
Practical UC security with a Global Random Oracle

Ran Canetti∗ Abhishek Jain† Alessandra Scafuro‡

Abstract

We show that there exist commitment, zero-knowledge and general function evaluation pro-
tocols with universally composable security, in a model where all parties and all protocols have
access to a single, global, random oracle and no other trusted setup. This model provides sig-
nificantly stronger composable security guarantees than the traditional random oracle model of
Bellare and Rogaway [CCS’93] or even the common reference string model. Indeed, these latter
models provide no security guarantees in the presence of arbitrary protocols that use the same
random oracle (or reference string or hash function).

Furthermore, our protocols are highly efficient. Specifically, in the interactive setting, our
commitment and general computation protocols are much more efficient than the best known
ones due to Lindell [Crypto’11,’13] which are secure in the common reference string model. In
the non-interactive setting, our protocols are slightly less efficient than the best known ones
presented by Afshar et al. [Eurocrypt ’14] but do away with the need to rely on a non-global
(programmable) reference string.

1 Introduction

The random oracle model (ROM) [2] has been extremely successful as a tool for justifying the
design of highly efficient cryptographic schemes that lack more direct proofs of security. Indeed,
while security in the ROM does not in general imply security when the random oracle is replaced
by a concrete, publically computable hash function [6, 11, 22], it is generally accepted that security
analysis in the ROM does provide strong corroboration to the resilience of the protocol in question
to practical attacks.

However, when attempting to use the ROM for analyzing security of general protocols, and in
particular when attempting to assert simulation-based security definitions, the following question
comes up: Does security analysis in the ROM provide any composable security guarantees? In
particular, what does security analysis in the stand-alone ROM say about the security of the protocol
within a larger system that involves also other protocols, where these protocols may have themselves
been analyzed in the ROM?

To provide a positive answer to this question, we would like to come up with a model for
analyzing security of protocols in a stand-alone fashion, while taking advantage of the ROM, and
still be able to provide security guarantees in a composite system where multiple such protocols
co-exist and interact.
∗Boston University and Tel-Aviv University, USA and Israel
†Johns Hopkins University, USA. Part of this work was done while the author was a postdoc at MIT and Boston

University.
‡UCLA, USA

1

A natural approach to devising such a model is to start from an existing framework with com-
posability guarantees, and try to add the ROM to that framework. Specifically, start from the
universally composable (UC) security framework [3] that provides strong composability, and for-
mulate the ROM as a “trusted functionality” that is available to the parties (i.e., this “random
oracle functionality” simply returns an independent random value RO(x) to each query x, while
maintaining consistency among different queries with the same x).

However, it turns out that if one wants to use the full power of the ROM, and in particular to
allow the simulator, in the security analysis, to have free access to the adversary’s RO queries and
furthermore to set the responses of the random oracle to values of its choice, the resulting modeling
loses all composability guarantees. More precisely, secure composition holds only if each instance of
each protocol uses a completely different and independent random oracle than all other instances.
This of course does not correspond to the practice of replacing the random oracle in all executions
with a single hash function.

Furthermore, this is not just a modeling issue: Using the same instance of the RO across
multiple protocols inevitably gives rise to some unavoidable attacks. For instance, consider a UC
non-interactive zero knowledge (NIZK) protocol in the RO model. If RO is available outside the
individual instance of the protocol then the transcript of the protocol (i.e., the proof) becomes
transferable - it is verifiable not only by the intended verifier, but rather by anyone who has access
to RO. This stands in contrast to the ideal zero knowledge functionality, which allows only the
intended verifier to verify the verity of the statement. (It should be remarked that the same issue
happens even in interactive Zero Knowledge protocols in the ROM, but is perhaps most evident for
non-interactive ones.)

Indeed, this discrepancy between the abstract model and its intended use was already noticed
in the context of the common reference string setup [4]. To handle this discrepancy, [4] suggests to
explicitly consider only trusted setup constructs that are global, namely only a single instance of
this setup exists in the system. In particular, this construct exists even in the “ideal model”, where
the protocol is replaced by a “trusted party”, or an ideal functionality representing the task at hand.
They then proceed to propose such a global trusted setup construct. However their construct is not
just a public hash function (or a random oracle). Rather, it consists of a global public key for which
each party has its own identity-based secret key. Furthermore, they argue that no “public setup
construct”, namely no construct that provides only public information that is available to all, can
suffice for realizing tasks such as commitment or zero knowledge in the UC framework. Given that
the random oracle does provide only public information, the avenue of coming up with a useful,
global ROM that provides composable security guarantees seemed to have reached a dead end.

1.1 Our Contributions

1.1.1 The global random oracle model

We formulate a natural, global variant of the “random oracle functionality”. As per the formalism of
[4], this functionality, which we denote by gRO – standing for global Random Oracle – is accessible
to all parties (both honest and corrupted), both in the ideal model and in the model for protocol
execution. This functionality answers consistently to all queries made by all parties. Furthermore,
only a single instance of this functionality exists. As shown in [4], the universal composition theorem
holds in this model - even though multiple protocols and instances thereof use the same instance of
gRO.

2

In addition, we incorporate in gRO a mechanism that captures the fact, sketched above, that
the global random oracle, being a single global construct that provides the same information to all,
allows third parties to double up as adversarial protocol participants and mount a transferability
attack.

In a nutshell, this analytical mechanism provide each protocol session with a unique domain of
queries: queries that pertain to a session that the querying party does not belong to are considered
“illegitimate” and are disclosed to the adversary. This mechanism allows capturing security proper-
ties such as “transferable non-interactive zero knowledge”, namely protocols that are zero-knowledge
except for the fact that proofs may be transferable. As we explain in more details later, transfer-
ability attacks are the only ones allowed in this model. Intuitively the reason is that, whatever a
malicious third party can do by accessing the RO in some concurrent adversarial protocol execution,
can be done by the adversary itself in her protocol execution.

We then observe that simple variants of known protocols, such as the two-message zero-knowledge
protocol of Pass [24], is in fact UC zero knowledge in our global random oracle model (gRO model).

The gRO model, the CRS/RO model and the JUC model. The advantage of the gRO model
is that it guarantees secure composition even with arbitrary protocols that use the same instance
of the RO (or the same hash function). In practice it means that the RO can be reused by any
protocol in the system, without jeopardizing security. Neither the standard (programmable) RO
model nor the standard (programmable) CRS model give any security guarantees when the same
setup is reused. One might object that there exist protocols that are UC-secure in the Joint State
model (JUC) [8] where the same CRS is reused. However, the form of reusability guaranteed by the
JUC model is very limited as that protocols must be pre-designed to work well together with same
CRS instance. Instead, in the gRO model protocols do not need to synchronize their access to the
RO.

Discussion on the random oracle model. One might wonder about the utility in rigorously
arguing secure composition of protocols in the gRO model, given that this model anyway does not
provide rigorous security guarantees once the random oracle is replaced by a publicly computable
hash function. We provide several answers to this valid question. First, we note that attacks
that take advantage of insecure composition might come up even when no other attacks are found
against a protocol instantiated with some hash function. (In fact, the transferability attack is a
quintessential example for such a situation.)

Second, we observe that protocols in the gRO model give us a level of security that was not
known to exist in any other general computation (or even zero knowledge or commitment) protocol
that was proven secure in the UC framework: Indeed, protocols in that framework cannot exist
without some “trusted setup” construct. All known such constructs require trust in some third
party or an external entity that is outside the control of the players. Furthermore, these protocols
invariably provide the trusted external entity with the ability, if played maliciously, to completely
compromise the security of the players.

The gRO model is different, in that it “only” reduces the security guarantees to the level of
the stand-alone security guarantees provided by the random oracle methodology to begin with.
That is, the level of reassurance provided by analysis in the gRO model with respect to universally
composable security is no lower than the level of assurance provided by analysis in the ROM for
traditional, stand-alone security.

Certainly, in some respects, a protocol that was analyzed in the gRO model and instantiated
with a concrete hash function may well provide better security than a protocol analyzed in the

3

(non-global) CRS model and instantiated with a globally available reference string.
Still, it should be stressed that (similar to standard ROM) as soon as the gRO is replaced by a

concrete hash function, the security guarantees provided by this model are inevitably only heuristic.

1.1.2 Highly-Efficient Protocols

We design efficient protocols for a variety of tasks in the gRO model.
Starting from the work of Lindell and Pinkas [18], who constructed efficient two-party compu-

tation protocols based on Yao’s garbled circuit [30] via a novel cut-and-choose technique, a prolific
sequence of works [20, 19, 14, 28, 21, 17, 13, 29, 1] have shown increasingly more efficient protocols
for secure computation, which are either only stand-alone secure, or UC-secure in the CRS model
[19, 16, 17, 1]. We show how to construct very efficient protocols in the gRO model, which in most
cases improve on the highly efficient known existing solutions in the CRS model. In particular, we
first show a highly efficient UC-commitment scheme, which compares very favorably to the most ef-
ficient known UC-commitment scheme of Lindell in [16] (in the CRS model). When plugged in [17],
this construction directly yields very efficient UC-secure protocol for two-party computation. Fi-
nally we show that non-interactive secure two-party computation (NISC) is also achievable in the
gRO model, building on the work of Afshar et al. [1]. More specifically we provide the following
protocols.

UC commitments in the gRO model. We show a general construction that combines the use
of any straight-line extractable commitment in the gRO model and any trapdoor commitment, to
construct a UC-secure commitment scheme in the gROmodel. By instantiating the extractable com-
mitment with the protocol provided by Pass in [24] and the trapdoor commitment with Pedersen’s
scheme [25], we obtain an extremely efficient UC-secure commitment scheme that is significantly
more efficient than the best known UC-secure commitment scheme in the CRS model of [16]. Con-
cretely our protocol requires only 5 exponentiations per party and 5 rounds of communication in
total (including the commitment and decommitment phases).

UC two-party computation in the gRO model. We observe that the highly efficient UC-
secure two-party computation protocol (2PC for short) of Lindell [17], that works in the CRS model,
requires the use of UC-secure zero knowledge proofs, which in turns is based on UC-Commitments
only. By instantiating Lindell’s construction with our UC-commitments, we obtain a more efficient
UC-2PC protocol in the gRO model.

UC NISC in the gRO model. NISC – non-interactive secure computation– is a two-message
protocol run between parties P1 and P2, where P1 speaks first. Very recently, Afshar et al. in [1]
presented the most efficient NISC protocol, which is UC-secure in the CRS model. We show how
to instantiate this construction without using the CRS, in the gRO model, while preserving the
non-interactive nature of the protocol. Our construction is slightly less efficient than the protocol
of [1] but do away with the need to rely on a non-global (programmable) reference string.

1.2 Our Techniques

Here we provide an overview of the main technical ideas underlying our constructions.

4

1.2.1 Efficient UC Commitment in gRO Model

Recall that a UC secure commitment scheme requires two main properties: (a) Equivocation: When
the receiver is corrupted, the simulator should be able to commit (on behalf of the honest sender)
in such a way that it is able to decommit to any desired value. (b) Extractability: When the sender
is corrupted, the simulator should be able to extract the committed value during the commitment
phase.

Note that the observability property of the gRO naturally yields the desired extraction property
discussed above. Indeed, this was already used to build extractable commitments in prior works (see
e.g., [24]). How to achieve the equivocation property, however, is not immediately clear. Indeed,
as discussed earlier, in the gRO model the simulator cannot program the outputs of the random
oracle. Further, since we do not allow for trusted setups (such as a CRS), the simulator does not
have immediate access to a “trapdoor” that allows for equivocation.

Towards that end, our starting point is the observation (already implicit in prior works) that
the task of equivocation can, in fact, be reduced to the task of trapdoor extraction. More concretely,
consider a trapdoor commitment scheme in the CRS model where the knowledge of the CRS trap-
door allows for equivocation (but does not compromise the hiding property of the scheme). For
example, Pedersen’s commitment scheme [25] satisfies these properties. Then, consider the follow-
ing protocol template: first, the receiver chooses the CRS of the trapdoor commitment scheme on
its own and sends it to the sender along with an extractable commitment to the associated trap-
door. For concreteness, let us think of the extractable commitment as simply the answer of the gRO
when queried with the trapdoor string. Next, the committer commits to its input string by simply
using the trapdoor commitment scheme. Since we want to preserve the extractability property
from the committer side, we further require the committer to query the gRO on the opening of the
above commitment and then commit to the answer of the gRO via another instance of trapdoor
commitment. (Similar ideas were used in [23].)

Now, consider the following simple strategy for equivocation: the simulator first extracts the
value committed by the receiver in the first message (by simply observing its query to the gRO) and
then uses it as a trapdoor to later equivocate in both of the trapdoor commitments. While such an
approach would indeed work against a semi-honest receiver, unfortunately, it does not work against
a malicious receiver. The problem is that the above protocol does not preclude a cheating receiver
from committing to some bogus value (instead of the correct trapdoor). Note that here we cannot
simply require the receiver to provide a proof of consistency since proving that a given string is the
output of the random oracle is not an NP statement.

Going further, one can observe that an extractable commitment in the gRO model is, in fact,
only effective if it is later decommitted. This is because otherwise the adversary can choose to simply
not query the gRO at all! Thus, in order to verify that the receiver actually commits to the valid
trapdoor, we ask it to open its commitment in the decommitment phase. Now, the simulator can
indeed extract the trapdoor from the first message of the receiver and be convinced of its validity
since otherwise the receiver would fail to decommit properly later on.

While the above modification yields us the desired equivocation property, unfortunately, the
resultant protocol is no longer sound against adversarial committers. This is because after viewing
the trapdoor revealed by the receiver, a cheating committer can now also equivocate in the same
manner as the simulator. Indeed, it may seem that now the simulator and an adversarial committer
have the exact same power (i.e., both have access to the trapdoor). In order to solve this problem,
we leverage the asymmetry between the simulator and the cheating committer. In particular,

5

note that the simulator knows how to equivocate even at the start of the decommitment phase
(conditioned on the event that it previously extracted a valid trapdoor from the receiver), while the
cheating sender can only equivocate after the receiver reveals the trapdoor. Thus, we now require
the committer to commit to its openings of the commitments (from the commitment phase) before
the receiver reveals the trapdoor. This immediately prevents the committer from being able to
equivocate, but still preserves the equivocation property of the simulator. Due to technical reasons,
we require the above commitment to also be extractable. Very briefly, this is necessary to formally
reduce the binding property of the UC commitment scheme to the binding property of the trapdoor
commitment scheme.

Discussion on Efficiency. We compare the efficiency of our scheme with Lindell’s commitment
scheme [16] (which, to the best of our knowledge, is the most efficient UC secure commitment
scheme in the CRS model, in the literature). Round Complexity. The commitment phase in our
scheme requires 2 rounds while the commitment phase in [16] is non-interactive. On the positive
side, our decommitment phase requires 3 rounds, while [16] requires 5 rounds. Computational
Complexity. Prior works have demonstrated that the main bottleneck in the computational efficiency
is the number of exponentiations. When instantiated with Pedersen’s commitment scheme, our
protocol requires only 5 exponentiations per party: the commitment phase requires 1 exponentiation
from the receiver to compute the parameters for Pedersen commitment, and 4 exponentiations
from the committer to compute two Pedersen’s commitments; in the decommitment phase the
same exponentiations are required in the reverse order for the verification of the parameters and
the decommitments. In contrast, in [16], requires 13 exponentiations per party. Our protocol
additionally requires 6 random oracle evaluations.

1.2.2 Efficient NISC in gRO Model.

Our starting point is the NISC protocol of [1], which is UC-secure in the CRS model. Our goal
is to emulate their approach in the gRO model. Towards that end, we observe that this task can
be reduced to implementing a UC secure oblivious transfer (OT) protocol in the gRO model. In
particular, since our focus is on efficiency, recall that the NISC protocol of [1] relies on the highly
efficient UC OT protocol of Peikert et. al [26]. (For convenience, let us refer to this protocol as
PVW OT.) Therefore, our goal then is to realize a version of PVW OT in the gRO model.

Realizing this simple idea, however, turns out to be highly problematic. Note that since a
CRS is not available in our setting, the natural approach is to have the OT receiver choose the
OT parameters (that comprise the CRS in [26]) and provide a zero-knowledge proof of knowledge
(ZKPoK) of consistency. We stress that both the ZK and PoK properties of the proof are crucial
here to ensure that the resulting OT protocol is fully simulatable. Specifically, the ZK property is
necessary to allow the simulator to cheat in the computation of the parameters and extract both
the inputs of a malicious OT sender. The PoK property, on the other hand, allows the simulator
to extract the input of the receiver. Note, however, that a ZK proof in the gRO model requires
at least two rounds [24]. As such, the resulting OT protocol in the gRO model becomes 3 rounds
which violates the non-interactivity requirement for NISC.

Towards that end, upon closer inspection of the NISC protocol of [1], we make the following
observation: Let P1 and P2 denote the two parties in the NISC protocol where P1 is the evaluator
of the garbled circuit, and therefore the receiver of the OT, and P2 is the generator of the garbled
circuit and therefore the sender of the OT. Then, [1] uses the simulatability property of OT against

6

malicious OT senders to extract the input of the sender P2.
Our first idea is to extract the critical information from P2 by exploiting the observability

property of gRO. Specifically, we modify the NISC protocol of [1] by requiring that the randomness
used to compute the commitments and the garbled circuits is generated by querying gRO. This
enables the simulator –that observes the queries– to extract all the keys of the garbled circuits
in “straight-line” without simulating the OT protocol for adversarial OT sender. Therefore, the
problem of implementing the NISC protocol of [1] in the gRO model now reduces to constructing
a 2 round one-sided simulatable OT, namely, an OT which is UC simulatable against malicious
receivers but only guarantees indistinguishability security against malicious senders.

Our next contribution is to provide such a construction. The high-level strategy is to replace
the (2-round) ZKPoK in the above construction of PVW OT with a non-interactive witness hiding
(or witness indistinguishable) PoK in the gRO model. Implementing this idea, however, turns out
to be quite non-trivial. Recall that the security of PVW OT against a malicious sender relies on
the hardness of the DDH problem: an adversary distinguishing the input bit of the honest receiver
can be used to construct an adversary that distinguishes a DDH tuple from a non-DDH tuple. This
reduction goes smoothly when the receiver in PVW OT gives a ZKPoK proof of the correctness of
the OT parameters since the DDH distinguisher can use its challenge tuple as the OT parameters
and give a simulated ZK proof of correctness without knowledge of the corresponding witness.

However, when we replace the ZK proof with (say) a witness hiding (WH) proof, then the above
reduction does not work because the DDH distinguisher does not know the witness for the proof.
Towards that end, we pursue the idea of using a witness-indistinguishable (WI) proof instead of a
WH proof. We have the following two-fold requirement: first, the statement for the WI proof should
enable a secondary witness that can be used by the DDH distinguisher in the above reduction to
construct a valid proof (without knowledge of the witness corresponding to the challenge tuple).
Second, the PoK property of the proof should enable extraction of a cheating OT receiver’s input
even if she uses the secondary witness.

As we discuss later in Sec.5, realizing the above two properties simultaneously turns out to be a
difficult task. Our final idea towards this end is to essentially run the OT protocol twice in parallel.
Specifically, we require the OT receiver to choose two independent OT parameters and give a single
WIPoK proof that proves the correctness of one of them. The sender then secret shares each of
its OT input into two parts and then computes two different OT messages (using different OT
parameters), one for each set of input shares.

Now, in order to argue security against cheating senders, we can construct a DDH distinguisher
who uses the challenge tuple as one of the two OT parameters and generates the second one on
its own. This allows the distinguisher to successfully give a WI proof of correctness. On the other
hand, when the OT receiver is corrupted, the soundness of WIPoK ensures that at least one of the
OT parameters is honestly generated. Therefore, we can ensure that a cheating receiver cannot
learn both the inputs of the honest sender. In particular, the simulator uses the PoK property to
extract the input of the receiver (which may be ⊥ if the one set of OT parameters chosen by the
receiver is malformed, since in this case, the receiver will not learn either of the inputs of the honest
sender). We refer the reader to Sec. 5 for more details.

Discussion on Efficiency. Our one-sided simulatable OT in the gRO model is more expensive in
terms of exponentiations compared with the PVW OT in the CRS model. This is due to the WIPoK
that the OT receiver has to perform at the beginning of the protocol to prove the consistency of
the OT parameters. The WIPoK protocol that we use requires t parallel repetitions of a Σ-protocol

7

(which are necessary to achieve straight-line extractability [10] in the gRO model), where t is the
statistical security parameter. The underlying Σ-protocol is based on the Σ-protocol provided in [9]
to prove OR-statements, and requires 8 exponentiations. Therefore, in total the proof requires 8t
exponentiations. We stress that this proof is executed only once at the beginning, and the same
parameters can be reused for all the subsequent transfers.

Furthermore, as our OT-protocol consists of a double repetition of PVW OT, each transfer is
twice more expensive than a transfer with PVW OT. Additionally, our protocol requires 4.5t random
oracle evaluations (the explanation of such values are deferred to Sec. 5). However, we observe that
the NISC protocol of [1] requires O(tn + t2) exponentiations, where t is the statistical parameter
for the cut-and-choose protocol and n is the size of the input of one of the parties. Therefore, when
plugged into NISC, our one-sided simulatable OT construction does not add a significant overhead.

2 The Global Random Oracle Model

In this section we describe our model and explain our definitional choices. Toward this end we
briefly discuss the UC definition and its extensions JUC (Joint State UC) and GUC (Generalized
UC).

2.1 Basic UC

Informal. The Universal Composability (UC) framework was introduced in [3] by Canetti to simplify
the security analysis of protocols running in the complex network environment, like the Internet,
where arbitrary protocols are potentially run concurrently. Namely, assume that one has to design
a protocol and to prove that the protocol is secure even if run concurrently with many instances of
arbitrary protocols. In the proof of security one should somehow take into account all such possible
executions and prove that no matter what all these protocols are doing, the protocol remains secure.
Let us call this protocol –the one for which we want to prove security– challenge protocol.

The UC framework allows one to analyze the security of the challenge protocol in isolation
(without having to consider the concurrent executions) and then use the composition theorem to
conclude that the protocol will be secure also when composed with arbitrary protocols.

The crucial aspect of the UC framework is indeed itsmodularity: when programs call subroutines,
these subroutines are treated as separate entities that can be analyzed separately for their security
properties by way of realizing a functionality G. It is then argued, via the universal composition
theorem, that any protocol that uses subroutine calls to G keeps all its security properties when G
is replaced by a protocol that realizes it.

This powerful composition theorem holds only when subroutines do not share any part of their
internal states with each other or with the calling protocol. In particular, a setup functionality that
is modeled as a subroutine of the analyzed protocol cannot be invoked by more than one protocol
session. In practice this means that even setup functionalities like PKI or CRS cannot be shared
by more than one protocol.

Technical. The UC framework is based on the ideal/real world paradigm. In the ideal world, one
specifies an ideal functionality F as an interactive Turing machine that privately communicates with
the parties and the adversary S and computes a task in a trusted manner. The specification of the
functionality also models the adversary’s ability to influence the computation and the information
that the protocol leaks.

8

In the real world, one specifies a protocol Π that is executed by the parties. Parties communicate
over the channel in presence of an adversary A which controls the schedule of the communication
over the channel, and can corrupt parties. Both in the ideal world and in the real world, parties are
identified by a unique id, called PID together with a session id, SID. When a party is corrupted
the adversary receives its secret input and its internal state. In this work, we consider only static
adversaries, which means that A can corrupt a party only before the protocol execution starts.

The presence of arbitrary protocol running in the network is modeled via the concept of the
environment Z. The environment Z determines the inputs to the parties running the challenge
protocol and see the outputs generated by these parties. The environment communicates with the
adversary A/S and corrupts parties through the adversary. Typically, wlog one assume that the
adversary A is dummy in the sense that he just acts as a proxy between the environment and the
honest parties participating in the challenge protocol.

A protocol Π securely realizes a functionality F in the UC framework if for any real world
adversary A, there exists an ideal adversary S, such that for any PPT environment Z the view of
an interaction with the protocol and A is indistinguishable from the view of an interaction with the
ideal functionality F and S. One also considers a G-hybrid model, where the real-world parties are
additionally given access to an ideal setup functionality G. During the execution of the protocol,
the parties can send inputs to, and receive outputs from, the functionality G.

In the basic UC framework the environment Z cannot directly access to the ideal setup func-
tionality, but it can do so through the adversary. Namely, any query that Z wishes to make to the
ideal functionality G is observed by the adversary/simulator, who queries the ideal functionality for
Z and forwards the answer. This implicitly means that the setup G is treated as a “private subrou-
tine” of the protocol, and is thus local to the challenge protocol instance. For example, the CRS
functionality in the basic UC model is captured as a trusted setup that gives the reference string
only to the adversary and the parties running the protocol. Technically, this assumption allows the
simulator to program the CRS because the environment has no access to the “real” CRS.

2.2 JUC: UC with Joint State

The basic UC-framework demands that each execution of a protocol ρ is independent and uses
its own local setup functionality. Therefore, if one wants to analyze a protocol π which executes,
say t copies of ρ, one would need t independent instantiations of the setup functionality, e.g., t
independent CRS. However, in practice one wants to use the same setup, e.g., the same CRS, for all
executions of ρ. In order to reuse the same CRS in the UC-framework, one has to analyze the entire
system of t executions of ρ as a single unit. Indeed, early works in UC implemented directly the
multi-version of a functionality, e.g., functionality for multiple commitments Fmcom instead of just
functionality for a commitment Fcom, and prove security directly of Fmcom where all commitments
share the same setup.

In [8] Canetti and Rabin introduce Universal Composition with Joint State (JUC), and a new
composition theorem that allows to prove composition of protocols that share some state. Con-
tinuing the example of Fmcom and the CRS setup, [8] introduces a mechanisms that allows to do
the following. Instead of designing a protocol that directly implements the multi-instance version
Fmcom, it is sufficient to provide a protocol that implements Fcom in the standard CRS model and
then “compile” Fcom into Fmcom using the same CRS.

A bit more precisely, functionality Fmcom is a multi-session functionality that has a global sid
and for each sub-session has a a sub-session id ssid. The idea of the compiler of [8] is to derive fresh

9

CRSssid for each ssid starting from a single CRS, and then run each execution of Fcom using setup
CRSssid.

In the JUC model the CRS is locally available to only a specific set of protocols. It is not a public
setup and cannot be used globally by any protocol. Thus, any protocol which is not pre-specified
in this set must use a freshly sampled CRS. Technically this means that again the environment Z
has not direct access to the CRS, but it needs to access it through the adversary/simulator, and
therefore the CRS is programmable.

The JUC can be seen more as a proof technique and does not provide a stronger level of security
than basic UC.

2.3 Generalized UC model

In both basic UC and JUC model, the environment is constrained: it does not have access to the
setup functionality. The consequence in practice is that a protocol proved secure in these models
is secure only if the setup is not public. In the CRS example, the CRS must be communicated
privately to the parties participating the protocol.

However this assumption might be too strong or impractical in real life applications where it
is instead more plausible that there is a single CRS published and used by many protocols, or, in
the case of PKI (Public Key Infrastructure), one party uses the same public key in all protocol
executions.

Ideally, one would like to have the nice modularity of the UC composition theorem that works also
in presence of a global setup that is available to all parties/protocol executions. In [4], Canetti et al
introduce the “Generalized UC model”: they provide the formalism to describe global functionalities
and show that the composition theorem still holds in this setting. The model of [4] is very general
as it considers general shared functionalities (not necessarily setup functionalities). In the following
we restrict our attention to setup functionalities only.

A setup functionality is global if it can be accessed by any protocol running in the system besides
the challenge protocol. To model this, [4] first grants the environment the power of initiating several
sessions besides the challenge session, and second, allows the environment to access to the setup
functionality directly, without going through the simulator/adversary. This indeed captures the fact
that any protocol in the network can use the same setup1. The first consequence of this modeling is
that a global setup functionality must be non-programmable. Too see why, think of the CRS setup:
If the CRS is publicly available then the simulator cannot program it as the environment Z can
create new parties for arbitrary protocols – of which the simulator is not aware of – and check the
CRS.

It is easy to see that GUC security is impossible to achieve in the CRS model as the simulator
has no advantage over the adversary. In fact, as noticed in [4] it seems that any global setup that
provides only public information is of little help for the simulator as it does not provide any trapdoor.
Thus, achieving security in GUC model seems to require a special publicly available resource that
also “hides” a trapdoor.

Motivated by this intuition [4] introduces the Augmented CRS (ACRS for short), where there
is a public, global CRS consisting in signature verification keys, one for each party participating in

1 [4] actually considers also a simplified definition called externalized UC model, where the environment has direct
access to the setup functionality but does not initiate any new session except the challenge session. The access to the
setup functionality allows Z to internally mimic the behavior of multiple sessions or more sessions of the challenge
protocol.

10

the protocols. Additionally, associated to each verification key, there is a secret signing key that is
not revealed to the parties. This is the trapdoor. An honest party never asks for the signing key.
The catch is that a corrupted party can ask for the signing key and this is the trapdoor that allows
the simulator to cheat in the simulation. At the same time, knowledge of her own signing key does
not help the real adversary to break the privacy of other parties.

Note that security in the ACRS model is preserved only for “pid-wise” adversary: Namely it
assumes that a party pid is corrupted in all the sessions that he plays. Also, note that even if
the environment does not instruct the adversary to actually get the private signing key, still the
simulator will ask the key to the ACRS functionality, i.e., a corrupt guy always gets the secret key.

2.4 Our Global Random Oracle Model

In this work we aim to use the random oracle as global setup functionality and achieve the stronger
GUC security using this setup.

Let us first consider a simplistic candidate formulation for the global random oracle functionality:
When queried by anyone for a value x, the random oracle functionality simply checks if x was queried
before by anyone. If not, then it returns a freshly chosen random string of some pre-specified length.
If yes then the previously chosen value is returned again — even if the earlier query was made by
another party. No other information is disclosed to anyone. Let us call this functionality GsRO
(where the s stands for “strict”). While GsRO is natural, it seems to be of little help for proving
security of protocols. For one, GsRO does not allow the simulator to “emulate” the random oracle
functionality to the environment, or in other words to “program” the answers of the random oracle.
Indeed, recall that the environment can create additional parties that query GsRO and report the
answer directly back. More importantly, GsRO is of little help to the simulator for another reason:
The environment can obtain random-oracle values via the auxiliary parties, without having the
adversary/simulator be aware of the queried values or answers. This means that GsRO is essentially
useless to the simulator. Indeed, the impossibility results for UC computation in the plain model
(e.g. [5, 7]) are easily extendible to the GsRO model.2 And in fact, as mentioned earlier, [4] already
observed any global setup functionality that provides only public information cannot be useful for
achieving UC-security as the simulator has no advantage over the real adversary.

We can move forward using the observation that the Random Oracle does keep secret informa-
tion: the queries made by the parties. Such queries are the trapdoor that can allow the simulator
to extract crucial information from the adversary. We want to provide a reasonable formulation of
the global random oracle functionality that allows extractability of the queries.

First note that if we attempt to modify the definition of GsRO so that it will disclose to the simu-
lator all the queries made by other parties then we will again lose the usefulness of the functionality
altogether, since the adversary too would be able to see the queries made by uncorrupted parties.
Instead, we want to disclose only the queries made by the adversary/environment, while the queries
made by any honest party should be invisible to external entity.

The queries made by the dummy adversary are directly observed by the simulator. The problem
is: how to extract the queries made by the environment?

We propose the following mechanism. Queries are expected to have an explicit session identifier
field, namely, a query x is parsed as the pair x = (s, x′) where s is the SID. The random oracle

2Still, it should be kept in mind that having access to a random oracle such as GsRO is not something that can be
emulated in the standard model using an efficiently computable hash function family. In particular, the impossibility
results of [6] still hold even with respect to this model.

11

Functionality GgRO

Parameters: output length `(n) and a list F̄ of ideal functionality programs.

1. Upon receiving a query x, from some party P = (pid, sid) or from the adversary S do:

• If there is a pair (x, v) for some v ∈ {0, 1}`(n) in the (initially empty) list Q of past
queries, return v to P . Else, choose uniformly v ∈ {0, 1}`(n) and store the pair (x, v) in
Q. Return v to P .

• Parse x as (s, x′). If sid 6= s then add (s, x′, v) to the (initially empty) list of
illegitimate queries for SID s, that we denote by Q|s.

2. Upon receiving a request from an instance of an ideal functionality in the list F̄ , with SID
s, return to this instance the list Q|s of illegitimate queries for SID s.

Figure 1: GgRO

continues to answer the queries as before, namely it answers with a random value. The only
difference is that some of the queries can be marked as “illegitimate” and potentially disclosed. Let
us explain when a query is illegitimate. Recall that in the UC framework, a party P is identified by
the unique pair (PID, SID) where PID is the program identifier and SID is the session identifier.
Illegitimate queries are identified as follows. If the content of the SID field of the query differs from
the content of the SID field of the querying party P , then the queries is considered “illegitimate”.
The functionality will record such queries and potentially disclosed to to the instance of F whose
SID is the one in the query.

Therefore, our global random oracle functionality answers the queries just like the strict GsRO,
but additionally it agrees to disclose, to some pre-specified set of ideal functionalities, the illegitimate
queries. We stress that illegitimate queries are answered as usual; they are just recorded separately
and potentially disclosed. We stress that the random oracle in not programmable. The resulting
random oracle functionality, denoted GgRO, is described in Fig. 1.

The rationale behind this way of defining (il-)legitimate queries is the following. On the one
hand, it allows designing protocols where the legitimate participants make RO queries that are
never disclosed (simply prefix each query by the SID of the present session). Furthermore, it forces
an ideal functionality to explicitly represent the information that is leaked by ideal functionalities
regarding the oracle queries.

To further exemplify the properties of GgRO, let us consider the case of zero-knowledge protocols
in the presence of GgRO. Recall that the traditional ideal Zero Knowledge functionality, FZK, allows
a prover to convince a verifier (whose identity is determined by the prover) of the correctness
of a statement without revealing any additional information, and without allowing the verifier to
“transfer” the proof to another party. In contrast, as discussed in the Introduction, any proof in the
global ROM is inherently transferable: To transfer a proof to party C, the verifier V simply lets C act
as the verifier, and in particular have C make all the oracle queries herself. Consequently, any formal
modeling of the global ROM should mirror this property of the global ROM. Indeed, it can be seen
that FZK is not realizable if the parties only have access to GsRO. (Intuitively, disclosing the queries
of third parties to the adversary/simulator has the effect that these third parties can no longer use
GgRO to verify claims made by parties that participate in the session under consideration. This, for

12

instance, means that GgRO can no longer be used, in the model, to “transfer” proofs made within
the session to third parties.) Further discussion on the definition of transferable Zero-Knowledge in
the gRO model can be found in Appendix A.

We now provide the formal definition of UC-security in the Global Random oracle model.

Definition 1. [UC-security in the Global Random Oracle Model.] Let Ft be an ideal m-
party functionality and π be a protocol. We say that Π UC-realizes Ft in the GgRO-hybrid model
if for any hybrid-model PPT adversary A, there exists an ideal process expected PPT adversary S
such that for every PPT environment Z, it holds that:

{IDEALGgROFt,S,Z(x̄, n, z)}x̄∈{0,1}∗m,n,z ≈ {REAL
GgRO
π,A,Z(x̄, n, z)}x̄∈{0,1}∗m,n,z

where REAL denotes the outputs of the honest parties and the adversary A after a real execution
of protocol π, where x̄ is the vector of inputs to the parties P1, . . . , Pm, z ∈ {0, 1}∗ is the auxiliary
input for A and n is the security parameter. IDEAL is the analogous distribution in an ideal
execution with a trusted party that computes Ft for the parties and hands the output to the
designated players. We provide the formal description of the ideal functionalities in the GgRO model
that we implement in this paper: the commitment functionality Fig. 2, the OT functionality Fig. 3
(OT) and the NISC functionality Fig. 4.

Functionality Ftcom
Ftcom running in presence of an adversary S proceeds as follows:

• Commitment Phase: Upon receiving a message (commit, sid, Pi, Pj ,m) from Pi where
m ∈ {0, 1}n: Record the tuple (sid, Pi, Pj ,m) and send the message (receipt, sid, Pi, Pj) to
Pj and S. Ignore any subsequent commit messages.

• Decommit Phase: Upon receiving (decommit, sid, Pi, Pj) from Pi, if the tuple
(sid, Pi, Pj ,m) is recorded then send (decommit, sid, Pi, Pj ,m) to Pj and to S and halt.
Otherwise ignore the message.

• When asked by the adversary, obtain from GgRO the list Qsid of illegitimate queries that
pertain to SID sid, and send Qsid to S.

Figure 2: The Commitment Functionality Ftcom.

2.5 Discussion

Comparison with the JUC model. Our mechanism of illegitimate queries can be seen as a
multiplexing mechanisms where from one global random oracle we derive many independent random
oracles based on the sid. This technique is reminiscent of the multiplexing technique of [8] for the
Joint State UC model, where they derive many independent CRS from a shared CRS.

We stress important differences between our model and the model of [8]. First, the shared CRS
in [8] is still local to a pre-specified set of parties. This means that the environment does not have
access to the CRS and that the simulator can program it. Thus, there is no global setup.

In our case the RO is global and can be used by any protocol in the world.

13

Functionality Ftot
Ftot running with an oblivious sender S a receiver R and an adversary S proceeds as follows:

• Upon receiving a message (send, sid, s0, s1, S,R) from S where each s0, s1 ∈ {0, 1}n, record
the tuple (sid,s0, s1) and send (send, sid) to R and S. Ignore any subsequent send messages.
• Upon receiving a message (receive, sid, b) from R, where b ∈ {0, 1} send (sid, sb) to R and
(received, sid) to S and S and halt. (If no (send,·) message was previously sent, do nothing).
• When asked by the adversary, obtain from GgRO the list Qsid of illegitimate queries that
pertain to SID sid, and send Qsid to S.

Figure 3: The Oblivious Transfer Functionality Ftot.

Functionality Fnisc

Fnisc running in presence of an adversary S proceeds as follows:

• Initialize a list L of tuples.

• Upon receiving a message input(x) from P1, store x.

– Upon receiving a message input(sid, y) from a player Pi, insert the tuple (Pi, sid, y) to
L. If P1 is corrupted send (Pi, f(x, y)) to P1. Else send message− received(Pi) to P1.

– Upon receiving a message get-outputs from P1, send {(Pi, sid, f(x, y)}(Pi,sid,y)∈L.

– When asked by the adversary, on input sid obtain from GgRO the list Qsid of illegitimate
queries that pertain to SID sid and send Qsid to S.

Figure 4: The Multi-server NISC functionality Fnisc (adapted from [1]).

Comparison with the GUC model. Our model is weaker than the GUC model of [4] as it does
not achieve on-line deniability (we discuss more on this in the next paragraph).

However, our leaking of queries has the same flavor of ACRS. Let us explain. Consider the
transferability attack described earlier where there are parties A,B,C and B is simply forwarding
messaging between A and C. In this real attack the adversary B is not doing anything but relaying
messaging. In the ACRS model of [4] this attack is simulatable for the following reason. B is a
corrupted party and as such the simulator can ask for B’s secret key, even if in real life B did not
actually tried to obtain its secret key neither to use it. Their model somehow “leaks” the secret key
of the corrupt party, but this leakage does not give any advantage to the adversary in breaking the
security of honest parties.

Our mechanism with illegitimate queries is of the the same flavor. Our functionality leaks
illegitimate queries, but knowledge of this queries does not give any advantage to the adversary in
breaking the security of the honest parties. As in the ACRS model where an honest party would
never ask for its secret key, in our model an honest party will not make illegal queries, and its
security is therefore preserved.

About pid-wise corruption. In the constructions provided in [4] security holds only in presence of
pid-wise corruption. Namely, a corrupted party is corrupt in all sessions (i.e., if a player is corrupt
in one session, she cannot be honest in another one). This is due to the fact that, once a party is

14

corrupt, her secret key is leakead. Once the secret key is revealed, security for this party cannot be
argued anymore. We note that in our model we do not need such restriction.

Off-line Deniability As pointed out in [4] it is hard to precisely define what deniability is as
such definition might differ depending on the application. The definition that [4] gives is that a
protocol is deniable if any party can simulate the protocol with just the knowledge of the output.
Namely, any party can be a simulator.

As we discussed before, our model does not guarantee on-line deniability, as if the corrupted
party is forwarding the messages to a third party, then the protocol is not deniable. However, we
note that our protocols do provide off-line deniability, as any party, given the output of the function
can simulate an accepting transcript.

Off-line deniability is instead impossible to achieve in the programmable CRS/RO model.

3 Building Blocks

In this section we provide the definitions of the building blocks that we use in our protocols.

3.1 Trapdoor Commitment

Definition 2 (Trapdoor Commitment Scheme). A tuple of PPT algorithms (TCGen,TVer,TCom,
TRec, TEquiv) is a trapdoor commitment scheme if, (pk, sk) ← TCGen(1n) is the generation al-
gorithm that outputs the public key pk and the trapdoor key sk, TVer(pk, sk) outputs 1 iff sk is a
valid trapdoor for pk, TCom is the algorithm that takes in input pk and a message m and outputs
the commitment c and the decommitemt d; TRec is the verification algorithm that on input (c, d,m)
outputs 1 iff the d is a valid decommitment of c for message m and TEquiv is a polynomial-time
algorithm that satisfies the following:
- trapdoor property: for all PPT A, for any m ∈ {0, 1}n the following two probability distribu-
tions are computationally indistinguishable:

• (pk, c, d,m) where (pk, sk)← A(1n) s.t. TVer(pk, sk) = 1, and (c, d)← TCom(pk,m)

• (pk, c′, d′,m) where (pk, sk) ← A(1n) s.t. TVer(pk, sk) = 1, (c′, z) ← TCom(pk, ·), and d′ ←
TEquiv(sk, z,m)

The above definition considers trapdoor commitments with the following properties: (a) the
trapdoor is used only to compute the decommitment, (b) knowledge of the trapdoor allows to
equivocate any previously computed commitment (as long as the state z is known). Such a commit-
ment scheme can be based on Pedersen’s perfectly hiding commitment scheme [25] that we describe
in Fig. 5 for completeness.

3.2 Non-interactive WIPoK in the gRO model

Based on non-interactive straight-line commitment and Σ-protocols, Pass [24] shows how to con-
struct an efficient straight-line non-interactive witness-indistinguishable proof of knowledge, for
short NIWIpok, in the non-programmable random oracle model. The idea behind the construction
is the following. Let (α, β, γ) be the three messages of a Σ-protocol. Recall that the special sound-
ness of Σ-protocols guarantees that if for the same first message α, one gets two accepting answers
(β0, γ0) and (β1, γ1), then one can extract the witness. To achieve proof of knowledge, the idea is

15

• TCGenP : The generation algorithm is a randomized algorithm that outputs pk =
(G, p, q, g, h) and sk = trap where p = 2q + 1, p and q are primes, G is a subgroup of
order q of Z∗p , g and h = gtrap are generators of G.

• TVerP : The trapdoor verification algorithm outputs 1 if h = gsk; otherwise it outputs 0.

• TComP : The commitment algorithm is implemented as: TComP (pk,m) = (gmhr

(mod p)), d = (m, r) where r ∈ Z?p is randomly chosen.

• TRecP : The receiver algorithm takes as input (c,m, r) and outputs 1 iff c = gmhr.

• TEquivP : The equivocation algorithm takes as input (c,m, r,m′, sk), where c denotes a
commitment, (m, r) denotes the decommitment for c, m′ is the new message (for which
equivocation is required) and sk is the trapdoor. The algorithm computes the new decom-
mitment (for m′) as r′ = m′ −m+ r and outputs it.

Figure 5: Pedersen’s commitment scheme.

to force the prover to commits to both pairs (β0, γ0) and (β1, γ1) using the straight-line extractable
commitment, but open to only one of the answers.

The answers to open is decided by querying the RO with the commitments so computed. The
extractor obtains the witness by running the extractor associated to the extractable commitments.
This protocol achieves only soundness 1/2. For soundness 2L, one needs to repeat this protocol L
times. The protocol is formally described in Protocol 1.In the protocol the RO is invoked with the
prefix corresponding to the ID of the prover. Due to the unpredictability of the RO, adding this
prefix ensures non-malleability.

Protocol 2.Non-interactive proof of knowledge NIWIpok [24]. Let (α, β, γ) denote the three mes-
sages of a Σ protocol for a language L. Let gRO : {0, 1}2n ← {0, 1}`(n) where `(n) = ω(log n). Let
ExtCom the following commitment algorithm. On input id, x, pick a random string r and outputs
gRO(id, x, r). The decommitment consists in the pair x, r.

Public input: x.
Private input to P : a witness w for theorem “x ∈ L”.
• P computes α, the first message of the Σ-protocol. P picks two challenges β0, β1 (with
β0 6= β1), and computes the corresponding answers γ0, γ1 using knowledge of the witness w.
• P commits to β0, β1, γ0, γ1: it computes cβb = ExtCom(“P0′′ ◦ βb) and cγb = ExtCom(“P0′′ ◦
γb), for b = 0, 1. Let Dβb,Dγb the corresponding decommitments.
• P computes the challenge e as follows. Let C̄ = (Cβ0,Cβ1,Cγ0,Cγ1) the concatenations of the

commitments so obtained. P compute e = gRO(α, C̄).
• The non-interactive proof consists of the message: α, C̄,Dβe,Dγe.
• V checks that: 1)Dβe,Dγe are valid decommitments to βe, γe, 2) α, βe, γe is an accepting

transcript for the theorem x ∈ L.

16

3.3 Sigma Protocols

In this section we present the Σ-protocol that will be used in Protocol 2.

Σ-protocol to prove Knowledge of a Discrete Logarithm (DLog). Let G be a group of prime
order q generated by g and let w ∈ Zq. Let n be the security parameter, and 2n < q. Let RDL be
the relation for the Discrete Log (DLog) problem as follows: RDL = {((G, q, g, h), w)|h = gw}. The
Σ-protocol for RDL is depicted in Figure 6.

Common input: x = (G, q, g, h).
P ’s secret input: w s.t. (x,w) ∈ RDL.
Σ-protocol:

• P: choose r $← Zq and send a = gr to V .

• V: choose e $← Zq and send it to P .
• P: compute z ← r + ew mod q and send it to V .
• V: accept if and only if gz = ahe.

Figure 6: Σ-protocol for Relation RDL.

Proof of Knowledge of a Compound Statement. Let (x0, x1) be a pair of statements. Let
P be a prover who wants to prove that he knows a witness w such that either (x0, w) ∈ R0 or
(x1, w) ∈ R1 without revealing which is the case. Let π0 be the Σ-protocol for the relation R0

and π1 be the one for R1. Figure 7 shows a Σ-protocol for R0 ∨ R1. This protocol exploits the
honest verifier zero knowledge (HVZK) property of Σ protocol. This property allows to compute an
accepting transcript (a, e, z) given in input the theorem x and the challenge e and without knowing
the witness.

Common input: (x0, x1).
P ’s secret input: w s.t. (xb, w) ∈ Rb.
Σ-protocol:

• P: compute ab according to π0 using (xb, w) as input: then choose e1−b and run the HVZK
simulator S for π1−b on input (x1−b, e1−b) to obtain (a1−b, e1−b, z1−b); send (a0, a1) to V .
• V: choose s ∈ {0, 1}t and send it to P .
• P : set eb ← s⊕ e1−b, compute zb according to πb and send (e0, z0, e1, z1) to V .
• V: check that e0 ⊕ e1 = s and that both transcript (x0, a0, e0, z0) and (x1, a1, e1, z1) are

accepting according to π0 and π1 respectively.

Figure 7: Witness-Indistinguishable PoK of a Compound Statement.

4 UC Commitments in the gRO Model

In this section, we present a UC secure commitment scheme in the global RO model. Our com-
mitment scheme can be based on any stand-alone secure trapdoor commitment scheme (see Def.2).

17

However, in order to obtain the concrete efficiency parameters as discussed earlier in Sec.1.2, we
instantiate the trapdoor commitment scheme with Pedersen’s perfectly hiding commitment scheme
[25] described in Fig. 5. The intuition behind the security proof was given in Sec.1.2.

We now describe a UC secure commitment scheme, denoted 〈C,R〉, in the global random or-
acle model. Here, C denotes the algorithm of the committer and R denotes the algorithm of
the receiver. See Fig. 2 for a formal description of the ideal commitment functionality. Let
(TCGen,TVer,TCom,TRec,TEquiv) be a trapdoor commitment scheme. Let n be the security pa-
rameter and m ∈ {0, 1}|n| denote the input string of the committer. Let sid denote the session
identifier. The commitment scheme 〈C,R〉 consists of two phases, namely, the commitment phase
and the decommitment phase, described as follows:

Protocol 1. UC Commitment in the gRO model.
Inputs. C has in input m ∈ {0, 1}n. R has no input. Let sid denote the session identifier.

Commitment Phase: This phase consists of two rounds.

• R → C: R first computes (pk, sk) ← TCGen(1n). Next, it samples a random string r (of
appropriate length) and queries the gRO on the string (sid, ‘R’‖sk‖r). Let aR be the resulting
answer. R sends (pk, aR) to C.

• C → R: C first computes a trapdoor commitment to its input stringm, namely, (cmsg, dmsg)←
TCom(pk,m). Next, it samples a random string s and queries the gRO on the string (sid, ‘C’‖m‖dmsg‖s).
Let aC be the resulting answer. Finally, it computes a trapdoor commitment to aC as
(cro, dro)← TCom(pk, aC).

C sends (cmsg, cro) to R.

Decommitment Phase: This phase consists of 3 rounds.

• C → R: C commits to the decommitments dmsg, dro: it first samples a random string s′ and
queries the gRO on the string (sid, ‘C’‖dmsg‖dro‖s′). It then sends the resulting answer a′C to
R.

• R→ C: R sends (sk, r) to C.

• C → R: C aborts the protocol if either of the following verifications fails: (a) aR =
gRO(sid, ‘R’‖sk‖r), (b) TVer(pk, sk) = 1. Otherwise, if both the checks succeed, then C
reveals (m, dmsg, dro, aC , s, s

′) to R.

The receiver R acceptsm as the decommitted value iff all of the following verifications succeed:
(a) a′C = gRO(sid, ‘C’‖dmsg‖dro‖s′), (b) TRec(cro, aC , dro) = 1, (c) aC = gRO(sid, ‘C’‖m‖dmsg‖s),
(d) TRec(cmsg, m, dmsg) = 1.

Efficiency The commitment protocol has the following complexity. Round Complexity. The
protocol requires 2 rounds for the commitment phase and 3 rounds for the decommitment phase.
Exponentiations. The total number of exponentiations is 10. Hash evaluations. The total number
of hash evaluations is 6.

18

4.1 Proof of Security

We present the security proof for 〈C,R〉 in two parts. The first part concerns with the case where
the environment corrupts the receiver, while the second part concerns with the corrupted committer.
In each case, we construct a simulator SA for the corrupted party A and argue indistinguishability
of the real and ideal world experiments.

Security Against Malicious Receiver We describe the strategy of the simulator SR for the
commitment and decommitment phases:

Commitment phase: Upon receiving the message (receipt, sid, ‘C’, ‘R’) from the trusted party, SR
first obtains the list Q|sid from the ideal functionalities Ftcom and GgRO, then computes the second
round of the commitment phase as follows. It computes two trapdoor commitments to the all
zeros string, namely, (cmsg, dmsg)← TCom(pk, 0|n|) and (cro, dro)← TCom(pk, 0|n|), and then sends
(cmsg, cro) to R∗.

Decommitment phase: Upon receiving the decommitment message (decommit, sid, ‘C’, ‘R’,m) from
the trusted party, SR proceeds as follows:
• Trapdoor extraction: If there exists a query in Qsid of the form sid‖‘R’‖sk′‖r′ such that

TVer(pk, sk′) = 1, then SR records sk′ as the trapdoor. If no such query exists, then it
sets sk′ = ⊥.
• Equivocation: If SR successfully extracted a valid trapdoor in the previous step, then it

proceeds to perform the following “equivocation” steps: (a) It starts by computing d̃msg ←
TEquiv(sk, cmsg,m) as a valid opening for cmsg to string m. (b) Next, it samples a random
string s and queries the gRO on the string sid‖‘C’‖m‖d̃msg‖s. Let aC be the answer received
from gRO. (c) It then computes d̃ro ← TEquiv(sk, cro, aC) as a valid opening for cro to string
aC .
Now, SR samples a random string s′ and performs the following steps: If sk′ = ⊥, then SR sim-
ply computes a′C ← gRO(sid‖‘C’‖0|n|‖s′); otherwise, it computes a′C ← gRO(sid‖‘C’‖d̃msg‖d̃ro‖s′).
It then sends a′C to R∗ in the first round of this phase. Next, upon receiving the message
(sk, r) from R∗, SR verifies its correctness by following the honest committer strategy as de-
scribed above. If the verification fails, then it aborts the protocol. Otherwise, it reveals
(m, d̃msg, d̃ro, s, s

′) to R.
This completes the description of SR. We now briefly argue the correctness of simulation.

First note that it follows from the hiding property of the trapdoor commitment scheme that
the (trapdoor) commitments sent by SR in the commitment phase are indistinguishable from those
send by an honest committer in the real world. Further, since the outputs of the random oracle
are random, the random oracle points sent by SR in the commitment and decommitment phase are
indistinguishable from those sent by the honest committer. Finally, we argue that conditioned on
the event that the adversarial receiver reveals a valid trapdoor value in the decommitment phase,
the decommitments sent by SR are accepting. (This is sufficient since if the adversary fails to
reveal a valid trapdoor, then both the honest committer and SR abort the protocol.) This follows
from the observability property of the gRO model. Specifically, since SR extracts the trapdoor
from the receiver during the commitment phase, it follows from the correctness of the equivocation
algorithm (of the trapdoor commitment scheme) that SR can compute accepting decommitments

19

for the output received from the trusted party, and then behave honestly in the decommitment
phase.

Security Against Malicious Committer We describe the strategy of the simulator SC for the
commitment and decommitment phases:

Commitment phase: SC follows the honest receiver strategy to generate the first receiver message.
Upon receiving the second message (cmsg, cro) of this phase from C∗, SC performs the following

steps:
• Extraction: Let Qsid be the list of queries made to gRO by any party. If there exists a query
q of the form q = sid‖‘C’‖m‖dmsg‖s such that TRec(cmsg,m, dmsg) = 1, then it sets m′ = m;
otherwise it sets m′ to a dummy value (say) 0|n|.

SC sends the message (commit, sid, ‘C’, ‘R’,m′) to the trusted party.

Decommitment phase: SC follows the honest receiver strategy in this phase. If the receiver algorithm
R accepts a valuem∗ from C∗, then SC performs the following steps: Ifm∗ = m, it sends the message
(decommit, sid, ‘C’, ‘R’) to the trusted party. Otherwise, if m∗ 6= m, then SC outputs the special ⊥
symbol and stops.

This completes the description of SC . We now briefly argue the correctness of simulation. Note
that since SC follows the honest receiver strategy in sending its messages, we only need to argue the
following: Conditioned on the event that the adversarial sender successfully decommits to a string
m in the decommitment phase, the simulator SC successfully extracts the same string m during the
commitment phase. This follows from the binding property of the trapdoor commitment scheme.
Specifically, we build an adversary A for the trapdoor commitment scheme that obtains the public
key pk from its challenger. A runs the adversarial committer C∗ for the protocol 〈C,R〉 and plays
the role of the honest receiver using the public key pk. We only consider a partial protocol execution
that stops at the end of the first message in the decommitment phase. By the observability of the
gRO model, it follows that A can extract the committed value from C∗ if this partial transcript is
a prefix of a full protocol transcript that is sampled from the space of accepting transcripts.

5 One-sided UC-Simulatable OT

The NISC protocol of [1] builds upon the efficient PVW OT protocol of [26], which is UC-secure
in the CRS model (more specifically, they rely on a modification of it due to [28], which we will
explain later). UC-realizing NISC in the gRO model amounts to provide a 2-round OT protocol
which is UC secure in the gRO model.

As we discussed in Sec. 1.2, one promising approach to implement efficient UC-secure OT, is
to take the PVW OT that works without the CRS and adapt it to the gRO model. This version
of PVW OT was shown by Lindell and Pinkas in [19], and it requires the receiver to choose the
parameters for the OT and to provide a zero-knowledge PoK of their correctness.

This naive approach is correct, but it yields a 3-round OT protocol. The reason is that any
ZKPoK in the gRO model requires at least two rounds (as observed in [24]).

Our first observation is that the zero knowledge property is required only to extract from the
sender, thus if we relax this requirement and demands only that a malicious sender cannot distin-
guish whether the receiver is playing with input 0 or input 1, then a witness indistinguishable proof

20

– which can be made non-interactive in the gRO model – suffices.
Before proceeding with our discussion, let us recall the PVW OT protocol in the plain model

(without CRS). Let g0, q,G be public parameters, where g0 is the generator of the group G of prime
order q. PVW OT consists of two steps. Step 1. The receiver R picks α0, y at random in Zq and set
α1 = α0 + 1, and g1 = gy0 . It computes h0 = gα0

0 and h1 = gα1
1 . It sends parameters (g0, h0, g1, h1)

to the sender S and additionally proves that (g0, h0, g1,
h1
g1

) is a DDH tuple using a ZK PoK. (Such
parameters can be reused among several transfers with the same sender). Concretely, such ZKPoK
is instantiated with the zero-knowledge version of a Σ-protocol for Discrete Log (due to [27] and
shown in Figure 6), for the theorem

(
h0 = gα0

0 ∧
h1
g1

= gα0
1

)
. For the actual transfer, R sends the

temporary key g = grb , h = hrb , where r ←R Zq and b is R’s input. Step 2. If the ZK proof is
accepting, S uses parameters (g0, h0, g1, h1) and h, g to encrypt its two strings s0, s1.

The security of the receiver relies on the DDH assumptions. To see why, note that if b = 0, then
(g0, h0, g, h) is a DDH tuple, if b = 1, then (g1, h1, g, h) is a DDH tuple. Thus, a malicious sender
distinguishing bit 0 from 1 can be transformed in DDH distinguisher.

Our first attempt is to replace the ZK protocol with a (non-interactive) witness-hiding PoK
protocol (WHPoK). The crucial problem of this approach is that the reduction to the DDH problem
does not go through. Indeed, in order to complete the OT protocol, and thus to be able to exploit
the distinguishing power of a malicious sender S∗, the DDH distinguisher needs to provide a valid
WHPoK, for which he does not know the witness. Although intuitively it seems that the witness
hiding property should help, it is not clear how to exploit S∗ to extract the witness. (Note that
technically one can also use a WI proof for the following theorem: (h0 = gα0

0 ∧
h1
g1

= gα0
1) OR

(g1 = gy0 ∧
h1
g0

= hy0). The problem here is that extracting the witness y does not help the simulator
in extracting the bit of R∗).

Our approach is to run two parallel executions of Step 1 (with independent parameters), and
prove using a single WIPoK that one of the parameters is correctly generated. In Step 2, the sender
will secret share its inputs in two shares, and compute two parallel executions of Step 2, one for
each share. Due to the the soundness of the proof, in one of the executions the parameters are
correctly computed, and thus a malicious receiver can never get two shares for both inputs.

This solution works against the malicious sender. Indeed, now we have the freedom to choose
between two independent DDH tuples, and place the challenge of the DDH experiment in one of
the two, while computing the WI proof with the witness of the other tuple. Against the malicious
receiver, the simulator can extract the bit played in one of the sessions only. Nevertheless, this
knowledge is sufficient, as the receiver will be able to get two shares only for the bit committed in
the “correct” session.

We now present our protocol in details.
Notation. Our OT protocol essentially consists of two parallel sessions of the PVW OT, that we
denote by session 0 and session 1 respectively. To identify the parameters used in each session we
use two indexes in the subscript, where the second index identifies the session. For example, in our
OT the receiver send two set of PVW OT’s parameters (g0, h0, g1, h1), one for each session. Hence,
we denote the parameters for session 0 by (g0,0, h0,0, g1,0, h1,0), and parameters for session 1 by
(g0,1, h0,1, g1,1, h1,1). In general notation hb,s must be interpreted as follows: hb,s is the parameter
hb (as in PVW OT) played in session s.

Similarly, the sender will break up its input (s0, s1) in the shares (s0,0, s1,0) to play in session
0 and (s0,1, s1,1) to play in session 1, where notation (s0,s, s1,s) means, the share of s0 in session s
and the the share of s1 in session s.

21

Finally, for easiness of explanation we omit some validity checks that S has to perform on the
parameters sent by R.

Protocol 2. One-sided UC-simulatable OT.
Common parameter. (G, q, g0,0, g0,1).
Inputs. Inputs to S: a pair (s0, s1). Input to R : a bit b.

Round 1. R performs the following steps.

1. Generate OT Parameters. (Session 0) Pick y0, α0,0. Set α1,0 = α0,0 + 1. (Session 1) Pick
y1, α0,1. Set α1,1 = α0,1 + 1. Compute g1,e = (g0,e)

ye , h0,e = (g0)α0,e , h1,e = (g1)α1,e , for
e = 0, 1.

2. Generate proof of consistency. Run NIWIpok shown in Prot. 3.2 for the theorem {h0,0 =

(g0,0)α0,0 ∧ h1,0

g1,0
= (g1,0)α0,0} OR {h0,1 = (g0,1)α0,1 ∧ h1,1

g1,1
= (g1,1)α0,1} using witness α0,e for a

randomly chosen bit e. We denote this proof by proofcons. For this computation R needs to
query the random oracle gRO. The details of NIWIpok are provided in Protocol 1.

3. Generate temporary public keys. Pick r0, r1 ∈ Zq at random. Compute temporary key
for session 0. Set pk0 = (g0, h0) where g0 = (gb,0)r0 , h0 = (hb,0)r0 . Set pk1 = (g1, h1) where
g1 = (gb,1)r1 , h1 = (hb,1)r1 .

4. Send parameters. Send par0 = (g0, h0,0, g1,0, h1,0); par1 = (g0, h0,1, g1,1, h1,1); proofcons,
pk0, pk1 to S.

Round 2. If the proof is accepting, S performs the following steps.

1. Compute shares. Pick s0,0, s1,0 at random, and compute s1,0 = s0,0 + s0; s1,1 = s1,0 + s1.

2. OT transfer.

• Session 0. Play as sender of PVW OT with input (s0,0, s1,0). Namely, compute (ud,0, vd,0)
= RAND(gd,0, hd,0, pk0) for d = 0, 1 and w0,0 = v0,0 · s0,0 w1,0 = v1,0 · s1,0.
• Session 1. Play as sender of PVW OT with input (s0,1, s1,1). Namely, compute (ud,0, vd,0)

= RAND(gd,0, hd,0, pk0), for d = 0, 1 and w0,1 = v0,1 · s0,1 w1,1 = v1,1 · s1,1.
Where RAND(g, h, g′, h′) is the following functionality: pick s, t ∈ Zq, output u = gs · ht
and v = g′s · h′s.

3. Send (u0,0, w0,0), (u1,0, w1,0) for session 0. Send (u0,1, w0,1), (u1,1, w1,1) for session 1.

Decryption. R obtains sb,0 =
wb,0

(ub,0)r0
and sb,1 =

wb,1

(ub,1)r1
and outputs sb = sb,0 + sb,1.

Efficiency The above protocol has the following complexity. Round Complexity. The protocol
requires one message per party only. Exponentiations. In the initialization phase the receiver com-
putes 6 exponentiation for the parameter generation and 2t exponentiations for the non-interactive
WI proof proofcons. This is done only once and the same parameter can be re-used for more than
one transfer. For each transfer the receiver computes 6 exponentiations. The sender computes 2t
exponentiations to check the WI proof, and 8 exponentiations for each transfer. The total number
of exponentiation is 4t+20 exponentiations, where t is the statistical parameter. Hash evaluations.
The sender compute 2t+ 1 hash evaluations for the WI proof proofcons, while the receiver evaluates
the hash t+ 1 times.

22

Batch Committing OT The notion of Committing-OT has been introduced by Kiraz and
Schoenmakers in [15], and is a modification of standard OT functionality where, at the end of
the protocol, the OT receiver additionally receives commitments to the inputs of the sender, and
the OT sender outputs the opening of such commitments.

More specifically, the sender runs OT with input (s0, r0), (s1, r1) and the receiver runs with
input b. At the end of the protocol the receiver additionally obtains commitments Com(s0; r0),
Com(s1, r1) and the sender outputs r0, r1.

The work [1] on which we build upon, requires a committing OT protocol which is a property
already satisfied by PVW OT. To see why, note that the message sent by the OT sender in the
second round can be seen as a commitment of the sender’s input. (E.g., the message to retrieve
string sb corresponds to the pair (ub, wb) where ub = gsb · htb and w = g′s · h′t · sb and g′, h′ is the
temporary key sent by the receiver). Our one-sided simulatable OT is also a committing OT. The
reason is that it can be seen as a modification of the PVW OT where sender and receiver basically
repeats the PVW OT twice in parallel.

Furthermore, as in [28] our protocol can be modified to allow batch OT, where the sender plays
with m strings for 0 and m strings for 1: [K0,1, . . . ,K0,m] and [K1,1, . . . ,K1,m] and the receiver
plays with one bit b only, and select one of the m-tuples. In order to send m strings, the sender
simply runs procedure RAND() 2m times reusing the same temporary keys sent by the receiver for
that transfer.

5.1 Proof of security

We show that Protocol 2 is one-sided UC-simulatable. Namely, we show that it is UC-simulatable
when the receiver is malicious, while it is only secure in the indistinguishability sense when the
sender is malicious. Before proceeding with the formal proof, we write the formal definition of
one-sided simulation adapted from [12] to the Oblivious Transfer functionality in the gRO model.

Definition 3. Let Ftot be the Oblivious Transfer functionality as shown in Fig. 3. We say that a
protocol π securely computes Ftot with one-sided simulation if the following holds:

1. For every non-uniform PPT adversary R∗ controlling the receiver in the real model, there
exists a non-uniform ppt adversary S for the ideal model, such that for any environment Z,

{IDEALGgROFt,S,Z(s0, s1, b, z)}z∈{0,1}∗ ≈ {REAL
GgRO
π,R∗,Z(s0, s1, b, z)}z∈{0,1}∗

2. For every non-uniform PPT adversary S∗ controlling the sender it holds that:

{viewRπ,S∗(z)(s0, s1, 0)}z∈{0,1}∗ ≈ {viewRπ,S∗(z)(s0, s1, 1)}z∈{0,1}∗}

where viewRπ,S∗(z) denotes the view of adversary S∗ after a real execution of protocol π with the
honest receiver R.

We are now ready to prove the following theorem.

Theorem 1. If NIWIpok is a witness-indistinguishable proof of knowledge in the gRO model and
under the assumption that DDH is hard in G, Protocol 2 securely computes Ftot with one-sided
simulation in the gRO model.

23

Proof. UC-security against a Malicious Receiver. We show a simulator SR that extracts the
input of the malicious receiver R∗ using the observability of the RO. Let sid the session id of the
challenge protocol that S must simulate. Let Q|sid be the list of queries made by R∗ to the random
oracle and of illegitimate queries performed by the environment Z in concurrent sessions of
arbitrary protocols accessing gRO.
SR extracts the witness α0,e by running the straight-line extractor associated to the NIWIpok

protocol on input Q|sid and the proof proofcons. If the extraction fails, SR aborts. Due to the proof
of knowledge property of NIWIpok, if proofcons is accepting, then SR will not abort with all but
negligible probability.
SR detects in which session R∗ sent the correct parameters by checking if h0,0 = (g0,0)α0,e∧

h1,0 = (g1,0)α0,e+1 or h0,1 = (g0,1)α0,e ∧h1,1 = (g1,1)α0,e+1. Let e be such session. To extract the
input played by R∗, SR looks at the temporary key pke. If he = (ge)

α0,e it sets the secret bit
b = 0, else if he = (ge)

α0,e+1 it sets b = 1. SR plays b in the ideal OT functionality and obtains sb.
Finally it computes Round 2 of the OT protocol as the honest sender but on input the pair (sb, 0).
Indistinguishability follows from the indistinguishability of the PVW OT in session e and from the
fact that the inputs of the sender are secret shared between the two sessions. UC-security follows
from the fact that the simulator is straight-line and that the proofs of knowledge sent by R∗ are
non-malleable in the gRO model.

Indistinguishability against a Malicious Sender. We want to show that for any PPT malicious
sender S∗, the view of S∗ when R is playing with bit 0 is indistinguishable from the view of S∗

when R is playing with bit 1. Informally, this holds due to the hardness of the DDH problem and
the WI property of the NIWIpok shown in Prot. 3.2.

The proof goes by hybrids arguments. Recall that the OT protocol consists of two parallel
sessions of PVW OT (that we denote as session 0 and session 1) and one WI proof. A receiver
playing with bit b, runs both the sessions with input b.

We start with an execution where the receiver plays with input 0 in both sessions. Through a
sequence of hybrids (i.e., using the WI property of proofcons and to the DDH assumption) we move to
an execution where the receiver plays bits 0 and 1 and we argue that this hybrid is indistinguishable
from the case in which R plays with input 0, 0. Following the same arguments we end with the case
in which R played with input 1, 1, therefore proving the claim. More precisely, the hybrids are the
following.

Hybrid H0. In this hybrid R plays with input 0, namely it runs the two parallel OT sessions with
secret bit 0. This hybrid corresponds to a real execution where the receiver plays with bit 0:

{viewRπ,S∗(z)(s0, s1, 0)}z∈{0,1}∗

Hybrid H1. In this hybrid R picks a bit e and computes parameters parē as a DDH tuple.
Namely h1,ē = g

α0,ē

1,e . (Therefore, the tuple {g0,ē, h0,ē, g1,ē,
h1,ē

g1,ē
is not a DDH tuple.) R compute

the WI proof with witness α0,e. The difference between H0 and H1 is in the fact that in H0 parē
is a not a DDH tuple while in H1 it is. Assume that there is a distinguisher D for the views
output by S∗ in hybrids H0 and H1. We can use S∗ and D to help a DDH distinguisher as follows.
The DDH distinguisher receives the challenge tuple (g, g1, g2, g3) from the DDH experiment. It
sets parē =(g, g1, g2, g3), and computes any other message as in experiment H0. Then it runs the
distinguisher D on the view of S∗ and outputs whatever D outputs. If (g, g1, g2, g3) was a DDH
tuple, then the messages computed by the DDH distinguisher are distributed identically to H1,

24

otherwise they are distributed identically to H0. From the hardness of the DDH problem, H0 and
H1 are computationally indistinguishable.

Hybrid H2. In this hybrid we change the bit played in session ē, from 0 to 1. Because parē is a
DDH tuple, then the temporary key pkē computed in this hybrid is distributed identically to the
pkē computed in H1. Therefore, the two hybrids are identical.

Hybrid H3. In this hybrid we change again the parameters parē so that they are not a DDH tuple.
Again, the only difference between H2 and H3 is the fact that in H2, parameters parē is a DDH
tuple and in hybrid H3 is not. H2 and H3 are indistinguishable due to the hardness of the DDH
problem.

Hybrid H4 In this hybrid R changes the witness used to compute proofcons. Namely, the proof is
computed using as witness α0,ē. Assume that there is a distinguisher D for the view of S∗ in these
two hybrids, then we can use S∗ and D to distinguish the witness used in proofcons and break its
witness indistinguishability property.

Hybrid H5. In this hybrid R set parameter pare as a DDH tuple. It follows from the same
arguments for the indistinguishability of H0, H1 that H5 and H4 are indistinguishable.

Hybrid H6. In this hybrid R uses the bit 1 also in session e. Therefore, in this hybrid R is playing
with bit 1. It follows from the same arguments for the indistinguishability of H1, H2 that H5 and
H6 are indistinguishable. The view of the S∗ in this hybrids corresponds to:

{viewRπ,S∗(z)(s0, s1, 1)}z∈{0,1}∗

and the claim is proved.

6 UC-secure NISC

Given any two-round UC-OT, a non-interactive UC-2PC (UC-NISC, for short) for any function
f(x, y) can be easily constructed in the CRS model as follows. P1 sends the first message of the OT
based on its input x, P2 prepares a garbled circuit for f and sends the garbled keys for P1 using
the second message of OT. Additionally P2 sends the garbled keys for its own input y and a NIZK
proof proving that the garbled circuit is correct, the garbled keys sent in the OT are consistent with
the garbled circuit and with P2’s input. This solution is very inefficient as the NIZK proof requires
the use of the circuit of the underlying primitives and thus expensive NP reductions.

In [1] Afshar et al. show how to implement UC-secure NISC protocol very efficiently in the CRS
model. They start with the multi-round highly-efficient 2PC protocol presented by Lindell [17] and
use several tricks to squash it down to two rounds. The round-complexity of Lindell’s construction
stems from the cut-and-choose phase. The main contribution of [1] is to show how to perform all
the checks required by the cut-an-choose technique non-interactively. We built upon their protocol
to achieve the same result in the gRO model. In the following, we first outline the NISC protocol
of [1] and then we discuss how we modify their construction to achieve our result.

NISC in the CRS model [1] To implement the cut-and-choose in only two rounds [1] uses
several techniques. We provide an overview of the technique used in [1] in Appendix B. Here we

25

discuss only two salient points of their protocol that allow us to achieve the same result in the gRO
model.

Recall that in a typical cut-and-choose protocol, P2 sends t garbled circuits gc1, . . . , gct to P1,
who tests the correctness of them by asking P2 to “open” half of the circuits (i.e., to reveal the
randomness used to generate them). If all the checks go through, P1 is convinced that most of the
remaining circuits are correct. The first idea to achieve non-interactiveness, is to let P1 select the
circuits that she wants to check, via the selection bits of several OTs. Namely, additionally to the
OT for the input, called input-OT in [1], P1 runs one OT for each garbled circuit. Such OTs are
called circuit-OT: P1 participates to the i-th circuit-OT with input bi = 0 if she wants to check
(i.e., obtain the randomness for) circuit gci, otherwise if she wants to evaluate gci, she sends bi = 1.

The second idea is to let P2 compute the garbled circuit, the messages for input-OT protocols,
and other relevant information related to input/output consistency proofs, using randomness gen-
erated by a PRF. Namely, all such messages are computed by invoking a PRF with key seedi. In
the circuit-OT protocol P2 will place the string seedi for the case bi = 0 and thus gci is a circuit
that will be checked, and will instead send the keys corresponding to her input, in case bi = 1 and
thus gci is an evaluation circuit.

Security of NISC [1] in the CRS model. The UC-security of NISC [1] relies crucially on
the fully simulatability of the underlying PVW OT protocol. Informally, the intuition behind the
proof is the following. Simulating Malicious P ∗1 . The simulator extracts the secret input x∗ of P ∗1
from the input-OT, by running the UC-simulator granted by PVW OT in the CRS model. It sends
x∗ to the ideal functionality and receives the output z = f(x∗, y). Next, from the circuit-OTs it
extracts the indexes of the circuits that will be checked, and hence it computes the evaluation and
checking garbled circuits accordingly.

Simulating Malicious P ∗2 . The simulator generates the first message of P1 for circuit-OTs
and input-OTs, by running honest P1 with a random input. Due to the security of PVW OT in
the CRS model, these messages are distributed identically for the real input and the random one.
When the simulator receives P2’s message it performs the same correctness checks as P1. If P2

cheats in one of the checked garbled circuits, the simulator will abort, and this happens with the
same probability that P1 would abort in the real execution. If the emulated P1 does not abort, the
cut-and-choose guarantees that whp, at least one evaluated garbled circuit is correct. Therefore,
the simulator derives the input of P2 by extracting the seed seedi of the correct circuit i from the
i-th circuit-OT.

NISC in the gRO model: Our techniques In the original NISC protocol the extraction of the
input of the sender is done by extracting the keys and the seeds from the executions of input-OT
and circuit-OT. Our idea is to extract the input of P2 by observing the queries that P2 makes to
the RO. Toward this end, we require that each seed seedi used to generate the randomness for the
computation of the circuits and other critical information, is not picked by P2 but it is computed
as the output of the RO. Namely, P2 queries the RO on some random input qi and set seedi =
gRO(sid, P2‖qi). Then, in the cut-and-choose phase, P2 plays the OT protocol using qi instead of
seedi. In order to pass the consistency checks, P2 must query the RO to compute most of the PRF
seeds. In this way the simulator, which obtains all the queries made to GgRO for a specific session
sid, gets most of the seeds and is able to recompute the keys and garbled circuits without having to
extract them from the input-OTs and circuit-OTs.

This idea allows us to replace the PVW OT protocol used in [1] which is fully simulatable, with

26

our one-sided UC-simulatable OT protocol, and still be able to simulate a malicious P ∗2 .

Security of our NISC in the gRO model. We now outline the ideas behind the security
proof of our NISC protocol. Simulating Malicious P ∗1 . Because our OT protocol is UC-simulatable
against a malicious receiver the proof in this case follows the same proof provided in [1]. Simulating
Malicious P ∗2 . Our simulator works similarly to the simulator of [1] except that the information
necessary to derive the input of P ∗2 is obtained by looking at the queries to the RO. Due to the cut-
and-choose, P2 is forced to query the RO to compute most of the PRF seeds used in the protocol,
otherwise it will be caught whp by P1. Therefore, if P ∗2 passes all the checks, whp the simulator
will extract the relevant information.

The crucial difference in our case is in the indistinguishability of the first message of input-OTs
computed by the simulator. In [1], the simulator, following the UC-simulator of PVW OT, sets
the OT parameters contained in the CRS to be a DDH tuple. In this way, the first message of
input-OTs computed using a random input is distributed identically to the one played by an honest
P1 computed with the actual input.

In our case, as we are using our one-sided simulatable OT in the gRO model, the OT parameters
are honestly generated to be a non-DDH tuple. Thus, we cannot claim that the view generated by
the simulator is identically distributed to the view generated by an honest P1. Nevertheless, due to
the indistinguishability property of our OT against malicious senders, the messages computed by
the simulator are computationally indistinguishable from the messages computed by P1, and thus
we can use a malicious P2 to break the indistinguishability of our OT.

6.1 The Protocol

In this section we present our modification of the NISC protocol of [1] which is UC-secure in the gRO
model. We stress that the protocol is essentially the same as [1] with the following two modifications:
(a) the underlying OT is one-sided UC-simulatable; (b) the seed of the PRF is computed using the
RO. In the description of the protocol we will highlight the points where the two protocols differ.

Notation and sub-protocols. We denote by oneside-COT1(b) and oneside-COT2((k0
1, k

1
1), . . . , (k0

t , k
1
t))

Round 1 and Round 2 of our one-sided UC-simulatable (batch) committing OT shown in Sec-
tion 5, respectively. Notation oneside stresses that we use a one-sided UC-simulatable OT in-
stead of a fully UC simulatable OT. Let G be a group of prime order q with generator g. Define
EGCom(h, b, r) = (gr, hrgb) as the “El Gamal” commitment for a bit b. This commitment has two
important properties: (1) there exists a very efficient way to prove the equality of two commitments
Namely, let c0, c1 = EGCom(h,m, r)= gr, hrgm and c′0, c′1 = EGCom(h,m, r′) = gr

′
, hr

′
gm, one can

verify that (c′0)r−r
′

= c0 and (c′1)r−r
′

= c1; (2) there exists a trapdoor that allows the extraction of
the committed value. I.e., if h = gw, and c = (c′, c′′) with c′ = gr and c′′ = hrgb, one can extract
b by checking if c′′

c′w is equal to 1 or g. Both properties are used crucially to guarantee correctness
against a malicious sender. Let ReHash be a collision-resistant hash function that is a suitable
randomness extractor.

Protocol 3. NISC in the gRO model(built upon [1]).

Inputs. P1 has input x ∈ {0, 1}n1 and P2 has input y ∈ {0, 1}n2 . Let f : {0, 1}n1× : {0, 1}n2 →
{0, 1}m and C be a circuit computing f . The inputs wires of P1 and P2 are denote by IN(1) and
IN(2) respectively. The set of output wires is denoted by OUT.

Enc denotes an encryption scheme, Commit denotes a commitment scheme and prf a pseudo-
random function. Let t denote the number of circuits and sid the session identifier.

27

P1’s message:

• (Choose circuits to check) Pick a random t-bit string c1, . . . , ct. Let T be the set of i such
that ci = 1.

• (Circuit-OT queries) For each index i ∈ [t], publish oneside-COT1(ci).

• (Input-OT queries) For each input j ∈ IN(1) publish oneside-COT1(xj). Difference with [1].
We use one-sided UC-simulatable OT, instead of UC-secure OT.

P2’s message:
Commit to inputs, outputs and trapdoor.

• (Trapdoor) Pick w ∈R Zq and send h = gw.

• (Input commitment) Send EGCom(h; yj , rj) for j ∈ IN(2), where yj is its input for input-wire
j and rj is randomly chosen.

• (Output commitment) Send hj,0 = gwj,0 and hj,1 = gwj,1 for each output wire j ∈ OUT, where
wj,0 ∈R Zq and wj,1 = w − wj,0.

Generate garbled circuits. For each circuit i ∈ [t].

• Randomly choose qi and set seedi = gRO(sid, P2‖qi). Difference with [1]. The seed seedi
is computed by invoking the random oracle gRO.

• Compute ui,j,b = EGCom(h; b, ri,j,b) for all wire j ∈ IN(2), b ∈ {0, 1} and ri,j,b = prfseedi(“EGCom”◦
j ◦ b).

• (Compute Garbled Circuit) Compute gci:

– (Labels for input wires) For j ∈ IN(2) and b ∈ {0, 1}, set label(gci, j, b) = ReHash(P2 ◦
sid, ui,j,b).

– (Labels for other wires) Any other label for wire j and bit b is constructed as usual using
randomness generated by seedi, i.e., with randomness prfseedi(“label” ◦ j ◦ b).

• (Commitments to the input labels) Send commitments {Commit(ui,j,δi,j), Commit(ui,j,1−δi,j)}j∈IN(2)

where bit δi,g is randomly chosen. Such commitments are computed using randomness derived
from seedi. We denote by di,j,δ the decommitment of the commitment of ui,j,δ.

Prepare cheating recovery box. For j ∈ OUT send:

• Output recovery commitments: hj,0 · gKi,j,0 and hj,1 · gKi,j,1 where Ki,j,0,Ki,j,1 are randomly
chosen.

• Two encryptions to the labels of the output: Enc(label(gci, j, 0),Ki,j,0), Enc(label(gci, j, 1),Ki,j,1).

Prepare proofs of input/output consistency.

• Let inputsi be the set {ui,j,yj , di,j,yj}j∈IN(2). Let inputsEqi be the set {rj − ri,j,yj}j∈IN(2).

• Let outputsDecomi be the set {wj,0 +Ki,j,0, wj,1 +Ki,j,1}j∈OUT(2).

28

• Pick a random ki and send encryption Enc(ki, inputsi ◦ inputsEqi ◦ outputsDecomi).

Prepare the OT answers.

• (Input-OT) P2 prepares the messages of oneside-COT2 for the input-OT executions. These
messages are computed on input the labels: {label(gci, j, 0)} and {label(gci, j, 1)} with i ∈ [t]
and j ∈ IN(1).

The randomness ri,j used to compute the OT message for wire j and circuit i is set as ri,j =
prfseedi(“OT

′′ ◦ 1 ◦ “r′′ ◦ i ◦ j).

• (Circuit-OT) P2 prepares the messages oneside-COT2 for the circuit-OT executions. These
messages are computed on input the pairs (qi, ki), for i ∈ [t]. Difference with [1]. P2

transfers the query qi instead of the seed seedi.

P1’s Computation:

• Check circuit consistency. For each i ∈ T , compute seedi = gRO(sid, P2‖qi) and check
that seedi correctly generated circuit gci and the answers of the i-th execution of input-OT.
If any check fails, abort.

• Check consistency of the input/output of P2. For all circuits i ∈ [t]/T .

– Verify that hj,0 · hj,1 = h for j ∈ OUT.
– Check that outputsDecomi are correct discrete-logs of the values in set {hj,bgKi,j,b}j∈OUT,b∈{0,1}.

– Check that inputs, inputsEq are consistent with the input-commitments: check ui,j,yj (g
rj−ri,j,yj ,

hrj−ri,j,yj) = EGCom(h; yj , rj). Otherwise abort.
– Evaluate circuit gi. Say P1 learns the labels {li,j}j∈OUT. P1 uses these labels to decrypt

the corresponding encryptions Enc(label(gci, j, b),Ki,j,b) from the cheating recovery box.
Then it checks if the result is the correct “decommitment” of the output recovery com-
mitment hj,bgKi,j,b where the b are the actual output bits P1 received from gci. If all
these steps pass for all output wires, label circuit gci as semi-trusted.

• Compute the output. If the output of all semi-trusted circuits is the same, then output
such value. Otherwise,

– Let gci, gci′ be two semi-trusted circuits that have different outputs in the j-th output
wire, and let li,j and li′,j be their output labels. P1 learns wj,0 from one of the labels and
wj,1 from the other (since it learns Ki,j,b,Ki′,j,1−b from the cheating recovery boxes, and
wj,b +Ki,j,b, wj,1−b +Ki′,j,1−b from outputsDecomi, outputsDecomi′).

– P1 computes w = wj,0 + wj,1 and decrypts the input-commitments provided by P2. Say
y is the input so obtained. P1 outputs f(x, y).

This concludes the description of the protocol.

Efficiency Our protocol inherits the same complexity of the NISC protocol of [1] with the following
additional overhead. Concerning the exponentiations, the additional overhead corresponds to the
overhead of the one-sided OT protocol that we discussed in Section 5. Concerning hash evaluations,
our protocol requires t hash evaluations for P2 necessary to obtain each seed seedi for the PRF
evaluations, and t/2 hash evaluations for the receiver when checking the garbled circuits.

29

6.2 Proof of security of NISC protocol

In this section we prove that Protocol 3 is UC-secure in the gRO model. We prove the following
theorem:

Theorem 2 (Protocol 3 is UC-secure in the gRO model.). Assuming that the DDH problem is
hard in G, prf is a pseudo-random function, ReHash is an extractor and a collision-resistance hash
function, then Protocol 3 is GUC-secure in the gRO model.

Proof. P1 is corrupted. We describe the strategy of the simulator S1 for the case in which P ∗1 is
malicious. We stress that this proof is very similar to the proof provided in [1], which we rewrite
for completeness.

High-level description. Informally, S1 first extracts the inputs (x, T) of P ∗1 invoking the UC-
simulator of the one-sided simulatable OT protocol, where T is the set of circuits that P ∗1 wants
to check. S1 sends message input(x) to Fnisc and obtains (P2, f(x, y)) from Fnisc. Let z = f(x, y).
It then proceeds as follows. For all i ∈ T , S1 honestly computes the garbled circuits gci with the
difference that in the circuit OT it will play replacing ki with a random string. Additionally, it
replaces all the encryptions under key ki with the encryption of 0. These differences however are
not detected by a malicious P ∗1 due to the semantic security of the encryption scheme and the UC-
security of the OT. For all i ∈ T , S1 replaces circuits gci with fake circuits which outputs always z,
using fresh randomness (instead of PRF). It computes the labels ui,j,b with commitment of 0, and
plays the input-OT using random values in place of the keys corresponding to the bits of x̄ and in
the circuit-OT using a random value instead of seedi.

The indistinguishability of the messages computed in this case follows from the pseudo-randomness
of the PRF, the security of EGCom, the security of garbled circuits and the OT.

Formal proof. The formal strategy of the S1 is the following.
Extraction of P ∗1 ’s input.

The one-side UC-simulatability of the OT protocol guarantees that when the receiver of the OT
is corrupted, the UC simulator obtains the input used by the receiver to query the Ftot functionality.
Under this assumption, we have that P ∗1 , which is the receiver of the OT in the NISC protocol, sent
(receive, sid-ot, ci) for i ∈ [t] and (receive, sid-ot, xj) for j ∈ IN(1), where sid-ot is the session id of
the OT protocol, to the Ftot functionality, and such messages are intercepted by S1.

Therefore, S1 obtains x = x1, . . . , xn1 and the set T , it sends input(x) to Fnisc and obtains
z = f(x, y). Then it proceeds as follows.

Simulation of P2’s second message. Let T be the set of circuits that P1 chose to open.

• (Evaluation circuits) For all i ∈ [t]\T , S1 prepares the second message as an honest P2 playing
with input 0n2 with the following differences.

– Garbled circuits. S1 replaces each gci with a garbled circuit that always output z,
regardless of the input.

– Garbled keys. S1 sends garbled keys corresponding to input 0n2 (instead of input y).
Namely, send inputsi as the set {ui,j,0, di,j,0}j∈IN(2).

– {Commit(ui,j,δi,j , Commit(ui,j,1−δi,j}j∈IN(2): replace the commitment of ui,j,1 with com-
mitments to 0.

– input OT. In the input OT, S1 replaces the garbled key that P1 did not choose with
random values.

30

• (Checked circuits) For i ∈ T , S1 prepares the second message as P2 with the following differ-
ences.

– Circuit OT. S1 replaces the keys ki in the OT, with random values.

– Encrypted values. S1 replaces the values encrypted under key ki with encryption of 0
(under ki).

Indistinguishability. Indistinguishability of the simulation is proven through a sequence of hy-
brids.

Hybrid H0. This is the real world executions. S1 on input y runs as an honest P2.

Hybrid H1. (Changing circuit OT answers). In this hybrid S1 replaces the OT answers as fol-
lows. For i ∈ T (the circuits that will be checked), it replaces the value ki played in the i-th
circuit OT using a random value. For i /∈ T (the circuits that will be evaluated), replaces
the keys not asked by P ∗1 with random values. Due to security of the OT H1 and H0 are
identical.

Hybrid H2. (Replacing PRF with fresh random values). In this hybrid S1 generated the garbled
circuits that must be evaluated (i.e., gci with i /∈ T) and the OT, commitments etc., using fresh
randomness instead of the PRF evaluated on seedi. uses knowledge of the set T extracted
from the OT. Due to the pseudo-randomness of the PRF H2 and H1 are computationally
indistinguishable.

Hybrid H3. (Changing input OT answers). In this hybrid S1 replaces the keys not asked by P ∗1 ,
with random values. Due to security of the OT H3 and H2 are identical.

Hybrid H4. (Playing with input 0n2 in the checked circuits). In this hybrid S1 computes the mes-
sages for the circuits that will be checked, running on input 0n2 instead of y. Namely, it
computes the encryption Enc(ki, inputsi ◦ inputsEqi ◦ outputsDecomi) so that it encrypts the
data corresponding to the input 0n2 . Due to the semantic security of the encryption scheme,
hybrids H3 and H4 are indistinguishable. At this point S is not using the input y in the
sessions i ∈ T .

Hybrid H5. (Changing commitments ui,j,1 in the evaluated circuits). In this hybrid, for all the
evaluated circuits i, S1 computes commitments ui,j,1 as commitment to 0. Due to the hiding
of EGCom, hybrids H4 and H5 are computationally indistinguishable.

Hybrid H6,j (with j = 1 to t− |T |). (Replacing evaluated circuits with fake circuits). In Hybrid
H6,j S1 replaces the first j evaluated circuits with fake circuits that always output z. Due
to the security of the garbling scheme hybrids H5 and H6,1 and H6,j and H6,j+1 are indistin-
guishable.

Hybrid H7. (Changing the output labels in the cheating recovery box). In this hybrid S1 replaces
the entries corresponding to z̄ in the cheating recovery box. Namely, it replaces encryptions
Enc(label(gci, j, z̄i),Ki,j,z̄i) with encryption of 0. Due to the semantic security of the underlying
encryption scheme, hybrids H7 and H6,t−|T | are indistinguishable.

31

Hybrid H8,i. (Playing with input 0n2 in the evaluated circuits). In this hybrid S1 plays with input
yi = 0 in all the evaluated circuits. This means that the input commitments are computed
as EGCom(h; 0, ri), where h = gw. Hybrids H8,i and H8,i+1 can be proved indistinguishable
under the DDH assumptions.

Hybrid H8,n2. This is the procedure of S1 playing in the ideal world.

P2 is corrupted. We describe the strategy of the simulator S2 for the case in which P ∗2 is malicious.
The strategy of S2 is simple.

• Compute the first message honestly as P1 but running with random inputs.

• When receiving the message from P ∗2 proceed as follows: Emulate an honest P1 until the end
of the protocol. If P1 aborts, then abort. If P1 did not abort, then obtain the list of queries
Q|sid from Fnisc, and learn (qi, seedi) for i ∈ [t]\T .

• If there exists at least an i such that the randomness computed using seedi is consistent with
the circuit gci and all the messages computed for session i, then use seedi to extract P2’s
input.

• Send input(sid, y) to the ideal functionality Fnisc.

Indistinguishability. Indistinguishability of the simulation is proven through a sequence of hy-
brids.

Define a circuit gci to be good if it passes all the checks: Query qi yields to seedi that properly
generates the randomness for (a) the OT, (b) the labels ui,j,b,(c) the commitment to the labels
{Commit(ui,j,δi,j , Commit(ui,j,1−δi,j}j∈IN(2), (d) the circuit gci.

If a set of circuits is good, then it must hold that the input labels of such circuits are all consistent
with the same input3.

Hybrid H0. This is the real execution with S2 running as a honest P1 with input x.

Hybrid H1. In this hybrid S2 extracts the query qi for a good circuit gci that was chosen for
evaluation (due to the cut-and-choose many such i exist). Knowledge of qi allows S2 to re-
compute the garbled circuit gci and knowledge ki (obtained from OT) allows to compute the
input y (S2 obtain y also from the knowledge of Ki,j,0,Ki,j,1 for each j ∈ IN(2), that allows
to reconstruct the trapdoor w and therefore extract from the El-Gamal input commitment).
S2 then computes z = f(x, y) itself without evaluating the circuits. Note that if there exists
an i′ such that evaluation gci′ is semi-trusted and that outputs z′, then an honest P1 would
have extracted w from the two different outputs4, and obtains y from the input commitments
(which are statistically binding, therefore there exists one unique y that can be decommitted).

The observability of the gRO allows S2 to extract queries for session sid and therefore derive
the input y.

3If not then the proof of equality would not go through. To see why, recall that P ∗2 sends the El-Gamal commit-
ments of its input, the labels ui,j,b and a proof of equality inputsEq between the labels and the commitment of the
input. Because the El-Gamal commitments are perfectly binding, finding two accepting proofs inputsEq is impossible.

4Indeed, a semi-trusted has passed the tests for the decommitment of the output recovery box

32

Due to cut-and-choose, the probability that S2 fails in extracting the input from a good
circuit that was chosen for evaluation is 2−t, and therefore hybrid H0 and H1 are statistically
indistinguishable.

Hybrid H2,i with i = 1, . . . , i = n1. (Changing the input-OT with 0n1 .) This hybrid is the same
as H1 except that now the simulator plays in the i-th input OT with xi = 0. Assume that
there is a distinguisher between H2,i and H2,i+1 then one can construct a malicious sender
S∗OT of the one-sided OT, which is able to distinguish the input of an honest external receiver
R with the same probability.

The reduction work as follows. S∗OT receives the message oneside-COT1(b) from the external
receiver R.

More specifically, this message consists in the parameters g0, h0, g1, h1, a proof proofcons and
the temporary public key p̄kb that allows to retrieve the k-tuple corresponding to a bit b.

S∗OT will use the same parameters and the same proof proofcons. Then for each index j < i
it computes parameters p̄kj so to retrieve bit xj = 0. For each index j > i, S∗OT computes
parameters p̄kj so to retrieve bit xj . Instead for index i it will use the parameters received
from the external receiver R.

Now, when receiving the message from P ∗2 , the sender S∗OT computes the output of the function
using the same procedure of the simulator S2 and using the observability of gRO and outputs
the same view.

Finally, S∗OT presents the view to the distinguisher, and outputs whatever the distinguisher
outputs. Due to the indistinguishability of the one-sided OT protocol, hybrid H2,i and H2,i+1

are computationally indistinguishable.

Hybrid H3. (Changing the input in circuit-OT.) In this sequence of hybrids we want to show
that regardless of the input played by the simulator in the execution of circuit-OT, due to
the security of the OT, the probability that P1 aborts with a different probability than S2 is
negligible.

Towards this end, we consider two sequence of hybrids: in hybrids {H0
3,i}i∈[t], the simulator

plays the circuit-OT with the i-th input set to 0. Then in hybrids {Hci
3,i}i∈[t] the simulator

plays using as input a random bits.

Hybrid H0
3,i, for i = 1, . . . , t. In this hybrid we wish to change the bits used in the circuit-OT,

with all zeros. The difference betweenH0
3,i andH

0
3,i+1 is that inH3,i S2 plays oneside-COT1(ci)

with a random bit ci, while in hybrid H0
3,i+1, S2 plays with oneside-COT1(0). A distin-

guisher between hybrids H0
3,i and H

0
3,i+1 can be reduced to a malicious sender S∗OT for

circuit-OT, as before.
Note that H0

3,1 = H2,n1 .

Hybrid Hr
4,i, for i = 1, . . . , t. In this hybrid we wish to change the bits used in the circuit-OT

to be all random. The difference between Hr
4,i and Hr

4,i+1 is that in Hr
4,i S2 plays

oneside-COT1(0), while in hybrid Hr
4,i+1, S2 plays with oneside-COT1(ci) with a random

bit ci. A distinguisher between hybrids Hr
4,i and H

r
34,i+1 can be reduced to a malicious

sender S∗OT for circuit-OT, as before.

33

Note that hybrid Hr
4,t corresponds to the description of the simulator S2, and this com-

pletes the proof.

Acknowledgment

We thanks Vassilis Zikas for pointing out ways to improve the presentation of our model.
The first author is supported by the Check Point Institute for Information Security, the NSF

SaTC MACS project, and NSF Algorithmic Foundations grant no. 1218461 The third author is
supported in part by NSF grants 09165174, 1065276, 1118126 and 1136174, US-Israel BSF grant
2008411, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Re-
search Award, B. John Garrick Foundation Award, Teradata Research Award, and Lockheed-Martin
Corporation Research Award. This material is based upon work supported by the Defense Advanced
Research Projects Agency through the U.S. Office of Naval Research under Contract N00014 -11
-1-0392. The views expressed are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

References

[1] A. Afshar, P. Mohassel, B. Pinkas, and B. Riva. Non-interactive secure computation based on
cut-and-choose. In EUROCRYPT, pages 387–404, 2014.

[2] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[3] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, pages 136–145, 2001.

[4] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. Universally composable security with global
setup. In TCC, pages 61–85, 2007.

[5] R. Canetti and M. Fischlin. Universally composable commitments. In CRYPTO, pages 19–40,
2001.

[6] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited (preliminary
version). In STOC, 1998.

[7] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. In EUROCRYPT, pages 68–86, 2003.

[8] R. Canetti and T. Rabin. Universal composition with joint state. In CRYPTO, pages 265–281,
2003.

[9] R. Cramer, I. Damgård, and B. Schoenmakers. Proofs of Partial Knowledge and Simplified
Design of Witness Hiding Protocols. In CRYPTO, pages 174–187, 1994.

34

[10] M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online extrac-
tors. In CRYPTO, pages 152–168, 2005.

[11] S. Goldwasser and Y. T. Kalai. On the (in)security of the fiat-shamir paradigm. In FOCS,
pages 102–113, 2003.

[12] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols - Techniques and Constructions.
Information Security and Cryptography. Springer, 2010.

[13] Y. Huang, J. Katz, and D. Evans. Efficient secure two-party computation using symmetric
cut-and-choose. In CRYPTO (2), pages 18–35, 2013.

[14] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, and A. Sahai. Efficient non-interactive
secure computation. In EUROCRYPT, pages 406–425, 2011.

[15] M. Kiraz and B. Schoenmakers. A protocol issue for the malicious case of yao’s garbled circuit
construction. In Symposium on Information Theory in the Benelux, pages 283–290, 2006.

[16] Y. Lindell. Highly-efficient universally-composable commitments based on the ddh assumption.
In EUROCRYPT, pages 446–466, 2011.

[17] Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In
CRYPTO (2), pages 1–17, 2013.

[18] Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In EUROCRYPT, pages 52–78, 2007.

[19] Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
In TCC, pages 329–346, 2011.

[20] P. Mohassel and M. K. Franklin. Efficiency tradeoffs for malicious two-party computation. In
Public Key Cryptography, pages 458–473, 2006.

[21] P. Mohassel and B. Riva. Garbled circuits checking garbled circuits: More efficient and secure
two-party computation. In CRYPTO (2), pages 36–53, 2013.

[22] J. B. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-
committing encryption case. In CRYPTO, 2002.

[23] R. Ostrovsky, A. Scafuro, I. Visconti, and A. Wadia. Universally composable secure compu-
tation with (malicious) physically uncloneable functions. In EUROCRYPT, pages 702–718,
2013.

[24] R. Pass. On deniability in the common reference string and random oracle model. In CRYPTO,
pages 316–337, 2003.

[25] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
CRYPTO, pages 129–140, 1991.

[26] C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO, pages 554–571, 2008.

35

[27] C.-P. Schnorr. Efficient Signature Generation for Smart Cards. Journal of Cryptology, 4(3):239–
252, 1991.

[28] A. Shelat and C.-H. Shen. Two-output secure computation with malicious adversaries. In
EUROCRYPT, pages 386–405, 2011.

[29] A. Shelat and C.-H. Shen. Fast two-party secure computation with minimal assumptions. In
ACM Conference on Computer and Communications Security, pages 523–534, 2013.

[30] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167, 1986.

A Zero Knowledge Functionality in the gRO model

The ideal functionality GgRO allows us to capture a more nuanced property: “Zero Knowledge up to
transferability”. This is done via a relaxed variant of the ideal zero knowledge functionality, FtZK

where tzk stands for transferable zero knowledge, which leaks to the simulator the values of the
illegitimate queries made with the present SID. Intuitively, the leakage of the adversarial queries
made by third parties does not compromise zero knowledge beyond allowing the ability to transfer
proofs. Indeed, since any query made by a third party could have been made by the adversary
itself, any adversary that uses GgRO’s answer to queries made by third parties can be simulated by
an adversary that makes the same queries by itself. We describe the FtZK functionality in Fig. 8.

Functionality FtZK

FtZK is parameterized by a relationR ⊂ {0, 1}∗×{0, 1}∗. We require that there exists a polynomial
p such that (x,w) ∈ R implies that |w| ≤ p(|x|) and such that (x,w) ∈ R can be checked in time
p(|x|). FtZK runs with a prover P , a verifier V and an adversary S and proceeds as follows.

• Upon receiving the first input (ZK-prover, sid, P, V, x, w) from P, do: If (x,w) ∈ R, then
send (ZK-proof, sid, P, V, x) to V and S.

• When asked by the adversary, obtain from GgRO the list Qsid of illegitimate queries that
pertain to SID sid, and send Qsid to S.

Figure 8: The Zero-Knowledge functionality FtZK

B NISC protocol [1]

For completeness we review the ideas behind the NISC protocol of [1].
The starting point of [1] is the highly efficient 2PC protocol of Lindell [17] which is based on

cut-and-choose. The cut-and-choose is used to force the sender P2 to send correct and consistent
garbled circuits.

In the cut-and-choose, P2 sends 3t garbled circuits. P1 chooses a subset of such circuits and
requires to see the randomness used to compute them. In this way it can check that the circuits are
correctly computed. If they all pass the consistency check, then P1 is convinced that most of the

36

remaining (not checked) circuits are correct as well. P1 then evaluates the remaining circuits and
takes the output on which the majority of the circuits agree upon. To implement this approach one
has to solve the following issues:

1. How to enforce that the garbled keys transferred to P1 via OT are consistent with the garbled
circuits?

This issue is solved by using committing OT in place of standard OT. In the multi server
setting, committing OT works as long as the output of the computation is not published.
Once the output is published then P1 needs to refresh the first message (specifically the first
message for the circuit OT).

2. How to enforce that P2 uses the same inputs in all the remaining garbled circuits? Indeed,
P1 obtains a set of garbled keys (called labels) for each of the remaining garbled circuits.
However, it has no guarantee that each set correspond to the same input.

This issues is solved in [1] by requiring P2 to send a commitment of its input, bit by bit, and
then attaching to each garble keys (input label), a proof that the garbled keys corresponds to
the bit committed. We explain this step in more details below.

3. How to reduce the total number of circuits from 3t to t? When the remaining circuits all
output the same value, then P1 is guaranteed that the output is correct with probability
1 − 2−t. However, when the circuits output different values it is necessary to provide a
mechanism that allows P1 to obtain the correct answer (with only t circuits the majority rule
does not give correctness with probability 1− 2−t). The mechanism provided in [17] requires
several rounds of communication and therefore cannot be applied in the NISC setting where
P1 sends and receives only one message.

The idea in [1] is to ask P2 to commit to its input and to a “trapdoor” that, if revealed, allows
to compute that decommitment. The trapdoor can be reconstructed by P1 anytime it obtains
two different results as the output of the garbled circuits. We explain this step in more details
below.

[1] overcomes the above issues by crucially exploiting the specific properties of PVW OT and
El-Gamal commitments. In this sense [1] is heavily non-black-box. We now describe in details the
techniques used in [1].

Consistency of the labels exchanged via OT. The goal is to force P2 to send consistent labels
in the OTs for P1’s input wire. This is achieved adopting a committing OT (PVW OT satisfies
this property) and by requiring that the randomness used in the OTs for circuit i, is derived from
the PRF run on input seedi. In this way when getting the seed seedi, P1 is able to check both the
correctness of the circuit and the correctness of the OT.

Consistency of P2’s input in all the remaining circuits. For the circuits that will not be
checked, P1 obtains a set of garbled keys representing the input of P2. However, how to check that
such garbled keys all represent the same input? This is done as follows.

• The input labels of the garbled circuit are commitment of bits. More precisely, let i be the
index of a circuit, let j be the input wire. First compute El-Gamal commitments for bit 0 and
bit 1: ui,j,b ← EGCom(h; b, ri,j,b), for b ∈ {0, 1} and where EGCom(h; b, ri,j,b) = gri,j,b , hri,j,bgb

and the randomness ri,j,b is derived from PRF and seedi. Then, the label is computed as:
label(gci, j, b) = ReHash(id2, ui,j,b), where id2 is the identity of P2.

37

• Each bit of the input of P2 is committed using El-Gamal commitment. Namely, for each bit
j, P2 sends commitment EGCom(h; yj , rj).

• For each label P2 sends a proof of equality with the input committed. Proving equality of
two El-Gamal commitment, without revealing anything about the values committed, is very
simple. It is sufficient to reveal the difference between the randomness used to compute the two
commitments. Namely, let c0, c1 = EGCom(h,m, r)= gr, hrgm and c′0, c′1 = EGCom(h,m, r′)
= gr

′
, hr

′
gm, one can verify that (c′0)r−r

′
= c0 and (c′1)r−r

′
= c1.

Therefore, P2 computes and send inputsEqi = {rj − ri,j,yj} for each circuit gci and input wire
j.

Reducing the number of garbled circuits. When the remaining circuits do not output the same
value, we need a mechanism of cheating recovering that enables P1 to compute the correct output.
This is implemented using a special extractability property of El-Gamal commitment Indeed, El-
Gamal commitment is extractable given a trapdoor: let h = gw and let c0 = gr, c1 = hrgb an El-
Gamal commitment. Knowledge of the trapdoor w allows the extraction of the bit b by checking if
c1/(c0)w = g or c1/(c0)w = 1. Using this property, the cheating recovery mechanism is implemented
as follows.

• P2 commits to shares of the trapdoor. Namely, let h = gw be the parameter used for all the
El-Gamal commitments send by the P2 (in particular recall that the input of P2 is committed
using h). P2 computes w0, w1 s.t. w0 + w1 = 1 and sends h0 = gw0 and h1 = gw1 to P1 who
checks that h = h0 · h1.

• The output labels are connected to the trapdoor. Let li,0 and li,1 be the output labels of the
i-th garbled circuit gci (for simplicity assume that the output of the circuit is one bit only).

P2 prepares:

– Encryption of each trapdoor under each labels (outputsDecomi): For each circuit i, P2

sends Ki,0 +w0 and Ki,1 +w1, for randomly chosen Ki,0,Ki,1. (These values are revealed
only for the circuits that will be evaluated.) The keys Ki,0,Ki,1 are then encrypted under
the labels li,0 and li,1: P2 sends Enc(li,0,Ki,0) and Enc(li,0,Ki,0).

– Commitment of the labels (output recovery commitments): C0 = h0g
Ki,0 and C1 =

h1g
Ki,1 . This is a Pedersen commitment and is therefore not binding for P2 which knows

the trapdoors w0, w1. However, it binds P2 to wb + li,b for b ∈ {0, 1}. P1 checks the
consistency of Ki,0 +w0 and Ki,1 +w1 by checking that Cb = gKi,b+wb . If this last check
goes through, then P1 is guaranteed that the labels of the circuit gci are indeed connected
to the trapdoors w0, w1, and thus the circuit is marked as semi-trusted. P1 continues her
executions only if all circuits are semi-trusted.

• Two different outputs enable P1 to reconstruct the trapdoor. Let gci and gck two
garbled circuits that output two different values. Because they are both semi-trusted, this
means that gci outputs label li,0 that enables P1 to decrypt Ki,0 and therefore w0 and gck
outputs lk,1 enabling P1 to decrypt Kk,1 and therefore w1. P1 then obtains the trapdoor
w = w0 +w1 necessary to decrypt the commitments of the input of P2 and computes the value
f(x, y).

38

	Introduction
	Our Contributions
	The global random oracle model
	Highly-Efficient Protocols

	Our Techniques
	Efficient UC Commitment in gRO Model
	Efficient NISC in gRO Model.

	The Global Random Oracle Model
	Basic UC
	JUC: UC with Joint State
	Generalized UC model
	Our Global Random Oracle Model
	Discussion

	Building Blocks
	Trapdoor Commitment
	Non-interactive WIPoK in the gRO model
	Sigma Protocols

	UC Commitments in the gRO Model
	Proof of Security

	One-sided UC-Simulatable OT
	Proof of security

	UC-secure NISC
	The Protocol
	Proof of security of NISC protocol

	Zero Knowledge Functionality in the gRO model
	NISC protocol AMPR14

