
Leveled Fully Homomorphic Signatures

from Standard Lattices

Sergey Gorbunov∗

MIT
Vinod Vaikuntanathan†

MIT
Daniel Wichs‡

Northeastern

Abstract

In a homomorphic signature scheme, a user Alice signs some large dataset x using her secret
signing key and uploads the signed data to an untrusted remote server. The server can then run
some computation y = f(x) over the signed data and homomorphically derive a short signature
σf,y certifying that y is the correct output of the computation f . Anybody can verify the tuple
(f, y, σf,y) using Alice’s public verification key and become convinced of this fact without having
to retrieve the entire underlying data.

In this work, we construct the first (leveled) fully homomorphic signature schemes that can
evaluate arbitrary circuits over signed data. Only the maximal depth d of the circuits needs
to be fixed a-priori at setup, and the size of the evaluated signature grows polynomially in
d, but is otherwise independent of the circuit size or the data size. Our solution is based on
the hardness of the small integer solution (SIS) problem in standard lattices and satisfies full
(adaptive) security. In the standard model, we get a scheme with large public parameters whose
size exceeds the total size of a dataset. In the random-oracle model, we get a scheme with short
public parameters. In both cases, the schemes can be used to sign many different datasets. The
complexity of verifying a signature for a computation f is at least as large as that of computing
f , but can be amortized when verifying the same computation over many different datasets.
Furthermore, the signatures can be made context-hiding so as not to reveal anything about the
data beyond the outcome of the computation.

These results offer a significant improvement in capabilities and assumptions over the best
prior homomorphic signature schemes, which were limited to evaluating polynomials of constant
degree.

As a building block of independent interest, we introduce a new notion called homomorphic
trapdoor functions (HTDF) which conceptually unites homomorphic encryption and signatures.
We construct HTDFs by relying on the techniques developed by Gentry et al. (CRYPTO ’13)
and Boneh et al. (EUROCRYPT ’14) in the contexts of fully homomorphic and attribute-based
encryptions.

∗Email: sergeyg@mit.edu. Research supported in part by Microsoft PhD Fellowship and the Northrop Grumman
Cybersecurity Research Consortium (CRC).
†Email: vinodv@csail.mit.edu. Research supported in part by DARPA Grant number FA8750-11-2-0225, the

Northrop Grumman Cybersecurity Research Consortium (CRC), Alfred P. Sloan Research Fellowship, Microsoft
Faculty Fellowship, NSF CAREER award CNS-1350619, NSF Frontier Grant CNS-1414119, and the Steven and
Renee Finn Career Development Chair from MIT.
‡E-mail: wichs@ccs.neu.edu. Research supported by NSF grants CNS-1347350 and CNS-1314722.

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Related Work . 3
1.3 Our Techniques . 4

2 Preliminaries 7
2.1 Background on Lattices and the SIS Problem . 8

3 Homomorphic Trapdoor Functions 9
3.1 Definition . 9
3.2 Construction: Basic Algorithms and Security . 10
3.3 Construction: Homomorphic Evaluation and Noise Growth 12

4 Fully Homomorphic Signatures (Single Dataset) 14
4.1 Definition . 15
4.2 Basic Construction . 17
4.3 A Scheme with Short Public Parameters . 18
4.4 From Selective Security to Full Security . 19

5 Multi-Data Homomorphic Signatures 21
5.1 Definition . 21
5.2 From Single-Data to Multi-Data . 23

6 Context-Hiding Security 25
6.1 Construction of Context-Hiding HTDF . 27

7 Conclusions 29

A Another Single to Multi-Data Transformation 34

B HTDFs and Fully Homomorphic Encryption 36

1 Introduction

Motivated by the prevalence of cloud computing, there has been much interest in cryptographic
schemes that allow a user Alice to securely outsource her data to an untrusted remote server (e.g.,
the cloud), while also allowing the server to perform useful computations over this data. The
ground-breaking development of fully homomorphic encryption (FHE) by Gentry [Gen09] allows
Alice to maintain the privacy of her data by encrypting it, while allowing the server to homomor-
phically perform arbitrary computations over the ciphertexts. In this work, we are interested in
the dual question of authenticity.

Homomorphic Signatures. A homomorphic signature scheme allows Alice to sign some large
dataset x using her secret signing key. She can then distribute the signed data to some untrusted
entity called a “data processor”. A data processor can perform arbitrary computations y = f(x)
over this data and homomorphically derive a signature σf,y, which certifies that y is the correct
output of the computation f over Alice’s data. The derived signature σf,y should be short, with
length independent of the size of the data x. Anybody can verify the tuple (f, y, σf,y) using Alice’s
public verification key and become convinced that y is indeed the correct output of the computation
f over Alice’s signed data x, without needing to download the entire data x. Although the compu-
tational effort of verifying a derived signature is proportional to the complexity of computing the
function f , this work can be performed offline prior to seeing the signature, and can be amortized
when verifying the same computation over many datasets.

Application: Computation on Outsourced Data. As the most basic application of homo-
morphic signatures, a user Alice can outsource her signed data to a remote server acting as a data
processor, and later verify various computations performed by the server over her data. Using
homomorphic signatures, this can be done with minimal communication and interaction consisting
of a single short signature sent from the server to Alice. Although verifying the correctness of this
computation takes Alice as much time as the computation itself, she avoids having to store this
data long term. We refer the reader to Section 1.2 for a detailed comparison with related work on
delegating memory and computation.

Application: Certified Data Analysis. The non-interactive nature of homomorphic signa-
tures and the fact that they provide public verifiability also makes them useful in a wide variety of
settings beyond the above outsourcing scenario.

For example, consider a scenario where a trusted agency such as the National Institute of
Health (NIH), runs a large-scale medical study. It signs the collected data x and distributes it to
various research groups and pharmaceutical companies for analysis. Some of these groups may have
incentives to lie about the outcomes of their analysis and are not trusted by the public. However,
using homomorphic signatures, they can publicly post their methodology for the analysis (a function
f), the claimed outcome of the analysis (y = f(x)), and a short signature σf,y that certifies the
correctness of the outcome. This information can be posted publicly (e.g., on third-party websites)
and verified by the public using a verification key published by the NIH. The public does not need
to have access to the underlying data and does not need to interact with the NIH or the research
groups that performed the computation to verify such signatures – indeed, these entities may go
offline and the underlying data may be deleted after the analysis is performed but the signed results

1

remain verifiable. Furthermore, such signatures can be made context hiding to ensure that they do
not reveal anything about the underlying medical data beyond the outcome of the analysis. In this
case, the NIH trusts the research groups to preserve the privacy of the underlying data (from the
world), but the world does not trust the research groups to perform the analysis correctly.

1.1 Our Results

In this work, we construct the first (leveled) fully homomorphic signature schemes that can evaluate
arbitrary circuits over signed data, where only the maximal depth d of the circuit needs to be fixed
a priori. The size of the evaluated signature grows polynomially in d, but is otherwise independent
of the data size or the circuit size. This is an exponential improvement in capabilities over the best
prior homomorphic signature schemes which could only evaluate polynomials of some bounded
degree k where the efficiency degraded polynomially with k (in general, k = 2O(d)).

Our solutions are based on the (subexponential) hardness of the small integer solution (SIS)
problem in standard lattices, which is in turn implied by the worst-case hardness of standard lattice
problems [Ajt96]. This is also a significant improvement in assumptions over the best prior schemes
which either relied on ideal lattices or multi-linear maps.

We get a scheme in the standard model, where the maximal dataset size needs to be bounded
by some polynomial N during setup and the size of the public parameters is linear in N . In the
random-oracle model, we get rid of this caveat and get a scheme with short public parameters
and without any a-priori bound on the dataset size. In both cases, the user can sign arbitrarily
many different datasets by associating each dataset with some label (e.g., a file name). The verifier
must know the label of the dataset on which the computation was supposed to be performed when
verifying the output.

Efficient Online/Amortized Verification. Our schemes allow for fast amortized verification
of a computation f over many different datasets, even if the datasets belong to different users with
different verification keys. In particular, the verifier only needs to perform work proportional to the
circuit size of f once to verify arbitrarily many signatures under arbitrary verification keys. This
work can be performed offline prior to receiving any of the signatures, and the online verification
can then be much more efficient than computing f .

Context Hiding. Our schemes can also be made context hiding so that a signature σf,y does not
reveal any additional information about the underlying data x beyond the output y = f(x). We
show how to achieve this statistically without relying on any additional assumptions.

Composition. Our schemes also allow composition of several different computations over signed
data. One evaluator can compute some functions y1 = h1(x), . . . , y` = h`(x) over signed data
x and publish the homomorphically computed signatures σh1,y1 , . . . , σh`,y` . A second evaluator
can then come and perform an additional computation y∗ = g(y1, . . . , y`) on the outputs of the
previous computation and combine the signatures σh1,y1 , . . . , σh`,y` into σg◦h̄,y∗ which certifies y∗ as

the output of the composed computation (g ◦ h̄)(x)
def
= g(h1(x), . . . , h`(x)). The second evaluator

does not need to know the original data x or the original signatures. This can continue as long as
the total computation is of bounded depth.

2

1.2 Related Work

Linearly Homomorphic Schemes. Many prior works consider the question of homomorphic
message authentication codes (MACs with private verification) and signatures (public verifica-
tion) for restricted homomorphisms, and almost exclusively for linear functions: [ABC+07, SW08,
DVW09, AKK09, AB09, BFKW09, GKKR10, BF11a, AL11, BF11b, CFW12, Fre12]. Such MACs
and signautres have interesting applications to network coding and proofs of retrievability.

Homomorphic Signatures Beyond Linear. Boneh and Freeman [BF11a] were the first to
consider homomorphic signatures beyond linear functions, and propose a general definition of such
signatures. They present a scheme that can evaluate arbitrary polynomials over signed data, where
the maximal degree k of the polynomial is fixed a priori and the size of the evaluated signature
grows (polynomially) in k. If we want to translate this to the setting of circuits, then a circuit
of depth d can be represented by a polynomial of degree as high as k = 2d, and therefore the
signature size can grow exponentially in the depth of the circuit. The construction is based on the
hardness of the Small Integer Solution (SIS) problem in ideal lattices and has a proof of security
in the random-oracle model. The recent work of Catalano et al. [CFW14] gives an alternate
solution using multi-linear maps which removes the need for random oracles at the cost of having
large public parameters. The main open question left by these works is to construct signatures
with greater levels of homomorphism, and ideally a fully homomorphic scheme that can evaluate
arbitrary circuits.

Homomorphic MACs Beyond Linear. There has also been progress in constructing homo-
morphic message authentication (MACs) with private verification for larger classes of homomor-
phisms. The work of Gennaro and Wichs [GW13] defines and achieves fully homomorphic MACs
using fully homomorphic encryption. However, the security of the scheme only holds in a set-
ting without verification queries and can completely break down if the attacker has access to a
verification oracle allowing him to test whether authentication tags are valid. More recent works
[CF13, BFR13, CFGN14] show how to get homomorphic MACs that remain secure in the presence
of verification queries, but only for restricted homomorphisms. Currently, the best such schemes
allow for the evaluation of polynomials of degree k, where the computational effort grows polyno-
mially with k (but the size of the evaluated authentication tag stays fixed). In other words, the
question of (leveled) fully homomorphic authentication, even in the setting of private verification,
remained open prior to this work.

Other Types of Homomorphic Authentication. We also mention works on specific types of
homomorphic properties such as redactable signatures (see e.g., [JMSW02, ABC+12]) where, given
a signature on a long message x, it should be possible to derive a signature on a subset/substring
x′ of x. The work of [ABC+12] proposes a general notion of P -homomorphic signature schemes for
various predicates P , but efficient constructions were only known for a few specific instances. 1

1There is a potentially confusing syntactic difference between the notion of P -homomorphic signatures and the
notion of homomorphic signatures in this work, although the two are equivalent. In P -homomorphic signatures, given
a signature of x one should be able to derive a signature of x′ as long as P (x, x′) = 1 for some predicate P (e.g.,
the substring predicate). The same effect can be achieved using the syntax of homomorphic signatures in this work
by defining a function fx′ that has x′ hard-coded and computes fx′(x) = P (x, x′). We would then give a derived
signature σfx′ ,1 certifying that y = 1 is the output of the computation fx′(x) over the originally signed data x.

3

Homomorphic Signatures via SNARKs. There is a very simple construction of fully homo-
morphic signatures by relying on CS-Proofs [Mic94] or, more generally, succinct non-interactive
arguments of knowledge for NP (SNARKs) [BCCT12, BCCT13, BCI+13, GGPR13, PHGR13,
BSCG+13]. This primitive allows us to non-interactively create a short “argument” π for any NP
statement so that π proves “knowledge” of the corresponding witness. The length of π is bounded
by some fixed polynomial in the security parameter and is independent of the statement/witness
size. The complexity of verifying π only depends on the size of the statement (but not the witness).
Using SNARKs, we can authenticate the output y = f(x) of any computation f over any signed
data x (under any standard signature scheme) by creating a short argument πf,y that proves the
knowledge of “data x along with valid signature of x, such that f(x) = y”.

One advantage of the SNARK-based scheme is that a signature can be verified very efficiently,
independently of the complexity of the computation f being verified, as long as f has a short Turing-
Machine description. In contrast, in this work, we will only get efficient verification in an amortized
sense, when verifying a computation f over many different datasets. Unfortunately, constructing
SNARKs, even without a “knowledge” requirement, is known to require the use of non-standard
assumptions [GW11]. The additional requirement of (non black-box) knowledge extraction makes
SNARKs even more problematic and is unlikely to be possible in its full generality [BCPR14].
Known SNARK constructions are either based on the random-oracle heuristic and the use of PCP
machinery, or on various “knowledge of exponent” assumptions and light-weight PCP variants.

Delegating Computation. Several other works consider the related problem of delegating com-
putation to a remote server while maintaining the ability to efficiently verify the result [GKR08,
GGP10, CKV10, AIK10, BGV11, CKLR11, PRV12, PST13, KRR14]. In this scenario, the server
needs to convince the user that f(x) = y, where the user knows the function f , the input x and
the output y, but does not want to do the work of computing f(x). In contrast, in our scenario the
verifier only knows f and y but does not know the previously authenticated data x, which may be
huge. As mentioned in [GW13], some of the results for delegating computation in the pre-processing
model can also be re-interpreted as giving results for the latter scenario. The latter scenario was
also explicitly considered by Chung et al. [CKLR11] in the context of memory delegation, where
the client can also update the data on the server. Some of these solutions only allow a single
party with secret key to verify computation, while others (e.g., [PRV12]) allow anyone to verify.
However, all of the above solutions for memory delegation and delegating computation require at
least some interaction between the client and server (often just a challenge-response protocol) to
verify a computation f . Therefore they do not give us a solution to the problem of homomorphic
signatures (or even homomorphic MACs), where we require a static certificate which certifies the
output of a computation and which can be posted publicly and verified by everyone.

1.3 Our Techniques

Our constructions of homomorphic signatures are modular and, as a building block of potentially
independent interest, we present a new primitive called a homomorphic trapdoor function (HTDF).
This primitive allows us to conceptually unite homomorphic encryption and signatures. We now
give a high-level overview of our techniques. We start with the notion of HTDFs, then show how to
construct homomorphic signatures from HTDFs, and finally show how to construct HTDFs from
the SIS problem.

4

Homomorphic Trapdoor Functions (HTDF). An HTDF consists of a function v = fpk,x(u)
described via a public key pk and an index x ∈ {0, 1}, with input u and output v. It will be useful
to think of this as a commitment scheme where x is the message, v is the commitment and u is the
randomness/decommitment. Given some values

u1, x1, v1 = fpk,x1(u1) , . . . , uN , xN , vN = fpk,xN (uN)

and a circuit g : {0, 1}N → {0, 1}, we can homomorphically compute an input
u∗ := HTDF.Evalin(g, (x1, u1) . . . , (xN , uN)) and an output v∗ := HTDF.Evalout(g, v1, . . . , vN) such
that:

fpk,g(x1,...,xN)(u
∗) = v∗.

Thinking of HTDFs as commitments, the above says that if the values vi are commitments to the
message bits xi with decommitments ui, then we can homomorphically combine the vi to derive
a commitment v∗ and homomorphically combine the messages/decommitments (xi, ui) to get a
decommitment u∗ which opens v∗ to the message g(x1, . . . , xN).

We want to be able to generate the public key pk of the HTDF together with a trapdoor sk
that allows us to take any output v and efficiently invert it with respect to any index x to get
u ← Invsk,x(v) such that fpk,x(u) = v. In the language of commitments, this means that we want
the scheme to be equivocable (and therefore statistically hiding) with a trapdoor sk that lets us
open any commitment to any message.

For security, we simply require that the HTDF is claw-free: given pk, it should be hard to come
up with inputs u0, u1 such that fpk,0(u0) = fpk,1(u1). Equivalently, in the language of commitments,
we want the scheme to be computationally binding.

As an intellectual curiosity (but of no application to this work), we could also change our
requirements and instead ask for an HTDF which is extractable (and therefore statistically binding)
while also being computationally hiding. In other words, we would want to generate pk along with
a trapdoor sk that would allow us to extract x from v = fpk,x(u). In this case, such an HTDF
could also be though of as a fully homomorphic encryption scheme, where v is the ciphertext
of a message x and HTDF.Evalout is the homomorphic evaluation procedure on ciphertexts. Our
eventual construction of an HTDF will provide both options by allowing us to choose pk in one
of two indistinguishable modes: an equivocable mode and an extractable mode. In this work,
we will solely rely on the equivocable mode to construct homomorphic signatures. However, the
extractable mode of the HTDF (essentially) corresponds to the Gentry-Sahai-Waters [GSW13] fully
homomorphic encryption scheme. Therefore, we view HTDFs as providing an interesting conceptual
unification of homomorphic signatures and encryption. We refer the reader to Appendix B for more
on this grand unification.

Basic Homomorphic Signatures from HTDFs. We construct several flavors of homomorphic
signature schemes using HTDFs as a black-box. As the most basic flavor, we construct a signature
scheme in the standard model where the setup procedure knows some bound N on the size of the
dataset that will be signed and the size of the public parameters can depend on N . The public
parameters prms = (v1, . . . , vN) consist of N random outputs of the HTDF. Each user chooses a
pubic/secret key pair (pk, sk) for an HTDF, which also serves as the key pair for the signature
scheme. To sign some data x = (x1, . . . , xN) ∈ {0, 1}N the user simply finds inputs ui such that
fpk,xi(ui) = vi by using sk to invert vi. We think of ui as a signature that ties xi to its position i.

5

Given x, the signatures u1, . . . , uN , and a function g : {0, 1}N → {0, 1}, anybody can ho-
momorphically compute a signature u∗g,y := HTDF.Evalin(g, (x1, u1), . . . , (xN , uN)) which certifies
y = g(x1, . . . , xN) as the output of the computation g. To verify the tuple (g, y, u∗g,y), the verifier

will compute v∗ := HTDF.Evalout(g, v1, . . . , vN) and checks fpk,y(u
∗
g,y)

?
= v∗. Notice that veri-

fication procedure only depends on the public parameters but does not know the data x. We
can show that this basic scheme already satisfies selective security, where we assume that dataset
x1, . . . , xN is chosen by the attacker before seeing the public parameters. In the reduction, instead
of choosing vi randomly, we choose a random input ui and compute vi := fpk,xi(ui) using the
data xi that the attacker wants signed. This makes it easy for the reduction to generate signa-
tures for xi. Furthermore, for any function g, the reduction can compute the honest signature
u = HTDF.Evalin(g, (x1, u1), . . . , (xN , uN)) which certifies the output y = g(x1, . . . , xN). If an at-
tacker produces a forged signature u′ that certifies y′ 6= y then fpk,y(u) = fpk,y′(u

′) and therefore
(u, u′) breaks the claw-free security of the HTDF.

Upgrading Functionality and Security. We show how to generically start with a basic ho-
momorphic signature scheme as above and convert into more powerful variants of homomorphic
signatures with improved functionality, efficiency, and security.

Firstly, we note that since the public parameters prms = (v1, . . . , vN) of our basic scheme are
uniformly random values, we can easily compress them in the random oracle model to get a scheme
with short public parameters. In particular, the public parameters of the new scheme only consist
of a short random string r and we can derive the values vi = H(r, i) using a random oracle H.
We can also translate this random-oracle scheme into a standard-model assumption on the hash
function H which is simple-to-state and falsifiable, but nevertheless non-standard. This gives us a
tradeoff between efficiency and assumptions.

Next, we give a generic transformation from a homomorphic signature scheme with selective
security to a scheme with full adaptive security. Our transformation works in both the standard
model and the random oracle model. Starting from a selectively secure leveled FHS scheme, we
obtain a fully secure leveled FHS scheme.2

Lastly, following Boneh and Freeman [BF11a], we can extend the functionality of homomorphic
signatures to allow the user to sign multiple different datasets under different labels τ (e.g., τ
can correspond to a “file name”), where verifier must simply know the label of the dataset on
which the computation was supposed to be performed. We show a generic transformation from
a basic signature that only works for a single dataset into one that supports multiple datasets.
Furthermore, this transformation gives us efficient amortized verification of a computation over
multiple datasets.

Constructing HTDFs. We now briefly describe how to construct HTDFs based on the SIS
problem. We rely on the homomorphic techniques developed by Gentry, Sahai and Waters [GSW13]
and by Boneh et al. [BGG+14] in the context of fully homomorphic encryption and attribute-based
encryption.

The SIS problem states that, for a random matrix A ∈ Zn×mq it should be hard to come up
with a “short” non-zero vector u ∈ Zmq , such that A · u = 0. However, there is a way to generate
A along with a trapdoor td that makes this easy and, more generally, for any matrix V ∈ Zn×mq ,

2Although Catalano et al. [CFW14] provide a similar transformation, it works only for bounded degree polynomial
functions, and does not generalize to leveled FHS.

6

the trapdoor can be used to sample a “short” matrix U ∈ Zm×mq such that AU = V. There is
also a public matrix G ∈ Zn×mq with some special structure (not random) for which everyone can
efficiently compute a “short” matrix G−1(V) such that GG−1(V) = V.3

Our HTDF consists of choosing pk = A together with trapdoor sk = td as above. We define
fpk,x(U)

def
= AU + x ·G, but we restrict the domain to “short” matrices U. We show that finding

a claw consisting of “short” matrices U0,U1 such that fpk,0(U0) = fpk,1(U1)⇒ A(U0 −U1) = G
implies breaking the SIS problem. Next, we show how to perform homomorphic operations on this
HTDF.

Homomorphic Operations. Let U1,U2 ∈ Zm×mq be “short” matrices and

V1 = fpk,x1(U1) = AU1 + x1 ·G , V2 = fpk,x2(U2) = AU2 + x2 ·G

Addition. Firstly, it is very easy to perform homomorphic addition (over Zq). We can simply set:
V∗ = V1 + V2 and U∗ = U1 + U2. This ensures:

V∗ = (AU1 + x1 ·G) + (AU2 + x2 ·G) = AU∗ + (x1 + x2)G = fpk,x1+x2(U∗).

Multiplication. Homomorphic multiplication (over Zq) consists of setting V∗ := V2G
−1(V1) and

U∗ := x2U1 + U2G
−1(V1). This gives:

V∗ = V2G
−1(V1) = (AU2 + x2G)G−1(V1) = AU2G

−1(V1) + x2(AU1 + x1G)

= AU∗ + x1x2G = fpk,x1·x2(U∗)

We define the noise level of a matrix U to be the maximal size (in absolute value) of any entry
in the matrix. The noise level grows as we perform homomorphic operations. Intuitively, if the
inputs to the operation have noise-level β then homomorphic addition just doubles the noise level
to 2β, while multiplication of “small” values x1, x2 ∈ {0, 1} multiplies the noise level to at most
(m + 1)β. Therefore, when evaluating a boolean circuit of depth d the noise level can grow to as
much as β(m + 1)d. We pause to note that the noise growth is a crucial difference between our
scheme and that of Boneh and Freeman [BF11a], where multiplication raises the noise level from

β to β2, meaning that evaluating a circuit of depth d could raise the noise level to as high as β2d .
Since the modulus must satisfy q � β(m+ 1)d for security, the level of homomorphism d must be
fixed ahead of time, during the setup of the scheme. The overall efficiency degrades polynomially
with d.

2 Preliminaries

Basic Notation. For an integer N , we let [N]
def
= {1, . . . , N}. For a distribution X we use the

notation x ← X to denote the process of sampling a random value according to the distribution.

For a set X we use the notation x
$← X to denote the process of choosing x uniformly at random

from X . For a distribution or a randomized algorithm X, we will say “for any x ∈ X” as shorthand
to mean “for any x in the support of X”. Throughout, we let λ denote the security parameter. We

3 Note that we are abusing notation and G−1 is not a matrix but rather a function - for any V there are many
choices of U such that GU = V, and G−1(V) deterministically outputs a particular short matrix from this set. For
those familiar with [GSW13], multiplication by G corresponds to PowersOf2() and G−1() corresponds to BitDecomp().

7

say that a function f(λ) is negligible, denoted f(λ) = negl(λ), if f(λ) = O(λ−c) for ever constant
c > 0. We say that a function f(λ) is polynomial, denoted f(λ) = poly(λ) if f(λ) = O(λc) for some
constant c > 0.

Entropy and Statistical Distance. For random variables X,Y with support X ,Y respectively,

we define the statistical distance SD(X,Y)
def
= 1

2

∑
u∈X∪Y |Pr[X = u]− Pr[Y = u]|. We say that

two ensembles of random variables X = {Xλ}, Y = {Yλ} are statistically close, denoted by X
stat
≈ Y ,

if SD(Xλ, Yλ) = negl(λ). The min-entropy of a random variable X, denoted as H∞(X), is defined

as H∞(X)
def
= − log(maxx Pr[X = x]). The (average-)conditional min-entropy of a random variable

X conditioned on a correlated variable Y , denoted as H∞(X|Y), is defined as

H∞(X|Y)
def
= − log

(
E

y←Y

[
max
x

Pr[X = x|Y = y]
])

.

The optimal probability of an unbounded adversary guessing X given the correlated value Y is
2−H∞(X|Y).

Lemma 2.1 ([DORS08]). Let X,Y be arbitrarily random variables where the support of Y lies in
Y. Then H∞(X|Y) ≥ H∞(X)− log(|Y|).

2.1 Background on Lattices and the SIS Problem

We review some of the needed results and notation for the SIS problem and lattice-based cryptog-
raphy. We abstract out many low-level details which are not absolutely crucial for this paper.

Notation. For any integer q ≥ 2, we let Zq denote the ring of integers modulo q. We represent
elements of Zq as integers in the range (−q/2, q/2] and define the absolute value |x| of x ∈ Zq by
taking its representative in this range. For a vector u ∈ Znq we write ||u||∞ ≤ β if each entry ui in
u satisfies |ui| ≤ β. Similarly, for a matrix U ∈ Zn×mq we write ||U||∞ ≤ β if each entry ui,j in U
satisfies |ui,j | ≤ β.

The SIS Problem. Let n,m, q, β be integer parameters. In the SIS(n,m, q, β) problem, the
attacker is given a uniformly random matrix A ∈ Zn×mq and her goal is to find a vector u ∈ Zmq with
u 6= 0 and ||u||∞ ≤ β such that A ·u = 0.4 For parameters n = n(λ),m = m(λ), q = q(λ), β = β(λ)
defined in terms of the security parameter λ, the SIS(n,m, q, β) hardness assumption states any
PPT attacker A we have

Pr
[

A · u = 0 ∧ ||u||∞ ≤ β(λ) ∧ u 6= 0 : A
$← Zm(λ)×n(λ)

q(λ) ,u← A(1λ,A)
]
≤ negl(λ).

The SIS problem is known to be as hard as certain worst-case problems (e.g., SIVP) in standard
lattices [Ajt96, Mic04, MR07, MP13]. It is is also implied by the hardness of learning with errors
(LWE). See cited works for exact details of parameters. In this work, we will need to rely on the SIS
assumption with super-polynomial β. In particular, we will assume that for any β = 2poly(λ) there
are some n = poly(λ), q = 2poly(λ) (clearly, q > β) such that for all m = poly(λ) the SIS(n,m, q, β)
hardness assumption holds. The above parameters translate to assuming hardness of worst-case
lattice problems with sub-exponential approximation factors, which is widely believed to hold.

4Often, the SIS problem is stated with `2 norm rather than `∞ norm. It’s clear that the two versions are equivalent
up to some small losses of parameters. Therefore, we choose to rely on the `∞ norm for simplicity.

8

Lattice Trapdoors. Although solving the SIS problem for a random matrix A is believed to
be hard, there is a way to sample a random matrix A with a trapdoor that makes this problem
easy. Moreover, there are some fixed (non-random) matrices G for which SIS is easy to solve.
We review the known results about such trapdoor in the following lemma (ignoring all details of
implementation which aren’t strictly necessary for us), following a similar presentation in [BGG+14].

Lemma 2.2 ([Ajt99, GPV08, AP09, MP12]). There exist efficient algorithms TrapGen, SamPre,
Sam such that the following holds. Given integers n ≥ 1, q ≥ 2 there exists some m∗ = m∗(n, q) =
O(n log q), βsam = βsam(n, q) = O(n

√
log q) such that for all m ≥ m∗ and all k (polynomial in n)

we have:

1. U ← Sam(1m, 1k, q) samples a matrix U ∈ Zm×kq which satisfies ||U||∞ ≤ βsam (with proba-
bility 1).

2. We have the statistical indistinguishability requirements:

A
stat
≈ A′ and (A, td,U,V)

stat
≈ (A, td,U′,V′)

where (A, td) ← TrapGen(1n, 1m, q), A′
$← Zn×mq and U ← Sam(1m, 1k, q), V := A · U,

V′
$← Zn×kq , U′ ← SamPre(A,V′, td). The statistical distance is negligible in n. Moreover,

we guarantee that any U′ ∈ SamPre(A,V′, td) always satisfies AU′ = V′ and ||U′||∞ ≤ βsam.

3. Given n,m, q as above, there is an efficiently and deterministically computable matrix G ∈
Zn×mq and a deterministic polynomial-time algorithm G−1 which takes the input V ∈ Zn×kq

for any integer k and outputs R = G−1(V) such that R ∈ {0, 1}m×k and G ·R = V. 5

3 Homomorphic Trapdoor Functions

A homomorphic trapdoor function allows us to take values {ui, xi, vi = fpk,xi(ui)}i∈[N] and create an
input u∗ (depending on ui, xi) and an output v∗ (depending only on vi) such that fpk,g(x1,...,xN)(u

∗) =
v∗. We now give a formal definition.

3.1 Definition

A homomorphic trapdoor function (HTDF) consists of the following five polynomial-time algorithms
(HTDF.KeyGen, f, Inv, HTDF.Evalin, HTDF.Evalout) with syntax:

• (pk, sk)← HTDF.KeyGen(1λ) : a key generation procedure.
The security parameter λ defines the index space X , the input space U , and the output space
V and some efficiently samplable input distribution DU over U . We require that membership
in the sets U ,V,X can be efficiently tested and that one can efficiently sample uniformly at
random from V.

• fpk,x : U → V : a deterministic function indexed by x ∈ X and pk.

• Invsk,x : V → U : a probabilistic inverter indexed by x ∈ X and sk.

5Note that we are abusing notation and G−1 is not a matrix but rather an algorithm. See footnote 3.

9

• u∗ = HTDF.Evalin(g, (x1, u1), . . . , (x`, u`)), v
∗ = HTDF.Evalout(g, v1, . . . , v`) are determinis-

tic input/output homomorphic evaluation algorithms. The algorithms take as input some
function g : X ` → X and values xi ∈ X , ui ∈ U , vi ∈ V. The outputs are u∗ ∈ U and
v∗ ∈ V.6

Note that we do not require fpk,x(·) to be an injective function. Indeed, it will not be in our
construction.

Correctness of Homomorphic Evaluation. Let (pk, sk) ∈ HTDF.KeyGen(1λ),7 x1, . . . , x` ∈
X , g : X ` → X and y := g(x1, . . . , x`). Let u1, . . . , u` ∈ U and set vi := fpk,xi(ui) for i ∈ [`].
Let u∗ := HTDF.Evalin(g, (x1, u1), . . . , (x`, u`)), v

∗ := HTDF.Evalout(g, v1, . . . , v`). Then we require
that u∗ ∈ U and fpk,y(u

∗) = v∗.
Relaxation: In a leveled fully homomorphic scheme, each input ui ∈ U will have some associated

“noise-level” βi ∈ R. The initial samples from the input-distribution DU have some “small” noise-
level βinit. The noise-level β∗ of the homomorphically computed input u∗ depends on the noise-
levels βi of the inputs ui, the function g and the indices xi. If the noise level β∗ of u∗ exceeds
some threshold β∗ > βmax, then the above correctness need not hold. This will limit the type of
functions that can be evaluated. A function g is admissible on the values x1, . . . , x` if, whenever
the inputs ui have noise-levels βi ≤ βinit, then u∗ := HTDF.Evalin(g, (x1, u1), . . . , (x`, u`)) will have
noise-level β∗ ≤ βmax.

Distributional Equivalence of Inversion. We require the following statistical indistinguisha-
bility:

(pk, sk, x, u, v)
stat
≈ (pk, sk, x, u′, v′)

where (pk, sk) ← HTDF.KeyGen(1λ), x ∈ X can be an arbitrary random variable that depends on

(pk, sk), u← DU , v := fpk,x(u), v′
$← V, u′ ← Invsk,x(v′).

HTDF Security. We now define the security of HTDFs. Perhaps the most natural security
requirement would be one-wayness, meaning that for a random v ← V and any x ∈ X it should
be hard to find a pre-image u ∈ U such that fpk,x(u) = v. Instead, we will require a stronger
property which is similar to claw-freeness. In particular, it should be difficult to find u, u′ ∈ U and
x 6= x′ ∈ X such that fpk,x(u) = fpk,x′(u

′). Formally, we require that for any PPT attacker A we
have:

Pr

[
fpk,x(u) = fpk,x′(u

′)
u, u′ ∈ U , x, x′ ∈ X , x 6= x′

∣∣∣∣ (pk, sk)← HTDF.KeyGen(1λ)
(u, u′, x, x′)← A(1λ, pk)

]
≤ negl(λ).

3.2 Construction: Basic Algorithms and Security

We begin by describing the basic HTDF algorithms for key-generation, computing the function
fpk,x, and inverting it using sk. We prove the security of the scheme. Then, in Section 3.3 we show
how to perform homomorphic operations.

6More precisely, g is a function description in some specified format. In our case, this will always be either a
boolean or an arithmetic circuit. For simplicity we often say “function g” but refer to a specific representation of the
function.

7Recall, we use this as shorthand for “(pk, sk) in the support of HTDF.KeyGen(1λ)”.

10

Parameters. Our scheme will be defined by a flexible parameter d = d(λ) = poly(λ) which
roughly determines the level of homomorphism. We choose parameters:

n , m , q , βSIS , βmax , βinit

depending on λ and d. We do so by setting βmax := 2ω(log λ)d, βSIS := 2ω(log λ)βmax. Then
choose an integer n = poly(λ) and a prime q = 2poly(λ) > βSIS as small as possible so that
the SIS(n,m, q, βSIS) assumption holds for all m = poly(λ). Finally, let m∗ = m∗(n, q) :=
O(n log q), βsam := O(n

√
log q) be the parameters required by the trapdoor algorithms as in

Lemma 2.2, and set m = max{m∗, n log q + ω(log λ)} = poly(λ) and βinit := βsam = poly(λ).
Note that n,m, log q all depend (polynomially) on λ, d.

Construction of HTDF. Let the algorithms TrapGen, SamPre, Sam, and the matrix G be as
defined in Lemma 2.2.

• Define the domains X = Zq and V = Zn×mq . Let U = {U ∈ Zm×mq : ||U||∞ ≤ βmax}. We
define the distribution U ← DU to sample U ← Sam(1m, 1m, q) as in Lemma 2.2, so that
||U||∞ ≤ βinit.

• (pk, sk) ← HTDF.KeyGen(1λ) : Select (A, td) ← TrapGen(1n, 1m, q). Set pk := A ∈ Zn×mq

and sk = td.

• Define fpk,x(U)
def
= A ·U + x ·G. Note that, although the function f is well-defined on all of

Zm×mq , we restrict the legal domain of f to the subset U ⊆ Zm×mq .

• Define U← Invsk,x(V) to output U← SamPre(A,V − x ·G, td).

We define the noise-level β of a value U ∈ U as β = ||U||∞. We note that all efficiency aspects of
the scheme (run-time of procedures, sizes of keys/inputs/outputs, etc.) depend polynomially on λ
and on the flexible parameter d.

Distributional Equivalence of Inversion. Let (pk = A, sk = td) ← HTDF.KeyGen(1λ), and
let x ∈ X be an arbitrary random variable that depends on (pk, sk). Let U← DU , V = AU+x·G =

fpk,x(U), V′
$← V, U′ ← {Invsk,x(V′) = SamPre(A,V′ − x ·G, td)}. Then we need to show:

(pk = A, sk = td, x,U,V = AU + xG)
stat
≈ (pk = A, sk = td, x,U′,V′) (1)

Lemma 2.2, part (2) tells us that:

(A, td,U,AU)
stat
≈ (A, td,U′,V′ + x ·G) (2)

by noticing that (V′ − x ·G) is just uniformly random. Equation (1) follows from (2) by applying
the same function to both sides: append a sample x from the correct correlated distribution given
(A, td) and subtract x ·G from the last component.

11

HTDF Security. We now prove the security of our HTDF construction under the SIS assump-
tion.

Theorem 3.1. Assuming the SIS(n,m, q, βSIS)-assumption holds for the described parameter choices,
the given scheme satisfies HTDF security.

Proof. Assume that A is some PPT attacker that wins the HTDF security game for the above
scheme with non-negligible probability. Let us modify the HTDF game so that, instead of choosing

(A, td)← TrapGen(1n, 1m, q) and setting pk := A and sk = td, we just choose A
$← Zn×mq uniformly

at random. Notice that sk = td is never used anywhere in the original HTDF game. Therefore,
this modification is statistically indistinguishable by the security of TrapGen (see Lemma 2.2, part
(2)). In particular, the probability of A winning the modified game remains non-negligible.

We now show that an attacker who wins the modified HTDF game can be used to solve the SIS
problem. The reduction uses the challenge matrix A of the SIS problem as the public key pk = A
and runs the attacker A. Assume the attacker A wins the modified HTDF game with the values
U,U′ ∈ U and x 6= x′ ∈ X such that fpk,x(U) = fpk,x′(U

′). Let U∗ := U′ −U and x∗ = (x− x′).
Then:

fpk,x(U) = AU + xG = AU′ + x′G = fpk,x′(U
′) ⇒ AU∗ = x∗G (3)

Moreover, since U,U′ ∈ U , we have ||U||∞, ||U′||∞ ≤ βmax and therefore ||U∗||∞ ≤ 2βmax. More-
over, since x 6= x′, we have x∗ 6= 0.

We now show that knowledge of a “small” U∗ and some x∗ 6= 0 satisfying the right hand side

of equation (3) can be used to find a solution to the SIS problem. Sample r
$← {0, 1}m, set z := Ar

and compute r′ = G−1(z/x∗) so that r′ ∈ {0, 1}m and x∗Gr′ = z. Then

A(U∗r′ − r) = (AU∗)r′ −Ar = x∗Gr′ −Ar = z− z = 0.

Therefore, letting u := U∗r′ − r, we have Au = 0 and ||u||∞ ≤ (2m+ 1)βmax ≤ βSIS . It remains
to show that u 6= 0, or equivalently, that r 6= U∗r′. We use an entropy argument to show that this
holds with overwhelming probability over the random choice of r, even if we fix some worst-case

choice of A,U∗, x∗. Notice that r
$← {0, 1}m is chosen uniformly at random, but r′ depends on

z = Ar. Nevertheless z is too small to reveal much information about r and therefore cannot be
used to predict r. In particular

H∞(r | r′) ≥ H∞(r | Ar) ≥ m− n log q = ω(log λ)

where the first inequality follows since r′ is chosen deterministically based on z = Ar, and the
second inequality follows from Lemma 2.1. Therefore, Pr[r = U∗ · r′] ≤ 2m−n log q ≤ negl(λ). So,
with overwhelming probability, whenever A wins the modified HTDF game, the reduction finds a
valid solution to the SIS(n,m, q, βSIS)-problem. This concludes the proof.

3.3 Construction: Homomorphic Evaluation and Noise Growth

We now define the algorithms HTDF.Evalin, HTDF.Evalout with the syntax

U∗ := HTDF.Evalin(g, (x1,U1), . . . , (x`,U`)) , V∗ := HTDF.Evalout(g,V1, . . . ,V`).

12

Our approach closely follows the techniques of [GSW13, BGG+14]. As a basic building block, we
consider homomorphic evaluation for certain base functions g which we think of as basic gates in an
arithmetic circuit: addition, multiplication, addition-with-constant and multiplication-by-constant.
These functions are complete and can be composed to evaluate an arbitrary aithmetic circuit. Let
the matrices Ui have noise-levels bounded by βi.

• Let g(x1, x2) = x1 + x2 be an addition gate. The algorithms HTDF.Evalin,HTDF.Evalout

respectively compute:
U∗ := U1 + U2 , V∗ := V1 + V2.

The matrix U∗ has noise level β∗ ≤ β1 + β2. We remark that, in this case, the algorithm
HTDF.Evalin ignores the values x1, x2.

• Let g(x1, x2) = x1 · x2 be a multiplication gate. Let R = G−1(V1) so that R ∈ {0, 1}m×m
and GR = −V1. The algorithms HTDF.Evalin,HTDF.Evalout respectively compute:

U∗ := x2 ·U1 + U2G
−1(V1) , V∗ := V2 ·G−1(V1).

The matrix U∗ has noise level β∗ ≤ |x2|β1 +mβ2. Note that the noise growth is asymmetric
and the order of x1, x2 matters. To keep the noise level low, we require that |x2| is small.

• Let g(x) = x + a be addition-with-constant gate, for the constant a ∈ Zq. The algorithms
HTDF.Evalin,HTDF.Evalout respectively compute:

U∗ := U1 , V∗ := V1 + a ·G.

It’s easy to see that the noise-level β∗ = β1 stays the same.

• Let g(x) = a · x be a multiplication-by-constant gate for the constant a ∈ Zq. We give two
alternative methods that homomorphically compute g with different noise growth. In the first
method, the algorithms HTDF.Evalin,HTDF.Evalout respectively compute:

U∗ := a ·U1 , V∗ := a ·V1.

The noise level is β∗ = |a|β1, and therefore this method requires that a is small. In the second
method, the algorithms HTDF.Evalin,HTDF.Evalout respectively compute:

U∗ := U ·G−1(a ·G) , V∗ := V ·G−1(a ·G).

The noise level is β∗ ≤ m · β1, and is therefore independent of the size of a.

It is a simple exercise to check that, whenever the inputs Ui,Vi satisfy Vi = fpk,xi(Ui) then
the above homomorphic evaluation procedures ensure that fpk,g(x1,...,x`)(U

∗) = V∗. The above
gate operations can be composed to compute any function g expressed as an arithmetic circuit.
Therefore, the only limitation is the growth of the noise-level. In particular, if the noise-level of U∗

is β∗ ≥ βmax then U∗ 6∈ U is not a valid input.

13

Noise Growth and Bounded-Depth Circuits. The noise growth of the above homomorphic
operations is fairly complex to describe in its full generality since it depends on the (size of) the
inputs xi, the order in which operations are performed etc. However, we can give bounds on the
noise growth for the case of boolean circuits composed of NAND gates, and certain restricted
arithmetic circuits.

Let g be a boolean circuit of depth d composed of NAND gates over inputs xi ∈ {0, 1}. For

x1, x2 ∈ {0, 1} we can define an arithmetic-gate NAND(x1, x2)
def
= 1− x1 · x2. If U1, U2 have noise-

levels ≤ β, then U∗ := HTDF.Evalin(NAND, (x1,U1), (x2,U2)) will have a noise-level β∗ ≤ (m+1)β.
Therefore if we compute U∗ := HTDF.Evalin(g, (x1,U1), . . . , (x`,U`)) and the inputs Ui have noise-
levels βinit, then the noise-level of U∗ will be β∗ ≤ βinit · (m+ 1)d ≤ 2O(log λ)·d ≤ βmax. This show
that, with the parameters we chose, any depth-d boolean circuit g is admissible over any choice of
boolean indices xi ∈ {0, 1}.

More generally, let g be an arithmetic circuit of depth d consisting of fan-in-t addition gates, fan-
in-2 multiplication gates, addition-with-constant, and multiplication-by-constant gates. Moreover,
assume that for each fan-in-2 multiplication gate we are guaranteed that at least one input xb
is of size |xb| ≤ p, where p = poly(λ), t = poly(λ) are some fixed polynomials in the security
parameter. Evaluating each such gate increases the noise level by a multiplicative factor of at most
max{t, (p+m)} = poly(λ). Therefore, if inputs Ui to g have noise-levels βinit, then the noise-level
of U∗ := HTDF.Evalin(g, (x1,U1), . . . , (x`,U`)) is bounded by βinit ·max{t, (p+m)}d ≤ 2O(log λ)·d ≤
βmax. This shows that any such computation is admissible.

We mention that both of the above analyses are overly restrictive/pessimistic and we may be
able to compute some function with lower noise growth than suggested above.

4 Fully Homomorphic Signatures (Single Dataset)

Roadmap. We now show how to construct fully homomorphic signatures from HTDFs as a black
box. We do so in several stages.

We begin by defining and constructing homomorphic signatures that can only be used to sign
a single dataset. We also initially only consider selective security, where the data to be signed
is chosen by an attacker prior to seeing the public parameters of the scheme. In Section 4.2 we
show how to construct such schemes in the standard model, albeit with large public parameters
whose size exceeds the maximal size of the dataset to be signed. The public parameters are just
uniformly random and therefore, in the random oracle model, we can easily compress them to get
a scheme with short public parameters. We also show that the latter scheme can be proven secure
in the standard model under a simple-to-state and falsifiable (but non-standard) assumptions on
hash functions.

In Section 4.4 we then show a generic transformation that combines a homomorphic signature
scheme with selective security and an HTDF to get a homomorphic signature scheme with full
security. Finally, in Section 5 we define multi-data signatures where the signer can sign many
different datasets under different labels. We give a generic transformation from single-data homo-
morphic signatures to multi-data ones. Both of these transformations work in the standard model
and preserve the efficiency of the underlying scheme. (In Appendix A, we also give an alternate
transformation which yields a simpler construction of a multi-data scheme with full security in the
RO model.) Lastly, in Section 6 we show how to make the signature schemes context hiding.

14

4.1 Definition

A single-data homomorphic signature scheme consists of poly-time algorithms (PrmsGen,KeyGen, Sign,
Verify, Process,SignEval) with the following syntax.

• prms← PrmsGen(1λ, 1N): Gets the security parameter λ and a data-size bound N . Generates
public parameters prms. The security parameter also defines the message space X .

• (pk, sk)← KeyGen(1λ, prms): Gets the security parameter λ. Generates a verification/secret
keys pk, sk.

• (σ1, . . . , σN)← Signsk(x1, . . . , xN): Signs some data (x1, . . . , xN) ∈ XN .

• σ∗ ← SignEvalprms(g, ((x1, σ1), . . . , (x`, σ`))): Homomorphically computes a signature σ∗.

• αg ← Processprms(g): Homomorphically computes a “public-key” αg for the function g from
the public parameters.

• Verifypk(αg, y, σ): Verifies that y is indeed the output of g by checking the signature σ against
αg. We use these algorithms to implicitly define the “combined verification procedure”:
Verify∗pk(g, y, σ) : { Compute αg ← Processprms(g) and output Verifypk(αg, y, σ)}.

We can think of Process,Verify as a component of the combined verification procedure Verify∗,
but it will be useful to define them separately. In particular, we will think of the Process algorithm
as “pre-processing” a function g. The computational complexity of this step can depend on the
circuit size of g but it can be performed offline prior to seeing the signature σ or even the verification
key pk. The public-key αg for the function g can be small and the “online verification” procedure
Verifypk(αg, y, σ) can be fast, with size/time independent of g.

Signing Correctness. Let idi : XN → X be a canonical description of the function idi(x1, . . . , xN)
def
=

xi (i.e., a circuit consisting of a single wire taking the i’th input to the output.) We require that
any prms ∈ PrmsGen(1λ, 1N), any (pk, sk) ∈ KeyGen(1λ, prms), any (x1, . . . , xN) ∈ XN and any
(σ1, . . . , σN) ∈ Signsk(x1, . . . , xN) must satisfy Verify∗pk(idi, xi, σi) = accept. In other words, σi
certifies xi as the i’th data item.

Evaluation Correctness. We require that for any prms ∈ PrmsGen(1λ, 1N), any (pk, sk) ∈
KeyGen(1λ, prms), any (x1, . . . , xN) ∈ XN and any (σ1, . . . , σN) ∈ Signsk(x1, . . . , xN) and any
g : XN → X , we have:

Verify∗pk(g, g(x1, . . . , xN), σ∗) = accept. (4)

where σ∗ ← SignEvalprms(g, ((x1, σ1), . . . , (xN , σN)). Moreover, we require correctness for composed

evaluation of several different functions. For any h1, . . . , h` with hi : XN → X and any g : X ` →
X define the composition (g ◦ h̄) : XN → X by (g ◦ h̄)(x̄) = g(h1(x̄), . . . , h`(x̄)). We require that
for any (x1, . . . , x`) ∈ X ` and any (σ1, . . . , σ`):

{ Verify∗pk(hi, xi, σi) = accept }i∈[`]

σ∗ := SignEvalprms(g, (x1, σ1), . . . , (x`, σ`))
⇒ Verify∗pk((g ◦ h̄), g(x1, . . . , x`), σ

∗) = accept.

(5)

15

In other words, if the signatures σi certify xi as the output of hi, then σ∗ certifies g(x1, . . . , x`)
as the output of g ◦ h̄. Notice that (4) follows from (5) and the correctness of signing by setting

hi
def
= idi.

Relaxing Correctness for Leveled Schemes. In a leveled fully homomorphic scheme, each sig-
nature σi will have some associated “noise-level” βi. The initial signatures produced by (σ1, . . . , σN)←
Signsk(x1, . . . , xN) will have a “small” noise-level βinit. The noise-level β∗ of the homomorphically
computed signature σ∗ := SignEvalprms(g, ((x1, σ1), . . . , (x`, σ`))) depends on the noise-levels βi of
the signatures σi, the function g and the messages xi. If the noise level β∗ of σ∗ exceeds some
threshold β∗ > βmax, then the above correctness requirements need not hold. This will limit the
type of functions that can be evaluated. A function g is admissible on the values x1, . . . , x` if,
whenever the signatures σi have noise-levels βi ≤ βinit, then σ∗ will have noise-level β∗ ≤ βmax.

Security Game. We define the security of homomorphic signatures via the following game be-
tween an attacker A and a challenger:

• The challenger samples prms← PrmsGen(1λ, 1N) and (pk, sk)← KeyGen(1λ, prms) and gives
prms, pk to the adversary.

• The attacker A(1λ) chooses data (x1, . . . , xN) ∈ X ∗ and sends it to the challenger.

• The challenger computes (σ1, . . . , σN)← Signsk(x1, . . . , xN) and gives the signatures (σ1, . . . , σN)
to A.

• The attacker A chooses a function g : XN → X and values y′, σ′. Let y := g(x1, . . . , xN).
The attacker wins if all of the following hold: (1) g is admissible on the values x1, . . . , xN , (2)
y′ 6= y, and (3) Verify∗pk(g, y

′, σ′) = accept.

We say a homomorphic signature scheme is fully secure if for all PPT A, we have Pr[A wins] ≤
negl(λ) in the above game.

Remarks. We point out some extensions and relaxations of the definition that we also consider
in this work.

• Selective Security. We will also consider a selective security game for single-data homo-
morphic signatures, where the attacker chooses the data x1, . . . , xN to be signed before seeing
prms and pk. This is a natural security notion for the typical use-case where the user samples
prms, pk, sk and signs the data in one step and therefore the data will not depend on prms, pk.
We first show our basic construction satisfying selective security. We then show a generic
transformation from a selectively secure scheme to a scheme satisfying full security.

• Adaptive Individual Data Item Queries. It is possible to extend the syntax of homomor-
phic signature schemes to also allow the user to sign different data items xi individually with
respect to their position i, rather than having to specify the entire dataset vector (x1, . . . , xN)
all at at once. It is easy to see that our construction in Section 4.2 allows this. In this case,
we can also extend our definition of full adaptive security to allow an adversary to query for

16

signatures of individual data items xi adaptively, after seeing the signatures of other items. It
is easy to see that our transformation from selective to fully adaptive security in Section 4.4
achieves this notion of security (with minimal syntactic changes to the proof). A similar
extension can also be added to the setting of multiple-data sets as defined in Section 5. In
this case, the user would be able to sign an individual data-item xi with respect to position
i of a dataset with label τ . Again it is easy to see that our construction in Section 5 allows
for this and achieves full adaptive security in this setting.

• Verification and Admissible Functions. We note that, under the above definition, secu-
rity only holds when verifying a function g which is admissible on the signed values x1, . . . , xN ,
but the verifier does not know these values. Therefore, we require some convention on the
types of values xi that the signer will sign and the type of functions g that the verifier is
willing to verify to ensure that the function is admissible on the signed values. For example,
our eventual construction ensures that if g is a boolean circuit of depth ≤ d then it is admis-
sible on all boolean inputs with xi ∈ {0, 1} ⊆ X . Therefore, by convention, we can restrict
the signer to only sign values xi ∈ {0, 1} and the verifier to only verify functions g that are
boolean circuits of depth ≤ d. Other combinations (e.g., xi ∈ Zq and g is an affine function)
are also possible and therefore we leave this decision to the users of the scheme rather than
its specification.

4.2 Basic Construction

Let F = (HTDF.KeyGen, f, Inv, HTDF.Evalin, HTDF.Evalout) be an HTDF with index-space X ,
input space U , output space V and an input distribution DU . We construct a signature scheme
S = (PrmsGen,KeyGen,Sign,Verify,Process, SignEval) with message space X as follows.

• prms← PrmsGen(1λ, 1N) : Choose v1, . . . , vN by sampling vi
$← V. Output prms = (v1, . . . , vN).

• (pk, sk) ← KeyGen(1λ, prms) : Choose (pk′, sk′) ← HTDF.KeyGen(1λ) and set pk = pk′,
sk = (prms, sk′).

• (σ1, . . . , σN)← Signsk(x1, . . . , xN): Sample ui ← Invsk′,xi(vi) and set σi := ui for i ∈ [N].

• σ∗ = SignEvalpk(g, (x1, σ1), . . . , (x`, σ`)) : Run HTDF.Evalinpk′ procedure of the HTDF.

• αg ← Processprms(g): Compute αg := HTDF.Evaloutpk′ (g, v1, . . . , vN).

• Verifypk(αg, y, σ) : If fpk′,y(σ) = αg accept, else reject.

Remarks. (I) We can think of prms = (v1, . . . , vN) as public parameters that can be fixed for all
users of the scheme. Each user’s individual public/secret key then only consists of the small values
pk′, sk′. (II) Although we describe the signing procedure as signing the values x1, . . . , xN in one
shot, it’s easy to see that we can also sign the values xi completely independently (e.g., at different
times) without needing to keep any state beyond knowing the index i by setting σi ← Invsk′,xi(vi).
(III) We note that if the function g only “touches” a small subset of the inputs i ∈ [N] then the
pre-processing step Processprms(g) only needs to read the corresponding values vi from the public
parameters. The run-time of this step can therefore be sub-linear in N and only depends on the
size of the circuit g (ignoring unused input wires). (IV) The efficiency of the scheme is inherited

17

from that of the HTDF. Note that, although the pre-processing step Processprms(g) requires running
HTDF.Eval, the online verification step can be much more efficient. For our HTDF construction, it
will only depend on the size of σ, αg which only scale with the depth but not the size of the circuit
g.

Correctness and Security. It’s easy to see that correctness of signing and correctness of (lev-
eled) homomorphic evaluation for the signature scheme S follow from the correctness properties of
the underlying (leveled) HTDF F . In a leveled scheme, the noise-level of signatures σi = ui is just
defined as its noise-level of the HTDF input ui. The initial noise-level βinit, the maximal noise level
βmax, and the set of admissible functions is the same in S and in F . We are left to prove security.

Theorem 4.1. Assuming F satisfies HTDF security, the signature scheme S satisfies single-data
security of homomorphic signatures.

Proof. Assume that an adversary A has a non-negligible advantage in the single-data security game
with the scheme S. In the game, the attacker A selects some data x1, . . . , xN ∈ X and gets back
prms = (v1, . . . , vN), pk′ and σ1, . . . , σN , where (pk′, sk′) ← HTDF.KeyGen(1λ), vi ← V and σi =
ui ← Invsk′,xi(vi). Let us modify the game by choosing ui ← DU and setting vi := fpk′,xi(ui). This
change is statistically indistinguishable by the “Distributional Equivalence of Inversion” property
of the HTDF.8 Therefore A wins the modified games with non-negligible probability.

We now give a polynomial-time reduction that takes any attacker A having a non-negligible ad-
vantage in the above modified game, and use it to break HTDF security of F with the same
advantage. The reduction gets a challenge public key pk′ and chooses the values ui, vi as in
the modified game (without knowing sk′) and gives these values to A. Assume the attacker A
wins the modified game by choosing some admissible function g : XN → X on x1, . . . , xN
and some values y′, σ′ = u′. Let y := g(x1, . . . , xN), αg := HTDF.Evaloutpk′ (g, v1, . . . , vN), u :=

HTDF.Evalinpk′(g, (x1, σ1), . . . , (xN , σN)). Then, since the signature σ′ verifies, we have fpk′,y′(u
′) =

αg. On the other hand, since g is an admissible function, the correctness of homomorphic eval-
uation ensures that fpk′,y(u) = αg. Therefore, the values u, u′ ∈ U and y 6= y′ ∈ X satisfy
fpk′,y(u) = fpk′,y′(u

′), allowing the reduction to break HTDF security whenever A wins the modi-
fied game.

4.3 A Scheme with Short Public Parameters

We can adapt the above construction to get a scheme with short public parameters in the random

oracle model. Instead of choosing prms = (v1, . . . , vN), with vi
$← V taken uniformly at random

from the output space of the HTDF, we can set prms = r for some small r
$← {0, 1}λ and implicitly

define vi = H(r, i) where H : {0, 1}∗ → V is a hash function modeled as a random oracle. The
rest of the algorithms remain unchanged. It is easy to see that the same security proof as above
goes through for this scheme in the random-oracle mode.

Moreover, we can define a standard-model assumption on the hash function H under which
we can prove the above scheme secure. The assumption is falsifiable and simple-to-state, but it is
not a standard assumption. It ties together the security of the hash function H with that of the
underlying HTDF F .

8Technically, this requires N hybrid arguments where we switch how each ui, vi is sampled one-by-one. In each
hybrid, we rely on the fact that indistinguishability holds even given sk′ to sample the rest of the values uj , vj .

18

Definition 4.2. Let F = (HTDF.KeyGen, f, Inv, HTDF.Evalin, HTDF.Evalout) be an HTDF with
index-space X , input space U , output space V and an input distribution DU . Let H : {0, 1}∗ → V
be a hash function. We say that H is inversion unhelpful for F if for any PPT adversary A the
probability of A(1λ) winning the following game is negligible in λ:

• Adversary A chooses values x1, . . . , xN with xi ∈ X .

• Challenger chooses (pk, sk)← HTDF.KeyGen(1λ), r ← {0, 1}λ. For i = 1, . . . , N , it computes
vi = H(r, i), ui ← Invsk,xi(vi). It gives (pk, r, u1, . . . , uN) to A.

• Adversary A outputs u, u′ ∈ U and x 6= x′ ∈ X and wins if fpk,x(u) = fpk,x′(u
′).

Essentially, the above says that H is inversion unhelpful for F is seeing the inverses ui ←
Invsk,xi(H(r, i)) for xi chosen adversarially but non-adaptively and r random, does not help the
attacker in coming up with a claw for F .

It is easy to see that the random-oracle construction outlined above is secure as long as the
function H is inversion unhelpful for F . The proof follows the proof of security of our basic
construction in Section 4.2, with the only difference that the reduction sets the values vi = H(r, i)
and the signatures σi = ui by getting r and {ui} them from the challenger in the above inversion-
unhelpful security game.

It is also easy to see that if H is modeled as random oracle, then it is inversion-unhelpful for
any HTDF F . This is because we can “program” the outputs H(r, i) to values vi = fpk,xi(ui) for
ui ← DU and then invert vi to ui without knowing the secret key sk of the HTDF. Therefore,
seeing such inverses ui cannot help the adversary in finding a claw.

We note that the above inversion-unhelpful assumption is simpler to state than simply assuming
the resulting signature scheme is secure. In particular, the assumption does not depend on any
homomorphic properties, the adversary does not get to choose a function of his choice, the challenger
does not have to perform any homomorphic evaluations etc. Also, having such an assumption sets
some contrast between the above homomorphic signature scheme with short parameters in the
Random-Oracle model and a generic construction of homomorphic signatures based on SNARKs
in the Random-Oracle model (see introduction). For the latter, we either need to rely on SNARK
security, which is not a falsifiable assumption, or we could instead simply assume that the full
signature scheme construction in the random-oracle model is secure but, since the construction
of SNARKs is complex and involves heavy PCP machinery, this assumptions would be far from
simple-to-state.

4.4 From Selective Security to Full Security

We now show how to construct a fully secure homomorphic signature scheme from any selectively
secure scheme and an HTDF. On a high level, the transformation is similar to the use of chameleon
hashing to go from security against selective chosen-message queries (e.g., the signing queries are all
made ahead of time) to adaptive chosen-message security [KR00]. However, to make this work with
homomorphic signatures, we would need the chameleon hash to also be homomorphic. Fortunately,
HTDFs can be thought of as providing exactly such primitive.

In more detail, to sign some data x1, . . . , xN under the new signature scheme, we first choose
random values v1, . . . , vN from the output of the HTDF, then we sign the values vi under the
selectively secure scheme to get signatures σi and finally we compute ui ← Invsk,xi(vi) and give out

19

the signature σi = (vi, ui, σi). To homomorphically evaluate some function g over such signatures
we (1) run the input/output homomorphic computation the HTDF to compute values u∗, v∗ so that
u∗ is an “opening” of v∗ to the message g(x1, . . . , xN) and (2) we run the homomorphic evaluation
of the signature scheme to compute a signature σ∗ which certifies that v∗ was computed correctly.

Security comes from the fact that values vi signed under the selectively secure signature scheme
are chosen uniformly at random and therefore non-adaptively. By the selective security of the
underlying signature, this shows that an attacker cannot give the “wrong” v∗ in his forgery. On
the other hand, by the claw-free security of the HTDF, the attacker also cannot open the “right”
v∗ to the “wrong” message as this would produce a claw on the HTDF.

Construction. Let F = (HTDF.KeyGen, f, Inv, HTDF.Evalin, HTDF.Evalout) be an HTDF with
index-space X , input space U , output space V and an input distributionDU . Let S ′ = (PrmsGen′,KeyGen′,
Sign′,Verify′,Process′,SignEval′) be a selectively secure homomorphic signature scheme. Without
loss of generality and for simplicity of exposition, we will assume that the message space of S ′ is
the same as the output space V of the HTDF (we can always represent the values v ∈ V as bits and
sign them bit-by-bit if this is not the case). For a function g : X ` → X we define a corresponding
function g′ : V` → V as g′(v1, . . . , v`) = HTDF.Evalout(g, v1, . . . , v`).

• prms← PrmsGen(1λ, 1N) : Use the selectively secure signature scheme prms← PrmsGen′(1λ, 1N).

• (pk, sk)← KeyGen(1λ, prms) : Choose

(pkh, skh)← HTDF.KeyGen(1λ) , (pk′, sk′)← KeyGen′(1λ, prms).

Set pk = (pkh, pk
′), sk = (skh, sk

′).

• (σ1, . . . , σN)← Signsk′(x1, . . . , xN):

– For each i ∈ [N]: sample vi ← V, ui ← Invskh,xi(vi).

– Compute (σ̄1, . . . , σ̄N)← Sign′sk′(v1, . . . , vN).

– Set σi = (vi, ui, σi).

• σ∗ = SignEvalpk(g, (x1, σ1), . . . , (x`, σ`)) : Parse σi = (vi, ui, σi).

– Compute v∗ := HTDF.Evaloutpkh
(g, v1, . . . , v`), u

∗ := HTDF.Evalinpkh(g, (x1, u1), . . . , (x`, u`)).

– Compute σ∗ = SignEval′pk′(g
′, (v1, σ1), . . . , (v`, σ`)).

– Output σ∗ = (v∗, u∗, σ∗),

• αg ← Processprms(g): Compute αg := Process′prms(g
′).

• Verifypk(αg, y, σ
∗) : Parse σ∗ = (v∗, u∗, σ∗). Verify that fpkh,y(u

∗) = v∗ and Verify′pk′(αg, v
∗, σ∗) =

accept: if both conditions hold then accept, else reject.

Correctness. The correctness of the signature scheme follows readily from the correctness of S ′
and F . A function g is admissible on values x1, . . . , xN under the scheme S if it is admissible under
the HTDF F and if the corresponding function g′ is also admissible over all values (v1, . . . , vn) ∈ VN
under the selectively-secure signature scheme S ′.

20

Theorem 4.3. If F is a secure (leveled) HTDF and S ′ is a selectively secure (leveled) homomorphic
signature scheme, then the above construction of S is a fully secure (leveled) homomorphic signature
scheme.

Proof. Let A be some adversary in the adaptive signature security game against the scheme S.
Let (g, y′, σ′) denote the adversary’s forgery at the end of the game, and parse σ′ = (v′, u′, σ′).
Let x1, . . . , xN denote the messages chosen by the adversary in the game and v1, . . . , vN be the
values contained in the signatures that it gets back. Let E1 be the event that A wins the
game and v′ = HTDF.Evaloutpkh

(g, v1, . . . , vN). Let E2 be the even that A wins the game v′ 6=
HTDF.Evaloutpkh

(g, v1, . . . , vN). The probability thatA wins the game is Pr[E1∨E2] ≤ Pr[E1]+Pr[E1].
Firstly, we show that Pr[E1] is negligible. We do this via a reduction breaking HTDF security of

F with probability Pr[E1]. The reduction gets an HTDF public key pkh. It chooses (prms, pk′, sk′)
for the selectively-secure signature scheme on its own and simulates the signature game for A with
one modification: to answer the signing query, instead of choose vi ← V, ui ← Invskh,xi(vi) it chooses
ui ← DU and vi = fpkh,xi(ui). This change is statistically indistinguishable by the “Distributional
Equivalence of Inversion” property of the HTDF. Finally, assume that A outputs a forgery causing
E1 to occur. Let y = g(x1, . . . , xN) and let u = HTDF.Evalinpkh((x1, u1), . . . , (xN , uN)). Then y 6= y′

and fpk,y(u) = fpk,y′(u
′). Therefore the tuple (u, u′, y, y′) allows the reduction to break HTDF

security.
Secondly, we show that Pr[E2] is negligible. We do this via reduction breaking the selective

security of S ′ with Pr[E2]. The reduction starts by (non-adaptively) choosing random messages
v1, . . . , vN with vi ← V and giving them to its challenger. It gets back prms, pk′ and σ1, . . . , σN .
The reduction chooses its own keys (pkh, skh) for the HTDF and gives (prms, (pkh, pk

′)) to A. The
adversary A replies with messages (x1, . . . , xN) and the reduction computes ui ← Invskh,xi(vi) and
gives back the values σi = (vi, ui, σi) to A. Finally, assume that A outputs a forgery causing E1 to
occur. Then (g′, v′, σ′) is a forgery against S ′ since v′ 6= g′(v1, . . . , vN).

Combining the above, this shows that the probability thatA wins the adaptive signature security
game against S is negligible, and the theorem follows.

5 Multi-Data Homomorphic Signatures

We now define and construct multi-data homomorphic signatures. In such a scheme, the signer
can sign many different datasets of arbitrary size. Each dataset is tied to some labels τi (e.g., the
name of the dataset) and the verifier is assumed to know the label of the dataset over which he
wishes to verify computation. In Section 5.2, we show how to construct multi-data homomorphic
signatures starting from a single dataset scheme. In Appendix A, we show another transformation
which enjoys efficiency improvements and supports signing of unbounded datasets starting from
single dataset scheme with short public parameters (such as our construction in the random oracle
model 4.3).

5.1 Definition

A multi-data homomorphic signature consists of the algorithms (PrmsGen,KeyGen,Sign,Verify,Process,
SignEval) with the following syntax.

21

• prms← PrmsGen(1λ, 1N): Gets the security parameter λ and a data-size bound N . Generates
public parameters prms.

• (pk, sk) ← KeyGen(1λ, prms): produces a public verification key pk and a secret signing key
sk.

• (στ , σ1, . . . , σN)← Signsk((x1, . . . , xN), τ): Signs some data x̄ ∈ X ∗ under a label τ ∈ {0, 1}∗.

• σ∗ = SignEvalprms(g, στ , (x1, σ1), . . . , (x`, σ`)): Homomorphically computes the signature σ∗.

• αg ← Processprms(g): Produces a “public-key” αg for the function g.

• Verifypk(αg, y, τ, (στ , σ
∗)): Verifies that y ∈ X is indeed the output of the function g over the

data signed with label τ . We define the “combined verification procedure”:
Verify∗pk(g, y, τ, στ , σ

∗) : { Compute αg ← Processprms(g) and output Verifypk(αg, y, τ, (στ , σ
∗))}.

Correctness. The correctness requirements are analogous to those of the single-data definition.
We right away define correctness of evaluation to allow for composed evaluation.

Correctness of Signing. We require that any prms ∈ PrmsGen(1λ, 1N), (pk, sk) ∈ KeyGen(1λ, prms),
any (x1, . . . , xN) ∈ XN , any τ ∈ {0, 1}∗ and any (στ , σ1, . . . , σN) ∈ Signsk(x1, . . . , xN , τ) must sat-
isfy Verify∗pk(idi, xi, τ, (στ , σi)) = accept. In other words, (στ , σi) certifies xi as the i’th data item
of the data with label τ .

Correctness of Evaluation. For any circuits h1, . . . , h` with hi : XN → X and any circuit
g : X ` → X , any (x1, . . . , x`) ∈ X `, any τ ∈ {0, 1}∗ and any στ , (σ1, . . . , σ`):{
{Verifypk(hi, xi, τ, (στ , σi)) = accept}i∈[`]

σ∗ := SignEvalpk(g, στ , (x1, σ1), . . . , (x`, σ`))

}
⇒ Verify∗pk((g◦h̄), g(x1, . . . , x`), τ, (στ , σ

∗)) = accept.

In other words, if the signatures (στ , σi) certify xi as the outputs of functions hi over the data
labeled with τ , then (στ , σ

∗) certifies g(x1, . . . , x`) as the output of g ◦ h̄ over the data labeled with
τ .

Multi-Data Security. We define the security via the following game between an attacker A and
a challenger:

• The challenger samples prms ← PrmsGen(1λ, 1N), (pk, sk) ← KeyGen(1λ, prms) and gives
prms, pk to the attacker A

• Signing Queries: The attacker A can ask an arbitrary number of signing queries. In each
query j, the attacker chooses a fresh tag τj ∈ {0, 1}∗ which was never queried previously and
a message (xj,1, . . . , xj,Nj) ∈ X ∗. The challenger responds with

(στj , σj,1, . . . , σj,Nj)← Signsk((xj,1, . . . , xj,Nj), τj).

• The attacker A chooses a circuit g : XN ′ → X values τ, y′, (σ′τ , σ
′). The attacker wins if

Verify∗pk(g, τ, y
′, (σ′τ , σ

′)) = accept and either:

– Type I forgery: τ 6= τj for any j, or τ = τj for some j but N ′ 6= Nj .
(i.e., No signing query with label τ was ever made or there is a mismatch between the
size of the data signed under label τ and the arity of the function g.)

22

– Type II forgery: τ = τj for some j with corresponding message xj,1, . . . , xj,N ′ such that
(a) g is admissible on xj,1, . . . , xj,N ′ , and (b) y′ 6= g(xj,1, . . . , xj,N ′).

We require that for all PPT A, we have Pr[A wins] ≤ negl(λ) in the above game.

5.2 From Single-Data to Multi-Data

We now describe our transformation from a single-data homomorphic signature scheme to a multi-
data scheme. We sample the public parameters of the single-data homomorphic signature scheme
once and for all, then for each signing query we sample a pair of public/secret keys of the homomor-
phic scheme (using the same public parameters). The dataset information along with the public
key are signed using the regular homomorphic signature scheme. The dataset itself is signed using
the sampled secret key. To verify the authenticity, it is sufficient to verify the dataset information
with the public key, and authenticate the output of the function with respect to this public key.

Let S ′ = (PrmsGen′,KeyGen′, Sign′,Verify′,Process′,SignEval′) be a fully secure one-dataset
homomorphic signature scheme. Let Snh = (NH.KeyGen,NH.Sign,NH.Verify) be any standard
(not homomorphic) signature scheme. We construct a multi-data homomorphic signature scheme
S = (PrmsGen,KeyGen, Sign,Verify,Process,SignEval) with message space X as follows.

• prms ← PrmsGen(1λ, 1N) : Sample and output parameters of the single-data homomorphic
signature scheme: prms← PrmsGen(1λ, 1N).

• (pk, sk) ← KeyGen(1λ) : Choose (pk1, sk1) ← NH.KeyGen(1λ, prms). Samp set pk = pk1,
sk = (sk1, prms).

• (στ , σ1, . . . , σN)← Signsk((x1, . . . , xN), τ):

– Sample secret and public keys of the single-data homomorphic signature scheme: (pk2, sk2)←
KeyGen(1λ, prms).

– Sign the dataset size, the tag and the public key of the single-data homomorphic sig-
nature scheme using non-homomorphic scheme: ρ ← NH.Signsk1((pk2, τ,N)). Set στ =
(pk2, τ,N, ρ).

– Sign the dataset using the single-data homomorphic scheme: (σ1, . . . , σN)← Sign′sk2(x1, . . . , xN).

– Output (στ , σ1, . . . , σN).

• σ∗ = SignEvalpk(g, στ , σ(x1, σ1), . . . , (x`, σ`)) : Parse στ = (pk2, τ,N, ρ). Apply the single-
data evaluation algorithm. σ∗ = SignEvalprms(g, (x1, σ1), . . . , (xN , σN)).

• αg ← Processprms(g) : Output αg ← Process′prms(g).

• Verifypk(αg, y, τ, (στ , σ
∗)) : Parse στ = (prms, pk2, τ,N, ρ) and accept if and only if the

following two conditions are satisfied:

1. Verify the parameters of the single-data homomorphic scheme’s public key and the
dataset:

NH.Verifypk1((pk2, τ,N), ρ) = accept, and

2. Verify the homomorphically computed signature: Verify′pk2(αg, y, σ
∗) = accept.

23

Correctness. Correctness of the scheme follows from the correctness of the regular signature
scheme and single-data homomorphic scheme.

Security. The security follows from two main observations: first, no adversary is able to fake
the parameters or the public key of the single-data homomorphic signature due to security of
the standard signature scheme. Given that, no adversary is able to fake the result of the the
computation due to the security of the single-data homomorphic signature scheme. In particular,
we first switch to Game 1, where the adversary looses if it is able to make a forgery on some of the
dataset information signed under the regular scheme: (pk2, τ,N). Now, if there is an adversary able
to win Game 1, then we can convert it to an adversary that breaks the security of the homomorphic
scheme. The adversary takes (prms, pk2) as a part of the challenge. Guesses an index j∗ and sets
pk2,j∗ = pk2. It then asks the challenger to sign the data (x1, . . . , xN) at query j∗ and signs all
other datasets by itself by sampling a pair of public/secret keys. A forgery of type II can then be
used to break the security of single-data homomorphic scheme.

Theorem 5.1. Assume S ′ is a fully secure single-data homomorphic signature scheme and Snh is
a regular signature scheme. Then, S is a fully secure many-dataset homomorphic signature scheme.

Proof. We prove the security via a series of indistinguishable games.

• Let Game 0 be the multi-data security game.

• Let Game 1 be the modified version of Game 1, except the attacker loses the game
if it outputs a non-homomorphic forgery. That is, a forgery of the form (g, y, τ, (στ =
(pk2, τ,N

′, ρ), σ∗), where:

1. τ 6= τj for any j, or

2. τ = τj for some j but N ′ 6= Nj or

3. τ = τj for some j, N ′ = Nj , but pk2 6= pk2,j , where pk2,j is the public key used for
single-data signature scheme.

That is, if the parameters of the dataset are invalid, the adversary losses the game. Note that
this is the superset of type I forgeries. Clearly, if there exists a winning adversary in Game
1, then we can break the security of the regular signature scheme, since we obtain a valid
signature ρ of (pk2, τ,N) which was never signed before.

Now, assume there exists an adversary A that wins in Game 1. Then, it must be able to come
up with a type II forgery. Hence, we can construct an adversary A′ that breaks the security of
the single-data homomorphic signature scheme. A′ receives parameters prms, pk2 as the challenge,
it then generates parameters of the regular signature scheme (pk1, sk1) ← NH.KeyGen(1λ) and
forwards prms, pk = pk1 to A. It also chooses an index j∗ of the dataset on which it guesses the type
II will be made and sets pk2,j∗ = pk2. When A asks to sign a dataset j = j∗ with items (x1, . . . , xN),
A′ forwards it to the challenger to obtain the signatures (σ1, . . . , σN). It signs (pk2,j∗ , τ,N) to
obtain στ using sk1 and forwards (στ , σ1, . . . , σN) to A. All other datasets j 6= j∗ it signs honestly
by generating the public/secret keys of the single-data homomorphic signature scheme. Finally,
suppose A outputs (g, τ, y, (στ = (pk2, τ,N

′, ρ), σ∗) of type II forgery. Then, assuming A′ guessed
the dataset correctly, we know that τ = τj∗ , N = Nj∗ and pk2 = pk2,j∗ , Verify∗pk2(g, y, σ∗) =

24

accept but g 6= g(x1, . . . , xN). Hence, A′ can output (g, y, σ∗) to break the security of single-data
homomorphic signature scheme. This shows that if the regular signature scheme is secure and the
single-data homomorphic signature scheme is secure, then S is also secure.

6 Context-Hiding Security

In many applications, we may also want to guarantee that a signature which certifies y as the
output of some computation g over Alice’s data should not reveal anything about the underlying
data beyond the output of the computation. We will show how to achieve context-hiding by taking
our original schemes which produces some signature σ (that is not context hiding) and applying
some procedure σ̃ ← Hidepk,y(σ) which makes the signature context hiding. The “hiding” signature
σ̃ can be simulated given only g, y no matter which original signature σ was used to create it. One
additional advantage of this procedure is that it also compresses the size of the signature from
m2 log q bits needed to represent σ to O(m log q) bits needed to represent σ̃. However, once the
hiding procedure is applied, the signatures no longer support additional homomorphic operations
on them.

Context-Hiding Security for Signatures. We give a simulation-based notion of security, re-
quiring that a context-hiding signature σ̃ can be simulated given knowledge of only the computation
g and the output y, but without any other knowledge of Alice’s data. The simulation remains indis-
tinguishable even given the underlying data, the underlying signatures, and even the public/secret
key of the scheme. In other words, the derived signature does not reveal anything beyond the
output of the computation even to an attacker that may have some partial information on the
underlying values.

Definition 6.1. A single-data homomorphic signature supports context hiding if there exist addi-
tional PPT procedures σ̃ ← Hidepk,y(σ) and HVerifypk(α, y, σ) such that:

• Correctness: For any prms ∈ PrmsGen(1λ, 1N), (pk, sk) ∈ KeyGen(1λ, prms) and any α, y, σ
such that Verifypk(α, y, σ) = accept, for any σ̃ ∈ Hidepk,y(σ) we have HVerifypk(α, y, σ̃) =
accept.

• Unforgeability: Single-data signature security holds when we replace the Verify procedure by
HVerify in the security game.

• Context-Hiding Security: There is a simulator Sim such that, for any fixed (worst-case)
choice of prms ∈ PrmsGen(1λ, 1N), (pk, sk) ∈ KeyGen(1λ, prms) and any α, y, σ such that
Verifypk(α, y, σ) = accept we have: Hidepk,y(σ) ≈ Sim(sk, α, y) where the randomness is only
over the random coins of the simulator and the Hide procedure.9 We say that such schemes
are statistically context hiding if the above indistinguishability holds statistically.

The case of multi-data signatures is defined analogously.

Definition 6.2. A multi-data homomorphic signature supports context hiding if there exist addi-
tional PPT procedures σ̃ ← Hidepk,x(σ), HVerifypk(g,Process(g), y, τ, (στ , σ)) such that:

9Since pk, sk, α, y, σ are fixed, indistinguishability holds even if these values are known to the distinguisher.

25

• Correctness: For any prms ∈ PrmsGen(1λ, 1N), (pk, sk) ∈ KeyGen(1λ, prms) and any α, y, στ , σ
such that Verifypk(α, y, τ, (στ , σ)) = accept, for any σ̃ ∈ Hidepk,y(σ) we have

HVerifypk(α, y, τ, (στ , σ̃)) = accept

• Unforgeability: Multi-data signature security holds when we replace the Verify procedure by
HVerify in the security game.

• Context-Hiding Security: Firstly, in the procedure (στ , σ1, . . . , σN) ← Signsk(x1, . . . , xN , τ),
we require that στ can only depend on (sk,N, τ) but not on the data {xi}. Secondly, we
require that there is a simulator Sim such that, for any fixed (worst-case) choice of prms ∈
PrmsGen(1λ, 1N), (pk, sk) ∈ KeyGen(1λ, prms) and any α, y, σ, στ such that Verifypk(α, y, τ, (στ , σ)) =
accept we have:

Hidepk,y(σ) ≈ Sim(sk, α, y, τ, στ)

where the randomness is only over the random coins of the simulator and the Hide procedure.
We say that such schemes are statistically context hiding if the above indistinguishability
holds statistically.

Context-Hiding Security for HTDF. We also define a context hiding HTDF as an augmen-
tation of standard HTDFs. We will build context-hiding signatures by relying on context-hiding
HTDFs.

Definition 6.3. A context-hiding HTDF comes with two additional algorithms ũ← HTDF.Hidepk,x(u)
and HTDF.Verifypk(ũ, x, v) satisfying:

• Correctness: For any (pk, sk) ∈ KeyGen(1λ) any u ∈ U , any x ∈ X and any ũ ∈ HTDF.Hidepk,x(u)
we have HTDF.Verifypk(ũ, x, fpk,x(u)) = accept.

• Claw-freeness on hidden inputs: We augment standard HTDF security with the following
requirement. For all PPT A we require:

Pr

[
HTDF.Verifypk(ũ

′, x′, fpk,x(u)) = accept

u ∈ U , x, x′ ∈ X , x 6= x′

∣∣∣∣ (pk, sk)← HTDF.KeyGen(1λ)
(u, ũ′, x, x′)← A(1λ, pk)

]
≤ negl(λ).

In other words, if an attacker know u such that fpk,x(u) = v then he cannot also produce ũ′

such that HTDF.Verifypk(ũ
′, x′, v) = accept when x′ 6= x. 10

• Context Hiding: There is a simulator HTDF.Sim such that for all choices of (pk, sk) ∈
HTDF.KeyGen(1λ), u ∈ U and x ∈ X the following distributions are indistinguishable:

HTDF.Hidepk,x(u) ≈ HTDF.Sim(sk, x, fpk,x(u)).

We say that such schemes are statistically context hiding if the above indistinguishability
holds statistically.

10This implies standard HTDF security since any attacker that finds x 6= x′, u, u′ such that fpk,x(u) = fpk,x′(u
′)

can also apply ũ′ ← Hidepk,x′(u
′) to break claw-freeness on hidden inputs.

26

From Context-Hiding HTDFs to Signatures. We can easily modify the signature schemes
constructed in Section 4 (single-data) and Section 5 (multi-data) in the natural way to make them
context hiding by using a context-hiding HTDF. In particular, the procedure Hide of the signature
scheme is defined to be the same as that of the underlying HTDF. The procedure HVerifypk(α, y, σ̃)
of the signature scheme (resp. HVerifypk(α, y, τ, (στ , σ̃)) for a multi-data scheme) are defined the
same ways as the original Verify procedures of the signature, except that, instead of checking
fpk,y(σ̃) = α we now check HTDF.Verifypk(σ̃, y, α) = accept. It is easy to check that this modifica-
tion satisfies the given correctness and security requirements as outlined below.

Unforgeability with the modified verification procedure HVerify follows from the “claw-freeness
on hidden inputs” property of the HTDF. This follows from the proof of Theorem 4.1. In both
proofs, the reduction knows one value u ∈ U such that fpk,y(u) = v∗ and a signature forgery allows
it to come up with ũ such that HTDF.Verifypk(σ̃, y

′, v∗) = accept for y′ 6= y.
Context-Hiding security of the signature scheme follows from that of the HTDF. We define the

signature simulator Sim(sk, g, y, [τ, στ]) to compute the value v∗ = SignEvalinpk(g, v1, . . . , vN) as is
done by the verification procedure of the signature schemes. It then output σ̃ ← HTDF.Sim(sk, y, v∗).
The indistinguishability of the signature simulator follows form that of the HTDF simulator.

General Construction via NIZKs. Before we give our main construction of context-hiding
HTDF and therefore context-hiding signatures, we mention that it is possible to solve this problem
generically using non-interactive zero knowledge (ZK) proof of knowledge (PoK) NIZK-PoKs. In
particular, we can make any HTDF context-hiding by setting ũ← HTDF.Hidepk,x(u) to be a NIZK-
PoK with the statement v and witness u for the relation fpk,x(u) = v. The HTDF.Verify procedure
would simply verify the proof ũ. Claw-freeness follows from the PoK property and context-hiding
follows from ZK.11 However, this approach requires an additional assumption (existence of NIZK-
PoK) which is not known to follow from SIS. Therefore, we now proceed to construct context-hiding
HTDFs directly.

6.1 Construction of Context-Hiding HTDF

Lattice Preliminaries. Before giving our construction of context-hiding HTDFS, we start by
recalling some additional useful tools from lattice-based cryptography (abstracting as much as
possible). Let A,B ∈ Zn×mq and let H = [A | B] ∈ Zn×2m

q . We will rely on the existence of two
algorithms SampleLeft and SampleRight which both take z ∈ Znq and manage to output some “short”
vector r ∈ Z2m

q such that H · r = z. The algorithm SampleLeft does so by knowing some trapdoor
td for the matrix A. The algorithm SampleRight does so by knowing some “short” matrix U such
that B = AU + yG for some y 6= 0. Nevertheless, the outputs of SampleLeft and SampleRight are
statistically indistinguishable. (See [CHKP10, ABB10, MP12, BGG+14] for details on the following
lemma; our exposition follows [BGG+14] with additional abstraction.)

Lemma 6.4. Using the notation of Lemma 2.2, let n, q ≥ 2, m ≥ m∗(n, q) and β be parame-
ters. Then there exist polynomial time algorithms SampleLeft, SampleRight and some polynomial
pextra(n,m, log q) such that for β′ := β · pextra(n,m, log q) the following holds: For any choice of
(A, td) ∈ TrapGen(1n, 1m, q), any z ∈ Znq and any U ∈ Zm×mq with ||U||∞ ≤ β and any y ∈ Zq with
y 6= 0 let H = [A | AU + yG], where G is the matrix from part (3) of Lemma 2.2. Then:

11The syntactic definition would need to be modified slightly to include a common reference string (CRS).

27

• For any r0 ∈ SampleLeft(H, td, z), r1 ∈ SampleRight(H,U, z) and for each b ∈ {0, 1} we have
rb ∈ Z2m

q , ||rb||∞ ≤ β′ and H · rb = z.

• For r0 ← SampleLeft(H, td, z) and r1 ← SampleRight(H,U, z) we have r0 ≈ r1 are statisti-
cally indistinguishable (the statistical distance is negligible in n).

HTDF with Context Hiding. We augment our construction of HTDFs from Section 3 to add
context-hiding security. Firstly, we make the following modifications to the underlying HTDF
construction.

• We restrict the index space X to just bits X = {0, 1} ⊆ Zq (rather than X = Zq as previously).
We also modify the parameters and set βSIS = 2ω(log λ)(βmax)2 to be larger than before (which
impacts how q, n are chosen to maintain security).

• We augment the public-key to pk = (A, z) by appending z ∈ Znq which is chosen by selecting

a random r
$← {0, 1}m and setting z = A · r (and discarding r).12 Let pextra(n,m, log q) =

poly(λ) be the polynomial form Lemma 6.4 and define β̃max = βmax · pextra(n,m, log q).

In addition, we add the following procedures for context-hiding security.

• ũ← HTDF.Hidepk,x(U): Let V = fpk,x(U) = AU + xG. Set

H := [A | V + (x− 1)G] = [A | AU + (2x− 1)G].

Note that (2x − 1) ∈ {−1, 1} 6= 0. Output ũ ← SampleRight(H,U, z). Note that H · ũ = z
and ||ũ||∞ ≤ β̃max.

• HTDF.Verifypk(ũ, x,V): Compute H := [A | V + (x − 1)G]. Check ||ũ||∞ ≤ β̃max and
H · ũ = z. If so accept, else reject.

• For context-hiding security, we define HTDF.Sim(sk = td, x,V) which computes H := [A |V+
(x− 1)G] and outputs ũ← SampleLeft(H, td, z).

Theorem 6.5. The above scheme is statistically context-hiding. It satisfies claw-freeness on hid-
den inputs under the SIS(n,m, q, βSIS) assumption.

Proof. It’s easy to check that correctness holds. Statistical context-hiding security follows directly
from Lemma 6.4. We are left to show claw-freeness on hidden inputs.

The proof of security closely follows that of Theorem 3.1. Assume that A is a PPT attacker that
breaks this security property of the scheme. As a first step, we modify the game so that, instead of

sampling (A, td)← TrapGen(1n, 1m, q) and setting pk := A and sk = td, we just choose A
$← Zn×mq

uniformly at random. This modification is statistically indistinguishable by the security of TrapGen
(see Lemma 2.2, part (2)). In particular, the probability of A winning the modified game remains
non-negligible.

We now show that an attacker who wins the above-modified game can be used to solve the SIS

problem. The reduction gets a challenge matrix A of the SIS problem and chooses r
$← {0, 1}m

12We note that, using the leftover-hash-lemma, we can show that this is statistically close to choosing z
$← Znq at

random. However, we will not need to rely on this fact.

28

and sets z = A · r. It gives the public key pk = (A, z) to the attacker A. The attacker wins if he
comes up with bits x 6= x′ ∈ {0, 1} and values U, ũ′ such that ||U||∞ ≤ βmax, ||ũ′||∞ ≤ β̃max, and
H · ũ′ = z where H is defined by setting V := fpk,x(U) = AU + xG and

H := [A | V + (x′ − 1)G] = [A | AU + (x+ x′ − 1)G] = [A | AU]

where the last equality follows since x 6= x′ ⇒ x + x′ = 1. Let’s write ũ′ = (r′1, r
′
2) where

r′1, r
′
2 ∈ Zmq are the first and last m components of ũ′ respectively. Then:

H · ũ′ = z ⇒ Ar1 + (AU)r2 = Ar ⇒ A(Ur2 + r1 − r) = 0

Furthermore

||(Ur2 + r1 − r)||∞ ≤ mβmaxβ̃max + β̃max + 1 ≤ poly(λ)(βmax)2 ≤ βSIS .

Therefore, it remains to show that (Ur2 + r1 − r) 6= 0. We use the same argument as in the proof
of Theorem 3.1: the randomness r is independent of U, r1, r2 when conditioned on z. Since z is
short, r still has m−n log q = ω(log λ) bits of conditional entropy left and therefore Pr[Ur2 + r1 =
r] ≤ negl(λ). This concludes the proof.

7 Conclusions

In this work, we construct the first leveled fully homomorphic signature schemes. It remains an open
problem to get rid of the leveled aspect and ideally come up with a signature scheme where there
is no a priori bound on the depth of the circuits that can be evaluated and the signature size stays
fixed. It also remains an open problem to come up with a (leveled) fully homomorphic signature
scheme with short public parameters under a standard assumption without random oracles.

Acknowledgments. We thank Chris Peikert and Dario Catalano for helpful comments and sug-
gestions.

References

[AB09] Shweta Agrawal and Dan Boneh. Homomorphic MACs: MAC-based integrity for
network coding. In Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and
Damien Vergnaud, editors, ACNS 09, volume 5536 of LNCS, pages 292–305, Paris-
Rocquencourt, France, June 2–5, 2009. Springer, Berlin, Germany.

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard
model. In Gilbert [Gil10], pages 553–572.

[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary N. J. Peterson, and Dawn Song. Provable data possession at untrusted stores.
In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM
CCS 07, pages 598–609, Alexandria, Virginia, USA, October 28–31, 2007. ACM Press.

[ABC+12] Jae Hyun Ahn, Dan Boneh, Jan Camenisch, Susan Hohenberger, Abhi Shelat, and
Brent Waters. Computing on authenticated data. In Cramer [Cra12], pages 1–20.

29

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In Samson Abramsky, Cyril Gavoille,
Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, ICALP
2010, Part I, volume 6198 of LNCS, pages 152–163, Bordeaux, France, July 6–10, 2010.
Springer, Berlin, Germany.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
Gary L. Miller, editor, STOC, pages 99–108. ACM, 1996.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In Jiŕı Wieder-
mann, Peter van Emde Boas, and Mogens Nielsen, editors, ICALP, volume 1644 of
Lecture Notes in Computer Science, pages 1–9. Springer, 1999.

[AKK09] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from ho-
momorphic identification protocols. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 319–333, Tokyo, Japan, December 6–10, 2009. Springer,
Berlin, Germany.

[AL11] Nuttapong Attrapadung and Benôıt Libert. Homomorphic network coding signatures
in the standard model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 17–34, Taormina, Italy,
March 6–9, 2011. Springer, Berlin, Germany.

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In
Susanne Albers and Jean-Yves Marion, editors, STACS, volume 3 of LIPIcs, pages
75–86. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back again.
In Shafi Goldwasser, editor, ITCS, pages 326–349. ACM, 2012.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive com-
position and bootstrapping for snarks and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, STOC, pages 111–120. ACM, 2013.

[BCI+13] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.
Succinct non-interactive arguments via linear interactive proofs. In TCC, pages 315–
333, 2013.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of ex-
tractable one-way functions. Proceedings of the 46th annual ACM symposium on Sym-
posium on theory of computing, 2014.

[BF11a] Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial
functions. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS,
pages 149–168, Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

[BF11b] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary
fields and new tools for lattice-based signatures. In Dario Catalano, Nelly Fazio,

30

Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS,
pages 1–16, Taormina, Italy, March 6–9, 2011. Springer, Berlin, Germany.

[BFKW09] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear sub-
space: Signature schemes for network coding. In Stanislaw Jarecki and Gene Tsudik,
editors, PKC 2009, volume 5443 of LNCS, pages 68–87, Irvine, CA, USA, March 18–20,
2009. Springer, Berlin, Germany.

[BFR13] Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation of com-
putation on outsourced data. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, ACM Conference on Computer and Communications Security, pages
863–874. ACM, 2013.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit abe and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT, volume 8441 of Lec-
ture Notes in Computer Science, pages 533–556. Springer, 2014.

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of
computation over large datasets. In Rogaway [Rog11], pages 111–131.

[BSCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
Snarks for c: Verifying program executions succinctly and in zero knowledge. In
Ran Canetti and Juan A. Garay, editors, CRYPTO, volume 8043 of Lecture Notes in
Computer Science, pages 90–108. Springer, 2013.

[CF13] Dario Catalano and Dario Fiore. Practical homomorphic macs for arithmetic circuits.
In Johansson and Nguyen [JN13], pages 336–352.

[CFGN14] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. Generalizing ho-
momorphic macs for arithmetic circuits. In Hugo Krawczyk, editor, Public Key Cryp-
tography, volume 8383 of Lecture Notes in Computer Science, pages 538–555. Springer,
2014.

[CFW12] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding signa-
tures in the standard model. In Fischlin et al. [FBM12], pages 680–696.

[CFW14] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic signatures with
efficient verification for polynomial functions. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of
Lecture Notes in Computer Science, pages 371–389. Springer, 2014.

[CG13] Ran Canetti and Juan A. Garay, editors. Advances in Cryptology - CRYPTO 2013 -
33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science. Springer, 2013.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In Gilbert [Gil10], pages 523–552.

31

[CKLR11] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory delegation.
In Rogaway [Rog11], pages 151–168.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil P. Vadhan. Improved delegation of computation
using fully homomorphic encryption. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 483–501, Santa Barbara, CA, USA, August 15–19, 2010. Springer,
Berlin, Germany.

[Cra12] Ronald Cramer, editor. Theory of Cryptography - 9th Theory of Cryptography Con-
ference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, volume
7194 of Lecture Notes in Computer Science. Springer, 2012.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[DVW09] Yevgeniy Dodis, Salil P. Vadhan, and Daniel Wichs. Proofs of retrievability via hard-
ness amplification. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS, pages
109–127. Springer, Berlin, Germany, March 15–17, 2009.

[FBM12] Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors. Public Key Cryptog-
raphy - PKC 2012 - 15th International Conference on Practice and Theory in Public
Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceedings, volume 7293
of Lecture Notes in Computer Science. Springer, 2012.

[Fre12] David Mandell Freeman. Improved security for linearly homomorphic signatures: A
generic framework. In Fischlin et al. [FBM12], pages 697–714.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st ACM STOC, pages 169–178, Bethesda, Maryland, USA, May 31 –
June 2, 2009. ACM Press.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 465–482, Santa Barbara, CA, USA,
August 15–19, 2010. Springer, Berlin, Germany.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span
programs and succinct nizks without pcps. In Johansson and Nguyen [JN13], pages
626–645.

[Gil10] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in
Computer Science. Springer, 2010.

[GKKR10] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network cod-
ing over the integers. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010,
volume 6056 of LNCS, pages 142–160, Paris, France, May 26–28, 2010. Springer, Berlin,
Germany.

32

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In Richard E. Ladner and Cynthia Dwork, editors, 40th
ACM STOC, pages 113–122, Victoria, British Columbia, Canada, May 17–20, 2008.
ACM Press.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–
206. ACM, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Canetti
and Garay [CG13], pages 75–92.

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM
STOC, pages 99–108, San Jose, California, USA, June 6–8, 2011. ACM Press.

[GW13] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT (2), volume 8270 of Lecture
Notes in Computer Science, pages 301–320. Springer, 2013.

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomor-
phic signature schemes. In Bart Preneel, editor, CT-RSA 2002, volume 2271 of LNCS,
pages 244–262, San Jose, CA, USA, February 18–22, 2002. Springer, Berlin, Germany.

[JN13] Thomas Johansson and Phong Q. Nguyen, editors. Advances in Cryptology - EURO-
CRYPT 2013, 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume
7881 of Lecture Notes in Computer Science. Springer, 2013.

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS 2000, San Diego,
California, USA, February 2–4, 2000. The Internet Society.

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron Rothblum. How to delegate computations:
The power of no-signaling proofs. Proceedings of the 46th annual ACM symposium on
Symposium on theory of computing, 2014.

[Mic94] Silvio Micali. CS proofs (extended abstracts). In FOCS, pages 436–453. IEEE Com-
puter Society, 1994.

[Mic04] Daniele Micciancio. Almost perfect lattices, the covering radius problem, and applica-
tions to ajtai’s connection factor. SIAM J. Comput., 34(1):118–169, 2004.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume
7237 of Lecture Notes in Computer Science, pages 700–718. Springer, 2012.

[MP13] Daniele Micciancio and Chris Peikert. Hardness of sis and lwe with small parameters.
In Canetti and Garay [CG13], pages 21–39.

33

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE Symposium on Security and Privacy, pages
238–252. IEEE Computer Society, 2013.

[PRV12] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and
verify in public: Verifiable computation from attribute-based encryption. In Cramer
[Cra12], pages 422–439.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct
computation. In TCC, pages 222–242, 2013.

[Rog11] Phillip Rogaway, editor. Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume
6841 of Lecture Notes in Computer Science. Springer, 2011.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Josef Pieprzyk,
editor, ASIACRYPT 2008, volume 5350 of LNCS, pages 90–107, Melbourne, Australia,
December 7–11, 2008. Springer, Berlin, Germany.

A Another Single to Multi-Data Transformation

We describe another generic transformation from single-data homomorphic signature scheme with
short public parameters prms (independent on the data size; realized by our construction in Sec-
tion 4.3) to multi-data scheme. We point out that for this transformation it is sufficient to start
with a selectively secure single data scheme leading efficiency improvements. However, the resulting
construction does not work well for verifiable outsourcing since the verification algorithm runs in
time proportional to the run-time of the function.

Let S ′ = (PrmsGen′,KeyGen′, Sign′,Verify′,Process′,SignEval′) be a selectively secure homo-
morphic signature scheme. Let Snh = (NH.KeyGen,NH.Sign,NH.Verify) be any standard (not
homomorphic) signature scheme. We construct a multi-data homomorphic signature scheme S =
(KeyGen, Sign,Verify,SignEval) with message space X as follows.13

• (pk, sk)← KeyGen(1λ) : Choose (pk1, sk1)← NH.KeyGen(1λ) set pk = pk1, sk = sk1.

• (στ , σ1, . . . , σN)← Signsk((x1, . . . , xN), τ):

– Sample parameters and keys of the single-data homomorphic signature scheme:

prms← PrmsGen(1λ, 1N), (pk2, sk2)← KeyGen(1λ, prms).

– Sign the dataset size, the tag and the public parameters of the single-data homomorphic
signature scheme using non-homomorphic scheme: ρ ← NH.Signsk1((prms, pk2, τ,N)).
Set στ = (prms, pk2, τ,N, ρ).

– Sign the dataset using the single-data homomorphic scheme: (σ1, . . . , σN)← Sign′sk2(x1, . . . , xN).

13Note that we do not define a separate PrmsGen or Process algorithms, since this construction does not support
efficient verification with preprocessing.

34

– Output (στ , σ1, . . . , σN).

• σ∗ = SignEvalpk(g, στ , σ(x1, σ1), . . . , (x`, σ`)) : Parse στ = (prms, pk2, τ,N, ρ). Apply the
single-data evaluation algorithm. σ∗ = SignEvalprms(g, (x1, σ1), . . . , (xN , σN)).

• Verifypk(g, y, τ, (στ , σ
∗)) : Parse στ = (prms, pk2, τ,N, ρ) and accept if and only if the following

two conditions are satisfied:

1. Verify the parameters of the single-data homomorphic scheme and the dataset:

NH.Verifypk1((prms, pk2, τ,N), ρ) = accept, and

2. Verify the homomorphically computed signature: Verify′pk2(g,Processprms(g), y, σ∗) =
accept.

Remarks. We note that that there is no a-prior bound on the size of the datasets in this con-
struction. However, since στ includes the description of the public parameters of the single-data
homomorphic scheme, these parameters must be small (as in our construction in the Random
Oracle model).

Correctness. Correctness of the scheme follows readily from the correctness of the regular sig-
nature scheme and the single-data homomorphic signature scheme.

Security. On the high level, security follows from the fact that by the security property of the
standard signature scheme, the adversary cannot modify the data size or the public parameters of
the single-data signature scheme. And, given the correct parameters of the single-data signature
scheme, we can efficiently verify the result of the computation by verifying the homomorphically
computed signature.

Theorem A.1. Assume S ′ is a selectively secure single-data homomorphic signature scheme and
Snh is a regular signature scheme. Then, S is a fully secure many-dataset homomorphic signature
scheme.

Proof. We prove the security via a series of indistinguishable games.

• Let Game 0 be the multi-data security game.

• Let Game 1 be the modified version of Game 1, except the attacker loses the game
if it outputs a non-homomorphic forgery. That is, a forgery of the form (g, y, τ, (στ =
(prms, pk2, τ,N

′, ρ), σ∗), where:

1. τ 6= τj for any j, or

2. τ = τj for some j but N ′ 6= Nj or

3. τ = τj for some j, N ′ = Nj , but prms 6= prmsj or pk2 6= pk2,j , where prmsj , pk2,j are the
parameters used for single-data signature scheme.

That is, if the parameters of the dataset are invalid, the adversary losses the game. Note that
this is the superset of type I forgeries. Clearly, if there exists a winning adversary in Game
1, then we can break the security of the regular signature scheme, since we obtain a valid
signature ρ of (prms, pk2, τ,N

′) which was never signed before.

35

Now, assume there exists an adversary A that wins in Game 1. Then, it must be able to
come up with a type II forgery. Hence, we can construct an adversary A′ that breaks the security
of the single-data homomorphic signature scheme. A′ generates parameters of the regular signa-
ture scheme (pk1, sk1) ← NH.KeyGen(1λ) and forwards pk = pk1 to A. It also chooses an index
j∗ of the dataset on which it guesses the type II will be made. When A asks to sign a dataset
j = j∗ with items (x1, . . . , xN), A′ forwards it to the single-data challenger to obtain the signa-
tures (σ1, . . . , σN) along with the public parameters (prmsj∗ , pk2,j∗). It signs (prmsj∗ , pk2,j∗ , τ,N)
to obtain στ using sk1 and forwards (στ , σ1, . . . , σN) to A. All other datasets j 6= j∗ it signs
honestly by generating the parameters of the single-data homomorphic signature scheme. Finally,
suppose A outputs (g, τ, y, (στ = (prms, pk2, τ,N

′, ρ), σ∗) of type II forgery. Then, assuming A′
guessed the dataset correctly, we know that τ = τj∗ , N = Nj∗ , prms = prmsj∗ and pk2 = pk2,j∗ ,
Verify′pk2(g,Processprms(g), y, σ∗) = accept but g 6= g(x1, . . . , xN). Hence, A′ can output (g, y, σ∗)
to break the security of single-data homomorphic signature scheme. This shows that if the regular
signature scheme is secure and the single-data homomorphic signature scheme is secure, then S is
also secure.

B HTDFs and Fully Homomorphic Encryption

We briefly and informally sketch an interesting conceptual connection between fully homomorphic
encryption and signatures. We show that both of these primitives can be constructed from a
type of HTDFs: signatures correspond to equivocable HTDFs, whereas encryption corresponds to
extractable HTDFs.

For equivocable HTDFs, which was the notion we defined in this paper, we wanted the output
v = fpk,x(u) over a random u to statistically hide x and to have an “equivocation trapdoor” sk
that allows us to open any v to any index x, by providing a value u such that fpk,x(u) = v. For an
adversary without this trapdoor, each output v would be computationally binding to x.

For an extractable HTDF, we would instead want v = fpk,x(u) to be statistically binding to x
and to have an “extraction trapdoor” sk that allows us to extract/decrypt the value x from v. For
an adversary without this trapdoor, the output v would computationally hide x.

In Section 3, we gave a construction of equivocable HTDFs with security based on the SIS
problem. We now show that, by modifying the key generation procedure of our construction, we
can easily convert it to an extractable HTDF. In fact, there is a single HTDF constriction with
two indistinguishable modes of choosing the public key pk: in one mode, the resulting HTDF
is equivocable with an equivocation trapdoor sk and in the other more the resulting HTDF is
extractable with extraction trapdoor sk. The indistinguishability of these two modes follows from
the learning with errors (LWE) assumption.

Recall that in our construction of HTDFs we set pk = A where A ∈ Zn×mq is (statistically close
to) a uniformly random matrix. This corresponds to the equivocation mode. For the extractable

mode we choose a matrix A′ ← Z(n−1)×m
q and a secret s′ ← Zn−1

q . We set

A =

(
A′

s′A′ + e

)
where e is some appropriately sampled short “noise vector”. This corresponds to a learning with
errors (LWE) instance with secret s′, and therefore A chosen as above is computationally indis-
tinguishable from a uniformly random. Let s = (−s′, 1) ∈ Znq so that sA = e. We set pk = A

36

and sk = s to be the public key and secret extraction key of the HTDF. Otherwise, the construc-
tion fpk,x(U) = AU + xG and the homomorphic operations are performed the exact same way
as in Section 3.2 and Section 3.3. Assume V = fpk,x(U) = AU + xG where U is short. Let
z = (0, . . . , 0, r) ∈ Znq where r is a scalar of “medium size”. We can then compute

s ·V ·G−1(z) = e ·U ·G−1(z) + x · 〈s, z〉 = x · r + e′

where e′ is short. As long as the parameters are chosen so that |x · r + e′| < q/2 so there is no
wrap-around, and |e′| < |r|, the above allows us to extract x.

With the above HTDF in extraction mode, if we think of Encpk(x;u) = fpk,x(u) as a public-
key encryption scheme with randomness u, and of the SignEvalout procedure as a homomorphic
evaluation on ciphertexts, then this scheme corresponds to the FHE scheme of Gentry, Sahai and
Waters [GSW13].

37

	Introduction
	Our Results
	Related Work
	Our Techniques

	Preliminaries
	Background on Lattices and the SIS Problem

	Homomorphic Trapdoor Functions
	Definition
	Construction: Basic Algorithms and Security
	Construction: Homomorphic Evaluation and Noise Growth

	Fully Homomorphic Signatures (Single Dataset)
	Definition
	Basic Construction
	A Scheme with Short Public Parameters
	From Selective Security to Full Security

	Multi-Data Homomorphic Signatures
	Definition
	From Single-Data to Multi-Data

	Context-Hiding Security
	Construction of Context-Hiding HTDF

	Conclusions
	Another Single to Multi-Data Transformation
	HTDFs and Fully Homomorphic Encryption

