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Abstract. The HIVE hidden volume encryption system was proposed
by Blass et al. at ACM-CCS 2014. Even though HIVE has a security
proof, this paper demonstrates an attack on its implementation that
breaks the main security property claimed for the system by its authors,
namely plausible hiding against arbitrary-access adversaries. Our attack
is possible because of HIVE’s reliance on the RC4 stream cipher to fill
unused blocks with pseudorandom data. While the attack can be easily
eliminated by using a better pseudorandom generator, it serves as an
example of why RC4 should be avoided in all new applications and a
reminder that one has to be careful when instantiating primitives.

1 Introduction

At ACM CCS 2014, Blass et al. [2] presented a novel “hidden volume
encryption” system called HIVE. Their system splits an encrypted disk
into several volumes. The intention of HIVE is to hide the existence of
some of these volumes, and to hide the pattern of read and write accesses
to the volumes from observers.

To hide the access patterns, reading and writing has to be indistin-
guishable. This is accomplished by overwriting an empty block with pseu-
dorandom data during a read operation to simulate an encryption. HIVE
makes use of the RC4 algorithm to overwrite blocks with pseudorandom
data and AES in CBC mode to perform encryption. This approach can
be proved secure if both the ciphertexts produced by the symmetric en-
cryption scheme and the output of the pseudorandom generator are indis-
tinguishable from random. We stress that RC4 is not used to encrypt any
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data in the scheme, but only to fill unused disk space with pseudorandom
bytes. According to [2], RC4 was selected for performance reasons.

We show that RC4 is a poor choice for this task: we demonstrate that
its use enables us to break the main security property claimed for HIVE
in [2], namely “plausible hiding against arbitrary-access adversaries”. In
fact, we will break the even weaker notion of plausible hiding against one-
time adversaries. Our attack does not extract plaintext, but we are able to
detect the supposedly hidden volumes by only examining the disk twice.
The supposed infeasability of this kind of attack is the main advantage
claimed for HIVE over conventional disk encryption systems and was used
to justify its storage overhead [2].

Our attack exploits biases in RC4 keystreams. While it is well-known
that RC4 keystreams are biased, and therefore not indistinguishable from
random byte streams [5,3,4,1,6], it is not immediately obvious that these
existing results can be applied to break any claimed security property of
HIVE. This is because previous distinguishers [3,4] require access to either
a very large amount of consecutive keystream bytes, or to a corresponding
amount of truly random bytes, whereas HIVE acts in a blockwise fashion
(with the typical block size being 4096 bytes), presenting a distinguisher
with a mix of short RC4 blocks and AES-CBC blocks.

Our adversary makes use of the Mantin biases in RC4 key-streams
[4] to build a weak blockwise distinguisher for short blocks; in contrast
to previous work identifying RC4 biases [3,4] we explicitly present an
efficient and near-optimal statistical test that can be used to implement
the distinguisher. Our blockwise distinguisher is then applied repeatedly
over many blocks to estimate how many blocks on the disk are filled with
RC4 and how many are filled with AES-CBC ciphertexts; this approach
seems to be novel and not previously exploited in the literature. Finally,
the estimate can be used to decide what sequence of read and/or write
accesses was performed on the disk by the HIVE system.

Our adversary is efficient, and it needs access only to a moderate
number of read/write queries on blocks. For example, it has success rate
0.997 in an attack involving 223.7 read/write queries on a disk containing
a total of 224.7 blocks and 104 GB of data.

Our approach does not involve the derivation of any new properties
of RC4. However it does illustrate that RC4 is not only unfit for use as
a general purpose pseudorandom generator (PRG), but also that it can
result in systems that can be practically attacked in scenarios where its
weaknesses were considered to be unproblematic by some security experts.
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We informed the authors of [2] about our attack at a conceptual level,
and, while they updated their FAQ for the HIVE system1, they did not
take the opportunity to revise their source code to use a better PRG or
amend their research paper describing the system. They instead argued
that RC4 is only an exchangeable building block that can easily be re-
placed. We note that RC4 is the default, and it is unlikely that users
would replace it with their own implementation of a secure PRG, leaving
them at risk. Given that the authors released HIVE to the public and
still claim that it “provides more security than all existing schemes”,2 we
have therefore prepared this paper to alert potential users of the HIVE
implementation to the shortcomings of the system.

We again emphasise that we attack only the specific implementation of
HIVE that instantiates the PRG with RC4, and do not claim that HIVE
would still be insecure if it used a different PRG. Indeed we consider HIVE
to be a very interesting proposal that is worthy of further (crypt)analysis.

1.1 Paper Organisation

In the next section, we provide more details on HIVE and its use of RC4.
We build an RC4 distinguisher for short blocks in Section 3. Section 4
describes how we use this distinguisher to attack the HIVE scheme.

2 Description of the HIVE Scheme

HIVE [2] is a hidden volume encryption scheme that works on a storage
device divided into blocks. The user chooses a value l and can then con-
figure up to l logical volumes Vi, where each volume is encrypted with a
key derived from a password Pi. Without knowledge of the corresponding
password, a volume should be undetectable. The goal is that “a user can
plausibly deny the existence of a hidden volume even if the adversary has
been able to take several snapshots of their disk and knows the password
for the main volume.”3 This makes it necessary to hide the pattern of
accesses that a user makes to the disk, which is achieved by building on
a write-only oblivious RAM (ORAM) scheme.

The original paper presents several different security notions and two
different schemes; to fix the attack target, we choose a weak security no-
tion and one scheme, which we describe below. For simplicity, we assume
that all ORAMs have the same size, 1/l times the size of the hard disk.

1 http://hive.ccs.neu.edu/FAQ, date of access 26/10/2014
2 http://hive.css.neu.edu, date of access 26/10/2014
3 [2], Introduction
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2.1 ORAM

The stash-optimized, write-only ORAM scheme from [2] is a logical over-
lay of an encrypted disk over a physical disk at least twice the size of the
encrypted disk. It makes use of a pseudo-random generator (PRG) and
a symmetric encryption scheme with the property that without the key,
ciphertexts are indistinguishable from random strings of the same length.
The security goal for ORAM is to hide access patterns to the encrypted
disk.

The ORAM maintains a map of logical blocks to physical blocks. Ini-
tially, all logical blocks are mapped to ⊥. At each ORAM.Write(logical
block, data block) operation, the ORAM picks K physical blocks at ran-
dom (independently of the logical address) and tries to decrypt each of
them. Some may already contain data, while others may be empty. The
new data block to be written and any data blocks that were already
stored in the selected K blocks are written to memory. Specifically, they
are added to a stash, which acts as a FIFO buffer to store blocks yet to be
written to disk. Then as many of the data blocks in the stash as possible
are encrypted and written back to the selected K blocks. Because the
physical disk is much larger than the logical disk, there is a good chance
that one or more of the K selected blocks were still free, so that all the
blocks currently in the stash can be written to the disk. Any remain-
ing free blocks from the K selected blocks are overwritten with random
data (generated by the PRG). The map from logical to physical blocks is
updated accordingly.

If not enough of the selected blocks were free, then some data blocks
will remain in the stash, to be written during a later write operation,
when free blocks are found. In general, the parameters of the scheme
are selected so that there is a good probability that one or more blocks
will be free, so that with high probability the stash size remains small
throughout. For example, for K = 3, the probability of having more than
50 items in the stash is bounded by 2−64.

The security argument is that since for each operation, K randomly
selected blocks are overwritten with a pseudo-random string, the opera-
tion does not leak any information about the logical address, the data to
be written, or the state of the disk (i.e. which blocks are free).

2.2 HIVE

The security target for HIVE is that it should hide the existence of en-
crypted disk volumes for which the key is not known. This is accom-
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plished by executing a real ORAM.Read and a dummy ORAM.Write for
each Read, and a dummy ORAM.Read and a real ORAM.Write for each
Write.

It is claimed in [2] that HIVE achieves the notion of plausible hid-
ing against arbitrary-access adversaries. We will break the even weaker
notion of plausible hiding against one-time adversaries, which is given in
Definition 1 immediately below.

Definition 1 (Plausible hiding against one-time adversaries). The

experiment Exppl-ot-bA,Σ (k) for a bit b is run between an adversary A and a
challenger emulating the scheme Σ and consists of the following phases.

1. In the setup phase, A sends l to the challenger, who chooses l pass-
words P1, . . . , Pl. The challenger initializes Σ0 with l volumes and
passwords, and Σ1 with l− 1 volumes and passwords P1, . . . , Pl−1 and
sends P1, . . . , Pl−1 and a snapshot D0 of Σb to A.

2. In round i, A sends two accesses oi,0 and oi,1 to the challenger; the
challenger executes oi,b on Σb.

3. Finally, the adversary requests a snapshot Df of the disk, and outputs
a bit b′, which is the output of the experiment.

An access o is of the form o = (op, b, V, d). If op = w, then data d is
written to block b on volume V . If op = r, then block b from volume V is
read into d. Since the adversary knows the passwords P1, . . . , Pl−1, if one
of the operations in round i is a write to one of the volumes V1, . . . , Vl−1,
then both operations must be identical. Intuitively, this means that any
access to Vl can be passed off as an access to another volume.

We define the advantage of the adversary as

Advpl-otA,Σ (k) = |Pr[1← Exppl-ot-0A,Σ (k)]− Pr[1← Exppl-ot-1A,Σ (k)]|.

If we used an asymptotic definition, we would say that Σ is secure if for
all PPT A, Advpl-otA,Σ (k) is a negligible function. Since we want to attack a
concrete instance, we use a concrete security definition. We fix a concrete
security parameter k and let

Advpl-otΣ,k (τ, q) = max
A
{Advpl-otA,Σ (k)},

where the maximum is taken over all adversaries running4 in at most τ
steps and making at most q access queries (that is, there are at most q

4 for an appropriate definition of running time, a problem we do not consider in this
paper
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rounds in the game, each round involving either writing to or reading from
a single block). We then say that for a concrete parameter k, Σ is (ε, τ, q)-

plausible hiding against one-time adversaries, if Advpl-otΣ,k (τ, q) ≤ ε.

2.3 HIVE Instantiation

In HIVE, the symmetric encryption scheme is instantiated with AES-
CBC using 256-bit, password-derived keys and a fresh IV at each call.
The number of blocks written to for each operation, K (k in the original
paper), is set to 3 in the implementation.5 This low value of K necessitates
the use of a stash of unwritten blocks to handle the situation where, when
K random blocks are selected, all are already in use. From the HIVE
source code it appears that a volume is not initially overwritten with
random data. This will help our adversary, since it means it will need to
consider less additional data, but is not necessary for the attack to work.

The implementation follows the good practice of using a PRG seeded
once with true randomness obtained from the OS to generate all the
randomness consumed by the cryptographic operations involved in HIVE.
Specifically, the output of the PRG is used to:

1. produce a fresh, random 16-byte IV (for use with each call to AES-
CBC);

2. fill a 4096-byte sector with random bytes;

3. fill a 32-byte metadata block with random bytes. A metadata block
consists of two 8-byte values and a 16-byte IV.

4. select a random sector to write to. This requires a random 8-byte value
for the sector id.

The PRG, while being properly seeded, is instantiated with RC4-
drop256. According to [2] this is for performance reasons. More specif-
ically, RC4 is keyed using 256 bytes of randomness obtained from the OS,
the first 256 bytes of RC4 output are dropped to avoid well-known strong
biases (see for example [1] for a complete exposition of these), some fur-
ther bytes of output are used for other purposes, and then B consecutive
bytes of output are used to fill a block with “random” bytes. The HIVE
implementation uses B = 4096 (so it has 4 KB blocks), though the choice
B = 256 is also discussed in [2]. Note that we do not (and do not need to)
know from precisely where in the RC4 keystream the bytes are selected,
but only that they are consecutive.

5 Variable HIVE K in dm-hive.c
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3 Blockwise Distinguisher for RC4

In this section, we develop and evaluate a distinguisher D for short RC4
keystreams as used in HIVE. This will be used in the next section as a
component in building an attack against HIVE.

3.1 RC4 Biases

We first recall the main results on biases in RC4 outputs from [4] that
we will use. Other biases, notably those in [3] are available, but not so
convenient to use in the setting of interest to us. This is because they are
position-dependent, and we do not wish to make any assumptions about
exactly which positions in the RC4 keystreams the bytes we are targeting
are selected from (since this is not readily apparent from the description
of HIVE in [2] and the corresponding source code).

The following result is a restatement of Theorem 1 in [4], concerning
the probability of occurrence of byte strings of the form ABSAB in RC4
outputs, where A and B represent bytes and S denotes an arbitrary byte
string of a particular length G.

Result 1 Let G ≥ 0 be a small integer. Under the assumption that the
RC4 state is a random permutation at step r, then

Pr (Zr = Zr+G+2 ∧ Zr+1 = Zr+G+3) = 2−16

(
1 +

e(−4−8G)/256

256

)
.

Note that for a truly random byte string Zr, . . . , Zr+G3 , the probability
that Zr = Zr+G+2 and Zr+1 = Zr+G+3 is equal to 2−16. The relative bias
is therefore equal to e(−4−8G)/256/256.

The above result was experimentally confirmed in [4] for values of
G up to 64, though with quite a small sample size, and not focused on
early bytes in RC4 output. We have confirmed that the result holds to a
reasonable approximation in the situation in which we are interested, for
positions 256 onwards. See Figure 1.

3.2 Discrimination and Statistical Hypothesis Testing

Given two probability distributions p and q on some set S, we define the
discrimination between p and q, denoted L(p, q), to be

∑
s∈S p(s) log p(s)/q(s).

Note that discrimination is additive: if p1, p2, q1, q2 are distributions on
S, and if p1p2, q1q2 denote the product distributions on S × S, then
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Fig. 1. Experimental validation of Mantin biases based on 228 random
256-byte keys, 4096 bytes of RC4 output per key. The x-axis depicts the
value of G, the y-axis scaled biases (γ values). Blue points denote experi-
mentally measured values; green line denotes theoretical values computed
according to Result 1.

L(p1p2, q1q2) = L(p1, q1) +L(p2, q2). This equality extends in the obvious
way to larger products of distributions.

Next consider the distributions p and q arising from a simple “bias
presence” test T based on a Mantin “ABSAB” bias. The test T receives
as input a B-byte string, looks for a particular byte pattern of a fixed type
commencing in a fixed position, and outputs 1 if the pattern is detected,
and 0 otherwise (here we assume the bias is a positive one, as is the case
for all the Mantin biases). For example, the test might examine positions
r, r + 1, r + 2, r + 3 in the string and check whether the quartet of byte
values are of the form “ABAB” or not, an event which should happen
with slightly larger than expected probability if the input string comes
from RC4 output rather than being truly random.

Let p be the output probability distribution of T if the input string
comes from RC4 output and q the output probability distribution of T if
the input string is truly random. Then p(0) = 1−ρ(1+γ), p(1) = ρ(1+γ)
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and q(0) = 1− ρ, q(1) = ρ where ρ = 2−16 and γ > 0 is the relative bias
under consideration (so γ = e(−4−8G)/256/256 for some small integer G).

Then, as shown in Lemma 3 of [4] (using different notation), L(p, q) ≈
ργ2.

The presence of different types of biases in different positions moti-
vates us to consider product distributions p1 · · · pt and q · · · q, where each
component in the two products corresponds to a different test Ti based
on a specific bias. Here the second distribution is always a fixed one, q,
as defined above (since all the bias presence tests behave the same way
in case the input string is truly random), while the first one pi describes
the distribution of the test’s {0, 1}-valued outcome Oi. We assume we
have t tests in total, and we make the assumption that all the simple bias
presence tests that we can perform on our B-byte input are independent.
This assumption seems reasonable in view of the different types of test
being conducted, despite many of the tests involving overlapping bytes.
The same assumption was made in [3,4] when developing distinguishers
for RC4. This assumption enables us to write:

L(p1 · · · pt, q · · · q) =
t∑
i=1

L(pi, q) ≈ ρ
t∑
i=1

γ2i

where γi is the appropriate value for the i-th test performed.
Now let D denote any distinguisher based on an input that is the

concatenation of the outputs Oi of the t individual bias presence tests,
and that predicts whether or not the particular string of B bytes used in
the tests was generated by RC4 or is truly random. We assume that D
outputs 1 (indicating RC4) with probability 1− β when its input is from
RC4, and that D outputs 0 (indicating truly random) with probability
1−α when its input is truly random. In other words, α is the false positive
rate for D and β is the false negative rate for D. Then, following [3], we
have that:

L(p1 · · · pt, q · · · q) ≥ β log2
β

1− α
+ (1− β) log2

1− β
α

.

Moreover equality is achieved by any optimal statistical test, such as a
Neyman-Pearson likelihood ratio test.

We next evaluate L(p1 · · · pt, q · · · q) ≈ ρ
∑t

i=1 γ
2
i for the set of tests

corresponding to all the possible Mantin biases arising in a B-byte block
of consecutive keystream bytes. From the above equation, this will then
allow us to establish bounds on (α, β) for optimal distinguishers D. We
then provide an efficient and approximately optimal statistical test based
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on these biases, and compute the parameters of the test in such a way as
to maximise the quantity 1− α− β, which is the usual advantage of the
distinguisher D.

3.3 Computation for the Mantin Biases

In a B-byte block, we can perform B − (G + 3) bias presence tests with
γ = e(−4−8G)/256/256 for each value of G ≥ 0. In practice, since the biases
decrease in size with increasing G, we work with values G satisfying 0 ≤
G ≤ Gmax for some value Gmax . In our experiments, we take Gmax = 64.

Combining all of these bias presence tests, we obtain t =
∑Gmax

G=0 B −
(G+ 3) ≈ Gmax ·B tests such that

L(p1 · · · pt, q · · · q) = ρ
∑
G≥0

(B − (G+ 3)) · e(−4−8G)/128/216).

Direct calculation gives L(p1 · · · pt, q · · · q) ≈ 8.7276 ≈ ×10−7 for
B = 256 and Gmax = 64. For B = 4096 and Gmax = 64 we obtain
L(p1 · · · pt, q · · · q) ≈ 1.4914× 10−5.

3.4 An Efficient Statistical Test

We start with a likelihood ratio test and develop from this an efficient
test which is approximately optimal.

In the likelihood ratio test, the test statistic is computed as a ratio
Λ(O) := L(θ0|O)/L(θ1|O) where θ0 denotes the distribution arising from
the hypothesis H0, θ1 denotes the distribution arising from the alternative
hypothesis H1, O denotes the observed data, and L(θi|O) := Pr(O|θi)
denotes a likelihood. In the test, the hypothesis H0 is rejected (and our
distinguisher outputs 1 indicating that its input is believed to be RC4) if
the ratio of likelihoods Λ(O) is less than or equal some value η; otherwise,
H0 is accepted (and our distinguisher outputs 0 indicating that its input
is believed to be truly random). In principal η can be calculated from
α, the false positive rate for the test. Specifically, η is determined as the
value such that Pr(Λ(O) ≤ η|H0) = α.

In our situation, O is a vector composed of the outcomes Oi of the
individual tests Ti with parameters γi. Hypothesis H0 is that the input
sequence of B bytes is random and H1 is the hypothesis that it is an
output of RC4. Keeping in mind that γi > 0 for all i, we can then write

L(θ0|O) =
∏

i:Oi=1

ρ
∏

i:Oi=0

1− ρ
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and

L(θ1|O) =
∏

i:Oi=1

ρ(1 + γi)
∏

i:Oi=0

1− ρ(1 + γi).

Then, taking logs, using the fact that ρ and all the γi are small, ma-
nipulating the above expressions using standard log approximations, and
simplifying, we finally obtain:

logΛ(O) ≈ −
∑
i:Oi=1

γi +
∑
i:Oi=0

ργi .

Let us denote the above quantity by L. Thus a suitable, approximately
optimal test is to reject the hypothesis H0 (that the input string is a truly
random string) and output “1” if L ≤ log η, and to output “0” otherwise.
Note that the test statistic L is efficient to compute: it requires on the
order of Gmax ·B floating point operations and byte comparisons.

It remains to compute appropriate values of η for a given target α.
This requires us to know the distribution of the test statistic L when O
comes from distribution θ0. Now, in this case, the outcome Oi is Bernoulli
distributed with parameter ρ, i.e. Pr(Oi = 1) = ρ. Moreover, we can group
the tests into Gmax + 1 groups, each group corresponding to a set of tests
having the same value for γi. Since the number of tests in each group
is large, the sum of the corresponding terms in L can be approximated
by Normal distributions with mean and variance that can be explicitly
calculated. This in principal allows the distribution of L to be computed.
We omit the details.

3.5 Optimal Choice of Parameters

For reasons that will become clear in the next section, we wish to maximise
the value of the quantity δ := 1 − α − β over the choice of distinguisher
D acting on B bytes of input. Let us denote this value by δB. (As tem-
porary motivation note that δ is the usual cryptographic definition of the
advantage of the distinguisher.) Since we are interested in optimal distin-
guishers, our choice of parameters (α, β) is subject to the constraint that
LB = β log2

β
1−α + (1− β) log2

1−β
α where the quantity LB was computed

for different values ofB in Section 3.3. Direct maximisation using Wolfram
alpha6 yields δB = 0.00055 for B = 256 (at (α, β) = (0.499459, 0.499991))
and δB = 0.002273 for B = 4096 (at (α, β) = (0.498343, 0.499384)).

6 http://www.wolframalpha.com/
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3.6 Implementation

We implemented the above statistical test to ensure that its practical
performance is in line with the theoretical analysis. As noted above the
parameter η could be set by calculating the distribution of the test statis-
tic L when O comes from distribution θ0. Another approach would be to
generate many samples of the test statistic to estimate the distribution
of L and set η by computing the α-percentile of the sampled values.

In our experiments, we simply set η = 0, ran the test on random
inputs and on RC4 inputs, and computed the corresponding values of
α, β, δ. This gives us sub-optimal values for δ, but is sufficient to validate
that the test works and gives us a distinguisher having performance that
is reasonably close to that which is theoretically obtainable. For B = 4096
and based on 225 samples (224 for each of random input and RC4 inputs),
we obtained α = 0.453706, β = 0.544646 and δ = 0.001648. Here the
value of δ compares favourably to the theoretical maximum of 0.002273.
We are confident that a closer match would be obtained by adjusting η.
In our evaluation of our attack on HIVE to follow, we present attack costs
for both the ideal value of δ and our experimentally obtained value.

4 An Attack on HIVE Based on a
Blockwise RC4 Distinguisher

We describe a family of adversaries {AB,S,T }, parameterized by the block
length B and two other parameters S and T which are defined below.
Our adversaries have access to the distinguisher D acting on B bytes from
Section 3. Recall that D outputs a single bit b; if D’s input is uniformly
random bytes, DB outputs 1 with probability α; if D’s input consists of
B consecutive bytes of RC4 output, D outputs 1 with probability 1− β.

For a fixed block length B, AB,S,T is a one-time adversary against
plausible hiding for two volumes, as in Definition 1. In this simple case,
there are two encrypted volumes V1, V2 protected by passwords P1, P2,
and a user wants to be able to deny the existence of V2 to an adversary
who knows P1. We consider two volumes for simplicity and because two
volumes are used in the implementation; the attack generalizes directly
to any number of volumes. We assume that each volume consists of S
blocks of B bytes, so the disk has 4SB bytes in total (because it needs to
be twice the size of all the volumes combined).

We overload the notation for the access operations in Definition 1 to
allow reading and writing of multiple blocks of data in a single query. In
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what follows, 0SB denotes an all-zero string of SB bytes, equating to S
blocks of B bytes each.

Our adversary AB,S,T then proceeds in five steps:

1. AB,S,T sends l = 2 to the challenger and receives the password P1 and
a snapshot D0 of the disk.

2. AB,S,T sends o1,0 = o1,1 = (w, 0, V1, 0
SB).

3. AB,S,T sends o2,0 = (w, 1, V2, 0
SB), o2,1 = (r, 0, V1, d, SB).

4. AB,S,T requests a snapshot Df , containing 4S blocks. AB,S,T disre-
gards the blocks that are the same as in D0, runs D successively on
each of the remaining E used blocks of Df and concatenates the out-
put bits of D to form a string R ∈ {0, 1}E .

5. Finally, AB,S,T outputs 1 if W , the Hamming weight of R, is at most
T ; otherwise it outputs 0.

The following theorem is immediate (noting that reading or writing
B bytes counts as making 1 query in the security model given previously,
so AB,S,T makes 2S queries in total):

Theorem 2. Let τB,S,T denote the running time of AB,S,T and AdvB,S,T
its advantage. Then HIVE is not (AdvB,S,T , τB,S,T , 2S)-plausible hiding
against one-time adversaries.

Now let us determine values for S, B and T for which the theorem
gives a meaningful attack. We consider what information AB,S,T has ac-
cess to in its attack when b = 0 and b = 1 in the security experiment.
When b = 0, the disk is initialised with V1 and V2, and o1,0 and o2,0 are
executed. When b = 1, the disk is initialised only with V1, and o1,1 and
o2,1 are executed.

The adversary gets an initial snapshot of the disk before any oper-
ations are executed, so identifying unused blocks is trivial; E denotes
the number of blocks that differ between D0 and Df . All blocks that
are written to certainly differ, so we have 2S ≤ E ≤ 4S. We call EB
the effective disk size, since the other blocks are irrelevant to the attack.
Note that the expected value of E is approximately 3.1075S. (There are
4S blocks on the disk, and in the 2S read and write operations in our
attack, HIVE will choose K · 2S = 6S blocks at random to write to.
This means that we expect that, out of the total of 4S blocks available,
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4S ·
(
1− 1

4S

)6S
blocks are not written to.7 Using (1− 1/n)m ≈ e−m/n, we

get E[E] ≈ (1− e−1.5)4S ≈ 3.1075S.)

Let Wb denote the Hamming weight of the vector R constructed by
AdvB,S,T in case b. We have:

– When b = 0, 2S blocks of data are written to the disk, so it contains
2S blocks of AES output and E−2S blocks of RC4 output. Since AES
output is indistinguishable from random (otherwise, we would have an
attack on AES), the expected value for W0 is α ·2S+(1−β) ·(E−2S).

– When b = 1, only S blocks of data are written to the disk, so it
contains S blocks of AES output and E − S blocks of RC4 output.
The expected value for W1 is α · S + (1− β) · (E − S).

The difference in the expected values of the Hamming weight of R in
the two cases is therefore (1−α− β)S = δS, which corresponds to the S
blocks of additional data written to the disk in case 0.

Note that the output of D on each B-byte block is an independent
Bernoulli random variable with one of two possible distributions, depend-
ing on whether the block contains output from RC4 or AES (and where we
assume the latter is indistinguishable from truly random bytes). Specifi-
cally, when a block contains RC4 output, D’s output equals 1 with prob-
ability 1 − β, while, when it contains AES output, D’s output equals
1 with probability α. Thus, when b = 0, the distribution of W is a
Poisson binomial distribution with parameters p1 = . . . = p2S = α,
p2S+1 = . . . = pE = 1 − β (since the trials are independent, the or-
der does not matter). Similarly, when b = 1, the distribution of W is
a Poisson binomial distribution with parameters p1 = . . . = pS = α,
pS+1 = . . . = pE = 1− β.

By standard results for the Poisson binomial distribution, the variance
of W0 is equal to 2Sα(1−α)+(E−2S)β(1−β), while the variance of W1

is equal to Sα(1−α)+(E−S)β(1−β). Since α(1−α), β(1−β) ≤ 1/4 and
E ≤ 4S, it follows that the two variances are bounded by S. We define
σ2 := S.

Now, given that W0 and W1 are obtained as sums of large numbers
of independent Bernoulli random variables, we can consider them to be
Normally distributed to a good approximation (here, we assume E is
large, as indeed it will need to be to obtain reasonable success rates for

7 In reality, because of the way the stash operates, slightly fewer than S or 2S blocks
of data might be written to the disc. However, this does not materially affect our
analysis. The probability of eight or more items remaining on the stash is only
0.05 %.
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our adversary). We already established that their variances are bounded
by S, while their means are separated by δS. Note that

Advpl-otAB,S,T ,Σ
(k) = |Pr[1← Exppl-ot-0AB,S,T ,Σ

(k)]− Pr[1← Exppl-ot-1AB,S,T ,Σ
(k)]|

= |Pr[W0 ≤ T ]− Pr[W1 ≤ T ]|

where W0 and W1 are Normally distributed by assumption. We set T to
be half-way between the means; viz T = E−1.5S−1.5Sα− (E−1.5S)β.
This finally brings us to a position where we can apply standard tail
bounds for Normal distributions in order to estimate the advantage of
AB,S,T .

Suppose that we insist that the means of W0,W1 are 2nσ apart for
some parameter n; then by our choice of T and under our assumption of
Normality (and since σ2 is an upper bound on the variances of W0,W1)
we get an advantage for our adversary which is at least

1− erf

(
n√
2

)
where erf(·) is the standard error function for the Normal distribution:

erf(x) =
1√
π

∫ x

−x
e−t

2
dt.

Hence, under the condition that δS = 2nσ = 2nS1/2, the advan-
tage AdvB,S,T of our adversary AB,S,T will be at least the claimed value,
namely 1− erf(n/

√
2). Solving for S, we see that we require

S =
4n2

δ2

to achieve the claimed advantage.

4.1 Concrete Numbers

To launch a concrete attack, we set B = 4096, as in [2]. Then, from the
results of Section 3 we can take δ = 0.002273 as the optimal setting.
Setting n = 1 in the above analysis and solving for S, we get S = 219.6

for an advantage of 0.683. Continuing for other values of n, we obtain the
second column in Table 1. Thus we see that an adversary with advantage
very close to 1 can be achieved by setting S = 222.7, i.e. for an attack
involving 2S = 223.7 read/write queries on a disk containing a total of
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n log2 S (ideal) log2 S (experimental) AdvB,S,T

1 19.6 20.5 0.683
2 21.6 22.5 0.954
3 22.7 23.7 0.997

Table 1. Number of blocks S required to achieve a given advantage
AdvB,S,T for B = 4096.

n log2 S (ideal) AdvB,S,T

1 23.6 0.683
2 25.6 0.954
3 26.8 0.997

Table 2. Number of blocks S required to achieve a given advantage
AdvB,S,T for B = 256.

4S = 224.7 blocks and 4BS = 236.7 bytes of data (i.e. roughly 104 GB of
data).

The third column in Table 1 contains estimates for S based on setting
δ = 0.001648, the value experimentally observed when setting η = 0 in
the statistical test developed in Section 3.6. The higher numbers in this
column reflect the sub-optimal performance of the blockwise distinguisher
for this setting of η.

The main computational cost of implementing the attack is that of
running the blockwise distinguisher E times; since E ≤ 4S, the total cost
of the attack is on the order of Gmax ·B ·S floating point operations. In our
implementation, the running time for a single execution of the blockwise
distinguisher for Gmax = 64, B = 4096 was 0.000719s (on a Macbook Air
with a1.3 GHz Intel Core i5 processor and 8GB of RAM); the running
time of the whole attack with E = 4S and S = 223.7 would then be about
11 hours. This running time could be improved by optimising the choice
of η (thus allowing a reduced value of S).

Similar calculations can be carried out with B = 256, where we can
take δ = 0.00055. We obtain Table 2. We see that S is required to be
greater, reflecting the much weaker performance of our blockwise distin-
guisher when the block size is small. On the other hand, the total disk size
is only moderately increased and the running time of the distinguisher is
further reduced (because of the reduced block size).
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5 Conclusions

We have shown that the current instantiation of HIVE using RC4 is in-
secure. Specifically, there is an efficient attack involving 223.7 read/write
queries on B = 4096 byte blocks for which we can construct an adversary
having advantage 0.997 in the security model for plausible hiding against
one-time adversaries. This violates the main security property claimed for
HIVE.

Our work illustrates that if a provably secure scheme is instantiated
with an insecure primitive, then all security guarantees may be lost.

HIVE can be repaired by replacing RC4 with a stronger PRG. For
example, AES in counter mode could be used instead; as well as being
more secure, the performance will be better than that of the current
RC4-based system on platforms with hardware support for AES. More
options, optimized for performance in hard- or software, are offered by
the eSTREAM project.8

We gave the authors of HIVE the opportunity to make changes to
their code and to their paper after notifying them of our concerns about
their scheme’s reliance on RC4. They did not avail themselves of this
opportunity. In view of the fact that HIVE has been released to the public
and is promoted as “not rely[ing] on heuristics or obfuscation techniques,
but rather strong cryptographic primitives which can be mathematically
proven” and as being able to “provide very strong security in practice”9,
we decided to refine and publish our attack as a form of public service.
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