTP who is involved in the protocol when there is unfair
behavior. The pair of outputs of the honest party and the adversary A in the real execution of
the protocol π, possibly employing the TTP, is denoted REALπ,TTP,A(w)(x, y, s), where x, y, w
and s are like above.

Note that U and TTP are not related to each other. TTP is part of the real protocol to
solve the fairness problem when it is necessary, but U is not real.

Definition 3 (Fair and Secure Two-Party Computation). Let π be a probabilistic polyno-
mial time (PPT) protocol and let f be a PPT two-party functionality. We say that π computes
f fairly and securely if for every non-uniform PPT real world adversary A attacking π,
there exists a non-uniform PPT ideal world adversary S so that for every x, y, w ∈ {0, 1}∗, the
ideal and real world outputs are computationally indistinguishable:

{IDEALf,S(w)(x, y, s)}s∈N ≡c {REALπ,TTP,A(w)(x, y, s)}s∈N
For optimistic protocols, to simulate the complete view of the adversary, the simulator

also needs to simulate the behavior of the TTP for the adversary. This simulation also
needs to be indistinguishable.

The closest such definition was given by Cachin and Camenisch [13]. Their definition’s
advantage is that it also considers misbehaving TTP, but their ideal world contacts the real
world TTP, mixing both worlds. Thus, it does not fit the optimistic usage of TTP. We prefer
to use the Definition 3, which is more intuitive and general (it can even include gradual release
since it is not specific to only the protocols with TTP), to prove our proposed protocol in
Section 4 because we use the TTP in the optimistic model and we assume that the TTP is
semi-honest while proving the protocol.

Note that in our ideal world, the moment the adversary sends his input, U computes the
outputs and performs fair distribution. Thus, the adversary can either abort the protocol before
any party learns anything useful, or cannot prevent fairness. This is represented in our proof
with a simulator who learns the output only when it is guaranteed that both parties
can learn the output. Also observe that, under this ideal world definition, if the simulator
learns the output in the ideal world but the adversary aborts in the real world,
that simulation would be distinguishable.

Suppose that Alice is malicious and S simulates the behavior of honest Bob in the real
world and the behavior of malicious Alice in the ideal world. Assume S learns the output
of Alice from U in order to simulate the real protocol before it is guaranteed that in a real
protocol both of the parties could receive their outputs. Further suppose that the adversarial
Alice then aborts the protocol so that S does not receive his output in the real world. Thus, in
the real world the real Bob would have aborted, whereas the ideal Bob outputs the result of
the computation. Clearly, the ideal and real worlds are distinguishable in this case. The proofs
in [58, 41, 13] unfortunately fall into this pitfall.

Definition 4. (Verifiable Escrow) An escrow is a ciphertext under the public key of the TTP.
A verifiable escrow [4, 14] enables the recipient to verify, using only the public key of TTP, that
the plaintext satisfies some relation. A public non-malleable label can be attached to a verifiable
escrow [61].

Communication Model: We do not need private and authenticated channels between
the TTP and the parties. When there is dispute between the two parties, the TTP resolves



Efficiently Making Secure 2PC Fair 5

the conflict atomically, which means the TTP interacts with either Alice or Bob at a given
time, until that resolution is complete. We assume that the adversary cannot prevent the
honest party from reaching the TTP eventually. We do not assume anything else about the
communication model; our protocol’s needs are minimal.

Notation: Alice and Bob will evaluate a function f(x, y) = (fa(x, y), fb(x, y)), where Alice
has input x and gets output fa(x, y), and Bob has input y and gets output fb(x, y), f :
{0, 1}` × {0, 1}` → {0, 1}` × {0, 1}`, where ` is a positive integer. For simplicity, we assume
Alice and Bob have `-bit inputs and outputs each. Alice’s input bits are x = {x1, x2, ..., x`} and
Bob’s input bits are y = {y1, y2, ..., y`}. They use a 2PC protocol Γ for the secure computation.

We use C to represent circuit. Ca outputs the Alice’s output and Cb outputs Bob’s output.
Similarly, the garbled circuit that is generated by Alice is GCa and the one generated by Bob
is GCb. We use apostrophe (′) for the values that are generated by Bob. When we say Alice’s
input wires, it means that Alice provides the input for these wires. Similarly, Alice’s output
wires correspond to Alice’s output. Bob’s input and output wires have the matching meaning.
An Input Gate is a gate that has an input wire of Alice or Bob. Similarly, an Output Gate is
a gate that has a wire of Alice’s or Bob’s output.

Ek shows an encryption with the key k. Therefore, Ek1Ek2(m1,m2) means that m1 and m2
are both encrypted by the two keys k1 and k2.

Any commitments that have efficient zero knowledge proofs can be used in this framework.
To exemplify the protocol we notate commitments as in Fujisaki-Okamoto commitments [25,
22] and Pedersen commitments [56].

3 Our Solution
Failed Approaches and Major Issues: It looks like adding fairness to a 2PC protocol
based on gabled circuits and zero knowledge using TTP does not need a lot of work. However,
if we care efficiency of the protocol and resolution protocols with the TTP, it is challenging.
Consider a very simple solution regarding constructor C, evaluator E, and the TTP. Assume
that C constructs the circuit such that the output is not revealed directly, but instead the
output of the circuit is an encrypted version of the real output, and C knows the key. Thus, after
evaluation, E will learn this encrypted output, and C and E need to perform a fair exchange
of this encrypted output and the key. This approach increases the circuit size, obviously. More
importantly, when a dispute occurs and E goes to the TTP for resolution, she cannot efficiently
prove to the TTP that she evaluated C’s garbled circuit correctly. Indeed, in the solution of
Cachin and Camenisch [13], the resolution may require work proportional to the circuit size.

Alternatively, instead of encrypting the the output, C constructs a garbled circuit where
the outputs are encoded with some random values (like an encryption but without increasing
the circuit size) in a secret table. So, in the end of the circuit evaluation, E learns some random
values such that their corresponding bits are only known by C. Then, they can fairly exchange
the table and the output. However, it can be hard to ensure that E sends the correct table and
construct proper resolution protocols with TTP.

Because of these issues, we employ the dual-constructor methodology [51, 52], where both
C and E construct circuits that output random numbers.

Our Solution: We show how to efficiently add fairness to any zero knowledge based secure
2PC protocol Γ using our framework. The key points are:
– Alice and Bob employ dual garbling technique [51], where Alice and Bob both act as

the constructor and the evaluator, with almost equal responsibilities. The circuit con-
structed by Alice only outputs Alice’s output and the circuit constructed by
Bob outputs Bob’s output.
The garbled circuit is prepared as the underlying protocol Γ with minor differences in the
construction of the input and output gates. The modification on the input gates allow us
to check input equality between the two circuits. Modifications on the output gates are
to hide the actual output.
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– Alice and Bob exchange the garbled circuits and evaluate each others’ circuits. In the end
of evaluation, Alice learns the output labels of Bob and Bob learns the output
labels of Alice, both in a hidden way. Therefore, they need to exchange the outputs
fairly after this point.

– Before fair exchange, they execute input equality test protocol to see if both of them
used the same inputs for the both circuits. It is ok to abort if the test fails, because they
test for input equality, not output.

– If the equality test is successful, they verifiably escrow the other party’s output
labels. This is essentially a guarantee for the other party that if this party does not send
the output labels later on, (s)he can contact the TTP to get them.

– Now, they exchange output labels so that each party can individually translate them back
to the actual outputs, since they come from circuits that they themselves created. If there
is a dispute about the fairness, they go to the TTP for the resolution.
Overview of the resolution protocols is the following:

– Alice/Bob Resolve: We describe the resolution for Bob, though it is completely symmet-
ric for Alice. Remember that Bob is equipped with a verifiable escrow. But, for the TTP
to decrypt it for him, Bob must prove that he acted properly. He provides output labels
of Alice, and proves that they are evaluated from Alice’s garbled circuit. If so, the TTP
provides the decryption for Bob, who can use it to translate back to his output bits.

– Alice Abort: Alice may try to abort the protocol and block resolution attempts with
the TTP, should she not receive Bob’s verifiable escrow. When she contacts the TTP, if
Bob has resolved before, she obtains her output labels from the TTP. Otherwise, the TTP
marks the protocol as aborted, and would deny any resolution attempt by Alice or Bob.
Note that the TTP only sees random output labels, but not their translation tables.

Furthermore, since each circuit only evaluates to one party’s output, even if the TTP colludes
with the malicious party and provides the other party’s output labels, those are still meaningless
without the corresponding bits. Thus, a malicious TTP may only break fairness, but
not security.

Why Target Zero-Knowledge Proof based Garbled Circuit Protocols? We claimed
that our framework can be applied on top of any zero-knowledge proof based garbled circuit
protocols. There are two reasons for this:
1. As explained above, parties commit to output labels, for enabling efficient resolutions with

the TTP (one of the major problems in previous work). They must prove to each other that
they committed to the correct labels as in the garbled circuits. If the underlying protocol,
for example, encrypts the garbled tables using AES, then such a proof cannot be efficiently
done (without cut-and-choose), whereas if the underlying encryption scheme is number-
theoretic (such as simplified Camenisch-Shoup [14, 38]), then using sigma protocols [21],
the correctness proofs may be done very efficiently.

2. Item 1 above leaves out the cut-and-choose way of proving. The problem is that, if cut-and-
choose is employed, then there will be multiple circuits, rather than one. In our solution,
parties create verifiable escrows, and the TTP may need to decrypt them. Verifiable escrow
is a primitive that inherently uses zero-knowledge proofs. It is unclear how to combine the
verifiable escrow idea with cut-and-choose, where multiple circuits exist, especially when
the TTP needs to be able to verify and decrypt them.
In essence, one may think of our solution as a framework that can be applied on top of 2PC

schemes that employ a single circuit, and use number-theoretic constructions (of encryption)
for efficiency.

4 Making Secure 2PC Fair (Full Protocol)
Notation: Alice and Bob will evaluate a function f(x, y) = (fa(x, y), fb(x, y)), where Alice
has input x and gets output fa(x, y), and Bob has input y and gets output fb(x, y), f :
{0, 1}` × {0, 1}` → {0, 1}` × {0, 1}`, where ` is a positive integer. For simplicity, we assume
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preparation phase

Alice Bob
(x,C, PKTTP, id), (y,C, PKTTP, id)
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h
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h
r′
i,1}`i=1

For output gates

pick {p′i = (δ′i, ε
′
i)}

4`
i=1,Sb = {S′i = g

δ′
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ε′
i}4`i=1

S2PC phase

GCa,{mai,xi ,Dbi,0,Dbi,1}
`
i=1,Sa,signSa−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

GCb,{m
′
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,D′
ai,0

,D′
ai,1
}`
i=1,Sb,signSb

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

GCa ← GenGC(Ca)

signSa = signska (Sa)

GCb ← GenGC(Cb)

signSb = signskb (Sb)

Check
Correctness

{pi}4`i=1, {ui}
`
i=1

{Dbi,0,Dbi,1}
`
i=1,Sa

0/1
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Correctness

{D′bi,0,D
′
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}`i=1,Sb
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4`
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′
i}
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S2PC (GCa)x
y
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`
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x
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y
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′
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′
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`
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0/1 0/1

Fair Exchange Phase

signVa ,Va−−−−−−−−−−−−−→

signVb ,Vb←−−−−−−−−−−−−−
Oa−−−−−−−−−−−−−→
Ob←−−−−−−−−−−−−−

pick ε

label = `||vka||φ(ε)||id

Va = V EpkTTP (Ob; label)

signVa = signska (Va)

label = `||vka||φ(ε)||id

Vb = V EpkTTP (Oa; label)

signVb = signskb (Vb)

Fig. 1. Our framework to make a S2PC protocol fair. GenGC generates garbled circuit.
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Alice and Bob have `-bit inputs and outputs each. Alice’s input bits are x = {x1, x2, ..., x`} and
Bob’s input bits are y = {y1, y2, ..., y`}. They use a 2PC protocol Γ for the secure computation.

We use C to represent circuit. Ca outputs the Alice’s output and Cb outputs Bob’s output.
Similarly, the garbled circuit that is generated by Alice is GCa and the one generated by Bob
is GCb. We use apostrophe (′) for the values that are generated by Bob. When we say Alice’s
input wires, it means that Alice provides the input for these wires. Similarly, Alice’s output
wires correspond to Alice’s output. Bob’s input and output wires have the matching meaning.
An Input Gate is a gate that has an input wire of Alice or Bob. Similarly, an Output Gate is
a gate that has a wire of Alice’s or Bob’s output.

Ek shows an encryption with the key k. Therefore, Ek1Ek2(m1,m2) means that m1 and m2
are both encrypted by the two keys k1 and k2.

Any commitments that have efficient zero knowledge proofs can be used in this framework.
To exemplify the protocol we notate commitments as in Fujisaki-Okamoto commitments [25,
22] and Pedersen commitments [56].

Table 1. The review of the random numbers used for fairness in our framework.

Name Form Relation
Equality-Test Constants e = gρ There are four kinds of them, where each repre-

sents 0 or 1 and right or left.
Input-Gate Randoms u Each input gate has them. They are private; just

known by the constructors.
Equality-Test Numbers m = eu For each input-gate random u, there are four

kinds of them, where each represents 0 or 1 and
right or left according to e.

Output Labels (δ, ε) They are randomly chosen pairs, each represent-
ing a row of the garbled output gates.

We give a review of the random numbers that are used for fairness in Table 1. The protocol
steps are described in detail below (and in Figure 1).

The TTP generates the group G1 that is used in Γ and picks generators g, h ∈ G1, secret
and public key pair skTTP , pkTTP for the verifiable escrow scheme. Additionally, he chooses
a cyclic group G2 whose order is a large prime q and randomly selects its generators g0, g1, g2
(for the equality test). He also picks a one-way function φ(). Then, he announces his public
key PKTTP = [pkTTP , (G1, g, h), (G2, q, g0, g1, g2), φ()].

Both Alice and Bob know PKTTP and agree on a circuit C that computes f(x, y) and the
protocol identifier id before the protocol begins.

Preparation Phase:
1. Alice and Bob generate private-public key pairs (ska, vka) and (skb, vkb), respectively, for

an unforgeable signature scheme. They exchange the signature verification keys vka and
vkb.
They jointly generate four equality-test constants ea,0, ea,1, eb,0 and eb,1. (see Appendix
A.1). Equality test constants represent 0 and 1 for the left (a) and right (b) wires of input
gates.

2. Alice and Bob separately generate the random numbers and commitments for input and
output gates as shown in Figure 1.
The computations of Alice and Bob for each input gate i are the input-gate numbers
(ui resp.u′i), the equality-test numbers ({t ∈ {0, 1}, z ∈ {a, b} : mzi,t = euiz,t} resp. {t ∈
{0, 1}, z ∈ {a, b} : m′zi,t = e

u′i
z,t}), and the commitments ({t ∈ {0, 1} : Dbi,t =

mbi,th
ri,t} resp.{t ∈ {0, 1} : D′ai,t = m′ai,th

r′i,t}). They are used in the input equality
test to show the same inputs are used for both garbled circuits.
They generate output labels ((δj , εj) resp. (δ′j , ε′j)) for each row of garbled-output gate j and
their commitments (Sj resp. S′j) for the output gates where the sets are Sa = {Sj} resp.Sb =
{S′j}. They are as unique identifiers for the rows of the constructor’s garbled output gates.
Only the constructor knows which row they represent, which means only the constructor
knows which output bit they correspond to. This makes sure that the evaluator cannot
learn the output directly.
S2PC Phase:
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1. [Garbled Circuits:] Alice and Bob construct their garbled circuits by following the rules
of the underlying Γ protocol with little differences on the garbled tables of input and output
gates. The garbled circuit constructed by Alice is GCa and the garbled circuit constructed
by Bob is GCb.

Table 2. Garbled Input and Output Gate for an OR gate constructed by Alice. Encryption scheme
is same as the underlying protocol Γ .

Row Garbled Input Gate Garbled Output Gate
00 Ekai,0

Ekbi,0
(ri,0, k0) Eka,0Ekb,0(δj , εj)

01 Ekai,0
Ekbi,1

(ri,1, k1) Eka,0Ekb,1(δj+1, εj+1)
10 Ekai,1

Ekbi,0
(ri,0, k1) Eka,1Ekb,0(δj+2, εj+2)

11 Ekai,1
Ekbi,1

(ri,1, k1) Eka,1Ekb,1(δj+3, εj+3)

Input Gates: The difference is that each garbled table row of an input gate i includes
one more encryption besides the encryption of the output key. It is the encryption of either
r′i,0 or r′i,1 representing the input of 0 and 1 for the wire of Alice in GCb and either ri,0, or
ri,1 representing the input of 0 and 1 for the wire of the Bob in GCa. See Table 2 for the
details.
Remark: Alice and Bob just encrypt partial decommitments because they only need to learn
equality-test numbers (m values) that represent their input bits and we do not want to
reveal input-gate numbers (u values) since it cause the evaluator to learn the constructor’s
input.
Remark: Note that there can be just one input wire of a gate (e.g., NOT gate for negation).
In this case there will be two equality-test numbers which represent 0 and 1 for this gate.
Alternatively, they can agree to construct a circuit using only NAND gates [13].
Output Gates: Each row of the garbled output gate now includes the encryption of
corresponding output labels instead of encryption of real output bits (see Table 2). This is
to hide the actual output from the evaluator.

2. [Exchange:] They exchange the constructed garbled tables along with the commitments,
the signature of all commitments of the output labels (signSa resp. signSb) and equality-test
numbers that represents their input bits as in Figure 1.

3. [Check Correctness:] They prove to each other that they performed the input and the
output gates’ construction honestly, via efficient zero-knowledge proofs (see Appendix A.2):
– Proof of Input Gates to prove that the garbled input gates contain the correct decom-

mitment values. This is basically done in three steps:
Firstly, prover proves that (s)he knows the decommitmets of all commitments denoted
by D [14]. Secondly, prover proves that each commitment pair Dz,0 and Dz,1 commits
the same value under the different bases ez,0 and ez,1 respectively. If the prover is
Alice then z = bi, if the prover is Bob then z = ai. Lastly, prover proves that each
input-garbled table includes the double-encryption of partial decommitment of Dz,0
and Dz,1.

– Proof of Output Gates to prove that the garbled output gates encrypt the committed
output labels.

If there is a problem in the proofs, they abort. Otherwise, they continue.
4. [S2PC:] Alice and Bob execute Γ , and evaluate the garbled circuit they were given. At

the end of the evaluation, Alice learns the set Ob representing fb, Bob learns the set
Oa representing fa, each including ` output labels. Besides, each party learns the set that
includes equality-test numbers that represents her/his input (from the decryption of input-
garbled gates). If Γ protocol ends successfully they continue. Otherwise, they abort.
Equality Phase:
This phase is necessary to test whether or not Alice and Bob used the same input bits for

both circuit evaluations. We use unfair version of equality test by Boudot et al. [9]; the unfair
version is sufficient for our purpose.
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Alice and Bob want to check, if x∗i = xi and y∗i = yi for the encryptions Ek′ai,xi (Ek′bi,yi (k
′))

and Ekai,x∗i
(Ekbi,y∗i (k)) in each garbled input gate i, such that the first one was decrypted by

Alice and the second one was decrypted by Bob. For this purpose, Alice and Bob will use the
equality-test numbers {mzi,t,m

′
zi,t}z∈{a,b},t∈{0,1}.

Assume Alice decrypted a row for an input gate i and learned equality-test numbers m′ai,xi
and she knows m′bi,yi since Bob sent his equality-test numbers that represents his input in the
exchange step of the S2PC phase. Also assume Bob decrypted the corresponding garbled gate
and similarly learned mbi,y∗i

and he knows mai,x∗i
since Alice sent it in the exchange step of the

S2PC phase. If they both used consistent input bits for both GCa and GCb, then we expect to
see that the following equation is satisfied:

(m′ai,xim
′
bi,yi)

ui = (maix∗i
mbi,y∗i

)u
′
i (1)

The left hand side of the equation (1) is composed of values Alice knows since she learned m′

values and generated ui herself. Similarly, the right hand side values are known by Bob since
he learned m values and generated u′i himself. This equality should hold if x∗i = xi and y∗i = yi

since m′ai,x∗i = e
u′i
a,x∗

i
, m′bi,y∗i = e

u′i
b,y∗

i
and mai,xi = euia,xi , mbi,yi = euib,yi .

After computing their side locally in equation (1) for each input gate, they concatenate the
results in order to hash them, where the output range of the hash function is Zq. Then Alice
and Bob execute Proof of Equality protocol in [9] (see also Appendix A.3) with the hashes.

If the equality test succeeds, they continue with the next phase.
Remark: Remember that the constructor did not prove that (s)he added equality-test num-

bers to the correct row of the encryption table. Suppose that the constructor encrypted the
equality-test number that represents 0 where the evaluator’s encryption key represents 1. In
this case, it is sure that the equality test will fail, but the important point is that the construc-
tor cannot understand which row is decrypted by the evaluator, and thus does not learn any
information because he cannot cheat just in one row. If he cheats in one row, he has to change
one of the other rows as well, as otherwise he fails the “Proof of Input Gates”. Thus, even if
the equality test fails, the evaluator might have decrypted any one of the four possibilities for
the gate, and thus might have used any input bit. This also means that the equality test can
be simulated, and hence reveals nothing about the input.

Note that there are some techniques to check input equality in the literature as in [46, 41,
48, 60, 51, 52] but they are based on cut-and-choose. Since the underlying protocol Γ does not
use cut-and-choose to guarantee the security, the equality test we used is more suitable here.

Fair Exchange Phase:
In this phase, Alice and Bob exchange the outputs. Remember that the outputs are indeed

randomized, and only the constructor knows their meaning. Thus, if they do not perform this
fair exchange, no party learns any information about the real output (unless they resolve with
the TTP, in which case they both could learn their outputs).
1. Alice first picks a value ω from the domain of one way-function φ and computes φ(ω). Next,

she creates a verifiable escrow Va including Ob with non-malleable label (`||vka||φ(ε)||id)
as in Figure 1. Finally, she signs Va with ska and sends the signature signVa and Va.
With the verifiable escrow, she proves that there are ` different decommitments in the
escrow that correspond to ` of the commitments in Sb [37, 20, 10]. Since Alice can just
decrypt one row for every gate and so she only has one pair of keys for each gate, this
proof shows that Alice decrypted Bob’s garbled output tables correctly, and the verifiable
escrow has the evaluation result of GCb. If Va or signVa fails to verify, or if the label is not
correct, then Bob aborts. Otherwise, Bob continues with the next step.
Remark: ω is used in the Alice Abort protocol with the TTP to prevent Bob from claiming
to be Alice and aborting after Bob Resolve. Since only Alice knows ε that is a pre-image
of φ(ε), Bob cannot convince the TTP.

2. Bob creates a verifiable escrow Vb including Oa with non-malleable label the sane as Alice
created. He signs Vb with skb and sends the signature signVb and Vb.
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With the verifiable escrow, he proves that there are ` different decommitments in the escrow
that correspond to ` of the commitments in Sa [37, 20, 10]. If Va or signVa fails to verify, or
if the label is not correct, then Alice runs “Alice Abort” protocol with the TTP. Otherwise,
Alice continues with the next step.

3. Alice sends Ob to Bob.
4. Bob checks if the output labels in Ob are correct. The output labels are correct if ` of them

are the pairs that are generated by Bob. If they are correct, then he sends Oa. If at least
one of the output labels is not correct, then he does “Bob Resolve” with the TTP.

5. Alice checks if the output labels in Oa are correct. If they are not correct, then she does
“Alice Resolve” with the TTP. Otherwise the protocol ends.

Alice and Bob Resolve: We explain Bob Resolve below. Alice Resolve is the same where
the verifiable escrow, the signatures and O are Bob’s values.

Bob contacts with the TTP and sends the values Va, signVa ,Sa, signSa ,Oa. He sends signSa
to prove that Sa is generated by the same party who generates Va. The TTP checks if all
signatures are correct and the decommitments in Oa correspond to ` of the commitments in
Sa. If there is no problem, then the TTP decrypts Va with skTTP and sends the values inside
Va to Bob. Since Bob knows which output wire he put these values in the garbled circuit he
constructed, he effectively learns his output. The TTP remembers Alice’s output Oa, given
and proven by Bob, in his database.
Alice Abort: When Alice contacts the TTP for abort, she sends Va and signa, together with ε.
The TTP checks that the signature is valid and φ(ε) matches the label of Va. If Bob did resolve
before, the TTP sends Oa as in Figure 3 so that Alice can also learn her output. Otherwise,
the protocol is aborted and the TTP will not honor resolution requests for this exchange.

X TTP

Vx̄,signVx̄ ,Sx̄,signSx̄ ,Ox̄−−−−−−−−−−−−−−−−→

`, vkx̄, φ(ε)← label

u←Verify(vkx̄,signVx̄ )
v ←Verify(vkx̄,signSx̄ )
w ←VerifyCom(Sx̄,Ox̄)
if u, v, w = valid

Ox←−−−−−−−−−−−−− Ox ←Decrypt(skTTP,Vx̄)
Remember Ox̄

Fig. 2. X Resolve where X ∈ {Alice,Bob}. If
X is Alice, x̄ is b, otherwise x̄ is a.

Alice TTP
Va,signVa ,ε−−−−−−−−−−−−−→

if
Verify(vka,signVa , ε)
and Bob did resolve

Oa←−−−−−−−−−−−−−
else

“Protocol is aborted”←−−−−−−−−

Fig. 3. Alice Abort

Theorem 1. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be any probabilistic polynomial time
(PPT) two-party functionality. The protocol above for computing f is secure and fair according
to Definition 3, assuming that the TTP is semi-honest, the subprotocols that are stated in the
protocol are all secure (sound and zero-knowledge), all commitments are hiding and binding
[25, 22], the signature scheme used is unforgeable [32], and the Γ is a 2PC protocol secure
against malicious adversaries based on Yao’s garbled circuits and zero knowledge proofs.

Security against Malicious Alice:

Lemma 1. Under the assumptions in Theorem 1, our protocol is secure and fair against ma-
licious Alice A.

Proof. We construct a simulator SB that interacts with Alice in the real world as Bob, and
with U in the ideal world as Alice:

1. Preparation Phase: SB generates the same values as in the preparation phase.
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2. S2PC Phase: SB constructs the garbled circuit the same as the simulator of Γ . For the
input and output gates, it follows the same process as in the framework. Then, A and SB
exchange the garbled circuits and commitments.
A performs check correctness phase. Here, SB learns all input gate numbers {ui}`i=1 from
the proof of input gates and all output labels {(δi, εi)}4`

i=1 from the proof of output gates
using soundness extractors. If A’s proofs are not valid, then SB sends message abort to
U and stops. Otherwise, they continue with the evaluation of circuits.
SB learns the input of A which is x = (x1, x2, ..., x`) by using the simulator of Γ .

3. Equality Phase: SB acts as the random oracle, so when A asks for the hash of her equality
test input, SB answers her randomly and sees equality-test numbers that corresponds A’s
input, which consist of m′ values. Since these were generated by SB, he can check if they
are the expected ones because SB knows his own inputs and Alice’s inputs for SB’s garbled
circuit, so he knows which row A has to decrypt.
In addition, SB checks if A used the same input in GCa. He knows which row A should have
decrypted, as explained above. He learned the input-gate numbers {ui}`i=1 in the previous
step. So SB can learn which equality-test constants of the row that he decrypted are used,
and hence he can learn that A used which input in GCa. Finally, SB can check if the inputs
that A used in both circuits are equal.
They begin the equality test protocol. If the proofs of A are not valid or the input values are
not the expected ones, then SB sends abort message to U. SB simulates all zero-knowledge
proof of knowledge protocols in the equality test, similarly as in [9]. If the test was supposed
to return true, he simulates that way, otherwise he simulates with another random value
whose hash is random. The probability that the adversary queries the random oracle at
this random value is negligible. If the result is false, then he sends abort message to U
and the simulation ends.
Remark: Our security theorem intentionally does not mention the random oracle model.
As is specified above and in [9], the equality test and the use of the hash function here
necessitates the use of the random oracle model. Yet, one may convert this part to be
secure in the standard model, with a loss of efficiency. First, all zero-knowledge proofs of
knowledge must be done interactively. Second, instead of hashing the values and performing
only a single equality test, the values must be compared independently, using 2l (sequential)
equality tests. Performing these equality tests independently does not harm security, since
one may not cheat in the other party’s input, but can only cheat with own input, and
therefore learns nothing from the (in)equality.

4. Fair Exchange Phase: If the equality test is successful, then A should send the signature
signVa and Va. If A sends them and verification fails, then SB sends abort message to U.
Otherwise, the simulation continues with the next step.
Otherwise, it is certain that both parties can obtain the output, because honest real Bob
could have obtained his output using the Bob Resolve, and thus there is no more need for
aborting. Hence, SB hands Alice’s input x to U and U sends fa(x, y) to the simulator.
If A does “Alice Abort” in any point above: If SB went to U before, then SB simulates
the TTP and gives output labels corresponding to the A’s output fa(x, y) to A and if SB
have not been contacted with U yet, then then SB sends abort message to U and the real
protocol is aborted as well.
Remember that SB extracted all output labels of A from the Proof of Output Gates. In
addition, he learned which bit the row represents from the Proof of Garbled Construction. If
no “Alice Abort” is executed, then he picks output labels corresponding to the A’s output
fa(x, y) and sends all to A.

5. Resolutions: SB waits for the response from A. If A does not respond or sends invalid
output labels corresponding to his output, then he simulates Bob Resolve by decrypting
Va. Later on, if B contacts the TTP for the resolution, SB simulates the TTP using the
output labels.

6. SB outputs whatever A outputs.
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Claim. The view of A in his interaction with the simulator SB is indistinguishable from the
view in his interaction with real Bob and real TTP.

Proof. We need to check the behaviors of the SB that are different from Bob’s behavior in the
protocol, since these can affect the distribution.
– The construction garbled circuit of SB is indistinguishable than the real one thanks to the

simulator in protocol Γ .
– SB did not commit to the real equality-test numbers as real Bob would do. Since the com-

mitment scheme is hiding, the fake commitments are indistinguishable from the real ones.
In addition, SB simulates the zero-knowledge proofs in the protocol. Their indistinguishably
comes from the zero-knowledge simulatability.

– The simulator only aborts when the real Bob would abort. Thus, the abort actions are
indistinguishable as well.

– The simulator can perfectly simulate the TTP as well, since he generated its keys.
We emphasize one more time that a simulation proof for a secure and fair two-party

computation protocol needs to make sure that the simulator learns the output only
when it is guaranteed that the other party can also obtain the output, and not
before that point. In real world, it is sure for honest Bob that he will learn the functionality
output after Alice sends the correct verifiable escrow, because even if Alice does not send the
output to him in the fair exchange phase, Bob can learn them from the TTP via Bob Resolve.
For this reason SB sends input x to U after receiving the valid verifiable escrow. After that Bob
and SB learn their outputs in the ideal world. As mentioned, Bob learns his output certainly
in the end of the protocol in the real world after this point. Since Bob is honest, A learns her
output too, in the real world.

Overall, we proved that the joint distribution of A and the honest Bob’s output in the real
execution is indistinguishable from the joint distribution of SB and the honest Bob’s output in
the ideal model.

Therefore, combined with Claim 4, the proof of Lemma 1 is complete.
Security against Malicious Bob:
Lemma 2. Under the assumptions in Theorem 1, our protocol is secure and fair against ma-
licious Bob.

Proof. The proof is similar to that of Lemma 1. We construct a simulator SA that interacts as
Alice with the adversary B that controls Bob in the real world, and as Bob with the U in the
ideal world. SA simulates the protocol as following:
1. Up to Fair Exchange Phase: All simulation actions are the same as the simulator SB

above until the end of equality test.
2. Fair Exchange Phase: SA prepares verifiable escrow (if the equality test was indeed

successful) and the signature signVa and. Since SA does not know fa(x, y), she adds random
values in the escrow. SA simulates the proof by using verifiable escrow simulator [14].
SA waits for the verifiable escrow of B. If B sends Vb with signVb and they are correct, we
are guaranteed that the other party can obtain the output. So, the protocol will not be
aborted. SA sends y, which he learned via the Γ simulator, to U, and gets fb(x, y) from
U. This also means that U sends fa(x, y) to Alice in the ideal world. Since SA learned
all decommitments of output labels of Bob from Proof of Output Gates, SA prepares the
output labels of B according to fb(x, y) and sends them to B.
If Vb or signb are not valid, SA sends abort to U. If B tries to do “Bob Resolve” then SB
simulates the TTP and sends abort message to B.

3. Resolutions:
SA waits for the response from A. If A does not respond or sends invalid output labels
corresponding to her output, then she simulates Alice Resolve by decrypting the verifiable
escrow. Later on, if A contacts the TTP for resolution, SA simulates the TTP using the
output labels in the previous step.
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4. SA outputs whatever B outputs.

Claim. The view of B in his interaction with the simulator SA is indistinguishable from the
view in his interaction with real Alice and real TTP.

Proof. Honest Alice learns the output of the function if malicious Bob sends it in the fair
exchange phase, or if Bob successfully performs Bob Resolve in the real world. For this reason,
the simulator SA learns the output from U in the ideal world exactly at these points. The abort
cases also follow the real world.

As the rest of the simulation is similar to the case in Claim 4, the joint distribution of B
and honest Alice’s output in the real execution is indistinguishable from the joint distribution
of SA and honest Alice’s output in the ideal model.

This completes the proof of Theorem 1.

4.1 TTP Analysis
As we claim, a semi-honest TTP is sufficient in our protocol because the TTP only learns
output labels where their meaning is only known by the circuit constructors (Alice or Bob),
and a signature. In addition, (s)he does not receive anything else related to the input of Alice
or Bob. Furthermore, the signature key can be specific to each circuit, and thus we do not
require a public key infrastructure, and it does not give away the parties’ identity.3 Therefore,
if the TTP follows the protocol but also tries to learn extra information about the parties
(input or output), (s)he cannot succeed.

Even if the TTP is malicious, (s)he can only break the fairness property of the protocol.
A malicious TTP can collude with Alice or Bob. If Alice or Bob colludes with the TTP,
they cannot break the correctness property because in the honest Bob case, he cannot receive
wrong output since Alice can only learn one output label for each output gate (learning only
one output label per gate), so she can use only the learned output labels, which means TTP
cannot give different ones (because (s)he only knows those that Alice provides). Thus, the TTP
cannot break the correctness property. A similar argument shows that an honest Alice cannot
receive a wrong output. We defer a full proof for the malicious TTP case to the full version.

5 Proving Security and Fairness Together
In this section we show the importance of proving with full simulation according to Definition 3.
First, we define what we mean by partial simulation more formally and then we give contrived
versions of several protocols ([40, 58, 13] including ours) that are obviously insecure, but can be
proven fair and secure with partial simulation while it cannot be proven fair and secure with
full simulation, as we show.

Definition 5 (Partial Simulation). Let f, h, g be the PPT functionalities where f = g ◦ h,
h(x, y) = (hb, ha) and g(hb, ha) = (fa, fb) and let πf , πh, πg be the PPT protocols to compute
f, h, g, respectively where the first input and output of a functionality correspond to one party
(Alice) and the second input and output of a functionality correspond to other party (Bob). The
partial simulation paradigm says that πf computes f fairly and securely if there exists a
PPT protocol πh that is secure under simulation with abort [27] and there exists a PPT protocol
πg which achieves fairness [4, 42].

Almost all previous works (See Table 3) prove their fairness and security with partial
simulation: prove security with the unfair simulation paradigm (with abort) (corresponding to
3 The discussion about the usage of unique identifiers for the TTP to identify different evaluations

between some Alice and some Bob (with anonymity and unlinkability guarantees), thereby hiding
identities exist in previous work [4, 42]. Therefore, we do not complicate our presentation with such
issues.



Efficiently Making Secure 2PC Fair 15

proving πh to be a secure 2PC protocol with abort), and argue fairness (of the πg part, either
using TTP or gradual release) separately. This is risky.

Consider the following three contrived protocols where Alice and Bob want to compute
functionality f = (fa, fb) fairly and securely:
– A modified version of our protocol where the only difference is that the TTP gives Alice’s

output along with the input of Bob whenever Alice contacts for resolution or abort, if Bob
have done “Bob Resolve” before (honest Bob is required to provide his input to the TTP
in “Bob Resolve”). Here, h = (ha, hb) is a functionality where ha = Oa and hb = Ob (πh
is our protocol until the fair exchange phase, where parties only obtain random output
labels), and g is a functionality where g(Oa,Ob) = (fx, fy) (πg is the fair exchange phase
of our protocol with new “Alice Abort” and “Alice Resolve”.). It is very easy to simulate πh
with abort, since parties essentially learn nothing. Also, it is easy to argue about fairness
of this πg without simulation, since at the end of resolutions, either both parties obtain
their outputs or no one learns anything useful.

– The protocol which is the same as Cachin and Camenisch’s protocol [13] where the only
difference is that the TTP gives the other parties’ inputs to the party in the resolution
protocols (with similar reasoning as above).

– The modified versions of Kiraz and Schoenmakers [41] or Ruan et. al [58] protocols where
the only difference is Alice sends her input to Bob and vice versa at the end of the gradual
release.
In [41, 58] partial simulation is provided only until the beginning of the gradual release

phase, and then fairness is argued via the fairness of the gradual release. Similarly, in [13] the
partial simulation is provided for a functionality computation, then the fairness is discussed
based on the parties and TTP’s behaviors. Using the same type of reasoning, their and our
contrived versions can be proven fair and secure via partial simulation, and fairness can be
argued since at the end of the gradual release or TTP resolutions, either both parties obtain
their outputs or no one does. Unfortunately, it is obvious that these protocols leaks inputs to the
other party, becoming completely insecure. Observe that they can never be fully simulated,
because the simulator will not have access to the honest party’s input and hence it cannot
provide indistinguishability of ideal and real worlds.

Consequently, it is risky to argue fairness separate from the ideal/real world simulation.
We do not claim that previous protocols [13, 41, 58] have security problems, but we want to
emphasize that the partial simulation technique does not cover all security aspects of a protocol
and should not be preferred anymore.

Importance of the Timing of the Simulator contacting the Universal Trusted
Party: The proofs of the protocols [58, 41, 13] are also problematic since the simulator learns
the output of the computation from U before it is guaranteed that the other party can also
obtain the output. This behavior of the simulator violates the indistinguishibility of the ideal
and real worlds because if the simulator does not receive his/her output in the real world while
the parties already obtained the outputs in the ideal world, then the outputs in ideal and real
worlds are distinguishable, and the simulation fails. Therefore, the simulator must obtain
the output from the universal trusted party in the ideal world, only after it is
guaranteed that both parties can obtain the output in the real world.

6 Performance
To add fairness to the underlying Γ protocol, each party needs to compute extra 4` exponen-
tiations, 6` commitments, 2 signatures, 8` verifiable encryptions containing 2 values each, 4`
proofs of knowledge, and a verifiable escrow containing ` values. Among all these computation,
the most time consuming one is verifiable encryption. According to [50], a verifiable encryp-
tion with two values takes almost 318 milliseconds (ms) and with one value takes 257 ms. For
the verifiable escrow containing ` values, we have at most 0.25` seconds 4. Therefore, we can
4 The computation time of a verifiable escrow with ` values is less than 0.25` seconds since it does

not increase linearly, but we estimate an upper bound here.
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conclude that each party spends at most 3.05` seconds for the extra computations. Hence, our
framework is independent from the circuit size and we can conclude that our overhead is O(`).
Our overhead compared to the time that is spend for the Γ protocol is very small because
` is expected to be much much less than the circuit size. For example, if Γ computes AES
encryption, ` = 128 and the circuit size is around 30000 gates. In this case, each party spends
extra 6.5 minutes which is minimal compared to 30000 circuit evaluation (in zero-knowledge
based garbled circuits).

If a resolution protocol is executed, TTP verifies one signature, checks ` commitments and
decrypts one verifiable escrow. The most time consuming part for TTP is the decryption of
the verifiable escrow, which takes time around 5` ms [50].

Our protocol adds extra 10 messages with the joint generation, the equality test, and the
fair exchange, while gradual release based solutions [57, 41, 58] require much more number of
rounds (based on the security parameter).

When we examine our network overhead, we have extra 100.6` KB (kilobyte) from verifiable
encryptions and 18.8` KB from verifiable escrow [50]. 5

7 Conclusion
Table 3 presents a comparison with the most related works.

Table 3. Comparison of our protocol with previous works. CC denotes cut-and-choose, ZK denotes
efficient zero-knowledge proofs of knowledge, GR denotes gradual release, OFE denotes efficient opti-
mistic fair exchange, superscript I denotes inefficient TTP, superscript P denotes necessity of using
a payment system, NS denotes no ideal-real simulation proof given, PS indicates partial simulation
proof, and finally FS indicates full simulation proof including fairness. A check mark X is put for easily
identifying better techniques.

[57] [58] [41] [44] [13] Ours
Malicious Behavior CC CC CC CC/ZK ZK ZK
Fairness GR GR GR OFEP OFEI OFE X
Proof Technique NS PS PS FS X PS FS X

X All our overhead (TTP, Alice, Bob) are dependent only on the input and output size, and
independent of the circuit size, in contrast to [13].

X We require a constant number of rounds for fairness, contrary to gradual release based
solutions [57, 41, 58].

X We do not necessitate a payment framework. Our fairness definition is that either both
parties obtain the output, or no one does, as opposed to [44].

X Even when a dispute occurs, the parties remain anonymous, and their computations
remain unlinkable, since we do not need a public key infrastructure, in comparison to the
certificate authority in [44].

X Even if the TTP becomes malicious and colludes with one participant, he cannot violate
the security of the protocol. On the other hand, in [44], while the Bank cannot violate
2PC security, it can maliciously deal with the balances, possibly causing a lot of headache.

X Finally, our protocol is proven secure in the ideal/real simulation paradigm (not in
[57]) with output indistinguishability (not in [41, 58, 13]), and by proving fairness and
security simultaneously via a full simulation proof (none except [44]).
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A Sub Protocols
A.1 Joint Generation
For the joint generation, Bob first commits to four random elements from Zn and proves the
knowledge of the committed values and their ranges [12, 8]. Then, Alice chooses four random
elements from the same range and sends them to Bob. Finally, Bob decommits. Then they
both calculate the multiplication of pairs of these numbers, in Zn, and so jointly agree on
random numbers ρa,0, ρa,1, ρb,0, ρb,1. In the end, they calculate equality test constants where
{ez,t = gρz,t}z∈{a,b},t∈{0,1}.

A.2 Check Correctness
We present the subprotocols from Alice’s viewpoint as the prover. Bob’s proofs are symmetric.

Proof of Output Gates:
Inputs: Common inputs are the garbled tables of gate g that contains encryptions

E00, E01, E10, E11, along with the commitments SAi , ...,SAi+3 of the output labels of g. Prover’s
private inputs are all decommitments. Prover performs following:
– ZKVerifyEnc(E00,SAi ) ∧ ZKVerifyEnc(E01,SAi+1) ∧ ZKVerifyEnc(E10,SAi+2) ∧

ZKVerifyEnc(E11,Si+3), where ZKVerifyEnc(E,S) proves that the encryption E con-
tains the decommitment of S.
Proof of Correct Input Gates:
Inputs: Common inputs are the commitments DAwb,0,D

A
wb,1 and the garbled input gate table

that has encryptions E00, E01, E10, E11. Prover knows the decommitments. Prover performs
the following (details in [38] or appendix of [43]):
– According to prover’s side, he performs one of the proofs below. If she is from the left side

(in our protocol it is Alice’s side) then she performs ZKVerifyEncRight, otherwise he
performs ZKVerifyEncLeft. Each ZKVerifyEnc(E,D) shows that the encryption E
contains the decommitment of the commitment D. This proof can be done as in [14].
• ZKVerifyEncRight = ZKVerifyEnc(E00,DAwb,0) ∧ ZKVerifyEnc(E01,DAwb,1) ∧

ZKVerifyEnc(E10,DAwb,0) ∧ ZKVerifyEnc(E11,DAwb,1)
• ZKVerifyEncLeft = ZKVerifyEnc(E00,DAwb,0) ∧ ZKVerifyEnc(E01,DAwb,0) ∧

ZKVerifyEnc(E10,DAwb,1) ∧ ZKVerifyEnc(E11,DAwb,1)

– ZKComDL(DAwb,0) ∧ ZKComDL(DAwb,1) proving knowledge of the decommitments of
these commitments.

– ZKEqComDL (DAwb,0,D
A
wb,1) showing that the committed messages are equal for both

commitments (under different bases, eb,0 and eb,1).

A.3 Equality Test
The adapted protocol of [9] is the following:
– Alice and Bob generate a cyclic abelian group G, which has a large prime order q, with

generators g0, g1, g2, g3. Then, they compute the corresponding values of their input bits
(for equality test) in Zq. In our case, these are the hashed values of all left (right) hand
sides of equation 1. Say Alice’s value is θa and Bob’s is θb.

– Alice chooses a random xa ∈ Zq and computes ga = gxa1 and similarly Bob chooses a
random xb ∈ Zq and computes gb = gxb1 . Then, they send these values to each other and
calculate gab = gxba = gxab . In addition, they prove knowledge of xa and xb using Schnorr’s
protocol [59].

– Alice selects a ∈R Zq, calculates (Pa, Qa) = (ga3 , ga1g
θa
2 ), and sends (Pa, Qa) to Bob. Bob

does the symmetric version, computing and sending (Pb, Qb) = (gb3, gb1g
θb
2 ), where b ∈R Zq.

Alice calculates Ra = (Qa/Qb)xa . Bob also calculates Rb = (Qa/Qb)xb . Then, Alice sends
Ra with a proof that logg1ga = logQa/QbRa to Bob [17].
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– Bob can now learn the result of the equality test by checking whether Pa/Pb = Rxba . Then,
he sends same proof as above to show logg1gb = logQa/QbRb so that Alice also learns the
equality test result.
Note that if Bob does not send the last message, he will not obtain the equality signature

seq in our protocol, and the whole protocol will be aborted without anyone learning the actual
output.

B Making a Secure Protocol Fair
Alice and Bob will evaluate a function f(x, y) = (fa(x, y), fb(x, y)), where Alice has input x
and gets output fa(x, y), and Bob has input y and gets output fb(x, y), and for simplicity of
the presentation we have f : {0, 1}l × {0, 1}l → {0, 1}l × {0, 1}l, where l is an integer.

All commitments are Fujisaki-Okamoto commitments [25, 22] unless specified otherwise,
and all encryptions are simplified Camenish-Shoup (sCS) encryptions as in [38]. We use the
protocol [38] to adapt our fairness principles in Section 4. We do not explain all the steps that
are exactly the same as in Section 4.

Alice and Bob agree on the circuit that computes f(x, y). Then, they begin to construct
their garbled circuits separately. The construction is quite similar for Alice and Bob. Therefore,
we give details of the construction through Alice. When there is an important difference, we
also show Bob’s way of doing it.

Preparation Phase: It is the same explanation as in the Section 4.
S2PC Phase:

1. Commitments for keys: Alice generates keys {kAwz,t}z∈{a,b},t∈{0,1},w∈W\WO
represent-

ing left and right and 0 and 1 for each wire except the output gates’ output wires.
Then, she computes sCS commitments {CAwz,t}z∈{a,b},t∈{0,1},w∈W\WO

for each key as
in [38].

Normal Gates: As in the Yao’s protocol [63], she begins to construct the garbled ta-
bles. First, she picks permutation-pairwise bits ϕAa and ϕAb for each gate to permute
the garbled table. Then she prepares the double encryptions of the keys according to
permutation order (see Table 4).

Input Gates and Output Gates: It is contructed same way as in Section 4 and the
encryption is done with using simplified Camenish-Shoup (sCS) [38].
See Table 4 for construction details of output and input gates.

Row ta, tb Output Bit (t) Garbled Input Gate Garbled Output Gate
00 (0⊕ ϕA

a ), (0⊕ ϕA
b ) (ta ∨ tb) EkAwa,ta

EkAwb,tb

(kA
wo,t , sw

g
b

,t) EkAwa,ta
EkAwb,tb

(δA
i , ε

A
i )

01 (0⊕ ϕA
a ), (1⊕ ϕA

b ) (ta ∨ tb) EkAwa,ta
EkAwb,tb

(kA
wo,t , sw

g
b

,t) EkAwa,ta
EkAwb,tb

(δA
i+1, ε

A
i+1)

10 (1⊕ ϕA
a ), (0⊕ ϕA

b ) (ta ∨ tb) EkAwa,ta
EkAwb,tb

(kA
wo,t , sw

g
b

,t) EkAwa,ta
EkAwb,tb

(δA
i+3, ε

A
i+2)

11 (1⊕ ϕA
a ), (1⊕ ϕA

b ) (ta ∨ tb) EkAwa,ta
EkAwb,tb

(kA
wo,t , sw

g
b

,t) EkAwa,ta
EkAwb,tb

(δA
i+3, ε

A
i+3)

Table 4. Garbled Input and Output Gates for an OR gate constructed by Alice.

2. They exchage garbled tables along with the commitmetments as in the Figure 1.
Step 3 an 4 are the same as in the explanation in Section 4.
Equality Phase:
Fair Exchange Phase:


