
How Secure is TextSecure?

Tilman Frosch Christian Mainka Christoph Bader
Florian Bergsma Jörg Schwenk Thorsten Holz

Horst Görtz Institute for IT Security, Ruhr University Bochum
{firstname.lastname}@hgi.rub.de

Abstract

Instant Messaging has attracted a lot of attention by users for both private and business
communication and has especially gained popularity as low-cost short message replacement on
mobile devices. However, most popular mobile messaging apps do not provide end-to-end security.
Press releases about mass surveillance performed by intelligence services such as NSA and GCHQ
lead many people looking for means that allow them to preserve the security and privacy of
their communication on the Internet. Additionally fueled by Facebook’s acquisition of the hugely
popular messaging app WHATSAPP, alternatives that claim to provide secure communication
experienced a significant increase of new users.

A messaging app that has attracted a lot of attention lately is TEXTSECURE, an app that
claims to provide secure instant messaging and has a large number of installations via Google’s
Play Store. It’s protocol is part of Android’s most popular aftermarket firmware CYANOGENMOD.
In this paper, we present the first complete description of TEXTSECURE’s complex cryptographic
protocol and are the first to provide a thorough security analysis of TEXTSECURE. Among other
findings, we present an Unknown Key-Share Attack on the protocol, along with a mitigation
strategy, which has been acknowledged by TEXTSECURE’s developers. Furthermore, we formally
prove that—if our mitigation is applied—TEXTSECURE’s push messaging can indeed achieve the
goals of authenticity and confidentiality.

I. INTRODUCTION

Since more than a decade, Instant Messaging (IM) has attracted a lot of attention by users
for both private and business communication. IM has several advantages over classical e-mail
communication, especially due to the chat-like user interfaces provided by popular tools. However,
compared to the security mechanisms available for e-mail such as PGP [1] and s/MIME [2], text
messages were sent unprotected in terms of authenticity and confidentiality on the Internet by the
corresponding IM tools: in the early days, many popular IM solutions like MSN MESSENGER
and YAHOO MESSENGER did not provide any security mechanisms at all. AOL only added a
protection mechanism similar to s/MIME to their IM service later on and Trillian’s SECUREIM
messenger encrypted the data without providing any kind of authentication. Nowadays, most
clients provide at least client-to-server encryption via TLS. Mechanisms like Off the Record
(OTR) communication [3] are available that provide among other security properties end-to-end
confidentiality.

As the popularity of smartphones grows, the Internet is accessible almost everywhere and
mobile communication services gained a lot of attraction. IM is one of the most popular services
for mobile devices and apps like WHATSAPP and SKYPE are among the top downloaded apps
in the popular app stores. Unfortunately, both applications are closed-source and it is unknown
which security mechanisms—beside a proprietary or TLS-based client-to-server encryption—are
implemented. As such, it is hard to assess which kind of security properties are provided by these
apps and especially end-to-end encryption is missing. In the light of the recent revelations of
mass surveillance actions performed by intelligence services such as NSA and GCHQ, several
secure IM solutions that are not prone to surveillance and offer a certain level of security were
implemented.

One of the most popular apps for secure IM is TEXTSECURE, an app developed by Open
WhisperSystems that claims to support end-to-end encryption of text messages. While previously
focussing on encrypted short message service (SMS) communication, Open WhisperSystems in-
troduced data channel-based push messaging in February 2014. Thus, the app offers both an
iMessage- and WhatsApp-like communication mode, providing SMS+data channel or data channel-
only communications [4]. Following Facebook’s acquisition of WHATSAPP, TEXTSECURE gained
a lot of popularity among the group of privacy-concious users and has currently more than 500,000

installations via Google Play. Its encrypted messaging protocol has also been integrated into
the OS-level SMS-provider of CyanogenMod [5], a popular open source aftermarket Android
firmware that has been installed on about 10 million Android devices [6]. Despite this popularity,
the messaging protocol behind TEXTSECURE has not been rigorously reviewed so far. While the
developers behind TEXTSECURE have a long history of research in computer security [7]–[12] and
TEXTSECURE has received praise by whistleblower Edward Snowden [13], a security assessment
is needed to carefully review the approach.

In this paper, we perform a thorough security analysis of TEXTSECURE’s protocol. To this
end, we first review the actual security protocol implemented in the app and provide a precise
mathematical description of the included security primitives. Based on this protocol description,
we perform a security analysis of the protocol and reveal an Unknown Key-Share attack, an attack
vector first introduced by Diffie et. al. [14]. To the best of our knowledge, we are the first to discuss
an actual attack against TEXTSECURE. We also reveal several other (minor) security problems in
the current version of TEXTSECURE. Based on these findings, we propose a mitigation strategy
that prevents the UKS attack. Furthermore, we also formally prove that TEXTSECURE with our
mitigation strategy is secure and achieves one-time stateful authenticated encryption.

In summary, we make the following contributions:

• We are the first to completely and precisely document and analyze TEXTSECURE’s secure
push messaging protocol.

• We found an Unknown Key-Share attack against the protocol. We have documented the
attack and show how it can be mitigated. The attack has been communicated with and and
acknowledged by the developers of TEXTSECURE. We show that our proposed method
of mitigation actually solves the issue.

• We show that if long-term public keys are authentic, so are the message keys, and that the
encryption block of TEXTSECURE is actually one-time stateful authenticated encryption.
Thus, we prove that TEXTSECURE’s push messaging can indeed achieve the goals of
authenticity and confidentiality.

II. TEXTSECURE PROTOCOL

Pa T S GCM

(1) phone#a

g ∈ Curve25519
(a, ga) ∈R Zp × Curve25519
pw ∈R SHA1PRNG[128]
authenticationa =

(
phone#, pw

)

regIDa ∈R SHA1PRNG[128]
kenc,signal,a ∈R SHA1PRNG[128]
kmac,signal,a ∈R SHA1PRNG[128]
Generate 100 prekeys + last resort key (klr)
(xa,i, g

xa,i) ∈R Zp × Curve25519

(2) 204 OK

(3) token ∈R {100000, . . . , 999999}

(4) token, kenc,signal,a, kmac,signal,a, regIDa,
supportSms (bool), authenticationa

(5) 204 OK

(6) ga, gx̄a,0 , . . . , gx̄a,99 , gx̄a,100 = klr, authenticationa

(7) 204 OK

(8) Registration GCM

(9) regIDgcm
a

(10) regIDgcm
a , authenticationa

(11) 204 OK

Figure 1: TEXTSECURE registration.

We start with a precise description of the protocol implemented by TEXTSECURE. We obtained
this information by analyzing the source code of the Android app and recovering the individual
building blocks of the protocol. TEXTSECURE builds upon a set of cryptographic primitives. For
ECDH operations, these are Curve25519 [15] as implemented in Google’s Android Native Library.
For symmetric encryption, TEXTSECURE relies on AES in both counter mode without padding and

cipher block chaining mode with PKCS5 padding. For authenticity and integrity, HMACSHA256
is used. Security considerations of the cryptographic primitives are not within the scope of this
paper.

For push messaging via data channel, TEXTSECURE relies on a central server1 (T S) to relay
messages to the intended recipient. Parties communicate with T S via a REST-API using HTTPS.
T S’s certificate is self-signed, the certificate of the signing CA is hard-coded in the TEXTSECURE
app. Actual message delivery is performed via Google Cloud Messaging (GCM), which basically
acts as a router for messages.

A. TextSecure Protocol Flow

TEXTSECURE’s protocol consists of several phases. We distinguish (i) registration, (ii) send-
ing/receiving a first message, (iii) sending a follow-up message, and (iv) sending a reply.

Before a client is able to communicate, it needs to generate key material and register with T S .
When a party Pa first decides to use TEXTSECURE’s data channel communication, it chooses an
asymmetric long-term key pair (a, ga), referred to as identity key by TEXTSECURE’s developers.
It also uses SHA1PRNG as provided by the Android Native Library to choose a password (pw),
a registration ID (regIDa), and two keys kenc,signal,a, kmac,signal,a, each of 128 bit length.
Additionally, the client chooses 100 asymmetric ephemeral key pairs, so-called prekeys, and one
asymmetric last resort key (klr). When a party calculates a message authentication code (MAC),
it uses HMACSHA256 as implemented by Android’s respective Native Library.

For a party Pa to send a message to a party Pb, Pa requests one of Pb’s public prekeys
from T S , uses it to derive a shared secret, forms a message, whereof parts are encrypted and/or
protected by a MAC, authenticates with T S , and transmits the message to T S . T S shares a
symmetric long-term key (kenc,signal,b, kmac,signal,b) with Pb, which it uses to encrypt all parts
of Pa’s message that are to be transmitted to Pb. T S then hands off this encrypted message to
GCM for delivery to Pb. If Pa wants to send a follow-up message to Pb, it derives a new key
using a function f that is seeded with existing key material. When a party does not merely send
a follow-up message, but a reply within a conversation, it also introduces new entropy into the
seed of f and transmits a new ephemeral public key.

B. Detailed Description of Messages

In the following we give a detailed description of messages sent and processed in the different
phases, as well as the key derivation.

1) Registration: The registration process is depicted in detail in Figure 1. To register with
TEXTSECURE, a party Pa requests a verification token by transmitting its phone number (phone#a)
and its preferred form of transport to T S (Step 1), which T S confirms with a HTTP status 204
(Step 2). Depending on the transport Pa chose, T S then dispatches either a short message or a
voice call containing a random token (Step 3) to the number transmitted in Step 1. Pa performs
the actual registration in Step 4, where it shows ownership of phone#a by including the token,
registers its credentials with the server via HTTP basic authentication [16], and sets its signaling
keys. In this step, the client also states whether it wishes to communicate only via data channel
push message or also accepts short messages. The server accepts if the token corresponds to the
one supplied in Step 3 and the phone number has not been registered yet.

In Step 6, Pa supplies its 100 prekeys and klr to T S . Prekeys are not transmitted individually,
but within a JSON structure consisting of a keyID z, a prekey gxa,i , and the long-term key ga.
The last resort key is transmitted in the same way and identified by keyID 0xFFFFFF. The server
accepts, if the message is well-formed and HTTP basic authentication is successful. Pa then
registers with GCM (Step 8) and receives its regIDgcm

a (Step 9), which it transmits to T S in
Step 10 after authenticating again.

2) Sending an Initial Message: We define the period in which Pa employs one prekey to
communicate with Pb as a session. When a new session is created to exchange messages, three
main cryptographic building blocks are applied: a) a key exchange protocol with implicit authen-
tication to exchange a secret, b) a key update and management protocol (the so-called axolotl
ratchet [17]), which updates the encryption and MAC keys for every outgoing message, and c) a
stateful authenticated encryption scheme. The process is depicted in detail in Figure 2.

1textsecure-service.whispersystems.org

Intuitively, the key exchange is a triple Diffie-Hellman (DH) key exchange using long-term
and ephemeral secret keys. This is the only step in the protocol flow that uses the long-term keys.

According to the developers [17], the key management protocol provides both forward secrecy
(which roughly means that past sessions remain secure even if the long-term key of a party is
corrupted) and future secrecy (which translates to the idea that even after leakage of a currently
used shared key future keys will remain secure).

The result of the key exchange and key management is input to the stateful authenticated
encryption scheme [18]. The state of the encryption scheme is provided by the key management
system and handed over from every call of the encryption and decryption algorithm, respectively,
to the next for the whole session. Every new message is encrypted under a fresh key. The scheme
guarantees confidentiality and authenticity of the exchanged messages, which we discuss in detail
in Section IV.

Pa T S GCM

(1) get prekey: phone#b, authenticationa

Choose prekey with
prekey ID z
delete gxa,z

(2) gxb,z , z, gb, regIDb

(x̄a,0, g
x̄a,0) ∈R Zp × Curve25519

secret =
(
gxb,z·a, gb·x̄a,0 , gxb,z·x̄a,0

)

(kBA,r, kBA,c) = f (secret, const0, constR)
(x̄a,1, g

x̄a,1) ∈R Zp × Curve25519
(x̄a,2, g

x̄a,2) ∈R Zp × Curve25519
kshared = gxb,z·x̄a,2

(kAB,r, kAB,c) = f (kshared, kBA,r, constR)
(kEnc, kMAC) = f

(
MACkAB,c

(const1) , const0, constK
)

kAB,c = MACkAB,c
(const2)

m ∈M
c = ENCkEnc

(m)
ctra = 0
pctra = 0
χ = (v, gx̄a,2 , ctra,pctra, c)
tag = MACkMAC

(χ)
∗

a)
b
)

c)

(3) χ, tag, z, gx̄a,0 , ga, regIDa, regIDb,
phone#b, authenticationa

check: regIDb belongs to phone#b

csignal = ENCkenc,signal,b
(χ, tag, z, gx̄a,0 , ga, phone#a)

macsignal = MACkmac,signal,b

(
csignal

)

(4) csignal, macsignal, regIDgcm
a

Legend:

const0 = 0x0032

const1 = 0x01
const2 = 0x02
constR = ”WhisperRatchet”
constK = ”WhisperMessageKeys”
v = 2

Figure 2: Sending an initial TEXTSECURE message.

a) Key Exchange: In the first step, Pa requests a prekey for Pb and receives a JSON
structure consisting of prekeyID z, a prekey gxb,z , and Pb’s long-term key gb. Pa also receives
regIDb from T S an then chooses a new ephemeral key to calculate a secret as the concatenation
of three DH operations, combining Pb’s prekey, Pa’s long-term key, Pb’s long-term key, and Pa’s
freshly chosen ephermeral key.

b) Key Management (axolotl ratchet): After Pa has completed the initial key exchange, it
derives two symmetric keys (kBA,r, kBA,c) for receiving messages using f (cf. Algorithm 1). f
is here seeded with secret. For all respective parameters of f see Figure 2. Pa then chooses a
new ephemeral keypair (x̄a,1, g

x̄a,1), which is never used and just exists because of reuse. It then
chooses another ephemeral keypair (x̄a,2, g

x̄a,2), which it uses to calculate kshared as the output
of a DH operation that takes Pb’s prekey gxb,z and x̄a,2 as input. Pa then derives two symmetric
keys (kAB,r, kAB,c) for sending messages. Here f is seeded with kshared and kBA,r. Finally, Pa
uses f , seeded with kAB,c, to derive the message keys (kEnc, kMAC) and in the end derives a new
kAB,c as MACkAB,c

(const2), where const2 = 0x02.

Algorithm 1 f (input, key, string)

kpr ← MACkey (input)
k0 ← MACkpr (string, 0x00)
k1 ← MACkpr (k0, string, 0x01)
return (k0, k1)

c) Stateful Authenticated Encryption: A message m ∈M is encrypted using AES in counter
mode without padding as c = ENCkEnc

(m). Pa then forms message (3.) and thus calculates
tag = MACkMAC

(χ), where χ = (v, gx̄a,2 , ctra, pctra, c). v represents the protocol version and is

set to 0x02. For ordering messages within a conversation ctr and pctr are used. Both are initially
set to 0. ctr is incremented with every message a party sends, while pctr is set to the value ctr
carried in the message a party is replying to.

Upon receiving message (3.), T S checks if regIDb corresponds to phone#b. It then encrypts
the parts of message (3.) intended for Pb with Pb’s signaling key, using AES in CBC mode with
PKCS5 padding. T S additionally calculates a MAC over the result, which we denote as macsignal.
T S sends both, encrypted message data csignal and macsignal, to the GCM server, together with
regIDgcm

b as the receipient. The result of this additional encryption layer is that Google’s Cloud
Messaging servers will only be able to see the receipient but not the sender of the message.

The receiving process is depicted in Figure 3. Pb receives the message in Step (5.). First, Pb
verifies macsignal and, if successful, decrypts csignal. It looks up its private key that corresponds to
prekeyID z and calculates secret.

Pb then derives two symmetric keys (kBA,r, kBA,c) for sending messages by seeding f
with secret. Afterwards, Pb calculates kshared as the output of a DH operation that takes Pa’s
latest ephemeral key gx̄a,2 and Pb’s private prekey xb,z as input. In the next step Pb uses
f (kshared, kAB,r, constR) to derive two symmetric keys (kAB,r, kAB,c) for receiving messages
and derives the message keys (kEnc, kMAC).

Pb now verifies the MAC and, if successful, decrypts the message. In the end, Pb also derives
a new kAB,c = MACkAB,c

(const2).

3) Follow-up Message: If Pa follows up with a message before Pb replies, Pa derives a new
pair (kEnc, kMAC) = f

(
MACkAB,c

(const1) , const0, constK
)
, which it then uses as detailed above.

4) Reply Message: If Pb wants to reply to a message within an existing session with Pa, it
first chooses a new ephemeral keypair (x̄b,0, g

x̄b,0) and calculates kshared as the output of a DH
operation that takes Pa’s latest ephemeral public key gx̄a,2 and its own freshly chosen ephemeral
private key x̄b,0 as input. Pb then derives (kBA,r, kBA,c) by seeding f with kshared and kAB,r.

C. Key Comparison

In an attempt to establish that a given public key indeed belongs to a certain party, TEXTSE-
CURE offers the possibility to display the fingerprint of a user’s long-term public key. Two parties
can then compare fingerprints using an out-of-band channel, for example, a phone call or an in-
person meeting. If two parties meet in person, TEXTSECURE also offers to conveniently render
the fingerprint of one’s own long-term public key as a QR code, using a third-party application on
Android, which the other party can then scan using the same application on their mobile device.
TEXTSECURE then compares the fingerprint it just received to the party’s fingerprint it received
as part of a conversation. Figure 4 pictures these fingerprints.

III. ISSUES WITH TEXTSECURE

Based on the recovered protocol description, we can analyze its security properties. In the
following, we discuss our findings.

A. MAC Image Space Only Partially Used

In Section II, we stated that TEXTSECURE uses HMACSHA256 to calculate MACs. Sur-
prisingly, TEXTSECURE does not transmit the complete output of HMACSHA256. The message
tag in Figures 2 and 3 does only represent the first 64 bit of the 256 bit MAC. Upon request,
TEXTSECURE’s developers stated that this just happens to reduce message size. However, SHA256
has been designed to achieve its security goals with an output length of a full 256 bit. While
Biryukov et al. [19] analysed the security of reduced-round SHA256, to the best of our knowledge,
the security of a reduced-length SHA256 has not been investigated, yet. However according to
NIST [20, chapter 5.5], a MAC length of 80 bit is recommended when a MAC is used for key
confirmation, which is the case in TEXTSECURE (at least) in the first message of a new session.

GCM Pb

(5) csignal, macsignal macsignal′ = MACkmac,signal,b

(
csignal

)

if macsignal′ = macsignal then:
DECkenc,signal,b

(
csignal

)

get prekey: xb,z
secret =

(
ga·xb,z , gx̄a,0·b, gx̄a,0·xb,z

)

(kBA,r, kBA,c) = f (secret, const0, constR)
kshared = gx̄a,2·xb,z

(kAB,r, kAB,c) = f (kshared, kBA,r, constR)
(kEnc, kMAC) = f

(
MACkAB,c

(const1) , const0, constK
)

tag′′ = MACkMAC
(χ) ∗

if tag′′ = tag then:
m = DECkEnc

(c)
kAB,c = MACkAB,c

(const2)

Legend:

const0 = 0x0032

const1 = 0x01
const2 = 0x02
constR = ”WhisperRatchet”
constK = ”WhisperMessageKeys”

Figure 3: Receiving an initial TEXTSECURE message.

B. Uncommon Usage of HMAC

The standardized HMAC construction that builds a MAC from a cryptographic hash function
is detailed in RFC 2104 [21]. The security of HMAC, given properly applied, uniformly random
keys, is well analyzed in the cryptographic literature [22]–[24].

We observe that in TEXTSECURE HMAC is used in a uncommon manner. Consider Algorithm
1 (in the following abbreviated by f) that is used multiple times for key derivation in TEXTSECURE
and that calls HMAC three times. For example, f is first called with (secret, const0, constR) as
parameters. Note that the only unknown (and uniformly distributed) value here is secret. Thus,
we would expect secret to be the key when HMAC is called by f . Surprisingly, the following
happens: f initially sets kpr ← HMACconst0(secret). Here, the publicly known constant const0
is set to be the key of HMAC. After that k0 ← HMACkpr (const∗), using kpr as key of HMAC is
evaluated. Given the standardization of HMAC one would expect kpr to be computed as kpr ←
HMACsecret(const0). If this was the case, we could apply well-established methods from the
cryptographic literature [22]–[24] during the security analysis. However, due to this uncommon
application of HMAC these results cannot be applied and in particular we do not know whether
the PRF-property of HMAC is preserved. We do not know if this can be exploited in pratice. Still,
we stress that this usage of HMAC is quite uncommon.

C. Unknown Key-Share Attack

An Unknown Key-Share Attack (UKS) is an attack vector first described by Diffie et. al. [14].
Informally speaking, if such an attack is mounted against Pa, then Pa believes to share a key
with Pb, whereas in fact Pa shares a key with Pe 6= Pb.

For a better understanding how this can be related to TEXTSECURE, suppose the following
example: Bart (Pb) wants to trick his friend Milhouse (Pa). Bart knows that Milhouse will invite
him to his birthday party using TEXTSECURE (e.g., because Lisa already told him). He starts the

(a) Conversation fingerprints (b) Own fingerprint QR code

Figure 4: TEXTSECURE fingerprint verification.

UKS attack by replacing his own public key with Nelsons (Pe) public key and lets Milhouse verify
the fingerprint of his new public key. This can be justified, for instance, by claiming to have a
new device and having simply re-registered, as that requires less effort than restoring an encrypted
backup of the existing key material. Now, as explained in more detail below, if Milhouse invites
Bart to his birthday party, then Bart may just forward this message to Nelson who will believe
that this message was actually sent from Milhouse. Thus, Milhouse (Pa) believes that he invited
Bart (Pb) to his birthday party, where in fact, he invited Nelson (Pe).

Pa Pb T S Pe

(1) get prekey: phone#e, authenticationb (repeat it i times)

(2) gxe,z0 , z0, . . . , g
xe,zi , zi, g

e

(3) ge, gx̄e,z0 , . . . , gx̄e,zi , authenticationb

(4) 204 OK
(5) Verify new public key fingerprint

(6) get prekey: phone#b, authenticationa

(7) g
xb,zj = g

xe,zj , zj , g
b = ge

secret =
(
gxb,zj

a·,gb·x̄a,0 , gxb,zj
·x̄a,0

)

...(
kEnc,AB , kMAC,AB

)
= · · ·

c = ENCkEnc
(m ∈M)

tag = MACkMAC
(c, . . .)

...
(8) . . . , c, tag, zj , phone#b, authenticationa

(9) . . . , c, tag, zj , phone#a

(10) . . . , c, tag, zj , phone#e, authenticationa

(11) . . . , c, tag, zj , phone#a
(12)

Figure 5: UKS attack on TEXTSECURE: Pa believes to share a key with Pb but shares one with
Pe.

In detail, the attacker (Bart, Pb) has to perform the steps shown in Figure 5 for this attack
(only the important protocol parameters and steps are mentioned):

(1-2) Pb requests gxe,z0 , . . . , gxe,zi from T S using phone#e.

(3-4) Pb commits gxe,z0 , . . . , gxe,zi to T S as his own prekeys plus ge as its own long-term
public key.

(5) Pb lets Pa verify the fingerprint of its new public key ge. Note that this step uses QR-codes
is is thus offline.

(6-7) Once Pa wants to send the message to Pb, Pa requests a prekey for Pb by using phone#b.
T S returns gxb,zj = gxe,zj and the long-term key gb = ge.

(8-9) Pa computes the secret using gxb,zj and gb from which
(
kEnc,AB , kMAC,AB

)
are going

to be derived. For computing those keys, he uses in fact Pe’s prekey and idenity key
although he believes to use Pb’s ones. He then encrypts message m ∈ M, computes the
respective MAC tag, and sends it to Pb (GCM ommited).

(10-11) Pb is neither able to verify the tag nor to decrypt the message c. He sends the ciphertext
and message tag to Pe.

(12) Pe processes the incoming message as usual. He computes the same secret as Pa, because
gxb,zj = gxe,zj and gb = ge.
The secret is then used to compute

(
kEnc,AE = kEnc,AB , kMAC,AE = kMAC,AB

)
so that

Pe is able to read and verify the message.

In Step 10, Pb has to forward the message to Pe, such that it appears to be sent by Pa.
Therefore, he needs to include authenticationa for T S to include phone#a in Step 11, so that
Pe will receive phone#a with the forwarded message. This can be achieved in several ways:

• T S is corrupted. In this case, it is a trivial task to get or circumvent authenticationa.

• If T S is benign, an attacker might be able to eavesdrop authenticationa. Although TLS
is used for all connections between clients and server, future or existing issues with TLS
implementations [25]–[29] can not be ruled out and would allow for a compromise of
authenticationa. Another possibility to obtain authenticationa could be a governmental
agency (legally) enforcing access to the TLS keys.

• In contrast to a party’s other key material, the password is stored unencrypted and is
not protected by TEXTSECURE’s master password. Thus, the easiest possibility to realize
this attack might be for an attacker to recover the password for authenticationa from
TEXTSECURE’s preferences2.
Devices are left unattended on tables in bars and clubs, users can be compelled to hand
devices over in a traffic control, stop-and-frisk operations, immigration and customs, or
when passing through airport security. The widely used Android Unlock Pattern has been
shown to be a weaker protection than a three-digit PIN [30] and can often also easily be
recovered from the smudges a user leaves on the screen during the unlock process [31].

D. Unknown Key-Share Attack Variant

In this variant, there is no need for the attacker to know authenticationa. Instead, he must only
be able to stop/intercept one message, for example, by controlling one active network element in
the path between Pa and T S , like a WiFi accesspoint.

The attack from the previous section makes Pa (the sender of a message) believe he shares
a key with Pb (intended receiver of that message) while he in fact shares a key with Pe (actual
receiver of the message). To this end, Pb had to replace his own public key by the public key of
the intended receiver.

An attack on Pe is also possible, using similar techniques: Suppose the attacker replaces his
own public key with the public key of the sender. Then any message that is sent from Pa to Pe
may also originate from Pb. This makes Pe (the receiver) believe in that he shares a key with Pb
(claimed sender) while he actually shares a key with Pa (actual sender).

This is a practical issue in competitions where, for instance, the first to send the solution to
Pe wins a prize.

To mount such attack using TEXTSECURE, Pb replaces his own public key with the public
key of Pa and lets Pe verify it. We stress again that replacing the public key and letting Pe verify
it is not an issue for Pb in practice. Now, when Pa starts a new session with Pe, Pb can mount
the attack by intercepting the message sent from Pa to Pe. He relays the message to Pe, but uses
his own authenticationb.

2File: shared-prefs/org.thoughtcrime.securesms preferences.xml

E. Mitigation of Unknown Key-Share Attack

Let us consider the message that is sent in Step 8 of Figure 5:

χ, tag, gx̄a,0 , ga, regIDa, regIDe,

phone#e, authenticationa,

where χ = (v, gx̄a,2 , ctra, pctra, c) and tag = MACkMAC
(χ). Intuitively, if both Pa’s and Pe’s

identity were protected by the tag, then the attacks above do not longer work. As identities we
propose to use the respective parties’ phone numbers, as they represent a unique identifier within
the system. χ would thus be formed as

(v, gx̄a,2 , ctra, pctra,
phone#a, phone#e, c).

If kMAC is secret (i.e., only shared among Pa and Pe) and if MAC is secure, the inclusion of both
identities in the tag provides a proof of Pa towards Pe that Pa is aware of Pe as its peer, i.e.,
that the message is indeed intended for Pe. Moreover, Pe is convinced that Pa actually sent the
message. Thus, Pb will not be able to mount the above attacks.

Remark 1. Our mitigation resembles the concept of strong entity authentication [32]. However,
this concept is not directly applicable here, since we consider asynchronous message exchange.

F. No Cryptographic Authentication

While the Unknown Key-Share Attacks are mitigated if the message in Step 8 is modified as
we propose in Section III-E, the underlying problem is not resolved. It results from a party’s
erroneous assumption that a communication partner’s long-term identity key is authentic, if they
have compared key fingerprints and these fingerprints matched their assumptions. However, this
is not necessarily the case. Given the attack scenario in Section III-C, a malicious party would
always be able to present a third party’s long-term public key as their own, as only fingerprints
are compared – a party is not required to show their knowledge of the corresponding secret key.

G. Mitigation of Authentication Issue

In the following, we present two means of authentication. The first one provides a mutual
cryptographic authentication with the help of digital signatures, while the second one achieves
this goal requiring less effort in terms of implementation and also integrates seamlessly into
TEXTSECURE’s existing user experience.

1) Signature-based Cryptographic Authentication: Pa and Pb can establish the authenticity of
their respective long-term keys as follows

1) Pa choses a token rA ∈R SHA1PRNG[128] and presents a QR code containing rA.
2) Pb scans this QR code, creates a signature σ over rA using his long-term private key, chooses

a token rB ∈R SHA1PRNG[128] and creates a QR code containing both the signature over
rA and his own token.

3) Pa scans the QR code presented by Pb and verifies σ with respect to rA using Pb’s long-term
public key. Pa then creates a signature σ′ over (rB , rA) using his long-term private key and
creates a QR code containing σ′.

4) Pb scans the QR code presented by Pa and verifies σ′ with respect to (rB , rA) using Pa’s
long-term public key.

If the verification in Step 3 is successful, Pa is assured that Pb’s long-term public key is
authentic and Pb does know the corresponding private key. Likewise, if the verification in Step 4
is successful, Pb is assured that Pa’s long-term public key is authentic and Pa does know the cor-
responding private key. In comparison to simply reading out or scanning two fingerprints, a mutual
cryptographic authentication that also requires to demonstrate knowledge of the respective private
key requires the creation of one additional QR code and thus one additional scanning process.
Though we believe that the above solution works it requires some overhead since signatures are
not included in TEXTSECURE, yet. Therefore we propose another mitigation in the next section
(and analyze it in section IV) that blends well with the cryptographic primitives that are already
implemented in TEXTSECURE.

2) Alternative Authentication Method: The challenge response process detailed below can be
modified to achieve cryptographic authentication with the primitives already used in TEXTSECURE.
The process is as follows:

1) Pb chooses a keypair (r, gr) ∈R Zp×Curve25519. It creates a QR code containing chall = gr.
2) Pa scans the QR code, derives resp = challa (= gr·a) and creates a QR code containing

resp.
3) Pb scans the QR code presented by Pa and checks if ga·r =? resp.

If resp, matches ga·r, Pb is assured that Pa knows the private key corresponding to the long-
term public key that Pb expected to belong to Pa. If resp 6= gb·r, the authentication fails. Here,
we call Pa prover and Pb verifier. The process can then be repeated with reversed roles to achieve
mutual authentication of Pb and Pa. We discuss the security of this approach in detail in the
following section.

IV. SECURITY OF TEXTSECURE KEY EXCHANGE AND MESSAGING

As mentioned in Section III, the underlying problem that allows for our attacks is that the
shared key between two parties is not cryptographically authentic. In the same section we explain
how to face this problem. In this section we first show that the method proposed in Section III-G2
actually solves this issue (under some reasonable restrictions). Next, we show that if public keys
are authentic then so is k = (kEnc, kMAC). Moreover we show k to be uniformly distributed.
Once we have established this, we finally show that the encryption block of TEXTSECURE is
actually one-time stateful authenticated encryption (a primitive which needs uniformly distributed
and authenticated keys to provide security).

C A

a
$← Zp

ga

r
$← Zp

chall← QR(gr) chall

resp

if resp = QR(gar):

return 1

return 0

Figure 6: Challenge and Response security game.

A. Offline Verification gives authenticity

In this section, we prove the proposed protocol of Section III-G2 to be secure. Ideally, we could
prove the possession of the secret key through a zero knowledge proof of knowledge. However,
we do not know if the protocol satisfies this strong property. Rather we prove that if an “honest”
verifier accepts, then with high probability the prover’s public key is unique. Since the public
key is later on used in the means of authentication, this gives authenticity. Note that we do not

consider collusion of parties that deliberately agree to use the same long-term key pair here. In
this case, attacks as above are always possible. We assume in the following that no two parties
collude.

Consider the security game that is depicted in Figure 6. We say that an attacker (t, ε)-wins
the security game if it runs in time t and C outputs 1 with probability at least ε. We argue that
this security game actually models malicious behaviour of an adversary convincing an “honest”
verifier to have public key ga. To this end, suppose that A publishes the public key ga that
is already registered as the public key of Pa as its own public key. If C returns 1, then A is
obviously successful in convincing a party that follows the protocol honestly that ga is authentic
with respect to A (which it is not). However, if the probability that A succeeds in the security
game is small then this is not very likely to happen which means that ga is registered only once
with overwhelming probability3. We note that we do not allow the adversary to challenge back the
challenger. This somewhat artificial restriction is due to the fact that we cannot prove the scheme
to be secure without this requirement (see below). We remark, however, that this protocol is carried
out when prover and verifier meet face-to-face and, moreover, that no data is sent through the data
channel. Thus, the adversary is not a network attacker and in particular has not the capability to
read, replay, delay, alter, or drop any data that is exchanged throughout a protocol run between
two honest parties. A proving party will always be able to confirm who the verifier actually is
and may refuse to prove something to a seemingly malicious verifier.

Technically, if we wanted to get rid of this requirement we could use an IND-CCA-secure
KEM that supports public keys of the form ga in elliptic curves, e.g. the PSEC-KEM that is
standardized by the ISO [33] and proven to be secure by Shoup [34] in the random oracle model.

Claim 1. If there is an attacker A that (t, ε)-wins the above game (cf. Figure 6) then there is an
algorithm B that (t′, ε′)-breaks the DDH assumption in Curve25519 where t ≈ t′ and ε ≤ ε′.

Proof: Suppose A wins the game with probability ε. We construct a DDH-distinguisher B
that runs A as a subroutine. B gets as input (g, ga, gb, gγ) and wants to distinguish whether γ = ab
or not. B simulates C as follows: It creates a QR code containing gb. If A creates a QR code
containing gγ then γ = ab and thus B is able to solve DDH.

B. (kEnc, kMAC) is authentic.

Now let us assume public keys are unique. We argue that in this case k = (kEnc, kMAC)
authenticates sender and receiver since these are the only parties to compute k.
Here, we show that the sender (Pa) is authenticated. The proof for the receiver is similar. To
this end, we define the following algorithm that reflects key derivation (for the first message sent
during a session) on the side of the receiver (Pb) where ga, gx̄a,0 and gx̄a,2 are long-term and
ephemeral public keys of Pa, b is the long-term secret of Pb and z is a pointer to the prekey pair
(xb,z, g

xb,z) (cf. Figure 3).

Algorithm 2 Key.derive (ga, gx̄a,0 , gx̄a,2 , b, z)

secret← f
(
gxb,z·a, gb·x̄a,0 , gxb,z·x̄a,0

)
(kBA,r, kBA,c)← f (secret, const0, constR)
kshared ← gx̄a,2·xb,z

(kAB,r, kAB,c)← f (kshared, kAB,r, constR)
k ← f (MAC(kAB,c, const1), const0, constK)

Let us now consider the security game that is depicted in Figure 7. We say that A (t, ε)-wins
the security game if it runs in time at most t and C returns 1 with probability at least ε. We argue
that this security game acutally models authenticity of k. To this end, suppose again that ga is
the public key of Pa 6= A. Note that this public key is unique. It is given to A, together with the
public key gb and a prekey gxb,z of party Pb by computing k. The goal of A is to impersonate A
to Pb. If A is able to succeed, then it may obviously break the authenticity property. On the other
hand, if the probability for A to succeed is small it is very unlikely for A to compute the shared
key of two honest parties Pa and Pb. By the uniqueness of public keys this gives authenticity.

3Observe that the probability that two parties following the protocol honestly publish the same public key is 1
|Curve25519|

C A

a
$← Zp

b
$← Zp

xb,z
$← Zp

ga, gb, gxb,z

k ← Key.derive(ga, gx̄a,0 , gx̄a,2 , b, z)

k′, gx̄a,0 , gx̄a,2

if k = k′:

return 1

return 0

Figure 7: Authenticity of k security game.

Claim 2. If an attacker A (t, ε)-wins the above security game (cf. figure 7), then there is an
algorithm B that (t′, ε′)-breaks the CDH-assumption in Curve25519 where t ≈ t′ and ε ≤ ε′+ t′

2512 .
The analysis will view the functions f and MAC as a non-programmable random oracle [35].

Remark 2. As discussed in Section III-B, we do not know if f and, in particular, MAC preserve
the PRF-property of HMAC. This is why for the proof of claim 2 we resort to a non-programmable
random oracle.

Proof: We describe a CDH-forger B that runs A as a subroutine. B gets as input (g, ga, gxb,z)

and wants to compute ga·xb,z . It samples b $← Zp and sends (ga, gb, gxb,z) to A. Note that B is not
able to compute Key.derive. Instead we let B always return 0. We argue that with overwhelming
probability this will not be detected by A: We observe that since f is modeled as a random
oracle (and thus the image of f is uniformly distributed over {0, 1}512) for A to tell the value of
k it needs to query f on MACkAB,c

((const1), const0, constK) since otherwise the value of k is
information-theoretically hidden from A. The same argument applies for the value of MACkAB,c

(which is needed to compute k), kBA,r (which is needed to compute kAB,c) and secret (which
is needed to compute kBA,r). Now, suppose A queries f on secret = (ga·xb,z , gb·x̄a,0 , gxb,z·x̄a,0)
for some x̄a,0. Since f is modeled as a random oracle, the query of A is actually public and thus
B can extract ga·xb,z , the solution to the CDH instance. Thus, if CDH is hard in Curve25519 for
A, to be successful, A needs to correctly guess a bitstring of length 512. This probability can be
neglected.

We immediately obtain that k is not only authentic but also uniformly distributed. Now, a
similar (information theoretic) argument applies to keys that are derived from k for the next
messages to be sent and received.

We stress that for our proof to be bootstrapped to the setting with more than one prekey of Pb,
these have to be pairwise distinct (i.e., unique) since otherwise replay attacks become possible.
In particular, Claim 2 does not apply to keys exchanged relying on the last resort key.

C. TEXTSECURE Encryption is One-time Stateful and Authenticated

Next, we prove the actual encryption of TEXTSECURE to be one-time stateful authenticated
encryption. We stress that one-time security suffices for TEXTSECURE since, here, the actual
encryption and MAC keys are updated (and can be seen as fresh, cf. previous section) with every
message to be sent.

1) Cryptographic Primitives: We shortly recall the cryptographic primitives that are used by
the TEXTSECURE encryption procedure.

A message authentication code is a pair of PPT algorithms MAC = (Tag,Vfy) such that tag $←
Tag(k,m) on input a key k and a message m returns tag for that message. The algorithm {0, 1} ←
Vfy(k,m, tag) returns Tag(k,m)

?
= tag. We require the usual correctness properties. Following

Bellare et al. [22], [36] we say that an attacker A (t, ε)-breaks the strong one-time security of
MAC if it runs in time t and

Pr

[
(tag,m)

$← ATag(k,) :
Vfy(k,m, tag) = 1

∧ (tag,m) 6= (tag′,m′)

]
≥ ε

where A is allowed to query Tag at most one time (the query is denoted by m′ and the response
by tag′).

A symmetric encryption scheme is a pair of PPT algorithms SE = (Enc,Dec) such that c $←
Enc(k,m) on input a key k and a message m returns a ciphertext c and m← Dec(k, c) on input
a key k and a ciphertext c outputs m. We require the usual correctness properties. We say that an
attacker A (t, ε)-breaks the one-time IND-CPA-security [37] of SE if it runs in time t and

Pr
[
b′

$← AEncrypt(·,·) : b = b′
]
≥ ε

where A is allowed to query Encrypt at most one time on two messages m0 and m1 of equal
length and Encrypt samples a uniformly random bit b and returns c $← Enc(k,mb).

2) Stateful Authenticated Encryption in TEXTSECURE: A stateful encryption scheme Ste is a
pair of PPT algorithms Ste = (Ste.Enc,Ste.Dec) with the following syntax:

• The encryption algorithm outputs a ciphertext C and a state st′ on input key k, associated
data hd, message m and a state st, (C, st′)

$← Ste.Enc(k, hd,m, st).

• The deterministic decryption algorithm outputs a message m and a state st′ on input a
key k, associated data hd, a ciphertext C and a state st, (m, st′)

$← Ste.Dec(k, hd, C, st).
Ste.Dec may also return ⊥ indicating a decryption error.

For TEXTSECURE we let hd contain at least (gx̄a,2 , regIDa, regIDb), the ephemeral public key
of party Pa, and the identifiers of both parties. The state is set to (ctr, pctr) and is initialized
to (0, 0). For practical purposes it is important that these are handed over carefully to the next
execution of encrypt and decrypt, resp. The key is set to be k = (kEnc, kMAC) handed over by the
ratchet protocol.

Algorithm 3 TS.Enc(k, hd,m, st)

c← EnckEnc(m)
χ← (v, gx̄a,2 , ctra, pctra, c)
tag← MACkMAC

(χ)
ctr + +
return (χ, tag︸ ︷︷ ︸

C

, st)

Algorithm 4 TS.Dec(k, hd,C, st)

parse C as C = (χ′, tag′)
parse χ′ as χ′ = (v′, (gx̄a,2)

′
, ctr′a, pctr

′
a, c
′)

χ′′ ← (v′, (gx̄a,2)
′
, pctrb, ctrb, c

′)
tag′′ ← MACkMAC

(χ′′)
if tag′′ 6= tag′ return (⊥,⊥)
m← DeckEnc(c)
if m = ⊥ return (⊥,⊥)
pctr + +
return (m, st)

Security of a Stateful Authenticated Encryption scheme Ste is captured through a security game
that is played between a challenger C and an attacker A, as implicitly mentioned by Paterson et
al. [18] and explicitly by Jager et al. [38].

• The challenger samples b
$← {0, 1} and a key k

$← K. It initializes states and sets
i = ctr − 1 and j = pctr − 1 (This way it is guaranteed that Ci = Cctra whenever a
ciphertext is generated by a and similar for b).

• The adversary may then query each of the Encrypt and Decrypt oracles once and they
respond as depicted in Figure 8.

• Finally, A outputs a bit b′ and wins if b = b′.

Encrypt(m0,m1, hd)
i = i+ 1

(C0, st0)
$← Ste.Enc(k, hd,m0, st)

(C1, st1)
$← Ste.Enc(k, hd,m1, st)

if C0 = ⊥ ∨ C1 = ⊥: return ⊥
(Cctr, ste)← (Cb, stb)
return Ci

Decrypt(C, hd)
j = j + 1
(m, st)← Ste.Dec(k, hd, C, st)
if j > i ∨ C 6= Cj : div← 1
if div = 1 ∧ b = 1 return m
return ⊥

Figure 8: Encrypt and Decrypt Oracles in the Stateful Authenticated Encryption security game.

Since the behaviour of oracle Decrypt might not be clear at first sight, we will shortly explain
it. First, we recall that the goal of the adversary is to determine the bit b. Stated otherwise, if the
adversary queries Encrypt on two distinct messages of equal length its goal is to determine which
message is encrypted. Oracle Decrypt will reveal this information to A if either A manages to
query Decrypt for a ciphertext that is not authentic, i.e., C 6= Cj or that is in the wrong order,
i.e., j > i and that nonetheless does not incur in a decryption error.

Theorem 1. If there is an attacker A that (t, ε)-breaks the one-time stateful authenticated en-
cryption security of TS.Ste then there is an attacker BMAC that (t1, ε1)-breaks the strong one-time
security of MAC and an attacker BEnc that (t2, ε2)-breaks the one-time IND-CPA security of the
encryption scheme where t ≈ t1 ≈ t2 and

ε ≤ ε1 + ε2

Proof: The proof is by a sequence of games. First, we will modify the Decrypt oracle such that
its response will be independent of b. If the MAC scheme is secure this change will be undetected
by A. After that we will rely on the security of Enc to argue that A has only negligible advantage
in telling the value of b. By ζi we will denote the event that A is successful in Game i.

GAME 0. This is the real Stateful Authenticated security game as described above. Thus, we
have:

Pr[ζ0] = ε

GAME 1. In Game 1, the challenger proceeds as follows: When the attacker queries a ciphertext
C to the decryption oracle, C always outputs ⊥. Except for this, C proceeds exactly as in Game 0.
Note that Decrypt will return always ⊥ if div = 0 (i.e., conditioned on div = 0 Game 0 and Game
1 are identical) and will return m only if div = b = 1. Now, if div = 1 then j > i ∨ C 6= Ci.

j > i : If j > i (i.e. Decrypt is called by A before Encrypt) and decryption does not return
⊥ then the ciphertext C that was queried to Decrypt by the adversary contains a valid tag which
contradicts the one-time security of MAC.

C 6= Cj : If C 6= Cj then a similar argument applies to show that decryption will fail and thus
return ⊥: Here, we reduce to the strong one-time security of MAC. (Recall that strong one-time
security requires that it is computationally infeasible to compute a valid tag, tag′, for message m,
even if a valid tag, tag, for message m is known.Thus Thus, we have:

Pr[ζ0]− Pr[ζ1] ≤ ε1

GAME 2. In Game 2, instead of encrypting mb, C samples a random message m, computes
(C, st)

$← TS.Enc(k, hd,m, st) and returns C. This change does not affect oracle Decrypt since
due to Game 1 it will return ⊥ anyway. Now, by the IND-CPA-security of Enc this goes unnoticed
from the adversary. Thus, we have:

Pr[ζ1]− Pr[ζ2] ≤ ε2
Claim 3. Pr[ζ2] = 0.

Proof: In Game 2 the Decrypt oracle reveals no information about b due to Game 1. Neither
does the Encrypt-oracle due to Game 2. The claim follows.

D. Summary

In this section, we showed that our improvement of the TEXTSECURE protocol mitigates the
UKS attacks. Therefore we showed, that the protocol from section III-G2 proves long-term public
keys to be unique, i.e., that with overwhelming probability no two parties share the same public
key (except if they collude). Then we proved that (kEnc, kMAC) are bound to the respective long-
term keys of the parties which gives authentic keys (that are also uniformly distributed). Finally,
we established that TEXTSECURE encryption is actually one-time stateful and authenticated. If
the encryption and decryption states are carried over carefully from one call of the encryption and
decryption procedure to the next, this shows that TEXTSECURE achieves stateful authenticated
encryption.

V. RELATED WORK

The body of work that explicitly aims at providing or analyzing secure instant messaging
protocols is comparably small to the prevalence of instant messaging applications in our daily
life: At the 2004 Workshop on Privacy in the Electronic Society (WPES), Borisv et. al. [3]
presented a protocol for “Off the Record” (OTR) communication. The OTR protocol was designed
to provide authenticated and confidential instant messaging communication with strong perfect
forward secrecy and deniability: no party can cryptographically prove the authorship of a message.
The deniability property of OTR has been discussed by Kopf and Brehm [39]. The work of Di
Raimondo et. al. [40], who analyzed the security of OTR, is in its nature closely related to our
paper. The authors point out several issues with OTR’s authentication mechanism and also describe
a UKS attack on OTR, as well as, a replay attack along with fixes. We note, however, that the
authentication mechanisms of OTR and TEXTSECURE have little in common: Though it aims to
provide deniability, OTR explicitly uses signatures for authentication while TEXTSECURE does
not. The UKS attack on OTR described by Raimondo et al. [40] directly targets the key exchange
mechanism of the protocol, whereas the attacks presented in this paper are rather subtle and exploit
the protocol structure and key derivation of TEXTSECURE.

Besides OTR, which has been widely adopted, there exist protocols for secure instant messaging
like IMKE [41], which aim at being verifiable in a BAN-like logic, but has never found a wider
adoption. SILC [42] also has received a certain adoption and some discussion, but is rarely used
today, as is FiSH [43], a once popular plugin for IRC clients that used Blowfish with pre-shared
keys to encrypt messages.

Thomas [44] analysed the browser-based instant messager Cryptocat and found that, due to
an implementation error, Cryptocat used private keys of unsufficient length when establishing a
group chat session. Green [45] recently discussed Cryptocat’s group chat approach from a protocol
perspective and points out several issues.

Further protocols exist that aim at securing instant messaging communication but have, to the
best of our knowledge, not received public scrutiny. Among these are THREEMA [46], SURESPOT
[47], and Silent Circle’s SCIMP [48].

VI. CONCLUSION AND FUTURE WORK

Since Facebook bought WhatsApp, instant messanging apps with security guarantees became
more and more popular. The most prominent mobile applications for secure IM are THREEMA
[46], SURESPOT [47], and TEXTSECURE. In this paper, we have provided a detailed security
analysis of TEXTSECURE. First, we precisely described the protocol and then performed a security
analysis of the individual steps of the protocol. This led to the discovery of several weaknesses,
most notably an UKS attack. We proposed a mitigation and proved that, if our mitigation is
applied, that TEXTSECURE actually provides stateful authenticated encryption. To the best of our
knowledge, this is the first formal verification of the security guarantees offered by the tool.

While TEXTSECURE’s implementation is open source, little is known about the competing
messaging applications. While THREEMA makes use of the open source libary NaCl [49] for
cryptographic operations, its protocol is kept confidential. SURESPOT is an open source project
with its own cryptographic protocol. A protocol analysis for SURESPOT is (as far as we know)
not done yet. A comparison of TEXTSECURE and SURESPOT will be an interesting project for
future work.

REFERENCES

[1] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “OpenPGP Message Format,” RFC 4880
(Proposed Standard), Internet Engineering Task Force, Nov. 2007, updated by RFC 5581. [Online]. Available:
http://www.ietf.org/rfc/rfc4880.txt

[2] B. Ramsdell and S. Turner, “Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.2 Message
Specification,” RFC 5751 (Proposed Standard), Internet Engineering Task Force, Jan. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc5751.txt

[3] N. Borisov, I. Goldberg, and E. A. Brewer, “Off-the-record communication, or, why not to use pgp,” in WPES,
2004, pp. 77–84.

[4] Open WhisperSystems, “The new TextSecure: Privacy beyond SMS,” Feb. 2014. [Online]. Available:
https://whispersystems.org/blog/the-new-textsecure/

[5] Open WhisperSystems, “TextSecure, now with 10 million more users,” Dec. 2013. [Online]. Available:
https://whispersystems.org/blog/cyanogen-integration/

[6] M. Crider, “CyanogenMod is now installed on over 10 million android devices,” Dec. 2013. [Online]. Available:
http://www.androidpolice.com/2013/12/22/cyanogenmod-is-now-installed-on-over-10-million-android-devices/

[7] M. Marlinspike, “Internet explorer SSL vulnerability,” May 2002. [Online]. Available: http://www.thoughtcrime.
org/ie-ssl-chain.txt

[8] M. Marlinspike, “More tricks for defeating ssl in practice,” 2009.
[9] M. Marlinspike, “sslstrip,” 2011. [Online]. Available: http://www.thoughtcrime.org/software/sslstrip/

[10] M. Marlinspike, “Convergence | beta,” 2011. [Online]. Available: http://convergence.io/details.html#
[11] M. Marlinspike, “chapcrack,” 2012. [Online]. Available: https://github.com/moxie0/chapcrack
[12] M. Marlinspike and T. Perinn, “Trust assertions for certificate keys draft-perrin-tls-tack-02.txt,” 2013. [Online].

Available: http://tack.io/draft.html
[13] “Edward snowden and ACLU at SXSW,” Mar. 2014. [Online]. Available: https://www.youtube.com/watch?v=

UIhS9aB-qgU&t=14m24s
[14] W. Diffie, P. C. van Oorschot, and M. J. Wiener, “Authentication and authenticated key exchanges,” Des. Codes

Cryptography, 1992.
[15] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in PKC, 2006. [Online]. Available:

http://cr.yp.to/ecdh/curve25519-20060209.pdf
[16] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Authentication,” RFC 7235 (Proposed

Standard), Internet Engineering Task Force, Jun. 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7235.txt
[17] T. Perinn, “Axolotl ratchet,” Jun. 2014. [Online]. Available: https://github.com/trevp/axolotl
[18] K. G. Paterson, T. Ristenpart, and T. Shrimpton, “Tag size does matter: Attacks and proofs for the TLS record

protocol,” in Advances in Cryptology – ASIACRYPT 2011, ser. Lecture Notes in Computer Science, D. H. Lee and
X. Wang, Eds., vol. 7073. Seoul, South Korea: Springer, Berlin, Germany, Dec. 4–8, 2011, pp. 372–389.

[19] A. Biryukov, M. Lamberger, F. Mendel, and I. Nikoli{\’c}, “Second-order differential collisions for reduced SHA-
256,” in Advances in Cryptology–ASIACRYPT, 2011.

[20] E. Barker, D. Johnson, and M. Schmid, “Recommendation for pair-wise key establishment schemes using discrete
logarithm cryptography (revised),” NIST Special Publication 800-56a, National Institute of Standards and Technol-
ogy, Tech. Rep., 2007, http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A Revision1 Mar08-2007.pdf.

[21] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for Message Authentication,” RFC 2104
(Informational), Internet Engineering Task Force, Feb. 1997, updated by RFC 6151. [Online]. Available:
http://www.ietf.org/rfc/rfc2104.txt

[22] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for message authentication,” in Advances in
Cryptology – CRYPTO’96, ser. Lecture Notes in Computer Science, N. Koblitz, Ed., vol. 1109. Santa Barbara,
CA, USA: Springer, Berlin, Germany, Aug. 18–22, 1996, pp. 1–15.

[23] M. Bellare, “New proofs for NMAC and HMAC: Security without collision-resistance,” in Advances in Cryptology
– CRYPTO 2006, ser. Lecture Notes in Computer Science, C. Dwork, Ed., vol. 4117. Santa Barbara, CA, USA:
Springer, Berlin, Germany, Aug. 20–24, 2006, pp. 602–619.

[24] P. Gai, K. Pietrzak, and M. Rybr, “The exact prf-security of nmac and hmac,” in Advances in Cryptology - Crypto
14, 2014, http://eprint.iacr.org/.

[25] C. Meyer, J. Somorovsky, E. Weiss, J. Schwenk, S. Schinzel, and E. Tews, “Revisiting ssl/tls implementations: New
bleichenbacher side channels and attacks,” in 23rd USENIX Security Symposium (USENIX Security 14), 2014.

[26] A. Karjalainen and N. Mehta, “The heartbleed bug,” 2014. [Online]. Available: http://heartbleed123.com/
[27] C. Meyer and J. Schwenk, “Sok: Lessons learned from ssl/tls attacks,” in WISA, 2013, pp. 189–209.
[28] N. J. AlFardan and K. G. Paterson, “Lucky thirteen: Breaking the tls and dtls record protocols,” in IEEE Symposium

on Security and Privacy, 2013.
[29] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N. Schuldt, “On the security of rc4 in tls,”

in USENIX Security, 2013.
[30] S. Uellenbeck, M. Drmuth, C. Wolf, and T. Holz, “Quantifying the security of graphical passwords: The

case of android unlock patterns,” in Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13. New York, NY, USA: ACM, 2013, p. 161172. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516700

[31] A. J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge attacks on smartphone touch screens,” in
Usenix WOOT, 2010.

[32] C. Boyd and A. Mathuria, Protocols for Authentication and Key Establishment. Springer, 2003.
[33] ISO/IEC, “Iso/iec 18033-2:2006, information technology – security techniques – encryption algorithms – part 2:

Asymmetric ciphers,” International Organization for Standardization, Tech. Rep., 2006.
[34] V. Shoup, “A proposal for an iso standard for public key encryption,” Cryptology ePrint Archive, Report 2001/112,

2001, http://eprint.iacr.org/.
[35] M. Fischlin, A. Lehmann, T. Ristenpart, T. Shrimpton, M. Stam, and S. Tessaro, “Random oracles with(out)

programmability,” in Advances in Cryptology – ASIACRYPT 2010, ser. Lecture Notes in Computer Science, M. Abe,
Ed., vol. 6477. Singapore: Springer, Berlin, Germany, Dec. 5–9, 2010, pp. 303–320.

[36] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm,” in Advances in Cryptology – ASIACRYPT 2000, ser. Lecture Notes in Computer Science,
T. Okamoto, Ed., vol. 1976. Kyoto, Japan: Springer, Berlin, Germany, Dec. 3–7, 2000, pp. 531–545.

[37] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment of symmetric encryption,” in 38th
Annual Symposium on Foundations of Computer Science. Miami Beach, Florida: IEEE Computer Society Press,
Oct. 19–22, 1997, pp. 394–403.

[38] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security of TLS-DHE in the standard model,” in Advances
in Cryptology – CRYPTO 2012, ser. Lecture Notes in Computer Science, R. Safavi-Naini and R. Canetti, Eds., vol.
7417. Santa Barbara, CA, USA: Springer, Berlin, Germany, Aug. 19–23, 2012, pp. 273–293.

[39] G. Kopf and B. Brehm, “Phrack magazine: Secure function evaluation vs. deniability in OTR and similar
protocols,” Apr. 2012. [Online]. Available: http://phrack.org/issues/68/14.html

[40] M. D. Raimondo, R. Gennaro, and H. Krawczyk, “Secure off-the-record messaging,” in WPES, 2005, pp. 81–89.
[41] M. Mannan and P. C. van Oorschot, “A protocol for secure public instant messaging,” in Financial Cryptography

and Data Security, 2006.
[42] P. Riikonen, “Secure internet live conferencing protocol specification DRAFT,” 2007. [Online]. Available:

http://tools.ietf.org/id/draft-riikonen-silc-spec-09.txt
[43] Unkown, “FiSH – secure communications with internet relay chat,” 2007. [Online]. Available: http:

//ultrx.net/doc/fish/
[44] S. Thomas, “DecryptoCat,” 2013. [Online]. Available: http://tobtu.com/decryptocat-old.php
[45] M. Green, “Noodling about IM protocols,” Jul. 2014. [Online]. Available: http://blog.cryptographyengineering.com/

2014/07/noodling-about-im-protocols.html
[46] Threema, “Seriously secure mobile messaging.” [Online]. Available: https://threema.ch/de/
[47] surespot, “encrypted messenger.” [Online]. Available: https://surespot.me/
[48] V. Moscaritolo, G. Belvin, and P. Zimmermann, “Silent circle instant messaging protocol protocol specification,”

2012.
[49] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a new cryptographic library,” in Progress in

Cryptology - LATINCRYPT 2012: 2nd International Conference on Cryptology and Information Security in Latin
America, ser. Lecture Notes in Computer Science, A. Hevia and G. Neven, Eds., vol. 7533. Santiago, Chile:
Springer, Berlin, Germany, Oct. 7–10, 2012, pp. 159–176.

