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Abstract—In this paper, we introduce Falcon codes, a class
of authenticated error correcting codes that are based on LT
codes [23] and achieve the following properties, for the first
time simultaneously: (1) with high probability, they can correct
adversarial symbol corruptions in the encoding of a message, and
(2) they allow for very efficient encoding and decoding times,
even linear in the message length. We study Falcon codes in
a new adversarial model for rateless codes over computational
channels, and define a new security notion for corruption-tolerant
encoding in this model. We then present three such LT-based
coding schemes that achieve resilience to adversarial corruptions
via judicious use of simple cryptographic tools while maintaining
very fast encoding/decoding times. One variant Falcon code works
well with small messages (100s of KB to 10s of MB) but two
alternative scalable versions are designed to handle much larger
inputs (e.g., messages that are several GBs in size). Our schemes
are provably secure against computational adversaries in the
standard model. We analyze our new schemes and show that
Falcon codes are both asymptotically and practically efficient.

I. INTRODUCTION
Error correcting codes find numerous applications in com-

puting by increasing reliability in data storage and data trans-
mission over unreliable channels. As such they comprise today
a particularly useful tool in distributed and network security
with more and more secure protocol designs employing some
form of data encoding. Among a rich set of existing codes,
due to their simplicity and strong error correcting capacity (i.e.,
information-theoretic rather than probabilistic), Reed-Solomon
codes, or RS codes, are used very widely by applications.
In an RS code, the input message is broken up into fixed-
sized pieces and the pieces are regarded as coefficients of a
polynomial, which is then repeatedly evaluated on different
points to produce the output symbols. Although their asymp-
totic efficiency can vary depending on the implementation, RS
codes typically involve encoding costs that are quadratic in the
message size k,1 thus in reality they tend to be costly.

Several alternative codes have been proposed to overcome
the quadratic encoding/decoding overheads of RS codes. For
instance, using layered encoding, Tornado codes [4] achieve
encoding/decoding speeds that are 100 to 10000 times faster
than RS codes. At the fastest end of the range lie LT codes [23],
which achieve O(k log k) encoding/decoding speed and are
very practical. Based on LT codes, Raptor codes [41] and
Online codes [28] are the first (rateless) code to achieve linear
coding times. Each of these LT-based codes is also a fountain
code: a rateless code that can generate a practically unlimited

1RS codes with input size k and output size n = O(k) are practically of
quadratic in n complexity: even if in specific configurations they can achieve
asymptotically O(n logn) encoding time, in most practical cases encoding
with polynomial evaluation in O(kn) time is faster.

number of output code symbols. But this great efficiency
comes at a qualitative drawback: fountain codes have been
designed and analyzed over a random channel rather than
an adversarial one, essentially being capable to tolerate only
data erasures and no (or very limited) data corruption. And
even current standardized implementations of these codes are
easy to attack by adopting malicious (non-random) corruption
strategies.

Indeed, LT codes employ a random sparse bipartite graph to
map message symbols, in one partition, into encoded symbols,
in the other partition, via simple XORing (see Figure 1).
By design, this graph provides enough symbol coverage so
that a belief-propagation decoding algorithm can recover the
input symbols (with a small, sender-determined probability of
failure) despite random erasures of encoded symbols. But this
algorithm will also readily propagate (and amplify) any error
in the message encoding into the recovered message! Even
worse, an adversary could exploit the structure of this graph
to (covertly) increase the likelihood of a decoding failure. For
instance, one can selectively erase nodes of high degree so
that with high-probability not all input symbols are sufficiently
covered by the remaining symbols.2 Actually, this specific
targeted-erasure attack raises a practical threat that has not
been adequately addressed in the literature (cf. Section VII).
Unfortunately, this was also neglected by existing RFCs that
describe Raptor/RaptorQ codes for object delivery over the
Internet: to increase practicality, the encoding graph is either
completely deterministic or easily predictable by anyone,3 thus
trivially enabling such targeted-erasure attacks!

In view of this inconvenient trade-off between practicality
and security, in this paper we consider the following natural
question: is it possible to have codes that are simultaneously
strongly tolerant to adversarial errors and very efficient in
practice? Alternatively: what are the counterparts of RS codes
within the class of fountain codes? Or, is it possible to
devise extensions of Raptor codes that withstand malicious
corruptions while maintaining their high efficiency?

This work shows that it is possible to achieve both coding
efficiency and strong tolerance of malicious errors for com-
putationally bounded adversaries. Specifically, we introduce

2Decoders based on solving the implicit system of linear equations relating
the symbols suffer from the same problems.

3For instance, each encoded symbol contains a list of the indices of its
covering input symbols or a seed for a PRG to generate these indices, trivially
allowing an adversary to selectively corrupt the symbols for maximum impact.
Encrypting symbols and the associated index lists is not sufficient as the RFCs
contain explicit tables of random numbers to be used in the encoding process.
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Falcon codes, a class of authenticated error correcting codes4

that are based on LT codes. Falcon codes can tolerate malicious
symbol corruptions but also maintain very good performance,
even linear encoding/decoding time. This can be viewed as
a best-of-two-worlds quality, because existing authenticated
codes (e.g., [18], [27], [29]) are typically Reed-Solomon
based, thus lacking efficiency, and existing linear-time coding
schemes (e.g., [28], [41]) are fountain codes that withstand
only random erasures.

Moreover, Falcon codes can be extended in straightforward
ways to meet the performance qualities of any other foun-
tain code that employs an LT code. Specifically, our coding
schemes can meet the performance optimality of Raptor or
Online codes, while strictly improving their error correcting
properties. Our experimental evaluation of Falcon codes relies
exactly on such an implementation that is based on a Raptor
code, perhaps the fastest linear-time fountain code at present.
In this view, Falcon codes provide a general design framework
for devising authenticated error correcting codes, which overall
renders them a useful general-purpose security tool.

Contributions. Importantly, as part of this work, we have
developed the first adversarial (corruption) model for analyz-
ing the security of fountain codes against computationally-
bounded adversaries. (Previously existing adversarial models
were only applicable to fix-rate codes, such as RS codes.) We
first introduce private LT-coding schemes, which model the
abstraction of authenticated rateless codes that combine the
structure of LT codes along with secret-key cryptography, and
we then define a security game in which a stateful and adaptive
adversary inflicts corruptions over message encodings that aim
at causing decoding errors or failures (where the decoder does
not recover any message). As we explain, we impose only
minimal restrictions on the adversary: symbol corruptions and
erasures can be arbitrary, but inducing trivial decoding failures
by destroying (almost) all symbols is disallowed. Finally, we
define security for private LT-coding schemes as the inability
of the adversary to inflict corruptions that are (non-negligibly)
more powerful than corruptions caused by a random erasure
channel.

We also provide three constructions of authenticated LT
codes that achieve this new security notion in our adversarial
model while preserving the efficiency of normal LT codes.
Our core scheme, shown schematically in Figure 3, leverages
an extremely simple combination of a strong pseudorandom
number generator (to randomize and protect the encoding
graph), a semantically secure cipher (to encrypt encoded sym-
bols and hide the encoding graph), and an unforgeable MAC
(to authenticate symbols). To achieve better scalability, we
extend this scheme to two more elaborate and highly optimized
constructions: one fixed-rate code that applies our core secure
encoding in blocks of input symbols, and its rateless extension
that can produce unlimited encoded symbols. We provide a
detailed comparison of our schemes in Table I.

Finally, we perform an extensive experimental evaluation of
our constructions showing that, indeed, they achieve practical
efficiency with low overhead. In particular, our schemes can

4By this term, here, we informally refer to error correcting codes that
employ cryptography to withstand adversarial symbol corruptions, typically
(but not exclusively) by authenticating the integrity of the encoded symbols.

achieve encoding and decoding speeds up to 300MB/s, several
times faster than the standard Reed-Solomon encoding coupled
with encryption and a MAC. Moreover, the overhead from our
cryptographic additions to LT codes results in a slowdown of
no more than 60% with typical slowdown close to just 25%.
In Table I, we compare our constructions with a standard RS
code, as well as the naı̈ve “secure” LT code that only encrypts
and MACs the output symbols, according to the following
criteria: rateless property, asymptotic efficiency of encoding
and decoding (FalconR’s performance depends on the number
of blocks, as we discuss in Section IV-C), the need for a
strong PRG (FalconS can safely employ a weak, but fast,
PRG for increased efficiency), and the achieved security related
to adversarial data corruption. All of our constructions can
withstand this worst-case behavior.

Although applying Falcon codes to reliable data transmis-
sion and storage is out of the scope of this work, we believe
that many such applications are feasible. In particular, our
schemes can be used as drop-in replacements for any error
correcting code used against a computationally-bounded ad-
versary and provide immediate efficiency gains. For instance,
RS codes are often used to provide fault-tolerance in secure
storage; Falcon codes can provide almost the same guarantees
as RS codes while providing much higher efficiency. They
also readily find application in proof-of-retrievability (PoRs)
systems, such as HAIL [2], that provide auditing checks on the
retrievability and recoverability of outsourced data via careful
data encoding against data-corrupting attackers.

Organization. Section II provides background information on
relevant coding theory and cryptography. Section III details
our security formulation in a new adversarial setting applied
to rateless codes. Section IV details our Falcon code construc-
tions, including an authenticated LT code and two extensions
that achieve scalability and generality. Section V provides a
security analysis of Falcon codes. Section VI details on a
comprehensive experimental evaluation of our new codes. We
overview related work in the overlap of coding and security
in Section VII and conclude with Section VIII.

II. PRELIMINARIES
In what follows, we let λ denote the security parameter,

and PPT refer to probabilistic polynomial-time algorithms. We
also let [Alg] denote the set of all possible outputs of a PPT
algorithm Alg, running on input parameters π, and τ ← Alg(π)
the particular output derived by a specific random execution of
Alg(π). Analogously, we let x R← S and x← D, respectively,
denote the process of sampling x from the set S uniformly at
random or according to distribution D. Finally, we let ◦ denote
string concatenation and |S| denote the cardinality of a set S.

A. Coding theory
An error correcting code (ECC) is a message encoding

scheme that can tolerate some corruption of the encoded data
and still allow recovery of the message from the (possibly
corrupted) codeword. Codes that are designed to recover only
from partial data loss, but not data corruption, are called
erasure codes. We first present the definition of fixed rate codes
(also called block codes) which are the most common type of
ECCs. Later, we will define rateless codes.

Defined over a fixed, finite set of symbols Σ (called the
alphabet) and parameterized by integers k and n ≥ k, a
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TABLE I. COMPARISON OF THREE FALCON CODE VARIANTS WITH REED-SOLOMON AND LT CODES. HERE, k IS MESSAGE LENGTH, b IS NUMBER OF
BLOCKS, AND n IS THE CODEWORD LENGTH. Falcon IS THE BASIC SCHEME AND FalconS AND FalconR ARE THE SCALABLE VARIANTS. FOR FalconS AND

FalconR, k INDICATES THE NUMBER OF SYMBOLS PER BLOCK.

Construction Rateless Efficiency Strong PRG Weak PRG Adversarial Attacks

Falcon yes O(k log k) yes no yes

FalconS no O(bk(log k + log b)) yes yes yes

FalconR yes O(bk log k), O(b log b+ bk log log b) yes no yes

Reed-Solomon no O(nk) n/a n/a yes

LT code + encrypt & MAC yes O(k log k) no yes no

fixed-rate ECC specifies mappings between elements of the
set of messages Σk and the set of codewords Σn. (Examples
alphabets include Σ = {0, 1}l, the set of all l-bit strings, or
a finite field F.) For m ∈ Σk and c ∈ Σn, the components
mi and ci are called message symbols and code symbols,
respectively. Any given message m ∈ Σk is encoded to
a corresponding valid codeword c ∈ Σn, and any invalid
codeword ĉ, derived as a bounded distortion of c, can be
uniquely decoded back to the original message m. If the first k
symbols of a valid codeword corresponds to original k message
symbols, then the code is said to be systematic. Parameters k
and n are called the message length and block length of the
code, respectively. The ratio R = k/n is the rate of the code,
capturing the amount of information transmitted per codeword
and typically controlling the recovery strength of the code as
follows. The Hamming distance between two n-symbol words
x and y is the number of symbols in which they differ, defined
as ∆(x, y) = |{i | 1 ≤ i ≤ n, xi 6= yi}|. The (minimum)
distance of an ECC is d, if for all valid codewords c, c′ ∈ Σn

such that c 6= c′, we have ∆(c, c′) ≥ d (capturing the minimum
number of changes needed to transform one valid codeword
into another). Then, any code with minimum distance d allows
for decoding invalid codewords distorted by up to bd/2c errors
back to a unique message;5 typically, the smaller the R is, the
larger the d.

Definition 1: An error correcting code C over an alphabet
Σ with rate R and minimum distance d, is a pair of maps
(Encode,Decode), where Encode : Σk → Σn and Decode :
Σn → Σk, such that k = Rn, and for all m ∈ Σk and for all
c ∈ Σn with ∆(c,Encode(m)) ≤ bd/2c, Decode(c) = m.

Rateless ECCs. This class of error correcting codes, called
rateless or fountain codes, employs no fixed block length n.
Instead, rateless codes can generate a limitless stream of
encoded symbols (i.e., a continuous “fountain”), allowing
recovery of the original message (with high probability) from
any subset of these symbols that is sufficiently large. Typically,
for message length k, (1 + ε)k correct encoded symbols are
needed to decode the message with probability at least 1− δ.
Here, ε is called the overhead of the code and δ refers to the
decoding failure probability of the code, the latter determining
the range of possible values that the former may have; in
particular, smaller values of δ require larger values of ε and
vice versa. We denote this relationship by F (δ, ε).

Definition 2: A (k, δ, ε)-rateless error correcting code C
over an alphabet Σ with decoding failure probability δ and
overhead ε so that F (δ, ε), is a pair of maps (Encode,Decode),
where Encode maps from Σk to Σ∞ (infinite sequences of

5Not considered in this work is list-decoding, which allows mapping any
invalid codeword, distorted with errors beyond this half-the-distance bound,
back to a list of messages that always contains the correct original message.

Fig. 1. LT-encoding: Each code symbol (bottom) is the XOR of O(log k)
randomly selected message symbols (top).
elements in Σ) and for any m ∈ Σk and any finite subsequence
s of Encode(m) of length at least (1 + ε)k, Decode(s) = m
with probability at least 1− δ.

Examples of rateless ECCs include LT codes [23], along
with their derived extensions Raptor codes [41] and Online
codes [28]. For LT codes, the main focus in this work, the
encoding/decoding mappings take an extra input parameter:
the degree distribution D. Here, D is used to construct a
sparse bipartite graph with input (message) symbols in one
partition and code symbols in the other, also called input and
parity nodes—see Figure 1. The degree of each parity node
is selected according to D and its corresponding neighbors
(message symbols) are selected uniformly at random. The code
symbol corresponding to a given parity node is simply the
XOR of the message symbols of the neighboring input nodes.
The distribution used must be carefully chosen to achieve the
desired success probability of 1−δ for a given message length
k, hence D is parameterized by k and δ, and thus denoted
by Dk,δ . The value of δ and, now also, distribution Dk,δ
determine the possible values of ε. For LT codes, we denote
this relationship by F (δ,Dk,δ, ε). For simplicity, we will omit
the subscripts k and δ, leaving the dependence implicit, and
will denote the degree distribution as D.

Often, D instantiates to the robust soliton distribution,
described in the original paper [23], which ensures that the
average node degree is O(log k). This implies that: (1) using
a balls-in-bins analysis, with high probability, every input
symbol is covered by at least one of the (1 + ε)k code
symbols, and thus can be decoded; and (2) encoding and de-
coding take O(k log k) time. Decoding uses a standard belief-
propagation algorithm, thus correcting only symbol erasures,
but not symbol errors. The decoding method of [26] augments
belief propagation to also correct random errors with erroneous
values distributed uniformly in Σ, but not adversarial errors.

Raptor (rapid tornado) codes [41], a main application in
our work, improve the performance of LT codes by employing
precoding of the input message m ∈ Σk before LT-encoding as
follows. First, a linear-time erasure code (e.g., a low-density
parity check code) is applied to m to get a group of inter-
mediate symbols. Then, an LT code is used to produce each
output symbol, again as the XOR of a random subset of the
intermediate symbols, where these subsets, drawn via a variant
of the robust soliton distribution (see [41]), are of constant
size; this process is repeated until enough output symbols
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are produced. Overall, Raptor codes have encoding/decoding
time that is linear in k, and achieve high data rates with low
overhead.6 However, based on LT codes, they are essentially
erasure codes and do not tolerate symbol corruption well.
Analysis of Raptor codes over noisy channels [32] is also
restricted to random (but not necessarily uniform) errors rather
than adversarial ones.

B. Cryptographic tools
We overview the cryptographic primitives we employ to

enhance LT codes to withstand adversarial errors—namely,
message authentication codes (MACs), symmetric ciphers
(SCs), and pseudorandom generators (PRGs), with which basic
familiarity is assumed.

Keyed by secret k ← Gen1(1
λ), a MAC produces a tag

t = Mac(k,m) for message m, which can be used to verify the
integrity of m by checking VerMac(k,m, t) = 1. We require
that a MAC is existentially unforgeable so that an adversary A
cannot forge the tag for any message, even for one of its own
choosing. Here, A is allowed to query a MAC oracle to get
any number of example message-tag pairs before it outputs a
target message-tag pair (m∗, τ∗) that does not belong in the
queried pairs; then, with all but negligible probability in λ it
holds that VerMac(k,m∗, t∗) 6= 1.

Keyed by secret k ← Gen2(1
λ), a symmetric cipher SC is

an encryption scheme (Enc,Dec) so that Dec(k,Enc(k,m)) =
m for any message m (in the appropriate message space). We
require that a SC is semantically secure so that a ciphertext c =
Enc(k,m) “hides” all the information about a given message
m. Here, for any adversary A computing any function f on
the message m given ciphertext c (and any auxiliary input),
f(m) can still be computed without the ciphertext, with all but
negligible probability in λ. Intuitively, knowing the ciphertext
c leaks no additional information about m.

Finally, given a short random seed s
R← {0, 1}λ, a pseu-

dorandom generator (PRG) serves as an efficient source of
randomness by producing a long sequence of random-looking
bits. A PRG is secure if its output is indistinguishable, with
all but negligible probability in λ and with respect to any
polynomial-time distinguisher, from a string of truly random
bits. Equivalently, any algorithm taking random bits as input
behaves only negligibly different when given pseudorandom
bits instead.

III. SECURITY MODEL
Our main goal is to extend LT codes to endure adversarial

corruptions inflicted by a computationally-bounded adversary.
Here, we present a new definitional framework for private LT-
coding schemes, a new class of rateless codes that are based
on LT codes and employ the use of secret-key7 cryptography
to resist polynomial-time adversarial errors. We introduce a
corresponding new security notion we call computationally

6Since only a linear number of symbols are output, Raptor codes only strive
to recover a constant fraction of the intermediate symbols via LT-decoding.
Any gaps in these symbols symbols are recovered by decoding the precode.

7Our schemes use a PRG, a MAC, and a semantically secure cipher;
the latter two can be replaced with public-key equivalents, while the PRG
is inherently a secret-key scheme. However, coupling our schemes with a
public-key key-agreement protocol (over a noiseless channel) would break
their dependence on secret-key cryptography. But, for simplicity of analysis
and presentation, we only utilize secret-key schemes.

secure rateless coding. Our security model is general enough
to also capture security for block codes.

Motivating scenarios. There are several adversarial settings
which motivate our security model. First and foremost, we
want to ensure that, with all but negligible probability, when-
ever Decode outputs a message, it is the same message that was
encoded. That is, we wish to avoid corruption of the decoded
message. Since total corruption or deletion of a message is
catastrophic—and presumably users would stop using such an
unreliable channel—we consider attacks that do not destroy or
maul the entire message, which is standard when analyzing
ECCs. For example, a client may encode their data and
distribute it among several cloud providers, a subset of which
are compromised by the adversary A, limiting corruption to
those servers.

An alternative scenario is where A is malicious network
router that sees some, but not all of an encoded message.
A can attack an LT-encoded message by erasing only high-
degree symbols (i.e., those combining many input symbols)
and leave low-degree symbols untouched. The decoder would
then receive mostly low-degree symbols and be much more
likely (i.e., with probability greater than δ) to fail and output
nothing. This is essentially a stealthy DoS, or at least a quality-
of-service attack, and is a violation of the upper-bound on
the decoding failure probability. The receiver could wait for
more good symbols from the non-malicious routers, but this
would break the LT code’s guarantee of needing only (1+ε)k
uncorrupted symbols to decode with probability greater than
1 − δ. We seek to be secure even from this targeted erasure
attack, an attack which was previously identified in [19], but
was left as an open problem.

A. Private LT-coding schemes
Prior work has considered computationally bounded adver-

saries only against block codes. In particular, in his seminal
paper [22], Lipton first modeled a computationally bounded
adversarial channel that can corrupt at most a constant fraction
ρ of the encoded symbols. Later, Lysyanskaya et al. [27]
studied an (α, β)-network (or channel) that can arbitrarily
corrupt (alter or delete) the n code symbols in an encoded
message, and also insert new symbols into the codeword
(even multiple versions of selected symbols), subject to two
restrictions: (1) at least αn symbols survive corruption and
(2) at most βn total symbols are received. Subsequent work
by Micali et al. [29] provided a more involved security game
that includes several rounds of encoding, bounded symbol
corruptions, and decoding between a sender, an adversarial
channel, and a receiver.

By explicitly bounding the fraction of all symbols that can
be corrupted, however, these security models cannot capture
corruptions against rateless codes. Since fountain codes can
produce an unbounded number of symbols, the rate of cor-
ruption introduced by the adversary can continually grow and,
indeed, can become arbitrarily close to 1, which would directly
conflict with any bounded corruption rates. A more accurate
modeling of errors over a rateless code is to lower bound the
amount of non-corruption rather than upper-bound the amount
of corruption, but as an absolute number (typically defined by
the message length), not as a fraction of the encoded symbols.
That is, we wish to ensure that there is some minimum number
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of “good” encoded symbols that remain intact, and allow the
remainder to be bad. In a block code, an upper-bound on
badness implies a lower-bound on goodness (and vice versa),
but this symmetry breaks in rateless codes.

We first provide the definition of private LT-coding
schemes. This extends the definition of private coding schemes
given in [29], via changes in the parameters and function
specifications, to suit the class of rateless codes that are based
on LT codes (instead of block codes). This class generically
captures fountain codes that can produce an unlimited number
of encoded symbols using the LT-coding technique over a set of
“input” symbols (not necessarily the message symbols) using
an appropriate degree distribution D (thus encompassing LT
codes, Raptor codes and Online codes). Recall that for a degree
distribution D for a message length k, we want that, given
(1 + ε)k code symbols, decoding succeeds with probability
1− δ. We denote this relationship with F (δ,D, ε). As in [22],
we assume that the sender and receiver have a shared secret
key sk. We also use nonces to prevent replays.

Definition 3: A (k, δ,D, ε)-private LT-coding scheme over
an alphabet Σ with message length k, decoding failure prob-
ability δ, overhead ε and degree distribution D such that
F (δ,D, ε), and key space K, is a triple of PPT algorithms
(Gen,Encode,Decode), where:

• Gen: on input security parameter 1λ, outputs a random
secret key sk ∈ K;

• Encode: on input (1) secret key sk, (2) nonce `, (3) de-
coding failure probability δ, (4) degree distribution D,
(5) overhead ε, (6) and the message m ∈ Σk, outputs an
infinite sequence {ci}∞i=1, with ci ∈ Σ, referred to as a
codeword or an encoding of m;

• Decode: on input (1) secret key sk, (2) nonce `,
(3) decoding failure probability δ, (4) degree distribution
D, (5) overhead ε, (6) and a string c ∈ Σ∗, where
|c| ≥ (1 + ε)k, outputs a string m′ ∈ Σk with probability
at least 1 − δ, or fails (with probability at most δ) and
outputs ⊥.

We require that for all m ∈ Σk, Decode(sk, `, δ,D, ε, c) = m
with probability at least 1− δ, where c is a finite subsequence
of Encode(sk, `, δ,D, ε,m) of length at least (1 + ε)k.

The above definition is general enough to also express two
types of “crypto-enabled” block codes. First, any ECC with
fixed rate ρ can be captured by having a null distribution D, if
necessary, and adjusting δ and ε according to the code (e.g.,
for Reed-Solomon codes δ = ε = 0, while for Tornado codes
δ, ε > 0). More importantly, we can refine Definition 3 to
get block versions of LT-coding schemes that simply produce
codewords of fixed size (above the decoding threshold). A
(k, δ,D, ε)-private block LT-coding scheme with block-size n
is defined as a (k, δ,D, ε)-private LT-coding scheme where
Encode, given an additional input parameter n, produces
codewords c with |c| = n ≥ (1 + ε)k. In what follows,
let LT S = (Gen,Encode,Decode, π), denote a (k, δ,D, ε)-
private LT-coding scheme with π = (1λ, k, δ,D, ε), its n-
symbol refinement by LT Sn = (Gen,Encode,Decode, π, n),
and any (rateless or block) LT-coding scheme by LT S∗.

Also, note that the probabilistic decoding requirement ex-
pressed by relation F (δ,D, ε) imposes a minimum expansion
factor (1 + ε) on message encoding. However, due to its

dependence on the distribution D, the failure bound δ holds
when there are “enough” code symbols produced in an absolute
sense. In practice, this further restricts message length k to be
sufficiently large.8

B. Security game
We next present a general security model against compu-

tationally bounded adversaries that is applicable to private LT-
coding schemes (and their fixed-size block variants). Our goal
is to capture tolerance against adversarial symbol corruptions
for LT-coding schemes, thus defining a much stronger security
notion over the existing one that considers only random symbol
corruptions.

We thus consider a transmission channel that is fully
controlled by a computationally bounded adversary A. That
is, as new code symbols are produced by a private LT-coding
scheme LT S , A can maliciously corrupt any new or past
such symbols. Moreover, the adversary is allowed to adaptively
interact with the channel. That is, A is allowed to examine any
symbols of its choice of the encoding (produced by LT S) of
any message of its choice and, additionally, to examine the
decoded message (produced by LT S) on any corrupted set of
symbols of its choice. Finally, we consider a stateful channel.
That is, A can remember any past selected message, its
encoding, symbol corruptions and the corresponding recovered
message, and depend current actions on the full such past
history. Do note, however, that A is never given the bipartite
graph underlying any of the LT-encodings.

In this powerful adversarial setting, we aim to ensure that
any PPT A is only negligibly more powerful than the random
erasure channel (the default operational setting for the LT
codes). A random erasure channel chooses whether or not to
erase a given symbol with some fixed probability p ∈ (0, 1),
independent of its choice for the other symbols. Here, we
further restrict p so that 1−p is a non-negligible function in the
security parameter λ, thus allowing a non-negligible expected
fraction of symbols to survive erasure (i.e., we assume it is
feasible to communicate over the channel). We call such values
of p feasible and denote this channel as RECp. For a block
code with message length k and block length n, we assume
that p ∈ (0, 1− k/n).

We define security in terms of a game
ChannelExpA,LT S∗(π), shown in Figure 2, that the adversary
A seeks to win. A wins by either: (1) causing a decoding
failure, where Decode outputs ⊥; or (2) by causing a decoding
error, where Decode outputs a message different from the one
originally encoded. There are three participants in the game:
the encoder Encode and decoder Decode of a given LT-coding
scheme LT S∗ with parameters π = (1λ, k, δ,D, ε), and the
adversary A. The game consists of a “learning” phase and
an “attack” phase. In the learning phase, there is a sequence
of at most a polynomial number of rounds where, in the i-th
round: (1) A selects a message mi to be encoded by Encode;
(2) Encode initializes itself with mi; (3) A queries different
symbols from Encode by having oracle access to symbols of
the encoding of mi; in particular, A interacts with oracle Omi

8For example, the degree distribution in [41] for Raptor codes works
well when k is in the tens of thousands or greater. Designing good degree
distributions for smaller k (e.g., in the hundreds or thousands) remains an
open problem.
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which given as input an index j, it returns the j-th encoded
symbol produced by Encode (for block codes, if j > n
then ⊥← Omi(j)); (4) A outputs a (corrupted) codeword
ci consisting of Ni symbols in Σ ∪ {⊥}, where a symbol
σi =⊥ if it has been erased; (5) ci is given to Decode for
decoding; (6) Decode outputs a message ri that is returned to
A. For simplicity, we assume that A outputs at least (1 + ε)k
symbols, good or bad, at each step (otherwise Decode trivially
fails and outputs ⊥). For a memoryless channel, A makes no
learning queries.

Eventually, A decides to enter the attack phase against
scheme LT S∗. The game proceeds with a special final round:
A selects attack message ma, queries encoded symbols of ma

using the oracle Oma(·), and tries to cause decoding failure
or a decoding error by computing a corrupted codeword ca
that decodes into message ra. If Decode failed to decode (i.e.,
ra =⊥) or decoded to the wrong message (i.e., ra 6= ma), then
A wins; else, A loses. However, we require that, in the case
of decoding failure, A must output at least (1 + ε)k unerased
and uncorrupted symbols to win. Otherwise, A can trivially
cause Decode to fail simply outputting only corrupted symbols,
or by erasing almost all symbols.9 For a decoding error, we
have no such restriction. Let Qm denote the set of symbols
queried by A from Om. Abusing notation, let c ∩Qm denote
the subset of symbols in codeword c (which was output by
A) that are in Qm. Thus, for decoding failure, we require that
|ca ∩Qma | ≥ (1 + ε)k.

ChannelExpA,LT S∗(π):
1) ψ ←⊥ . Initial state of A
2) mR ←⊥ . Storage for decoded messages
3) i = 1 . Number of queries
4) s← Gen(1λ) . Secret-key generation
5) while A has a new query do . Learning phase

a) A(π, ψ,mR)→ (ψ′,mi) . Message selection
b) Generate a fresh nonce `
c) Set π′ = (1λ, s, `, δ,D, ε)
d) Initialize oracle Omi to provide access to

output symbols of Encode(π′,mi)
e) A(π, ψ′,mi)

Omi (·) → (ψ′′, ci) . Codeword corruption
ci = (σ1,i, . . . , σNi,i) of size Ni

f) Decode(π′, ci)→ ri . Message recovery
g) Set mR ← ri, ψ ← ψ′′, i← i+ 1, and continue

6) end while
7) A(π, ψ,mR)→ (ψ′,ma) . Attack phase
8) Generate a fresh nonce `
9) Set π′ = (1λ, s, `, δ,D, ε)

10) Initialize Oma to access symbols of Encode(π′,ma)
11) A(π, ψ′,ma)Oma (·) → (ψ′′, ca)
12) Decode(π′, ca)→ ra
13) If ra 6= ma and ra 6=⊥ then output 1
14) Else if ra =⊥ and |ca ∩Qma | ≥ (1 + ε)k then output 1
15) Else output 0

Fig. 2. Security game for private LT-coding schemes.

As a technical note, we disallow the adversary to query for
symbols that are arbitrarily far along in the stream produced
by LT S∗ on any input message, thus avoiding the situation
where A queries symbols that are infeasible for Encode to

9Note, forged symbols are superfluous when trying to cause decoding
failure since if a forgery causes a decoding failure, then the corresponding
uncorrupted symbol would have caused the same failure.

produce sequentially—this could give A an unrealistic amount
of power.10 In the game above, we call a query Om(i) for the
i-th symbol (τ, p)-feasible if,
P (Encode outputs at least i symbols over RECp) ≥ τ ,

and, further, we call τ -admissible any A making only τ -
feasible queries for a given p. If A is τ -admissible for all fea-
sible p and, additionally, τ is also non-negligible in λ, then we
call A admissible. In what follows, we consider only admissi-
ble adversaries. Note that this restriction is related to the earlier
restriction that we only consider feasible values of p for RECp
(i.e., 1− p is non-negligible). If p is allowed to be negligibly
close to 1, then Encode will output an exponential number
of symbols with high-probability. By restricting ourselves to
feasible p, we ensure that Encode outputs a super-polynomial
number of symbols over RECp with only negligible probabil-
ity; i.e., P (Encode outputs at least i symbols over RECp) is
always negligible for super-polynomial values of i.

Computationally-secure LT-coding schemes. In normal op-
eration over the random erasure channel, the probability that
Decode fails is bounded by δ. We want to ensure that the
probability that A wins the above game (either by causing
a decoding failure or a decoding error) is at most negligibly
greater than δ.

We do this by defining computationally secure (rateless
or block) LT-coding schemes. Intuitively, we wish to ensure
that the adversary A is only negligibly more likely to cause
a decoding error or failure than an adversary who attacks
the codeword with random erasures.11 Thus, we first define
a random adversary R interacting in a restricted manner with
LT S∗ in the above game. R takes as input the same tuple
of parameters π and a probability p, where 1 − p is non-
negligible. Then R proceeds as follows: (1) it directly chooses
an attack message ma ∈ Σk and outputs (⊥,ma), so that
oracle Oma is initialized; (2) it queries Oma sequentially for
encoded symbols; (3) for each retrieved symbol, it erases the
symbol with probability p; otherwise it adds the symbol to a
list (if the code has block-size n, then R erases at most pn
symbols); (4) when R has more than (1 + ε)k symbols (or at
least (1−p)n symbols) in the list, it outputs the list and exits.
Note that R’s output is distributed identically to RECp.

Let LT S∗ be a private (rateless or block) LT-coding
scheme, and let ExpAdvA,LT S∗(π) be the experiment
ChannelExpA,LT S∗(π) as defined above, where A is a
PPT admissible adversary. Also, let ExpRandLT S∗(π, p)
be ChannelExpRp,LT S∗(π) where Rp = R(π, p) and
p is the erasure probability. Let AdvA,LT S∗(π, p) =
|P [ExpAdvA,LT S∗(π) = 1] − P [ExpRandLT S∗(π, p) = 1]|.
We call a private LT-coding scheme computationally secure
if we have that for all PPT admissible A and for all feasible
p ∈ (0, 1), AdvA,LT S∗(π, p) is negligible in λ.

Definition 4: We say that a private (rateless or block)
LT-coding scheme LT S∗ is computationally secure (or just

10If LT S∗ employs a PRG with finite state, A can simply query symbols at
multiples of the period of the PRG, thus getting identically encoded symbols
(as they use the same randomness) which renders decoding impossible.

11We define security relative to a random channel rather than in absolute
terms since the LT code itself reduces a random channel to a noiseless channel.
That is, the cryptographic enhancements reduce the adversary to a random
channel which is further reduced by the LT code to a noiseless channel.
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secure) if, for all PPT admissible adversaries A where π =
(1λ, k, δ,D, ε), and for all feasible p ∈ (0, 1) (or p ∈ (0, 1 −
k/n) for block variants), we have that AdvA,LT S∗(π, p) is
negligible in λ.

IV. CORE FALCON CODES
We now present our core technical constructions of three

private LT-coding schemes. Based on LT codes and designed
with a variety of efficiency goals, our new schemes define
a broad class of rateless (fountain) codes as well as some
corresponding block-code refinements which we generically
term as Falcon codes. By construction, Falcon codes enjoy a
“best-of-both-worlds” property: they are designed to maintain
the asymptotic performance of LT codes, thus allowing great
degrees of efficiency, including fast encoding/decoding; and
at the same time, they are crypto-enhanced to achieve strong
error-correction capabilities. Our three LT-coding schemes
described below comprise of: a main scheme Falcon that is
rateless and particularly simple, a scalable scheme FalconS
that is block refinement of our main scheme achieving better
scalability, and a randomized scheme FalconR that is a rateless
refinement of our scalable scheme. We refer to these as core
Falcon codes, which in essence provide a new design frame-
work for secure LT-based codes tolerant to malicious errors.
We describe all encoders, and the corresponding decoders are
found in Appendix B.

A. Main LT-coding Scheme
As explained in Section II, LT codes [23] are a family of

erasure codes of high efficiency, both theoretically (O(k log k)
encoding/decoding time for message length k) and practically.
The encoder works by selecting (through the robust soliton
distribution) O(log k) message symbols on average to combine
to form a code symbol. The analysis in [23] was originally
over the binary erasure channel, though it easily generalizes
to larger symbols.

While there has been some work on extending LT codes
to withstand errors (e.g., [26], [32]), the studied channels
have particular noise characteristics, such as additive white
Gaussian or uniformly distributed noise, and adversarial errors
are not considered. For Raptor codes, which are derived from
LT codes, Internet standard RFC5053 [24] and its amendment
RFC6330 [25], suggest using a simple checksum (e.g., CRC32)
to detect any random corruptions of the encoded symbols.
While this may be sufficient for small, random errors, it will
crumble quickly when faced with a malicious attacks.

(1)

(2)

(1) Apply LT code with
a strong PRG

(2) Encrypt & MAC
encoded symbols

Fig. 3. An example encoding via authenticated LT codes.

Authenticated LT Codes. Our main scheme Falcon solves the
challenge above by combining three cryptographic ingredients
that are applied in a very simple and rather intuitive manner
during LT-encoding (cf. Figure 3): a cryptographically strong

PRG, a semantically secure cipher, and an existentially un-
forgeable MAC. (A nonce is also used to prevent replays.)
First, the key change we perform in Encode compared to
standard LT-encoding is to select each parity node’s degree
and its neighbors using the secure PRG. Then, after LT-
coding, we encrypt all of the encoded (parity) symbols and
compute a MAC tag for each encrypted symbol and the
nonce (alternatively, we could use authenticated encryption
with the nonce as additional authenticated data).12 See also
Figure 4. Intuitively, the encryption, MACs, and secure PRG
work together to maintain the “goodput” of the channel by
ensuring that each (uncorrupted) received symbol is just as
“helpful” for decoding as when sent over a random erasure
channel.

Note, in Figure 4, we use the subroutine LT-Encode which
takes as input the seed s for the PRG, message size k, decoding
failure probability δ, degree distribution D, overhead ε, the
message m, and an index i, and then outputs the i-th code
symbol. Note that we also use a key-derivation function (KDF)
f to generate a seed for the PRG using the master seed s and
the nonce `. Any any secure KDF can be used as long as the
output is sufficiently long to seed the PRG. If we have message
size k, decoding failure probability δ, degree distribution D,
and overhead ε, then we denote this as (k, δ,D, ε)-Falcon.

This simple design provides a secure LT code (see Sec-
tion V). First observe that the use of MACs ensures that any
corruption in an encoded symbol is detected so that the symbol
may be discarded. This step implements the standard known
technique for reducing errors to erasures, that of authenticating
the encoded symbols; we thus, informally, refer to our main
scheme and its variants as an authenticated LT code.

Input: 1λ, keys kenc, kmac, master seed s, nonce `, message size
k, decoding failure prob. δ, degree distribution D, overhead ε,
message m
Output: Authenticated codeword c

1) Set s′ ← f(s, `) . f is a KDF; use s′ to seed the PRG
2) Set i = 0 and π = (1λ, s′, k, δ,D, ε,m)
3) Initialize LT-Encode(π)
4) for as long as required do
5) Set σ ← LT-Encode(π, i) . i-th LT code symbol σ
6) Set ei ← Enc(kenc, σ ◦ i) . Encrypt and MAC
7) Set τi ← Mac(kmac, ei ◦ `)
8) Output ci ← ei ◦ ` ◦ τi
9) i← i+ 1

Fig. 4. Encoder of main LT-coding scheme Falcon.

But although a necessary condition, symbol verification is
not sufficient for achieving security: input and parity symbols
are interrelated through the underlying bipartite graph, so
corruption of certain parity symbols may seriously disrupt
recovery of certain input symbols. An adversary can partially
infer this graph structure by looking at symbol contents (since
code symbols are simply the XOR of a random subset of
message symbols) and target specific symbols for erasure,
seeking to maximally disrupt decoding.13 Symbol encryption

12We also include each symbol’s index i in the stream of symbols to prevent
reorder and deletion attacks. When transmitting over a FIFO erasure channel
(where the receiver learns which symbols were erased in transit), then we can
omit a symbol’s index from the encoding.

13E.g., for a message containing a single 1 bit (the rest being 0’s), A can
easily discern which parity symbols include the non-zero message symbol.
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ensures that the content of each symbol (and any information
about the graph structure contained therein) is hidden from the
adversary. Similarly, the strong PRG ensures that the adversary
cannot exploit any biases or weaknesses in the PRG (e.g.,
output that is initially biased, cf. RC4) to aid in guessing what
the digraph structure may be. Overall, as the structure of the
graph is unpredictable, an adversary will, intuitively, be unable
to do better than random corruptions and erasures.

Batching. Note that secure MACing requires input lengths
to be at least as large as the security parameter, thus Falcon
operates on message alphabets where each symbol is at least
λ bits in size, i.e., for typical applications at least 10 or 16
bytes. Authenticating multiple symbols with a single MAC
(as a single “batch”) is a reasonable implementation in many
circumstances—for instance, when grouping multiple symbols
together to be sent in a single network packet. However, this
batching results in corruption amplification during decoding
(a single symbol corruption can cause many other possibly
valid symbols to be discarded). But, in channels where errors
are of low rate or are bursty, authenticating a batch of sym-
bols would lead to throughput gains since the cryptographic
overhead is reduced. Batching also removes the minimum-
size restriction for the symbols as long as the total batch size
is at least λ. Also note that batching increases the decoding
overhead ε since (1 + ε)k is not necessarily divisible by the
batch size. With a batch of b symbols, the decoder must
receive d(1 + ε)k/beb ≤ (1 + ε)k + b − 1 symbols, giving
an effective overhead of ε′ ≤ ε + b−1

k . Since the presence or
absence of batching does not affect our security analyses (with
the exception of the scalable, block code, detailed next), for
simplicity, we assume that batches have size 1.

Finally, we note that appending MACs to parity symbols
increases the space overhead per symbol. For a block code,
this decreases the rate by a factor of m/(s+m) where m is
the MAC size and s is the symbol size. Similarly, for a rateless
code, the number of raw bits transmitted increases by a factor
of 1+m/s. For instance, if s = m (the minimum symbol size),
then size of an output symbol is doubled. However, if m� s,
then this overhead is marginal (e.g., for s = 1024 bytes and
m = 16 bytes, the overhead is a factor ≈ 1.5%). Batching l
symbols per MAC decreases the overhead to m/(ls+m).

B. Scalable (Block) LT-coding Scheme
Although simple and efficient, the authenticated LT code

presented above suffers from scalability problems in certain
cases. In particular, if the input file and the internal state of
the encoder do not fit into main memory, then the operating
system will need to continually swap pages in and out. Then,
on average, O(log k) random disk reads will be needed to
produce a single parity symbol, as any such symbol depends
on randomly selected message symbols. Magnetic disks have
random read latencies around 5–10 milliseconds while SSDs
have read latencies on the order of 10s of microseconds.
But both of these are orders of magnitude larger than the
10s of nanoseconds require to read from RAM. Hence, the
large amount of IO required when paging in and out will
drastically slowdown the encoder and decoder (see Figure 13
in Section VI).

We can mitigate this limitation by adopting a simple divide-
and-conquer strategy on our main scheme Falcon, towards

the design of a new scalable scheme FalconS: we divide
the input into blocks (of symbols) and then encode each
block independently using Falcon. This immediately increases
data locality during message encoding, which provides bet-
ter scalability (as only a portion of the input must reside
in memory at any given time) and further allows for easy
parallelization (see Figures 9, 10, and 14 in Section VI). This
method, though, introduces a new security concern: depending
on parameterization, an adversary may put all of its effort
in corrupting parity symbols coming from a single (or a few
selected) block(s), thus significantly increasing its advantage
in causing a decoding failure, even if all block encoders have
produced symbols beyond the LT-decoding threshold.

To defend against this attack type, we adopt a technique
due to Lipton [22]. We apply a random permutation π over
all produced parity symbols across all blocks. This ensures
that any corruptions performed by an adversary are distributed
uniformly both among all blocks and within each block which,
in turn, allows Falcon to use a weaker and faster PRG when
producing an individual block encoding, since any corruption
on this block cannot be targeted, but only random. Apply-
ing π over all parity symbols, though, necessitates a fixed
upper bound on their total number, thus making FalconS a
block code—this can be considered a useful byproduct of our
new scheme. But employing (rateless) Falcon within (block)
FalconS, as above, requires careful encoding parameteriza-
tion. Given an adversarial corruption rate γ—with which an
adversary corrupts a γ-fraction of all symbols, or γ-fraction
of batches when using batching—and by applying a random
permutation π to all of the code symbols from all of the blocks,
we have that the number of symbol corruptions per block are
binomially distributed. Therefore, we add extra redundancy
in each block encoding produced by Falcon, expressed by
tolerance rate τ , to absorb any variance in per-block errors—
otherwise, block (and also total) decoding fails.14 An analysis
bounding the value of τ as well as a proof of the efficiency
of our scheme are in Appendix A.

Figure 5 details the above encoding using permutation π
explicitly—we call this variant of our scalable (block) scheme
FalconSe—but it is possible for the permutation to be applied
implicitly, which we detail next. As before, we use a secure
KDF f to derive a session seed for G using the master seed
s and nonce `. The algorithm as shown does not simply use
Falcon as a black-box subroutine; rather, the Falcon encoding
algorithm directly integrated. This is done to include the block
index i with each message symbol which is used to ensure that
any re-ordering of symbols by the adversarial channel can be
mitigated.15

However, there is a drawback to using an explicit per-
mutation π: new parity symbols must be buffered until they
are all generated (and then can be permuted!).16 If resources
are constrained, this extra buffering can demand too much

14These losses can be mitigated by applying an additional level of erasure
coding to the input before breaking it up into blocks, but any erasure code can
only tolerate a certain number of block losses. In any case, we must bound
the probability that a block receives “too many” corrupted symbols.

15This is necessary even if the channel is FIFO, since we also allow the
adversary to delete symbols.

16At most, symbols can be output piece-meal by pre-computing π and
placing a generated symbol in its final place. But the output could be blocked
for some time waiting for the appropriate symbol to be produced.
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Input: 1λ, keys kenc, kmac, master seed s, nonce `, symbols per
block k, degree distribution D, block decoding failure prob. δ,
corruption rate γ, block-corruption tolerance τ , number of blocks
b, message m
Output: Authenticated codeword c

1) Set s′ ← f(s, `) . f is a KDF
2) Seed G with s′ . G is a strong (but slow) PRG
3) Set M = 1

1−(1+τ)γ
(1 + ε)k . Parameterization

4) Generate permutation Π of b ∗M elements
5) Partition m into blocks B1, . . . , Bb
6) for 1 ≤ i ≤ b do
7) Generate a seed si using G
8) Set π = (1λ, si, k, δ,D, ε,M)
9) Use weak PRG H for LT-Encode

10) Set (σi,1, . . . , σi,M ) = LT-Encode(π,Bi)
11) for 1 ≤ j ≤M do
12) Set ei,j ← Enc(kenc, σi,j ◦ i ◦ j)
13) Set τi,j ← Mac(kmac, ei,j ◦ `)
14) Set ci,j ← ei,j ◦ ` ◦ τi,j
15) Map each ci,j to position Π(i ∗ M + j) to get c′ =

(c′1, . . . , c
′
bM )

16) Output c′ = (c′1, . . . , c
′
bM )

Fig. 5. Encoder of scalable LT-coding scheme FalconSe.

memory, induce swapping, and greatly reduce performance.
In such a situation an implicit permutation would be better
(see Figure 13 in Section VI). In this variant, π is generated
first and then parity symbols are produced (by Falcon from the
appropriate block encoder) in the order of their final position
(i.e., after π would have been applied). This allows a Falcon
encoder to output parity symbols in a streaming manner (but
out-of-order). We call this variant of our scalable scheme
FalconSi. For FalconSi or FalconSe, if we have k message
symbols per-block, block decoding failure probability δ, degree
distribution D, overhead ε, an adversarial corruption rate of γ,
corruption-tolerance parameter τ , and b blocks in the encoding,
we denote this as (k, δ,D, ε, γ, τ, b)-FalconS, where FalconS
can be either FalconSe or FalconSi.

To minimize the overhead of managing the implicit permu-
tation, it is desirable that the PRG state in each encoder—used
to generate the bipartite graph—can be easily and quickly reset
to produce a desired segment of pseudorandomness (like in the
Salsa20 stream cipher [1]). That is, the PRG state would be
reset to produce the pseudorandom bits that would have been
output if the symbol generation was done in order.17 If this
feature is not present, all needed pseudorandom bits can be
pre-computed (namely, computing the degree and neighbors
of a parity node). Fortunately, the space needed to store the
pre-computed bits will often be much less than what would
be required to store the output symbols. For example, say we
have k = 216 input symbols and that the average node degree
is log k = 16. Then, a given node will only require, on average,
2 ∗ 16 + 2 = 34 bytes to store the degree and neighbor indices
(we assume that the degree can fit in 2 bytes).

Decoding Failure Probability. Suppose we want to achieve
an overall decoding failure probability of δ for this scheme.
Decoding fails when any of the individual blocks fail to
decode, and this could be from either too many corrupted
symbols in a block, so that there are fewer than (1 + ε)k
good symbols, or we were unlucky and the code symbols

17This would, of course, require the pre-computation of all node degrees;
otherwise, it is impossible to know “where” a given node’s randomness lies.

did not cover all input symbols. The probability of the first
case can be made negligible via the corruption tolerance
parameter τ ; the second case is intrinsic to the schemes
themselves. Note that in this case, the failures are independent
and so are the successes. Hence, the probability of decoding
success is (1 − δ′)b = 1 − δ and solving for δ′, we have
δ′ = 1 − b

√
1− δ. For example, with b = 100 and δ = 0.05,

we have δ′ = 1 − 100
√

1− 0.05 ≈ 0.000512.18 Note that the
smaller value of δ′ implies that the decoding overhead for each
block ε′ is increased.

C. Randomized Scalable LT-coding Scheme
Our block-oriented code FalconS does indeed achieve

better scalability than Falcon. (As we show in Section VI,
it can, for instance, provide over a 50% speed-up for an
input file 32MB in size.) However, FalconS codes are in-
herently no longer rateless codes: any permutation that is
explicitly/implicitly applied to all symbols across all blocks
precludes the possibility of rateless encoding.19

We now present an alternative approach that is block-
oriented, thus still scalable, yet allows for rateless encoding.
As before, the idea is to break the input up into blocks, and
then apply a Falcon code to each block. However, the key idea
now is to produce symbols for the output encoding by applying
Falcon codes in parallel to the blocks, giving the randomized,
scalable, and rateless scheme FalconR. In particular, for each
block an independent instance of Falcon is initialized with a
unique random seed generated by a strong PRG. Then, another
strong PRG, keyed with another random seed, is used to
iteratively select a block at random whose encoder will simply
output its next symbol; this random selection is repeated (at
least) until each block encoding has reached the required
decoding threshold. See Figure 6 below. As before, we use
a KDF f to derive a seed for G using the master seed s
and nonce `. As with FalconS, we integrate Falcon directly
into the FalconR encoder, allowing us to include with each
symbol the index of its block, mitigating symbol deletion and
reordering attacks. If we have b blocks and encode each using
a (k, δ,D, ε)-Falcon code, then we denote this (k, δ,D, ε, b)-
FalconR.

We emphasize the subtle difference between codes
FalconSi and FalconR: in a FalconSi code, the encoder for
each block produces its symbols in a random order induced
by π, but in FalconR code these are produced in the (correct)
order induced by the block encoder itself.

FalconR codes retain the rateless property of the original
Falcon codes: new symbols can be produced by continuing to
select blocks at random and outputting symbols. The security
of FalconR reduces to the security of Falcon codes: the random
selection of encoders ensures that adversarial corruptions are
randomly and uniformly distributed among the blocks pre-
venting too many corruptions from landing in any one block.
Moreover, the secure encoder used on each block ensures that,
for any corruptions that occur in that block, the adversary can
do no better than a random channel. Note that while FalconS

18 If we apply a [n, b] erasure code across the blocks, then the probability
of decoding success (i.e., that at most n − b blocks fail to decode) is∑n−b
i=0

(n
i

)
(1 − δ′)n−i(δ′)i, which can be solved for δ′ via numerical

methods.
19To create the permutation, the number of code symbols must be known.
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can use a weak PRG when encoding an individual block, here
each instance of Falcon must use a strong PRG.

Input: 1λ, keys kenc, kmac, master seed s, nonce `, symbols per
block k, block decoding fail. prob. δ, degree distr. D, overhead per
block ε, number of blocks b, message m
Output: authenticated codeword c

1) Set s′ ← f(s, `) . f is a KDF
2) Seed PRG G with s′

3) Generate b seeds s1, . . . , sb using G
4) Divide m into b blocks m1, . . . ,mb

5) Set πi = (si, k, δ,D, ε) for 1 ≤ i ≤ b
6) Init. encoders LT-Encode1(π1,m1), . . . , LT-Encodeb(πb,mb)
7) for as long as required do
8) Sample a block index i from G
9) Let σ be the the j-th, symbol of LT-Encodei

10) Set e← Enc(kenc, σ ◦ i◦ j), and τ ← Mac(kmac, e◦ `)
11) Output e ◦ ` ◦ τ

Fig. 6. Encoder of randomized LT-coding scheme FalconR.

Efficiency. The asymptotic efficiency of our randomized
scheme is not immediately obvious. Enough encoded symbols
must be produced for each block, namely at least m code
symbols, for some m = Ω(k), where k is the number of
input symbols per block. This problem is a generalization of
the standard balls-in-bins problem which asks how many balls
must be thrown at random into b bins to ensure that each bin
has at least one ball. Here, what is relevant is how many balls
must be thrown into b bins to get at least m balls in each bin.
In [30], it is shown that, as b goes to infinity, the expected
number of balls thrown is b[log b+ (m− 1) log log b+Cm +
o(1)], for some constant Cm. That is, the expected number is
b log b+ b(m− 1) log log b+O(b). Thus, on average, we gain
(at least) an additional log log b factor in the time to encode
and decode the file.20 The tolerance parameter τ of FalconS is
no longer needed here; each block uses the Falcon encoder and
FalconR is rateless, so more symbols can always be produced.

If, however, we have a small b (e.g., b = 10), then since
k must be sufficiently large (and hence, so must m), by the
law of large numbers the average number of balls thrown is
O(bm). The asymptotic behavior of FalconR as b grows is
important since we would like this scheme to scale up to very
large files (e.g., 10s of gigabytes or more). Suppose the degree
distribution requires 12000 code symbols to recover the input
with high probability, and that symbols are at least 10 bytes
in size, then we get an implicit lower-bound on block size of
about 128KB (less if symbols in a block are batched together).
As a 1GB file will contain approximately 8000 such blocks,
both the case where there are many blocks and the case where
there are few must be considered.

V. SECURITY ANALYSES

Our various constructions of Falcon codes seek to reduce
an adversarial corrupting channel to a random erasure channel
(REC) (i.e., by using MACs to detect corruption). Through
such reductions, our LT-coding schemes inherit many of the
properties of the original LT codes (e.g., the overhead ε
and failure probability δ). We next provide proof outlines of

20If we use batching, then the same analysis applies if we have the
“transmission unit” be a batch instead of a single symbol.

reductions to REC for our core Falcon code schemes.21 Full
proofs are omitted for lack of space.

The adversary A can win the game ChannelExp by caus-
ing a decoding failure (Decode outputs ⊥) or a decoding
error (Decode outputs an incorrect message). Since these are
mutually exclusive events, they are considered separately in
the following lemmas. Lemma 1 states that the ability of
A to cause a decoding error in authenticated LT code is
directly reducible to the security of the message authentication
code. Lemma 2 states that the probability of causing decoding
failure is only negligibly different from a random channel.
For simplicity, we here use memoryless channels: the proofs
extend in a straightforward way to stateful channels by simply
utilizing the nonces. Recall that, as stated in Section III, we
only consider admissible adversaries A that are compared to
random erasure channels with a feasible erasure probability p.

Lemma 1: Let M = (Gen1,Mac,VerMac) be an
existentially-unforgeable MAC used to authenticate the sym-
bols of a (k, δ,D, ε)-Falcon code LT S , where F (δ,D, ε)
holds, and let λ be the security parameter. For all sufficiently
large k and for all PPT A, the probability that A wins
ChannelExpA,LT S via a decoding error is negligible in λ.

Intuitively, for A to force Decode to make a decoding error,
Decode must accept at least one corrupt code symbol, which
can only happen if the MAC for the symbol has been forged.
But, we assume that the MAC is existentially unforgeable,
hence A could not have forged any symbol, except with
negligible probability.

Lemma 2: Let LT S be a (k, δ,D, ε)-Falcon code where
the relation F (δ,D, ε) holds, Π = (Gen2,Enc,Dec) be a
semantically secure symmetric cipher used by LT S , and let
G be a secure PRG used by LT S . Then, for all sufficiently
large k and for all PPT admissible A, the probability that A
wins ChannelExpA,LT S via a decoding failure is negligibly
different from δ.

Here, we reduce security against decoding failure to the
security of the PRG and the semantic security of the cipher.
Roughly, the proof proceeds as follows. Since a semantically
secure cipher is used to encrypt encoded symbols, the code-
word c leaks no “information” about the underlying encoding
of m to A. This means that there exists an A′ that without
access to c, that is, independent of c, but given some informa-
tion about m, outputs a set of indices of symbols to be erased,
such that Decode fails to decode with probability ≈ δ (i.e.,
negligibly different from δ). Since the symbols to be erased
are chosen independently of the encoding c, the remaining
symbols form a random graph over the input symbols and, by
definition, we have reduced A to REC. The following theorem
summarizes the security of our scheme. The result follows
directly from the two lemmas above.

Theorem 1: Let LT S be a (k, δ,D, ε)-Falcon code utiliz-
ing an existentially-unforgeable MAC scheme M , a semanti-
cally secure cipher scheme Π, and a secure PRG G. Then, for
all sufficiently large k, for all PPT A, and for all feasible p,
where π = (1λ, k, δ,D, ε), we have that AdvA,LT S(π, p) is
negligible in λ.

21For simplicity and clarity, we use asymptotic security statements, rather
than exact security statements that quantify an adversary’s A resources.
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Note that the above theorem and lemmas apply to non-
systematic Falcon codes. With a systematic code, A knows
that the first k code symbols are equal to the input symbols.
A can then make corruptions that are decidedly non-random
against these symbols. That is, A has some a priori knowledge
of the underlying encoding graph, and can adjust its strategy
accordingly. We leave as an open problem the creation of a
secure, systematic Falcon code.

For our scalable FalconS codes (both with an explicit
permutation and without), the security of the scheme follows
from the results of Lipton’s work on scrambled codes in [22].
In particular, the random permutation of the symbols ensures
that the erasures and errors are uniformly distributed among the
blocks and within each block as well, which is the definition of
a random channel. Note that in this model, the adversary Rγ
erases up to a γ-fraction of symbols (or a γ-fraction of batches,
if batching is used) rather than erasing with probability γ.
Recall that each block has N = 1

1−(1+τ)γ (1 + ε)k symbols.

Theorem 2: Let LT SbN be a (k, δ,D, ε, γ, τ, b)-FalconS
code that uses an existentially-unforgeable MAC scheme M ,
a semantically secure symmetric cipher Π, a secure PRG G to
generate the permutation, divides the input into b blocks, and
generates N symbols per block. Then, for all sufficiently large
k and for all PPT A that corrupt up to a γ-fraction of symbols,
letting π = (1λ, k, δ,D, ε), we have AdvLT SbN ,A(π, γ) is
negligible in λ.

Finally, for our randomized Falcon codes, we utilize the
main Falcon code as a subroutine and then use a strong PRG
to select the block to produce the next symbol. The security of
this scheme reduces to that of the PRG and the main Falcon
code to get the following theorem. This result, however, does
not follow directly from Lipton’s work as above, since the
symbols are output in order from each block. Rather, the PRG
ensures that, when receiving symbols, with high-probability,
after receiving O(b[log b + (m − 1) log log b]) uncorrupted
symbols we can decode successfully. Using the main Falcon
code ensures that the adversarial corruptions by A using
a priori knowledge of the scheme—A knows that the first
symbols in the stream are the first symbols encoded by the
individual blocks—does not give A a significant advantage.

Theorem 3: Let LT SR be a (k, δ,D, ε, b)-FalconR code
that uses an existentially-unforgeable MAC scheme M , a
secure PRG G, a semantically-secure symmetric cipher Π, a
secure (k, δ,D, ε)-Falcon code LT S , and divides the input
into b blocks. Then, for all sufficiently large k and for all PPT
admissible A, and for all feasible p, where π = (1λ, k, δ,D, ε),
we have that AdvLT S,A(π, p) is negligible in λ.

VI. EXPERIMENTS
In this section we detail several experiments performed

that demonstrate the practicality of our constructions. The
experiments were run on two machines: one with “abundant”
resources and the other with more limited CPU power and
RAM. We use these two machines to measure the raw speed
and efficiency of our schemes without constraints and to
show that our scalable schemes do achieve better performance,
especially when RAM becomes scarce.

The majority of the experiments were performed on the
powerful machine with two 2.6GHz AMD Opteron 6282SE
with 16 cores each and 64GB RAM running 64-bit Debian
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Fig. 7. The encoding throughput of Falcon compared to RS codes.

Linux with the 3.2.0 kernel and gcc version 4.7.2. The
“resource-constrained” benchmarks were run on a 2.6GHz,
Intel Core i5 processor with 4GB of RAM running 64-
bit Arch Linux with the 3.14.19 kernel and gcc version
4.9.1. All implementations are a mix of C and C++ and
are single threaded unless otherwise specified—the parallel
implementation (detailed below) utilized pthreads—and were
compiled with the ’-O2’ optimization flag. All schemes use
the Salsa20 stream cipher (see [1]) as the secure PRG, SFMT
as the fast/insecure PRG (see [37]), and PBKDF2 for key
derivation [15]. The Jerasure v2.0 library [13] was used for
the Reed-Solomon erasure code.

We use authenticated encryption for both confidentiality
and authentication: specifically, we use AES in Galois/Counter
Mode (GCM) provided in the OpenSSL library (version 1.0.1e
and 1.0.1i on the Opteron and Core i5 machines, respectively).
An alternative implementation would be to use AES in counter
mode and pair it with a fast MAC, such as VMAC [20]. In
some rough tests on the Core i5, we found the AES-VMAC
combination to be the fastest for symbols more than 2KB in
size and AES-GCM to be faster for smaller symbols.22 The
largest symbol size we consider is 4KB, with almost all tests
run on symbols 1KB or smaller. Thus, for simplicity, we use
AES-GCM in all tests. We did not use batching and, hence,
encrypted and MACed each symbol individually.

The algorithms we benchmark are Falcon Raptor codes:
we combine our authenticated LT code with a precoding
step (where an erasure code is applied to the input data)
to give us a secure Raptor code. Raptor codes are among
the most efficient erasure-correcting codes available and we
show below that our authenticated raptor codes themselves
achieve high efficiency. Our implementations of both Falcon
codes and Raptor codes are based on the libwireless
code written by Jonathan Perry [36]. We used an LDPC-
Triangle code as the precoding step using the implementation
from [43]. Unless noted otherwise, all encoding and decoding
was performed with 1KB symbols and adding 25% redundancy
and the numbers given are an average of 10 trials.

Main Scheme Falcon. First, we compare our Falcon scheme
to that of Reed-Solomon codes (RS codes), which is the de
facto standard for encoding a file to withstand adversarial
corruption. In Figure 7, we see the encoding and decoding
speeds for Falcon versus an RS code on various file sizes
when run on the Core i5. For Falcon, the number of symbols
was held constant at ≈ 10000 for all files with symbol sizes
ranging from 16 bytes to 128KB. The RS encoder utilized
a systematic erasure encoding with k = 204 and n = 255

22For example, on a 16KB input, AES-GCM achieved 2.4 cycles-per-byte
(cpb) while AES-VMAC achieved 1.7cpb; for a 256 byte input, AES-GCM
was 7.6cpb and AES-VMAC was 14.0. All rates include key setup.
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(for 20% redundancy) over GF (28) utilizing striping.23 This
allows us to quickly detect any tampering with the symbols and
discard any that are corrupted and correct up to n− k errors,
the theoretical maximum.24 As is clear from the graph, our
scheme can achieve high throughput, reaching over 300MB/s
for both encoding and decoding, and is several times faster
than the RS encoder. Note that for inputs larger than 16MB,
the throughput of Falcon can saturate a 1Gb network link.

In Figure 8, we see a comparison of Falcon against an
insecure Raptor code where no cryptography was used (i.e., no
encryption, MAC, or secure PRG). The numbers shown are the
average of 50 trials. The simple scheme is generally between a
factor of 1.25 and a factor of 1.6 slower than the (completely)
insecure scheme, and is usually less than 1.5 times slower.
Note that the overhead from the use of the secure PRG results
in a slowdown of approximately 10-15% (shown in the lower
two lines). For larger files, the percent overhead from the
cryptography declines as the LT and precode encoding takes a
larger percentage of the total encoding time. The “increase” in
speed for decoding a 256KB file when using the secure PRG
instead of an insecure one is due to environmental noise and
the very short encoding times (a few hundred microseconds).

Scalability: Abundant Resources. In Figure 9, we can see
that the FalconSe and FalconSi and schemes are, indeed, more
scalable than Falcon. Note that FalconR performs worse than
Falcon on smaller inputs and almost identically on larger
inputs. (The difference in performance of these two is evident
in Figure 13.) Falcon is slower than FalconSe and FalconSi
primarily because it utilizes a secure PRG in the LT-coding
and it has worse locality of reference: when performing the
LT-coding, it combines symbols from across the entire file
rather than just a segment of it. FalconSe is more efficient
than FalconSi due to better locality of reference both for

23Striping is a technique where, instead of performing field operations over
large symbols, the file is divided into symbols over a much smaller field (while
using the same k and n) and encoded in small “batches” or “stripes.” The
small symbols are then grouped together to produce the large, output symbols.
This can increase both encoding and decoding speeds.

24It is possible to use list-decoding for RS codes instead of MACs to correct
up to n−k errors, but list decoding algorithms, even the best ones, are many
times slower than simply computing a MAC.
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code and data since FalconSi continually switches between
the encoders for each block. FalconSe encodes one block at a
time and thus keeps less data resident at any given time, better
utilizing caches. FalconR is the least efficient for three reasons:
(1) it undermines locality by switching between encoders, (2) it
generates more symbols than all other schemes (cf. Figure 11),
and (3) it uses a secure PRG in the LT-coding, in contrast to
the FalconS schemes. The benefit of using FalconR is shown
in Figure 13 where it performs well when RAM is limited.

FalconR requires that we generate more symbols than
FalconSe to ensure that we have enough to properly decode
each block. FalconSe, in contrast, generates exactly the number
of symbols required. In Figure 11 we can see the growth in
the number of symbols needed by FalconR as compared to
FalconSe. The input was a 2GB file and both schemes used
4KB symbols. The FalconR encoder works by having each
block require a minimum number of symbols m to be produced
and then generating symbols until each block has at least m
symbols. When adding 25% redundancy, the encoder simply
requires (1.25)m symbols for each block. As mentioned in
Section IV-C, [30] proves that for a small number of blocks, the
expected number of symbols output is O(bm). This is evident
in in the figure since the number of symbols produced is close
to optimal for b < 40. However, for larger b, the expected
number produced is O(b[log b+ (m− 1) log log b]), visible in
the growing number of symbols generated as b increases.

Figure 12 compares the speed of FalconR to FalconSe on
the same input as Figure 11. As the number of blocks increases,
the size of each block decreases, allowing each individual
block to be encoded faster. This is evident in the increasing
speed of encoding and decoding for FalconSe. FalconR does
not display this behavior: rather, its speed decreases since it
must generate more symbols as the number of blocks increases
as seen in Figure 11.

Scalability: Strained Resources. The benchmarks with
strained resources were run on a 2.6GHz, Intel Core i5
processor with 4GB of RAM running Arch Linux. The tests
compare each of the schemes on files ranging from 256MB to
3GB in increments of 256MB. Only the encoding speed was
tested, not including I/O.
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In Figure 13, Falcon does reasonably well compared to the
other schemes until the data and the overhead from the encoder
take up too much RAM. As soon as Falcon needs to use exter-
nal memory the throughput plummets and declines to almost
zero. Comparing to Falcon, we can see that each of the scalable
schemes are, indeed, more scalable and maintain modest
speeds even for the largest inputs. Though, the throughput on
the largest files is noticeably degraded compared to the smaller
files, but this is expected. Note that FalconSe starts off with the
highest speed, but then it slows down as the input size increases
and becomes the slowest of the scalable schemes. This is due
to the fact that FalconSe performs an explicit permutation of
the output symbols, necessitating that all output symbols are
buffered until they are permuted. FalconR and FalconSi, on
the other hand, can simply output a symbol as soon as it is
generated, keeping their memory utilization lower (and hence,
induce less swapping). This smaller memory footprint gives
them speed that is up to 3x faster than FalconSe for large
files. It is notable that FalconR initially performs similar to
Falcon (i.e., slower than the other schemes), but as the file
size increases it scales well and matches the performance of
FalconSi.

Parallelism. Each of the schemes described allows for some
level of parallelism and can take advantage of multiple pro-
cessing cores on a CPU. Falcon allows for parallelism at the
symbol level: once the degree and neighbor set of a given
symbol has been computed, it can be encoded independently
of the other symbols. Each of the scalable schemes are trivially
parallelizable at the block level; however, this does not readily
lend itself to large performance gains on multi-core systems.

Figure 14 shows the results of running a multi-threaded
version of FalconSe on the abundant-resource machine, using
a 2GB file as input with various numbers of blocks and
threads. In each case, the performance drops sharply after 4
threads, then declines slowly until another decline starting at 20
threads. This degradation in performance is due to the fact that
encoding large files is a data-intensive operation. That is, the
encoding operation is memory-bound rather than CPU bound.
The precipitous drop at 8 threads is likely due to the on-CPU
L1 and L2 caches becoming overwhelmed with the demand
and contention, and the threads then needing to query the L3
cache and RAM for their data. Similarly, the drop at 20 threads
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is likely due to L3 cache saturation and many references going
all the way to RAM to be satisfied.

This phenomenon is due to the fact that the encode oper-
ation exhibits high spatial locality but poor temporal locality.
Each symbol is used in its entirety (e.g., all 1KB of it), but once
an input symbol has been XORed into an output symbol, that
input symbol is typically not used again for some time. The
spatial locality is exploited by the caches who can prefetch
much of a symbol (especially for large symbols) and have
the data cache-resident when the CPU needs it. If, however,
there is too much demand on the cache, then the prefetched
cachelines could be evicted for the sake of storing data that
is needed immediately. In such a situation, the cache becomes
useless. Thus, while the schemes are algorithmically simple to
parallelize, the actual performance can suffer drastically when
using many threads on current hardware.

VII. PREVIOUS WORK

Computationally-bounded Channels. In this work, we prove
our constructions secure against a computationally-bounded
adversary, an approach which was first proposed in [22] (and
further developed in [11]). In this, Lipton shows, using “code
scrambling,” that any code that has success probability q over
the binary symmetric channel (BSC) succeeds with probability
q over any computationally bounded channel (his construction
was independently discovered in [26]). In [21], Langberg
defines the notion of a private code: a code that takes a secret
key as a parameter. He proves that any code over BSC, with
error probability p, can be turned into a private code over an
adversarial channel that corrupts at most pn symbols. This
is done, as in [22], via random permutation over the code
symbols, but Langberg makes no cryptographic assumptions.

In [29], the authors describe a game for a stateful adversar-
ial channel that is computationally-bounded and they provide
a construction that is provably secure. Their scheme is a
combination of digital signatures and list-decoding: a message
is signed and encoded with a list-decodable code, with the sig-
nature used to disambiguate the list-decoding (essentially the
same scheme as found in the earlier work [27]). In [42], Smith
protects against adversarial errors while using few random bits
and standard complexity assumptions. The basic construction
is the same as [22], except a random t-wise independent
permutation is applied to an encoded message. In [12], the
authors present codes for computationally bounded log-space
channels, assuming the existence of one-way functions.

Codes & Cryptography. There are several examples of
schemes that combine cryptography and ECCs together. One
of the first was [18] where Krawczyk computes the hashes
of erasure encoded symbols and then uses an ECC to encode
each hash (an application of distributed fingerprints [17]). An
example where cryptography is used in the heart of an ECC
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is found in [34] (further developed in [35]) where the authors
present a new rateless ECC called a spinal code that uses a
hash function applied to segments of the input to create the
“spines” used to produce code symbols. Cryptography has also
been used to construct efficient locally-decodable codes such
as [6] and [31] (the former also allows for local updates of the
encoded message).

Proofs-of-Retrievability. A proof-of-retrievability (PoR), first
defined and explored in [14], is scheme that make heavy use of
cryptography and ECCs to secure remote storage. Two efficient
PoRs are presented in [39] that are based on novel homo-
morphic authenticators. The work of [2] combines RS codes
and universal hashing to produce secure, homomorphic MACs
over the data, resulting in an efficient scheme secure against
a mobile adversary. PoRs are further explored in [3] where
a they describe rigorous theoretical framework for designing
PoRs and provide improved variants of [14] and [39]. In [38],
the authors present a PoR that utilizes Raptor codes in the
audit protocol, allowing for efficient encoding, decoding, and
auditing. In [40], the authors use a hierarchical log structure,
where each level is erasure encoded, combined with Merkle
trees and MACs to construct an efficient, dynamic PoR.

Multicast Authentication. In [27], the authors combine dig-
ital signatures with list-decoding to achieve error correction
beyond the unique decoding radius as part of an authenticated
multicast scheme. Specifically, they sign the message and then
apply a list-decodable code; the received codeword is list-
decoded and the signature is used to determine which list
element is the correct decoded message. This combination
of signatures and list-decoding was independently discovered
in [29]. In [33], the authors also combine ECCs, cryptographic
hashes, and signatures for secure multicast over adversarial
erasure channels. In [44], the authors build on [27], and use
LT codes as part of a multicast authentication scheme. They
apply an LT code to a set of packets and use a combination
of hashing, signatures, and list-decoding to detect packet
corruption. However, they only consider data corruption and
do not take into account the targeted erasure attack described
earlier. In [16], the authors present distillation codes, which are
a combination of an erasure code, a one-way accumulator, and
a signature scheme. The input is signed and encoded, then the
code symbols become the leaves of a Merkle tree. Each symbol
is transmitted with its neighbors on the path to the root of the
Merkle tree. When decoding, the Merkle tree detects corrupted
symbols and the final message is verified via the signature.

Secure Storage & Non-malleable Codes In [5], the authors
utilize LT codes, bilinear maps, and homomorphic MACs for
a secure cloud storage scheme that allows for asymptotically
efficient encoding and decoding, as well as repair of the data
if any servers are lost. They note the targeted erasure attack
on LT codes, but their solution was to check that all subsets of
size k out of n code symbols can be successfully decoded and
re-encoding the whole file if not. Related to secure storage
are primitives known as non-malleable codes, first defined
and constructed in [8]. Non-malleable codes seek to encode
a message m such that, if it is tampered with, it will decode
to a message unrelated to m. They were designed to protect
against hardware tampering so that any manipulation results
in a random internal state (rather than an adversarially chosen
one). The work was further developed in [7] and [9].

VIII. CONCLUSION
We introduced a new security model for analyzing foun-

tain codes over computationally-bounded adversarial channels,
and presented Falcon codes, a class of (block or rateless)
authenticated ECCs that are based on the widely used LT
codes. Falcon codes are provably secure in our model while
maintaining both practical and theoretical efficiency (including
linear-time coding for Falcon Raptor codes). Their efficiency
lends themselves a useful general-purpose security tool for
many practical applications such as secure and reliable data
transmission over a noisy (and possibly malicious) channel
and secure data storage.
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APPENDIX A
ERROR AND ASYMPTOTIC ANALYSES OF FalconSe

Error analysis. In FalconS, the symbols of each block are
permuted together uniformly at random, giving us, via a balls-
in-bins analysis, that the number of corruptions in a given
block is binomially distributed. Thus, we cannot guarantee that
each block receives a bounded number of corruptions. Hence,
we add extra redundancy to absorb the variance in the number

of corruptions per block, increasing the total redundancy by a
factor of (1 + τ), where τ is the tolerance rate. We wish to
minimize τ while ensuring that the probability that we exceed
the error-correction capacity of a block is negligible in λ.

Suppose, there are b blocks, where each block has k input
symbols and is encoded into m output symbols, giving n = bm
total symbols. Suppose a γ-fraction of symbols are corrupted.
If we encode a block so that it can tolerate (1 + τ)γm
corruptions (were γm is the mean number of corruptions per
block), then we must generate m = 1

1−(1+τ)γ (1+ε)k symbols
per block. We use a Chernoff-bound to bound the probability
that there are more than (1+τ)γ corruptions in a given block.
For a binomially distributed random variable X with mean µ
and for some τ > 0 it holds that,

P (X ≥ (1 + τ)µ) ≤
(

eτ

(1 + τ)(1+τ)

)µ
.

For our parameters, we have that µ = γ 1
bn = γm. Suppose

we want the probability to be less than some value q. Note
that, ( eτ

(1+τ)(1+τ)
)µ ≤ q is not solvable algebraically in terms

of τ . However, it can be solved numerically. Consider the
following parameterization where the message consists of
k = 15000 symbols in each of b = 100 blocks and the
decoding overhead is ε = 0.05. The adversary A corrupts a
γ = 0.2-fraction of the output symbols and we add a τ -fraction
additional redundancy to each block. Thus, each block consists
of m = 1

1−0.2(1+τ) (1 + 0.05)15000 = 15750
0.8−0.2τ symbols and

the average number of corrupted symbols is γm = 3150
0.8−0.2τ .

Suppose that we want P (X ≥ (1 + τ)µ) ≤ q = 2−128.
Solving for τ , we have that τ ≈ 0.21354. If we calculate
the tail of the distribution exactly, we find that the value of τ
is close to 0.20788. So, the approximation overestimated the
necessary redundancy by just 2.7%, and for larger values of q
the overestimation is smaller.

Asymptotic efficiency. We wish for our FalconS codes to
achieve the O(k log k) encoding/decoding time for each block
that LT codes (and our Falcon codes) achieve. The permutation
step can be performed in linear time by using the Fisher-
Yates algorithm [10], but the extra redundancy added requires
a careful analysis. We show next that the tolerance parameter
τ is o(1), and so we maintain O(k log k) encoding and
decoding. Recall the Chernoff-bound above, where µ = γm =

γ
1−(1+τ)γ (1+ε)k is the mean number of corruptions per block.
Let µ′ = γ

1−γ (1 + ε)k, then(
eτ

(1 + τ)(1+τ)

)µ
≤

(
eτ

(1 + τ)(1+τ)

)µ′
.

If we bound the right-hand side by q, then we have,

µ′ ln

(
eτ

(1 + τ)(1+τ)

)
≤ ln q

µ′(τ − (1 + τ) ln(1 + τ)) ≤ ln q

(1 + τ) ln(1 + τ)− τ ≥ − ln q

µ′
.

Since the left-hand side is monotonically increasing, to mini-
mize τ we must set the two sides equal. Thus we have,

(1 + τ) ln(1 + τ)− τ =
− ln q

µ′
=
−(1− γ) ln q

γ(1 + ε)k
.

Since γ, q, and ε are constants, we have (1+τ) ln(1+τ)−τ =
O( 1

k ) = o(1). Since τ = o((1 + τ) ln(1 + τ)), this implies
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τ = o(1); i.e., the amount of redundancy is bounded by a
constant and we preserve O(k log k) encoding/decoding times.

APPENDIX B
ENCODERS/DECODERS

Input: 1λ, keys kenc, kmac, master seed s, nonce `, message
length k, decoding failure prob. δ, degree distribution D, overhead
ε, authenticated codeword c = (c1, . . . , cN )
Output: Message m = (m1, . . . ,mk)

1) Let Rem = ∅ (i.e., the empty set)
2) for 1 ≤ j ≤ N do . Sieve out corrupted symbols
3) Parse cj = ej ◦ `′ ◦ τj
4) if `′ 6= ` or VerMac(kmac, ej ◦ `, τj) = 0 then
5) Discard cj and continue
6) else
7) σj ◦ j′ ← Dec(kenc, ej), Rem← Rem ∪ {(σj , j′)}
8) Set s′ ← f(s, `) . f is a KDF
9) Output m← LT-Decode(1λ, s′, k, δ,D, ε,Rem)

Fig. 15. Decoder of main LT-coding scheme Falcon

Input: 1λ, keys kenc, kmac, master seed s, nonce `, symbols per
block k, block decoding failure prob. δ, degree distribution D,
overhead per block ε, corruption rate γ, tolerance τ , number of
blocks b, authenticated codeword c = (c1, . . . , cbM )
Output: message m or ⊥

1) Set M = 1
1−(1+τ)γ

(1 + ε)k and s′ ← f(s, `) . f is a KDF
2) Seed PRG G using s′ and generate a perm. Π over bM

elements
3) . Unused: need to sync the PRG state
4) Set B1 ← ∅, . . . , Bb ← ∅
5) for 1 ≤ i ≤ bM do . De-permute and gather into blocks
6) Parse ci = (ei, `

′, τi)
7) if `′ 6= ` or VerMac(kmac, ei ◦ `, τi) = 0 then
8) Discard ci and continue
9) Set σi ◦ i′ ◦ j′ ← Dec(kenc, ei)

10) Set Bi′ ← Bi′ ∪ {(σj′ , j′)}
11) for 1 ≤ i ≤ b do
12) Generate a seed sj using G
13) Use (weak) PRG H in LT-Decode
14) Set πj = (1λ, sj , k, δ,D, ε)
15) Set mi = (mi,1, . . . ,mi,k)← LT-Decode(π,Bi)
16) if mi =⊥ then Output ⊥ and exit
17) Output m = (m1,1, . . . ,mb,k)

Fig. 16. Decoder of scalable LT-coding scheme FalconSe

Input: 1λ, keys kenc, kmac, seed s, nonce `, symbols per block
k, block decoding failure prob. δ, degree distr. D, overhead per
block ε, number of blocks b, authenticated codeword c
Output: message m or ⊥

1) Set s′ ← f(s, `) . f is a KDF
2) Seed the PRG G using s′

3) Generate b seeds s1, . . . , sb using G
4) Set πi = (1λ, si, k, δ,D, ε) for 1 ≤ i ≤ b
5) Initialize decoders LT-Decode1(π1), . . . , LT-Decodeb(πb)
6) . LT-Decodei decodes the i-th block
7) for each symbol ci in c do
8) Parse ci = (ei, `

′, τi)
9) if `′ 6= ` or VerMac(kmac, ei ◦ `, τi) = 0 then

10) Discard ci and continue
11) Set σi ◦ i′ ◦ j′ ← Dec(kenc, ei)
12) Update LT-Decodei′ with σi as its j′-th symbol
13) for 1 ≤ i ≤ b do
14) Set (mi,1, . . . ,mi,k) to be the output of LT-Decodei
15) If (mi,1, . . . ,mi,k) =⊥, then output ⊥ and exit
16) � If any block fails to decode, output nothing
17) Output m = (m1,1, . . . ,mb,k)

Fig. 17. Decoder of randomized LT-coding scheme FalconR
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