
Robust Secret Sharing Schemes Against Local Adversaries

Allison Bishop Lewko∗ and Valerio Pastro†

Columbia University

February 11, 2015

Abstract

We study robust secret sharing schemes in which between one third and one half of the
players are corrupted. In this scenario, robust secret sharing is possible only with a share size
larger than the secrets, and allowing a positive probability of reconstructing the wrong secret.
In the standard model, it is known that at least m+k bits per share are needed to robustly share
a secret of bit-length m with an error probability of 2−k; however, to the best of our knowledge,
the efficient scheme that gets closest to this lower bound has share size m+ Õ(n+ k), where n
is the number of players in the scheme.

We show that it is possible to obtain schemes with close to minimal share size in a model
of local adversaries, i.e. in which corrupt players cannot communicate between receiving their
respective honest shares and submitting corrupted shares to the reconstruction procedure, but
may coordinate before the execution of the protocol and can also gather information afterwards.
In this limited adversarial model, we prove a lower bound of roughly m+ k bits on the minimal
share size, which is (somewhat surprisingly) similar to the lower bound in the standard model,
where much stronger adversaries are allowed. We then present an efficient secret sharing scheme
that essentially meets our lower bound, therefore improving upon the best known constructions
in the standard model by removing a linear dependence on the number of players. For our
construction, we introduce a novel procedure that compiles an error correcting code into a new
randomized one, with the following two properties: a single local portion of a codeword leaks no
information on the encoded message itself, and any set of portions of a codeword reconstructs
the message with error probability exponentially low in the set size.

∗alewko@cs.columbia.edu
†valerio@cs.columbia.edu

Contents

1 Introduction 2

2 Preliminaries 6
2.1 Message Authentication Codes . 6
2.2 Error-Correcting Codes . 6
2.3 Robust Secret Sharing Schemes . 7

3 Lower Bound 8

4 New Tools for Scheme Constructions 15
4.1 Locally Hiding Function . 15
4.2 Extended Locally Hiding Function . 16
4.3 Locally Hiding Transform . 17

5 A Suitable MAC for our Scheme 18
5.1 The MAC and some of its Algebraic Properties . 18
5.2 Behavior towards Local Adversaries . 19

6 An Efficient Scheme 21
6.1 Construction . 21

1

1 Introduction

While many cryptographic primitives require computational hardness assumptions to leverage re-
strictions on an adversary’s computing power, the fundamental primitive of secret sharing protects
data information-theoretically. This is accomplished by dispersing a secret among several parties,
a sufficient number of whom are trustworthy. In a classical secret sharing scheme (as introduced
independently by Shamir [Sha79] and Blakely [Bla79]), a dealer shares a secret among n parties
such that any t+1 of them can reconstruct the secret, but any coalition of at most t players cannot
learn anything about the secret. This is an information-theoretic guarantee, requiring that the
joint distribution of any t shares must be independent of the secret.

Applications of secret sharing schemes range widely from secure multiparty computation (MPC),
secure storage, secure message transmission, and distributed algorithms. In some of these applica-
tions, particularly secure storage and message transmission, an additional feature of “robustness”
is desirable. Robust secret sharing is defined to satisfy all the usual properties of secret sharing,
while additionally requiring that when the reconstruction procedure receives at most t adversarially
corrupted shares out of n, it still outputs the correct secret (with sufficiently high probability).

Prior works on robust secret sharing (e.g. [RB89, CSV93, BS97, CDF01, CFOR12]) have focused
on robustness against a “monolithic” adversary, i.e. a (computationally unbounded) centralized
adversary who maliciously corrupts t parties and submits arbitrary values for their shares to the
reconstruction procedure, potentially using all of the joint information present in the t shares
initially received by the corrupted parties. In this model, it is known that for t < n/3 robust secret
sharing schemes can be perfect, i.e. for any admissible adversary the reconstruction procedure
outputs the correct secret with probability one (e.g. Shamir secret sharing, with Reed-Solomon
decoding achieves this property). Interestingly, for n/3 ≤ t < n/2 robust secret sharing is possible,
but only by allowing a positive reconstruction failure probability [Cev11]. In this scenario, Cevallos
et al. [CFOR12] presented a polynomial time robust secret sharing scheme over m-bit messages
with share sizes of m+ Õ(k+n) and reconstruction failure probability of 2−k. This scheme has the
lowest share size among efficient schemes in this model, but does not match the best known lower
bound of m+ k [CSV93]. Our work is motivated by the following question:

Can the share size be significantly reduced with additional,
but reasonable, restrictions on the adversary?

We identify a very natural and realistic adversary for which we construct a scheme with con-
siderably shorter shares – while still maintaining efficiency. In this new adversarial model, we also
prove a lower bound of m + k − 2 − log2(3) bits on the share size, which essentially matches our
constructions’ shares and is almost identical to the best known lower bound in the standard model,
in which much stronger adversaries are allowed. By constructing a scheme that approximately
attains our lower bound, we have a rather complete understanding of the share sizes that can be
obtained for robust secret sharing schemes in this model, a degree of precision that has not yet
been achieved against the standard monolithic adversary.

Our Adversarial Model. We consider a “local” adversary, meaning that the t corrupted players
cannot communicate with each other during the execution of the protocol – but they may arbitrarily
coordinate before and after (the latter to try to gain knowledge on the secret). This means that
each of the corrupted parties must decide on his malicious share to submit to the reconstruction

2

procedure based only on some pre-determined strategy and the one honest share it has received
from the dealer. This model carries some similarities to the work of Lepinski et al. [LMs05], in the
context of collusion-free protocols. In the setting of secret sharing robust against local adversaries,
it is still true that for t < n/3 schemes can be perfect, and for n/3 ≤ t < n/2 robustness can
be achieved only allowing a failure probability (the same proofs as the ones in the monolithic
adversarial model still apply), but in this latter scenario, working with local adversaries allows us
to construct schemes with optimal share sizes, still maintaining efficiency.

Motivation for our Model. Local adversaries model several kinds of realistic limitations of
adversarial power in many applications. For example, in a secure message transmission, data may
travel quickly and realtime cooperation among corrupted nodes may be unlikely. In a large secure
multiparty computation, the scale and pace of the computation may also make online coordination
among adversarial parties unrealistic. Corrupted parties may also be mutually distrusting, unwilling
to coordinate (e.g. if they have opposite goals), or they might not even know about the existence
of each other (say in a large scale MPC over the Internet).

Similar adversary models have been well-studied in other subfields of computer science, such as
the multi-prover setting for interactive proofs. In the classical result of IP = PSPACE [Sha92],
a single, computationally unbounded and potentially duplicitous prover must convince a much less
powerful verifier of the truth of a particular statement. As was shown in [BFL91], considering
two duplicitous but non-communicating provers greatly expands the class of statements that can
be proved, as MIP = NEXP . Removing online communication between the provers is precisely
what fuels this expanded power, and similar gains may be possible in other interactive scenarios,
including secure multiparty computation and robust distributed algorithms.

In order to capture limited collusion among adversarial parties during the protocol, the locality
model can be extended to allow small factions. More precisely, we could allow each adversarially
submitted share to depend on the view of a certain bounded number of received shares. We do not
address this extended model in this work, but we suspect that similar techniques can be applied to
obtain such extensions.

More Details on our Results. As mentioned earlier, we prove two complementary results on
the share size of secret sharing schemes robust against a local adversary corrupting t of the n
players, where n/3 ≤ t < n/2, and where the reconstruction failure probability is 2−k.

In the first part of the paper, we show a lower bound of m+k−2− log2(3) on the minimal share
size in this setting. This is somewhat surprising, since it is quantitatively comparable to the lower
bound of m + k proven in [CSV93] in the case of a monolithic (and much stronger!) adversary.
Our proof uses remarkably little adversarial power to obtain this lower bound: more precisely, we
show that this lower bound holds against an oblivious adversary who completely ignores the honest
shares given to corrupted parties and replaces them with either default values or fresh shares. We
note that working with such little adversarial knowledge requires us to develop new lower bound
techniques. In particular, the proof of the previous lower bound of [CSV93] heavily leverages
centralized adversarial knowledge of the true secret and all of the shares received by corrupted
players. Their argument considers an adversary who maximizes its success conditioned on this
knowledge – knowledge that our much weaker local adversary does not have.

In the second part, we construct a poly-time scheme robust against local adversaries whose
share size is m + O(k), which essentially meets our lower bound. Our core idea for shrinking the

3

shares is to authenticate all honest shares with a single MAC key that is “hidden in plain sight”
from a local adversary. To do so, while still ensuring that the key can be efficiently recovered by the
reconstruction procedure, we develop a novel tool integrating error-correcting codes with “locally
hiding” distributions, a rather general tool that may be of independent interest.

Compared to the scheme in the standard model with smallest share size [CFOR12], our scheme
reduces the share size by removing the additive factor of n. Thus, we see that restricting to local
adversaries allows us to considerably reduce share size down to approximately match a proven
lower bound, removing any linear dependence on the number of players, while maintaining poly-
nomial time efficiency. This yields a much tighter understanding of what is achievable against
local adversaries than what is known against a monolithic adversary in the context of robust secret
sharing.

Techniques for our Construction. Previous constructions of robust secret sharing schemes
use MACs to authenticate honest shares. Against a monolithic adversary who can view all of
the shares received by corrupt players, it seems necessary to use many different MACs to prevent
the adversary from compiling enough information about the keys to forge enough tags for corrupt
shares. These many MAC keys and tags significantly increase the size of shares.

In the local adversary setting where each corrupt party can only act based upon a pre-determined
strategy and its own received share, we can restrict to a single MAC key to be used on each share for
authentication. Essentially, we will design our shares so that each party will be given a share that
is distributed independently of the MAC key when considered on its own, but the joint distribution
of just a constant number of honest shares reveals the key (hence allowing authentication of honest
shares).

The basic idea is as follows: each share consists of a Shamir share of the secret, a tag on the
Shamir share, and information on the global MAC key (used for the tag). This information has
to be conveyed in a way that a single player obtains no information on the key itself (otherwise it
could forge its tag), and the key is still retrievable even if nearly half of the shares are corrupt.

In our construction, the dealer embeds the key in a bit-matrix and distributes one row per
player in such a way that each single row looks random, but the joint distribution of enough rows
reveals the key. More specifically, each bit of the key is encoded as a column of such matrix, as
follows: the bit 0 is encoded as a uniform bit-column, while the bit 1 is encoded as either the all-
zero and the all-one column, and this choice is uniform. A single row in such matrix is a uniform
string; no information on the key is revealed. On the other hand, looking across a bigger number of
honest rows (and seeing them all agree at the positions corresponding to 1) allows us to invert the
embedding with probability close to one – the failure probability decreases exponentially with the
number of honest rows seen. In order to make the failure probability negligible when the number
of inspected rows is constant, we encode the key via an asymptotically good error correcting code
before the embedding procedure.

A secondary challenge is that looking at corrupt rows can lead to the wrong key. However,
it is possible to detect a corrupt key by the fact that it verifies fewer than t + 1 tags with high
probability (the honest shares are likely to be incompatible with a non-honest key).

Thus, we can iterate the procedure to invert the embedding of the key through all subsets
of shares of a fixed constant size, attempt to reconstruct the MAC key from each set, and stop
whenever we find one that authenticates properly. This computation is still polynomial in n and
succeeds with sufficiently high probability. This comprises our construction of an efficient secret

4

sharing scheme that is robust against local adversaries, with a significantly reduced share size
compared to previous constructions in the standard model.

Techniques for the Lower Bound. To prove our lower bound on minimal share size in this
setting, we consider very simple local adversary strategies. We suppose that a local adversary’s
goal is to cause a reconstruction failure when a challenger generates honest shares from a uniformly
random secret. In particular, the adversary identifies a player with a share of minimal length and
chooses to corrupt a random set of t of the remaining players and replaces the corrupt players’ shares
with freshly generated honest shares for a new uniformly chosen secret. Note that these t corrupted
shares will be sampled from the same distribution as honest shares, but sampled independently from
the true secret. For simplicity of illustration, suppose that this local adversary has replaced the first
t shares with its own sample, while the remaining t + 1 shares are honest. Also suppose that the
t+ 1st share has minimal length (any scenario follows these assumptions, up to a relabeling of the
players indices). Then, it is likely that the first t corrupted shares and the honest t+ 1st share are
also consistent with some honest sharing. This will cause collisions, resulting in a reconstruction
error probability that is at least exponential in the overhead of the t + 1st share (i.e. in the bit
length of the share minus the bit length of the secret).

To formally model this, we parameterize the underlying probability space in terms of pairs of
secrets and random strings chosen by the share generating algorithm. We group these pairs into
various equivalence classes based on collisions of subsets of the resulting shares, and model these
equivalences in a layered graph. Our analysis takes advantage of the fact that the adversary can
produce the first t corrupted shares in a way that is consistent with the t + 1st share without
knowing what the reconstruction would output. This crucial property comes as a consequence of
the privacy guarantee of the scheme: any first t shares are consistent with every secret, otherwise
the adversary would get information on the secret after the protocol is over (and communication
between corrupt players is allowed). This is a key source of the precision of our bound as compared
to [CSV93], where they capture adversary success by considering when the adversary correctly
guesses an unknown share, making use of all the information on the t shares he is given. We
manage to capture the adversarial success without requiring such guesses, and no knowledge on
the honest shares given to the adversary.

As a side note, our lower bound proof holds also for secret sharing schemes that are private
and robust, but not perfectly correct (i.e. we are not requiring that t + 1 shares determine the
secret with probability one – however, even if this is the case, by the (t, δ)-robustness property for
an n = 2 · t + 1 player secret sharing scheme, we get that t + 1 shares determine a secret with
probability 1− δ).

Additional Related Work. Decentralized adversaries are also considered in [AKL+09, CV12],
which provide frameworks for simulation-based security definitions for cryptographic primitives
against local adversaries. Similarly, in the setting of leakage-resilient cryptography, various “local”
adversarial models have been studied. For example, the “only computation leaks information” ax-
iom of Micali and Reyzin [MR04] restricts an adversary to leakage that happens solely on whatever
portion of a secret state is currently involved in a computation. Some other works, such as [DP08]
and [DLWW11] consider secret state as divided among multiple devices and leaking independently.
[AKMZ12] also present a rather general study of various collusion restrictions on adversarial actors
in multiparty protocols.

5

2 Preliminaries

In this section we list the classic tools and notation used in our paper.
We usually denote distributions by calligraphic letters (e.g. D), random variables by capital

letters (e.g. D ∼ D reads as “D follows the distribution D”), and samples by lowercase letters
(e.g. d← D reads “d is sampled according to D”). Moreover, for any set X, we denote by UX the
uniform distribution on X.

Definition 2.1 (Projection). For any integer n, for any set X = X1 × · · · × Xn, and for any
I ⊆ {1, . . . , n}, we write XI to denote the set

∏
i∈I Xi. This notation is carried over to the

elements of X.

Definition 2.2 (Hamming Weight). For a vector v ∈ Fc2, we define w(v) to be the Hamming weight
of v (i.e. the number of non-zero coordinates of v).

We will use the following Chernoff Bound, which appears as Theorem 4.4 in [MU05].

Lemma 2.3. Let Y1, . . . , Ym be independent random variables with Pr[Yi = 1] = p and Pr[Yi =
0] = 1− p. Let Y =

∑m
i=1 Yi and µ = p ·m. Then for 0 < β ≤ 1,

Pr[Y ≥ (1 + β) · µ] ≤ e−µβ2/3.

2.1 Message Authentication Codes

Definition 2.4 (MAC). A (one time) ε-secure message authentication code (MAC) for messages
in M is a function MAC : K ×M → T , for some sets K (key space) and T (tag space) such that
for all m 6= m′ ∈M, for all t, t′ ∈ T , and for a uniform random variable K ∼ UK:

Pr[MAC(K,m′) = t′ | MAC(K,m) = t] ≤ ε.

2.2 Error-Correcting Codes

An error-correcting code for messages that are bit strings of length h is a function C : Fh2 → Fc2,
where c is called the block length. The distance d of the code is defined as

min
x6=y∈Fh2

{w(x− y)}.

The number E of adversarial errors tolerated is dd2 − 1e, while the fraction e of errors tolerated is
E
c . The rate of the code r is defined to be h/c. A decoding procedure is a function D : Fc2 → Fh2
such that whenever z satisfies w(z, C(x)) ≤ E, D(z) = x.

An infinite ensemble of codes for increasing block lengths c is said to be asymptotically good if
the rate r and fraction of errors e are both lower bounded by positive constants. Such codes are
known to exist, and with efficient encoding and decoding functions. For example, Justesen [Jus72]
gave an explicit family of asymptotically good codes with block lengths h = 2m(2m − 1) for each
positive integer m with efficient encoding and decoding functions.

6

2.3 Robust Secret Sharing Schemes

Throughout the rest of the paper, we use the following notation:

• n is an integer that denotes the number of players in the scheme.

• t ≤ n denotes the maximum number of corruptible players in the scheme.

• M is the message space. We denote by m the integer such that 2m−1 < |M| ≤ 2m.

• R is a set that denotes the randomness space used by the scheme to share messages. We
assume that the scheme samples uniform elements in R to produce sequences of shares.

• S = S1×· · ·×Sn is a set that denotes the ambient space of sequences of shares. For i = 1, . . . , n
we denote by 0i a default element in Si (i.e. an element that any Turing machine can retrieve
without any input). For example, if Si is a group, 0i could be the zero of Si as a group.

Definition 2.5 (Secret Sharing Scheme). A t-private, n-player secret sharing scheme over a mes-
sage space M is a tuple (Share,Rec) of algorithms that run as follows:

Share(s, r)→ (s1, . . . , sn): this algorithm takes as input a message s ∈ M and randomness r ∈ R
and outputs a sequence of shares (s1, . . . , sn) ∈ S.

Rec(s1, . . . , sn)→ s′: this algorithm takes as input an element (s1, . . . , sn) ∈ S (not necessarily
output by Share) and outputs a message s′ ∈M.

Moreover, the following properties hold:

Privacy: Any t out of n shares of a secret give no information on the secret itself. More formally,
for any random variable S over M and uniform R ∼ UR:

S = (S | Share(S,R)C1 = Share(s, r)C1 , . . . ,Share(S,R)Ct = Share(s, r)Ct)

Correctness: Reconstructing a sequence of shares generated by the sharing procedure leads to
the original secret, even given n− t− 1 erasures. More formally, for any I ⊆ {1, . . . , n} with
|I| = t + 1 let ∆(I) ∈ {0, 1}n be the characteristic vector of I (i.e. for i ∈ I, ∆(I)i = 1; for
i /∈ I, ∆(I)i = 0). Then, for any s ∈M, r ← UR:

Pr[Rec(Share(s, r) ∗∆(I)) = s] = 1,

where ∗ denotes the coordinate-wise product.

Definition 2.6 (Merging Function). Let s ∈ M, r ∈ R and let I ⊆ {1, . . . , n}. For i ∈ I, let
vi ∈ Si. We define the merging function of s, r with I, (vi)i∈I as

Merge(s, r, I, (vi)i∈I) = S ∈ S

where for i ∈ I Si = vi, and for i /∈ I Si = Share(s, r)i.

Definition 2.7 (Adversary). For any t-private, n-player secret sharing scheme (Share,Rec), we
define the experiment Exp(Share,Rec)(D,Adv), where D is a distribution over M, and Adv is an
interactive Turing machine, called the adversary.

7

Exp(Share,Rec)(D,Adv) is defined as follows:

E.1. Send the public description (Share,Rec) of the scheme and the distribution D to Adv.

E.2. Adv computes and outputs I = {i1, . . . , it} ⊆ {1, . . . , n}, i.e. a subset of players whose
size is less or equal to t.

E.3. Sample s← D, and r ← UR, compute Share(s, r) and send Share(s, r)I to Adv.

E.4. Adv outputs (vi)i∈I , where vi ← Vi and

Vi = Vi(Share,Rec,D,Share(s, r)i1 , . . . ,Share(s, r)it)

is a random variable that may depend on the public information of the scheme, and the
ensemble of shares indexed by I.

E.5. Return 1 if and only if Merge(s, r, I, (vi)i∈I) 6= s.

For v ≤ t, we say that an adversary is v-local if for all i ∈ I,

Vi = Vi(Share,Rec,D, Share(s, r)i1 , . . . ,Share(s, r)iv),

i.e. Vi is a random variable that depends only on the public information of the scheme, and at most
v elements of the ensemble of shares indexed by I.

Definition 2.8 (Robust Secret Sharing Scheme). A t-private n-player secret sharing scheme
(Share,Rec) over a message space M is (t, δ)-robust if the following property holds:

Robustness: With probability less or equal to δ the reconstruction procedure fails at outputing
the correct shared value, even if t out of the n shares are corrupt by adversary. Formally, for
any distribution D, for any adversary Adv:

Pr[Exp(Share,Rec)(D,Adv) = 1] ≤ δ

We say that a scheme is (t, δ)-robust agaist v-local adversaries if robustness holds for any v-local
adversary.

3 Lower Bound

We prove a lower bound for the share size of any secret sharing scheme that is robust against 0-local
adversaries, which implies that this lower bound applies to any secret sharing scheme that is robust
against v-local adversaries for any v ≥ 0.

Theorem 3.1. Let k,m, t be integers. Let δ = 2−k, n = 2·t+1,M be a set with 2m−1 ≤ |M| ≤ 2m.
Let (Share,Rec) be an n-player secret sharing scheme over M. If (Share,Rec) is (t, δ)-robust, then
the minimum bit-length of any of its shares is at least m+ k − (2 + log2(3)).

Proof. We first note that it suffices to prove a lower bound of m+ k − (1 + log2(3)) for |M| = 2m,
since a lower bound for the share size required to share a secret from a space of size 2m−1 certainly
applies to sharing a secret from larger a space of size |M| ≥ 2m−1. Throughout the proof, we will
therefore assume that |M| = 2m.

8

Our proof will rely solely on very simple local adversary strategies. Namely, we will need to con-
sider only two possible adversary strategies: one that replaces some subset of t shares with default
values of all zeros, and another that replaces them with shares generated with fresh randomness
for a fresh (uniform) secret. These strategies are both 0-local because the adversary submits shares
that are distributed independently of all the shares that the corrupted players receive. The key idea
will be that if one share is very short, then it becomes more likely that the adversary submitting t
freshly distributed shares will cause a “collision”, meaning that the corrupted shares are consistent
with the honestly generated short share. This will make it difficult for the reconstruction algorithm
to tell which is the honestly shared secret. We also consider the adversary who submits default
values for technical reasons within the argument, in order to prove that there are not too many
honest sharings for differing secrets that agree in some set of at least t + 1 shares. If these were
too common, the adversary submitting default values for the complement set would succeed in
confusing the reconstruction algorithm with sufficient probability.

To carefully study the probability space of pairs (s, r) where s is a uniformly random secret
and r is a random bit string used in the share generating procedure, we define a layered graph
whose vertices at each layer correspond to these pairs (s, r), and edges between the layers represent
agreeing shares for specified subsets of players. Essentially, our graph models various kinds of
equivalence classes of values (s, r) corresponding to partial agreements of the resulting shares. To
execute our proof, we will identify paths in our graph corresponding to the events of adversary
success, and we will then lower bound the number of such edges and hence the success probability
of the adversary.

A Graph. Let P ∈ {1, . . . , n} be the index of a player, let I ⊂ {1, . . . , n} \ {P} be a set of
cardinality |I| = t, and let J = {1, . . . , n} \ ({P} ∪ I) be the set of size t corresponding to the
players that are not in I and are not P . Let G = G(P, I) be a graph defined as:

• Vertices(G) = {1, . . . , 4} ×M×R, i.e. the vertex set consists of four layers of message and
random value tuples.

• ((i, s, r), (i+ 1, s′, r′)) ∈ Edges(G) if:

– i = 1, and Share(s, r)I = Share(s′, r′)I : i.e. a vertex at layer one is connected to a vertex
at layer two if the tuples of shares they define agree on the shares at I.

– i = 2, s 6= s′, and Share(s, r)P = Share(s′, r′)P : i.e. a vertex at layer two is connected to
a vertex at layer three if the vertices represent different secrets, and the tuples of shares
they define agree on the share at P .

– i = 3, and Share(s, r)J = Share(s′, r′)J : i.e. a vertex at layer three is connected to a
vertex at layer four if the tuples of shares they define agree on the shares at J .

Path Sets, Labeling, Balance. We want to construct a labeling system for paths from layer
one to layer four, that will be useful to analyze certain reconstruction properties of the secret
sharing scheme associated with the graph. Firstly, however, we need to construct a function that
maps paths containing edges from layer two to layer three to sequences of shares. For 1 ≤ i < j ≤ 4,
let Ei,j be the set of paths succesively connecting vertices at layer i to vertices at layer j; formally,

Ei,j := {((i, si, ri), (i+ 1, si+1, ri+1), . . . , (j, sj , rj)) |
for i ≤ k < j : ((k, sk, rk), (k + 1, sk+1, rk+1)) ∈ Edges(G(P, I))}.

9

We also define another set, E , containing all paths with an edge between layer two and three;
formally,

E =
⋃

i∈{1,2},j∈{3,4}

Ei,j .

Now, we construct a string function S that assigns sequences of shares to paths in E . Formally,
for ` ∈ E , ` = (. . . , (2, s2, r2), (3, s3, r3), . . .), define S(`) as the sequence of shares with the following
properties:

• S(`)I := Share(s2, r2)I ,

• S(`)P := Share(s2, r2)P = Share(s3, r3)P ,

• S(`)J := Share(s3, r3)J .

Notice that the function S depends only on the edges between layer two and three, so any two
paths in E sharing the same edge from layer two and three have the same image.

Now, for i ∈ {1, 2}, j ∈ {3, 4}, we define a labeling relation L as follows:

L : E // {I, J}

` � //
{
I, if Rec(S(`)) 6= s3,
J, if Rec(S(`)) 6= s2

Analogously to S, L depends only on the edges between layer two and three of a path. Also
notice that L is not necessarily a function, as we do not exclude the existence of paths ` =
(. . . , (2, s2, r2), (3, s3, r3), . . .) with s2 6= Rec(S(`)) 6= s3. Such paths would be labeled as both
I and J .

Finally, we say that the graph G is I-oriented if there are at least as many edges in E2,3 labeled
by I than J , i.e. if |{` ∈ E2,3 | L(`) = I}| ≥ |{` ∈ E2,3 | L(`) = J}|.

Setup. Let λ be the minimal bit-length of any share of (Share,Rec). Without loss of generality,
assume that P is a player associated with a share of (Share,Rec) of length λ.

Construction of an Adversary. Let AdvA be the adversary who does the following during
Exp(Share,Rec)(D,AdvA):

1. Given the public information (Share,Rec), D in step E.1, sample x← UM, rx ← UR.

2. Compute (v1, . . . , vn)← Share(x, rx).

3. Sample a uniform set I ⊂ {1, . . . , n} \ {P} with |I| = t.

4. Construct G(P, I).

5. If G(P, I) is I-oriented, output I at step E.2, and (vi)i∈I at step E.4.
Else, output J at step E.2, and (vj)j∈J at step E.4.

Notice that AdvA is a valid 0-local adversary, since all the computation AdvA performs is indepen-
dent of the values it is inputed at step E.3.

Representing Adversarial Success in the Graph. Assume that, if I is the set chosen by
the adversary, the graph G(P, I), induced by the given secret sharing scheme, is I-oriented. Let
z ∈ M, rz ← UR, let C be a sequence of shares defined as: for i ∈ I, Ci = Vi = Share(x, rx)i; for

10

j ∈ J ∪ {P}, Cj = Share(z, rz)j . Notice that C can be seen as a sharing of z corrupted at I by the
above adversary, therefore, by the robustness property:

Pr[Rec(C) 6= z] ≤ δ = 2−k, (3.1)

where the probability is taken over uniform choices of x, z ∈ M, rx, rz ∈ R. Notice that if there
exists (y, ry) such that ` := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈ E1,3 and V (`) = I then Rec(C) 6= z:
in fact, if ` ∈ E1,3, then V (`) = I implies Rec(S(`)) 6= z, by definition of V ; and since S(`) = C
(by the following: S(`)I = Share(y, ry)I = Share(x, rx)I = CI , S(`)J = Share(z, rz)J = CJ and
S(`)P = Share(y, ry)P = Share(z, rz)P = CP) then V (`) = I implies Rec(C) 6= z. This means that

Pr[∃(y, ry), ` := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈ E1,3, V (`) = I] ≤ Pr[Rec(C) 6= z], (3.2)

which implies

Pr[∃(y, ry), ` := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈ E1,3, V (`) = I] ≤ 2−k, (3.3)

by combining equation 3.1 and 3.2.
A More Refined Graph. In order to better analyze the left-hand side of equation 3.3, we

introduce a subgraph G′(P, I) of G(P, I), defined by the following algorithm:

1. Initialize G′ ← G(P, I)

2. For a = (ai1 , . . . , ait+1) ∈ SI∪{P}:

(a) Define Ha := {(2, s, r) ∈ Vertices(G) | Share(s, r)I∪{P} = a}
(b) Initialize H ′a := Ha

(c) While there exist (2, s, r), (2, s′, r′) ∈ H ′a such that s 6= s′:

i. Update the graph G′ by removing (2, s, r) and (2, s′, r′):

• Edges(G′)← Edges(G′)|Vertices(G′)\{(2,s,r),(2,s′,r′)}
• Vertices(G′)← Vertices(G′) \ {(2, s, r), (2, s′, r′)}

ii. Update H ′a ← {(2, s, r) ∈ Vertices(G′) | Share(s, r)I∪{P} = a}

3. Output G′(P, I)← G′.

In the following, we bound the number VR = |Vertices(G(P, I)) \ Vertices(G′(P, I))| of vertices
removed from G(P, I) by the above algorithm to obtain G′(P, I). To do so, we relate VR to
Pr[Exp(Share,Rec)(UM,AdvB) = 1] where AdvB is a specific adversary, defined as follows:

1. Let b = (0j1 , . . . , 0jt) ∈ SJ

2. Output J at step E.2, b at step E.4.

Notice that AdvB is a valid 0-local adversary, as b depends only on the public specifications
(Share,Rec) of the scheme (and therefore it is independent of any value inputed to B at step
E.3). Let

GB := {(s, r) ∈M×R | Rec(Merge(s, r, J, b)) 6= s}

11

Notice that if any element (s, r) of GB is sampled at step E.3 of Exp(Share,Rec)(UM,AdvB), then
Exp(Share,Rec)(UM,AdvB) outputs 1, by definition of GB. Notice also that the probability of sam-
pling (s, r) in GB at step E.3 is |GB|/|M×R|, as the experiment considers uniform messages (and
randomness). Therefore, by the robustness of the scheme,

|GB|/|M×R| ≤ 2−k (3.4)

Now, we want to relate GB and VR. Notice that any two vertices (2, s, r), (2, s′, r′), simultaneously
removed in step 2(c)i, belong to the same set Ha for some a, which implies that

Share(s, r)I∪{P} = a = Share(s′, r′)I∪{P}, (3.5)

by definition of Ha. Combining equation 3.5 with the fact that {1, . . . , n} \ J = I ∪ {P}, it follows
that Merge(s, r, J, b) = S = Merge(s′, r′, J, b). Now, let s′′ ← Rec(S). Since s 6= s′ then at least one
between s and s′ differs from s′′, which means that at least one between (s, r) and (s′, r′) lies in
GB. Therefore,

VR ≤ 2 · |GB| (3.6)

In other words, at least half of the vertices (2, s, r) removed in the construction of G′ are such that
to (s, r) ∈ GB. Combining equation 3.6 with equation 3.4, we get

VR ≤ 2 · 2−k · |M×R| (3.7)

General Facts about the Connectivity between Layers. Now that we have a bound on
the number of vertices removed from G(P, I) to obtain G′(P, I) we can proceed and study how
some specific sets of vertices are connected between the layers of G′(P, I). We are mostly interested
in vertices on layer one and two. For any vertex (2, s, r) ∈ Vertices(G′(P, I)), and for any secret
s′ ∈M, define

Cs′(2, s, r) := {(1, s′, r′) | ((1, s′, r′), (2, s, r)) ∈ Edges(G′(P, I))}

i.e. the set of vertices at layer one that represent secret s′ and are connected to (2, s, r). Notice
that the set {Cs′(2, s, r)}s′∈M is a partition of the set of vertices at layer one connected to (2, s, r).
We want to show that for any s′, s′′, |Cs′(2, s, r)| = |Cs′′(2, s, r)|. For the sake of contradiction,
assume this is not the case, so without loss of generality there exist s′ 6= s′′ such that |Cs′(2, s, r)| >
|Cs′′(2, s, r)|. By definition of G′(P, I), this means that

|{r′ ∈ R | Share(s′, r′)I = Share(s, r)I}| > |{r′′ ∈ R | Share(s′′, r′′)I = Share(s, r)I}|

which implies that
Pr[s′ | Share(s, r)I] > Pr[s′′ | Share(s, r)I]

and therefore violates the privacy of the scheme, as Share(s, r)I would reveal that the secret is more
likely to be s′ than s′′, but by privacy given any t shares the secret should look uniform. Therefore,

for any s′, s′′ ∈M, (2, s, r) ∈ G′(P, I): |Cs′(2, s, r)| = |Cs′′(2, s, r)| (3.8)

This implies that any (2, s, r) ∈ G′(P, I) is connected to 2n · |Cs(2, s, r)| vertices at layer one
(2n · |Cs(2, s, r)| = | ∪s′∈S Cs′(2, s, r)|, by the fact that {Cs′(2, s, r)}s′∈M is a partition).

12

Particular Facts about the Connectivity between Layers. Now, with a notation similar
to the one in the construction of G′(P, I), for a ∈ SI∪{P}, let

H ′a := {(2, s, r) ∈ Vertices(G′(P, I)) | Share(s, r)I∪{P} = a}

Moreover, let

C ′a := {(1, s, r) ∈ Vertices(G′(P, I)) | ∃(2, s′, r′) ∈ H ′a : ((1, s, r), (2, s′, r′)) ∈ Edges(G′(P, I))}

i.e. the set of vertices at layer one that are connected to H ′a. Notice that all vertices in H ′a represent
the same secret: namely, if (2, s, r), (2, s′, r′) ∈ H ′a, then s = s′, by construction of G′(P, I). Also, for
any (2, s, r) ∈ H ′a, if (2, s, r′) ∈ H ′a, then ((1, s, r′), (2, s, r)) ∈ Edges(G′(P, I)), again by construction
of H ′a, and in particular from the fact that Share(s, r)I = Share(s, r′)I . This implies that for any
(2, s, r) ∈ H ′a, |Cs(2, s, r)| ≥ |H ′a|. Using property 3.8, we get that any (2, s, r) ∈ H ′a is connected
to a set X of vertices at layer one of cardinality at least 2m · |H ′a|. Since |C ′a| ≥ |X| (as C ′a ⊇ X),
we get Therefore,

|C ′a| ≥ 2m · |H ′a| (3.9)

Putting things together. We can now proceed and bound the left-hand side of equation 3.3
in terms of the size of SP . The following calculation starts with a probability space where (x, rx)
and (z, rz) are independently and uniformly sampled form M×R. We begin with some simple
consequences of our definitions:

2−k ≥ Pr[∃(y, ry), ` := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈ E1,3, V (`) = I]

=
∑

a∈SI∪{P}

Pr[∃(y, ry), y 6= z,Share(x, rx)I = aI ,Share(y, ry)I = aI ,Share(y, ry)P = aP ,

Share(z, rz)P = aP , V (`) = I] (definition of E1,3)

=
∑

a∈SI∪{P}

Pr[Share(x, rx)I = aI ,∃(2, y, ry) ∈ Vertices(G′(P, I)), y 6= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (`) = I] (Vertices(G′(P, I)) ⊆ Vertices(G(P, I)))

Next we recall that the label of the ` can be determined without reference to (x, rx). We will write
`2,3 as the edge connecting (2, y, ry) and (3, z, rz), and we note that V (`) = V (`2,3). We note that
the condition on x can now be written independently:

=
∑

a∈SI∪{P}

Pr[(1, x, rx) ∈ C ′a] · Pr[∃(2, y, ry) ∈ Vertices(G′(P, I)), y 6= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (`2,3) = I] (definition of C ′a)

=
∑

a∈SI∪{P}

|C ′a|
|M×R|

· Pr[∃(2, y, ry) ∈ Vertices(G′(P, I)), y 6= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (`2,3) = I] (unif. of (x, rx) ∈M×R)

=
∑

a∈SI∪{P}

2m · |H ′a|
|M×R|

· Pr[∃(2, y, ry) ∈ Vertices(G′(P, I)), y 6= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (`2,3) = I] (equation 3.9)

13

Now in order to express this in a more convenient form and then replace the existence condition
on y with something easier to manipulate, we introduce a fresh random variable (Y, rY) sampled
independently and uniformly from M×R:

= 2m ·
∑

a∈SI∪{P}

Pr[(2, Y, rY) ∈ H ′a] · Pr[∃(2, y, ry) ∈ Vertices(G′(P, I)), y 6= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (`2,3) = I] (unif. of (Y, rY) ∈M×R)

≥ 2m ·
∑

a∈SI∪{P}

Pr[(2, Y, rY) ∈ H ′a, Y 6= z, (2, Y, rY) /∈ VR,Share(z, rz)P = aP , V (`2,3) = I]

In this last expression, `2,3 now denotes the edge between (2, Y, rY) and (3, z, rz). Our labeling
condition now applied to an edge between two uniformly sampled vertices at layer 2 and layer 3,
hence we can directly apply our knowledge that the graph is I-oriented to conclude:

≥ 2m

2
·
∑

a∈SI∪{P}

Pr[(2, Y, rY) ∈ H ′a, Y 6= z, (2, Y, rY) /∈ VR, Share(z, rz)P = aP]

We next observe that the events Y 6= z and Share(z, rz)P = aP are independent, by privacy. This
allows us to proceed as:

≥ (1− 2−m) · 2m

2
·
∑

a∈SI∪{P}

Pr[(2, Y, rY) ∈ H ′a, (2, Y, rY) /∈ VR]·

· Pr[Share(z, rz)P = aP] (independence)

= (1− 2−m) · 2m

2
·
∑

a∈SI∪{P}

Pr[Share(Y, rY)I = aI , Share(Y, rY)P = aP , (2, Y, rY) /∈ VR]·

· Pr[Share(z, rz)P = aP] (definition of H ′a)

We will next apply a union bound to remove the condition (2, Y, rY) /∈ VR, and then use our prior
bound on the size of VR:

≥ − |VR|
|M×R|

+ (1− 2−m) · 2m

2
·
∑

a∈SI∪{P}

Pr[Share(Y, rY)I = aI ,Share(Y, rY)P = aP]·

· Pr[Share(z, rz)P = aP] (union bound)

≥ −2−k+1 +
2m

2
·
∑

a∈SI∪{P}

Pr[Share(Y, rY)I = aI , Share(Y, rY)P = aP]·

· Pr[Share(z, rz)P = aP] (equation 3.7)

Next we reorganize our sum by looking at each aP value and summing over all the values of aI :

= −2−k+1 +
2m

2
·
∑
a∈SP

Pr[Share(Y, rY)P = aP] · Pr[Share(z, rz)P = aP]

14

The remainder of the calculation is an application of the Cauchy-Schwarz inequality after exploiting
the fact that (Y, rY) and (z, rz) are identically distributed and now subject to the same condition:

= −2−k+1 +
2m

2
·
∑
a∈SP

Pr[Share(Y, rY)P = aP]2 (identical random variables)

= −2−k+1 +
2m

2
· 1

|SP |
·
∑
a∈SP

Pr[Share(Y, rY)P = aP]2
∑
a∈SP

12

≥ −2−k+1 +
2m

2
· 1

|SP |
·

 ∑
a∈S{P}

Pr[Share(Y, rY)P = aP] · 1

2

(Cauchy-Schwarz inequality)

= −2−k+1 +
2m

2
· 1

2λ
(definition of λ)

= 2m−λ−1 − 2−k+1

Therefore, we must have
2m−λ−1 − 2−k+1 ≤ 2−k,

which implies that
λ ≥ m+ k − (1 + log2(3)).

4 New Tools for Scheme Constructions

In this section, we develop some general tools that will be used in our efficient scheme construction.
First, we will define a simple “locally hiding function” that generates two distributions D0 and D1.
While any single bit of the output is distributed identically in D0 and D1, the joint distribution of
a relatively small number of bits is sufficient to distinguish D0 from D1 with high probability.

4.1 Locally Hiding Function

Definition 4.1 (Locally Hiding Function). Let D0 = UFn2 be the uniform distribution over Fn2 , and
let D1 = UX be the uniform distribution over X = {0n, 1n} ⊆ Fn2 . The n-locally hiding function is
a randomized function η : F2 → Fn2 defined as:

η : F2
// Fn2

v � // Dv.

Lemma 4.2 (Properties). The n-locally hiding function has the following properties:

Local Hiding: For any distribution D over F2, for any v ∈ F2, for any i ∈ {1, . . . , n}, and for
any wi ∈ F2, if B ∼ D,

Pr[B = v] = Pr[B = v | η(B)i = wi].

Local Almost Invertibility: For any I ⊆ {1, . . . , n}, |I| = α, the function ιI : Fα2 → F2

ιI : Fα2 // F2

u � //
{

1 if u ∈ {0α, 1α}
0 otherwise

15

fails to invert η with probability less or equal to 2−α+1. More formally, for any v ∈ F2,

Pr[ιI(η(v)I) 6= v] ≤ 2−α+1.

Proof. To prove local hiding, notice that for any i ∈ {1, . . . , n}

η(0)i =
(
UFn2

)
i

= UF2 =
(
U{0n,1n}

)
i

= η(1)i,

which means that for any distribution D and B ∼ D, η(B)i is a uniform bit, independent of B.
Therefore, for any v, wi ∈ F2, we have Pr[B = v] = Pr[B = v | η(B)i = wi].

To prove local almost invertibility, simple manipulation leads to the result:

Pr[ιI(η(v)I) 6= v] = Pr[ιI(η(v)I) 6= v, v = 0] + Pr[ιI(η(v)I) 6= v, v = 1]

≤ Pr[ιI(η(0)I) = 1] + Pr[ιI(η(1)I) = 0]

≤ Pr[ιI((UFn2)I) = 1] + Pr[ιI((U{0n,1n})I) = 0]

≤ Pr[S ∈ {0α, 1α} | S ∼ (UFn2)I] + Pr[S /∈ {0α, 1α} | S ∼ (U{0n,1n})I}]
≤ Pr[S ∈ {0α, 1α} | S ∼ UFα2] + Pr[S /∈ {0α, 1α} | S ∼ U{0α,1α}]
≤ 2 · 2−α = 2−α+1.

4.2 Extended Locally Hiding Function

Definition 4.3 (Extended Locally Hiding Function). Let η be the n-locally hiding function. For
any vector space Fc2, the extended n-locally hiding function is the coordinate-wise extension of η,
as follows:

ηc : Fc2 // Fn×c2

v = (v1, . . . , vc)
� // (η(v1), . . . , η(vc)).

Notice that the local hiding and invertibility properties are carried over as follows:

Lemma 4.4 (Properties). The extended n-locally hiding function has the following properties:

Local Hiding: For any distribution D over Fc2, for any v ∈ Fc2, for any i ∈ {1, . . . , n}, and for
any wi ∈ Fc2, if B ∼ D,

Pr[B = v] = Pr[B = v | ηc(B)i = wi].

Local Almost Invertibility: For any I ⊆ {1, . . . , n}, |I| = α, the function ιcI : Fα×c2 → Fc2

ιcI : Fα×c2
// Fc2

u = (u1, . . . , uc)
T � // (ιI(u1), . . . , ιI(uc))

maps u = ηc(v) “close to” v. More formally, for any v ∈ Fc2, 0 < β ≤ 1:

Pr[w(v − ιcI(ηc(v)I)) ≥ (1 + β) · c2−α+1] ≤ e−
cβ2

3·2α−1 .

16

Proof. Similarly to the argument above, for all v ∈ Fc2, for all i ∈ {1, . . . , n}:

ηc(v)i = (η(v1), . . . , η(vc))i = (η(v1)i, . . . , η(vc)i) = (UF2 , . . . ,UF2) = UcF2

which means that for any distribution D and B ∼ D, η(B)i is a uniform string of length c,
independent of B. Therefore, for any v, wi ∈ Fc2, we have Pr[B = v] = Pr[B = v | η(B)i = wi].

To prove local almost invertibility, firstly for i = 1, . . . , c define the following (Bernoulli) random
variable:

xi :=

{
1 if vi − ιI(η(vi)I) 6= 0
0 otherwise

By the local almost invertibility property of the (standard) locally hiding function, we have

Pr[xi = 1] ≤ 2−α+1

and applying the Chernoff bound in Lemma 2.3 on the xi, for any 0 < β ≤ 1− 2−α+1 we get

Pr

[
c∑
i=1

xi ≥ (1 + β) · c2−α+1

]
≤ e−

cβ2

3·2α−1 . (4.1)

To conclude, notice that

(v − ιcI(ηc(v)I))i = vi − ιcI(ηc(v)I)i = vi − ιI(η(vi)I)

therefore w(v − ιcI(ηc(v)I)) =
∑c

i=1 xi, by definition of xi and Hamming weight. Combining this
with equation 4.1, we get

Pr
[
w(v − ιcI(ηc(v)I)) ≥ (1 + β) · c2−α+1

]
≤ e−

cβ2

3·2α−1 .

4.3 Locally Hiding Transform

To use our locally hiding function inside an efficient robust secret sharing scheme, we would like
it to be more resilient to inversion errors when we invert using a relatively small set of bits. This
leads us to define the combined primitive of a locally hiding transform, a concatenation of an
error-correcting code and our locally hiding function.

Definition 4.5 (Locally Hiding Transform). Let C : Fh2 → Fc2 be a block (error-correcting) code
over alphabet F2, with message length h, block length c and relative distance γ. Its locally hiding
transform is a randomized function Ĉ : Fh2 → Fn×c2 , defined as Ĉ = ηc ◦ C:

Fh2

Ĉ

**
C // Fc2

ηc // Fn×c2

z = (z1, . . . , zh) � // C(z) = (v1, . . . , vc)
� // (η(v1), . . . , η(vc)).

Moreover, for any I ⊆ {1, . . . , n} with |I| = α, define D̂I = D◦ιI (where D is the decoding function
for C):

Fα×c2

D̂I

((ιcI // Fc2
D // Fh2

u = (u1, . . . , uc)
T � // (ιI(u1), . . . , ιI(uc)) = v � // D(v).

17

Notice that the local hiding property of ηc is trivially translated to Ĉ. For local invertibility, if

γ > 2 · (1 + β)2−α+1, then D̂ is locally inverts Ĉ with error probability less or equal to e−
cβ2

3·2α−1 .

5 A Suitable MAC for our Scheme

5.1 The MAC and some of its Algebraic Properties

Definition 5.1. In the following, we assume that h = 2 · g, m = d · g, and use the following MAC,
forM⊆ F2m

∼= (F2g)
d (note that any setM can be thought of as a subset of F2m , for large enough

m), K = (F2g)
2, and T = F2g :

MAC : (F2g)
2 × (F2g)

d // F2g

(a, b), (m1, . . . ,md)
� //

d∑
l=1

al ·ml + b.

It is well known that the MAC described in definition 5.1 is ε-secure for ε = d · 2−g, [dB93,
JKS93, Tay93].

Lemma 5.2. The MAC described in definition 5.1 has the following properties:

• For any m ∈M and t ∈ T , there are at most 2g different keys z ∈ K such that MAC(z,m) = t.

• For m0,m1 ∈ M, m0 6= m1, and t0, t1 ∈ T , there are at most d different keys z ∈ K such
that MAC(z,m0) = t0, MAC(z,m1) = t1.

Proof. For the first property, fix an arbitrary m ∈ M and t ∈ T . Let define the set Km,t := {z ∈
K | MAC(z,m) = t} of keys that produce t as a tag of m. We want to study |Km,t|. Using definition
5.1, we have

Km,t =

{
(a, b) ∈ F2

2g |
d∑
l=1

al ·ml + b = t

}
This means that if (a, b) ∈ Km,t, then b = t−

∑d
l=1 a

l ·ml. Therefore,

Km,t =

{(
a, t−

d∑
l=1

al ·ml

)
∈ F2

2g

}

Since the function a 7→ (a, t−
∑d

l=1 a
l ·ml) is a bijection from F2g to Km,t (with inverse (a, b) 7→ a),

we have |Km,t| = |F2g | = 2g.
For the second property, let m0,m1 ∈ M, m0 6= m1, and t0, t1 ∈ T . We want to study the

cardinality of the following set X

X := {z ∈ K | MAC(z,m0) = t0,MAC(z,m1) = t1}

Again, using definition 5.1,

X =

{
(a, b) ∈ F2

2g |
d∑
l=1

al ·m0,l + b = t0,

d∑
l=1

al ·m1,l + b = t1

}

18

We can rewrite the above set as follows:

X =

{(
a, t0 −

d∑
l=1

al ·m0,l

)
∈ F2

2g |
d∑
l=1

al · (m0,l −m1,l)− t0 + t1 = 0

}
(5.1)

Since m0 6= m1, the polynomial x 7→
∑d

l=1 x
l · (m0,l − m1,l) − t0 + t1 is a non-zero polynomial

over F2g of degree at most d, which therefore has at most d roots. Since a is one of those roots, a
can take only d values. From this, and the fact that for any (a, b) ∈ X a completely defines b (by
equation 5.1), we get that there are at most d pairs (a, b) ∈ X.

5.2 Behavior towards Local Adversaries

We now prove another important property of the above MAC that will be useful for our construction
of a robust secret sharing scheme. Intuitively, we want to study the probability that an honest
message/tag pair is authenticated by any key that validates two distinct message/tag pairs, each
of them chosen by a local adversary after seeing an honest message/tag pair. We also require
that at least one between the two adversarially chosen pairs is not honest, otherwise the success
probability of the adversaries would be trivially 1. To formalize this notion, we define the following
game played between a challenger (who provides the honest message/tag pairs to the adversaries)
and two, unbounded but non-communicating adversaries (whose target is to provide new message
message/tag pairs).

Game A:

1. The challenger samples uniform messages m0,m1 6= m2 ∈M.

2. The challenger samples a uniform key z ∈ K.

3. For i = 0, 1, 2, the challenger computes ti = MAC(z,mi).

4. For i = 1, 2, the challenger sends mi, ti to adversary i.

5. For i = 1, 2, adversary i generates m̃i, t̃i and sends them to the challenger.

6. The challenger checks and whether m̃2 6= m̃1 6= m1 and whether there exists z̃ such that

t0 = MAC(z̃,m0), t̃1 = MAC(z̃, m̃1), t̃2 = MAC(z̃, m̃2).

If so, the challenger sets W = 1; otherwise, it sets W = 0.

Lemma 5.3. In the notation of Game A,

Pr[W = 1] ≤ 2 · d · ε.

Proof. In order to analyze Pr[W = 1], we define another game which is equivalent to Game A –
equivalent in the sense that the distribution of the random variables that are involved remains the
same. First, since in Game A the value m0, t0 are never revealed to any adversary, they might as
well be generated after the challenger receives m̃1, t̃1 from adversary 1 and m̃2, t̃2 from adversary
2. Therefore, Game A is equivalent to the following game

Game A1:

19

1. The challenger samples uniform messages m1 6= m2 ∈M.

2. The challenger samples a uniform key z ∈ K.

3. For i = 1, 2, the challenger computes ti = MAC(z,mi).

4. For i = 1, 2, the challenger sends mi, ti to adversary i.

5. For i = 1, 2, adversary i generates m̃i, t̃i and sends them to the challenger.

6. The challenger samples a uniform m0 ∈M and computes t0 = MAC(z,m0).

7. The challenger checks whether m̃2 6= m̃1 6= m1 and whether ther exists z̃ such that

t0 = MAC(z̃,m0), t̃1 = MAC(z̃, m̃1), t̃2 = MAC(z̃, m̃2).

If so, the challenger sets W = 1; otherwise, it sets W = 0.

We are ready to analyze Pr[W = 1] in Game A1. First, define Z̃ ⊆ K as the set of keys compatible
with m̃1, t̃1 and m̃2, t̃2, i.e.

Z̃ = {z̃ ∈ K | t̃1 = MAC(z̃, m̃1), t̃2 = MAC(z̃, m̃2)}.

We can rewrite Pr[W = 1] as follows:

Pr[W = 1] = Pr (z,m0)[m̃2 6= m̃1 6= m1, ∃z̃ ∈ Z̃ : t0 = MAC(z̃,m0)]

≤
∑
z̃∈Z̃

Pr (z,m0)[m̃2 6= m̃1 6= m1, t0 = MAC(z̃,m0)]. (5.2)

Making the requirement t0 = MAC(z̃,m0) explicit, we obtain:

t0 =
d∑
l=1

ãl ·m0,l + b̃. (5.3)

Now, remember that m0 is uniform, and t0 is computed as follows, for z = (a, b) sampled according
to step 2:

t0 =
d∑
l=1

al ·m0,l + b. (5.4)

Subtracting equation 5.4 from equation 5.3, we get that any key (ã, b̃) should satisfy

d∑
l=1

(
ãl − al

)
·m0,l + b̃− b =

〈(
1,m0,1, . . . ,m0,d

)
,
(
b̃− b, ã1 − a1, . . . , ãd − ad

)〉
= 0. (5.5)

In equation 5.5, if ã = a, then b̃ = b. This means that m̃1, t̃1 is a valid message/tag pair for key
(a, b), as it is valid for (ã, b̃), since (ã, b̃) = (a, b). Since the MAC is ε-secure, and the adversaries
are local (in particular adversary 1 only sees m1, t1 and provides m̃1, t̃1 with m1 6= m̃1), then m̃1, t̃1
is a forgery for (a, b) – since (a, b) is a uniform key, valid for both m1, t1 and m̃1, t̃1, with m̃1 6= m1.
Therefore, for any (ã, b̃) = z̃ ∈ Z̃:

Pr (z,m0)[m̃2 6= m̃1 6= m1, t0 = MAC(z̃,m0), ã = a] ≤ ε. (5.6)

20

Now, If ã 6= a, then the vector v = (̃b− b, ã1− a1, . . . , ãd− ad) ∈ Fd+1
2 is non-zero, and equation 5.5

holds if and only if v is orthogonal to a uniformly chosen direction u = (1,m0,1, . . . ,m0,d), which
happens with probability 2−g for any non-zero v. Therefore,

Pr (z,m0)[m̃2 6= m̃1 6= m1, t0 = MAC(z̃,m0), ã 6= a] ≤ 2−g ≤ ε. (5.7)

Combining equations 5.6 and 5.7 with inequality 5.2 we get:

Pr[W = 1] ≤
∑
z̃∈Z̃

Pr (z,m0)[m̃2 6= m̃1 6= m1, t0 = MAC(z̃,m0)] ≤
∑
z̃∈Z̃

2 · ε ≤ 2 · d · ε,

since |Z̃| = d, from lemma 5.2.

6 An Efficient Scheme

The main idea behind our efficient scheme is similar to many other robust secret sharing schemes
in the standard model: in order to achieve robustness we use Shamir’s secret sharing scheme and
expand each share with some authentication data so that any adversary who submits a corrupt
share cannot provide authentication data that matches it. Differently from previous work, however,
we have more freedom in what authentication data we can add, since each corrupt share depends
only on a single share sent by the dealer, instead of depending on all the shares assigned to the
adversary. We use this property and embed the same MAC key into each share and add a tag to
the share in such a way that the key is not recoverable by individual corrupt players, while it is
recoverable by the reconstructor, who will then check the authenticity of each share.

More precisely, we will use our locally hiding transform developed in Section 4 to distribute
a MAC key among the parties so that it cannot be learned by a local adversary but can be
reliably extracted from a number of honest shares. Recovery of the key and authentication in the
reconstruction procedure will be performed by iterating over constant subsets of shares, extracting
a candidate key value, and then attempting to authenticate at least t + 1 shares. Since the local
adversary cannot learn the real MAC key (during the execution of the protocol), we will prove that
is it unlikely that a corrupted share will authenticate properly under the correct key. Similarly, we
will prove it is unlikely for an incorrect candidate key to authenticate at least t + 1 shares. The
error-correcting code in our locally hiding transform will ensure that when we attempt to extract a
key from a subset of honest shares, we produce the correct key with very high probability. Putting
this all together, we can argue that the correct key will be recovered and the correct secret will be
reconstructed.

6.1 Construction

In the following, we use the MAC defined in Section 5 and the locally hiding transform defined in
Section 4. We let g denote the tag length of our MAC (the bit-length of its keys is then h = 2 · g),
and we define an additional parameter d := m/g, where m is the bit-length of messages. The
security parameter for the MAC is ε = d · 2−g.

We give an explicit construction of our secret sharing scheme in Figure 1 and 2.

21

The procedure Share:

Local computation: In the notation of Shamir secret sharing scheme, for i = 1, . . . , n let xi be the
evaluation point associated with Pi. On input s ∈M, the dealer does the following:

1. Choose a uniform polynomial f ∈ M[X] of degree t such that f(0) = s. Compute Shamir
shares s1 = f(x1), . . . , sn = f(xn).

2. Choose a uniform MAC key z = (a, b) ∈ K.

3. Define M ∈ (F2)n×c as M = Ĉ(z).

4. For i = 1, . . . , t, define ti = MAC(z, si).

Share Distribution: For i = 1, . . . , n, the dealer sends (Mi, si, ti) to Pi.

Figure 1: The sharing procedure Share.

The procedure Rec:

Communication: Every player Pi sends (Mi, si, ti) to the reconstructor.

Default Check: For y ∈ {s1, . . . , sn} define Iy as Iy = {i ∈ {1, . . . , n} | si = y}. Then:

D1. If there exists y such that |Iy| > t, abort.

D2. If there exists y such that |Iy| = t, define G = {1, . . . , n} \ Iy, use Shamir reconstruction on
(si)i∈G to obtain s and finish.

D3. Else, proceed with the local computation.

Local computation: The reconstructor does the following, for each set R ⊆ {1, . . . , n} with |R| = α:

L1. Evaluate D̂R(MR) to obtain z = (a, b).

L2. Define GR = {i ∈ {1, . . . , n} | ti = MAC(z, si)}.
L3. If |GR| ≥ t+ 1, use Shamir reconstruction on (si)i∈GR

to obtain s and finish.

Figure 2: The reconstruction procedure Rec.

Theorem 6.1. For n = 2 · t + 1, the scheme (Share,Rec) given in Figure 1 and 2 is (t, δ)-robust
against 1-local adversaries, where

δ = 2 · (t+ 1) · t/|M|+
(
n

α

)
· (4 · d · ε+ 5/|M|) + e−

cβ2

3·2α−1

Proof. Let C ⊆ {1, . . . , n} be the set of indices corresponding to the corrupt players, and let
H = {1, . . . , n} \ C be the set of indices corresponding to the honest players. Also, let A ⊆ C be
the subset containing each player who in the reconstruction phase submits a share that was not
the one obtained in the sharing procedure.

Privacy. For privacy, notice that each share (Mi, si, ti) is composed by si, which is a share
computed via Shamir secret sharing with a polynomial of degree t, Mi, which is uniform and
independent of s, and ti = MAC(z, si), which can be computed from si and z, where the latter
is independent of s. Therefore, the privacy of (Mi, si, ti) is reduced to the privacy of si, which is
guaranteed by the privacy of Shamir secret sharing scheme when using a polynomial of degree t.

22

Robustness. For robustness, we study the probability that the reconstruction procedure outputs
the correct secret value.

Default Check. First, we analyze the “Default Check” stage. These are the possible scenarios:

1. Step D1 is reached. The reconstructor goes to step D1 and aborts only if strictly more than
t Shamir shares are equal, which is impossible for an honest set of shares (since a nonzero
polynomial of degree at most t has at most t roots). Therefore, there exist i ∈ A and
a ∈ A such that si = sa, which happens with probability 1/|M|, since si looks uniform to
Pa. Assuming the worst case scenario in which all the honest players have different Shamir
shares, the reconstruction aborts in step D1 with probability at most

Pr[Rec fails in step D1] ≤ (t+ 1) · t/|M| (6.1)

by a union bound on the number of corrupt players and a union bound on the number (of
the values of the shares) of the honest shares.

2. Step D2 is reached. In step D2, |Iy| = t, and we have the following cases:

(a) G ∩ A 6= ∅. There is at least a dishonest player in G, which means that |A ∩ Iy| < t,
therefore at least one honest player is in Iy. There are two subcases:

i. Iy ⊆ A. This happens with probability less or equal to (1/|M|)t ·
(
n
t

)
, since it is

equivalent to the event of sampling a uniform polynomial of degree t that evaluates

to a single value at t different points. This is less or equal to 1
|M|t ·

(
ne
t

)t ≤ (e2

|M |

)t
ii. Iy 6⊆ A. In this case, there exist a ∈ A and i ∈ H such that sa = si, which happens

with probability at most (t+ 1) · t/|M|, as shown for step D1.

(b) G ∩ A = ∅. In this case the reconstruction trivially succeeds, as none of the players in
G submits dishonest shares.

This means that the reconstruction fails in step D2 with probability

Pr[Rec fails in step D2] ≤ max

{(
e2

|M |

)t
, (t+ 1) · t/|M|

}
= (t+ 1) · t/|M| (6.2)

3. Step D3 is reached. This leads to the “Local Computation” stage, and is analyzed in the
following.

By putting together inequalities 6.1 and 6.2, we show that:

Pr[Rec fails in “Default Check”] ≤ 2 · (t+ 1) · t/|M| (6.3)

Notice that if |A| = t and there exists y ∈ M such that for sa = y for all a ∈ A, then “Default
Check” either aborts in step D1, or reconstructs a (possibly incorrect) secret in step D2, but it never
reaches step D3. This means that if step D3 is reached and |A| = t, then there exist a1 6= a2 ∈ A
such that sa1 6= sa2 . In other words, we ruled out the possibility that all the dishonest shares are
the same when the set of dishonest players is of maximal size t.

23

Local Computation. Now we analyze “Local Computation”, assuming that step D3 is reached
in “Default Check”. At this stage, for the reconstruction to succeed, it is sufficient that all the
potential sets R that pass the test |GR| ≥ t+1 in step L3 lead to the right secret and there exists at
least one set that passes the test. More formally, let s be the secret shared in the sharing procedure,
and let F denote the function that takes t+1 indices and outputs the Shamir reconstruction applied
to shares associated with the input indices; we then have

(∀R ⊆ {1, . . . , n}, |R| = α : |GR| ≥ t+ 1⇒ F (GR) = s)∧
∧ (∃R ⊆ {1, . . . , n}, |R| = α : |GR| ≥ t+ 1)⇒ Rec succeeds.

Define the events X = “∀R ⊆ {1, . . . , n}, |R| = α : |GR| ≥ t + 1 ⇒ F (GR) = s, and Y = “∃R ⊆
{1, . . . , n}, |R| = α : |GR| ≥ t+ 1”. We know that

Pr[Rec fails in “Local Computation”] ≤ Pr[X ∨ Y] ≤ Pr[X] + Pr[Y], (6.4)

We now analyze Pr[Y] and Pr[X] separately.

Analysis of Y . For Pr[Y], notice that, if R ⊆ A, then by the local invertibility property of Ĉ

at step L1 z is retrieved correctly except with probability e−
cβ2

3·2α−1 . If so, |GR| ≥ t + 1, because
H ⊆ A ⊆ GR, since the correct shares respect the condition on the validity of the MACs expressed
in the definition of GR in step L2. Since there many such sets (as R ⊆ H is sufficient for R ⊆ A
and there are

(
t+1
α

)
sets R ⊆ H with |R| = α), we have

Pr[Y] ≤ e−
cβ2

3·2α−1 . (6.5)

(This is of course a very loose bound, but will be sufficient for our purposes.)

Analysis of X. We now analyze Pr[X]. Recall that X = “∀R ⊆ {1, . . . , n}, |R| = α : |GR| ≥
t + 1 ⇒ F (GR) = s”, therefore X = “∃R ⊆ {1, . . . , n}, |R| = α, |GR| ≥ t + 1, F (GR) 6= s”.
Therefore,

Pr[X] = Pr[∃R ⊆ {1, . . . , n}, |R| = α, |GR| ≥ t+ 1, F (GR) 6= s]

≤
∑

R⊆{1,...,n},
|R|=α

Pr[|GR| ≥ t+ 1, F (GR) 6= s] (6.6)

Assume that for a given R with |R| = α, |GR| ≥ t+ 1. By a simple counting argument, this implies
that GR ∩ A 6= ∅; in other words, there is (at least) one player in GR who submitted a correct
share. Define the following events

• V = “|GR| ≥ t+ 1, |GR ∩A| = 1”,

• W = “|GR| ≥ t+ 1, |GR ∩A| ≥ 2, |GR ∩A| ≥ 1”.

24

We can then rewrite inequality 6.6 as follows:

Pr[X] ≤
∑

R⊆{1,...,n},
|R|=α

Pr[|GR| ≥ t+ 1, F (GR) 6= s]

≤
∑

R⊆{1,...,n},
|R|=α

Pr[V, F (GR) 6= s] + Pr[|GR| ≥ t+ 1, |GR ∩A| ≥ 2, F (GR) 6= s]

≤
∑

R⊆{1,...,n},
|R|=α

Pr[V] + Pr[|GR| ≥ t+ 1, |GR ∩A| ≥ 2, F (GR) 6= s]

≤
∑

R⊆{1,...,n},
|R|=α

Pr[V] + Pr[W,F (GR) 6= s] + Pr[|GR| ≥ t+ 1, |GR ∩A| ≥ 2, GR ∩A = ∅, F (GR) 6= s]

≤
∑

R⊆{1,...,n},
|R|=α

Pr[V] + Pr[W] + Pr[|GR| ≥ t+ 1, GR ⊆ A,F (GR) 6= s]

=
∑

R⊆{1,...,n},
|R|=α

Pr[V] + Pr[W] (6.7)

where the last step is due to the fact that if GR contains only correct shares, then F (GR) = s. We
now analyze V and W separately.

Analysis of V . For V , notice that if |GR| ≥ t + 1 and |GR ∩ A| = 1 the reconstruction fails,
since there is more than one corrupt player involved in the Shamir reconstruction. By a simple
counting argument, we have |GR| = t+ 1, |A| = t, and GR = A ∪ {i}, where i ∈ A. Since “Default
Check” reached step D3, and |A| = t, there exist a1 6= a2 ∈ A ⊆ GR such that sa1 6= sa2 . Moreover,
Pr[sa1 = si ∨ sa2 = si] ≤ 2/|M|, by the fact that for l = 1, 2, si looks uniform to Pal . Assuming
sa1 6= si 6= sa2 , lemma 5.3 applies (by replacing m0, t0 with si, ti and for l = 1, 2: ml, tl with sal , tal),
and it guarantees that the probability that si, sa1 , sa2 and the corresponding tags are valid for the
same key (which is a necessary condition for i, a1, a2 to be in GR) is less or equal to 2 · d · ε. This
implies that

Pr[V] ≤ Pr[V, sa1 6= si 6= sa2] + Pr[V, (sa1 = si ∨ si = sa2)] ≤ 2 · d · ε+ 2/|M| (6.8)

Analysis of W . For W , remember that in this case |GR ∩A| ≥ 2, which means that there exist
i1 6= i2 ∈ A ∩ GR. Moreover, Pr[si1 = si2] = 1/|M|, since Shamir shares are t-wise independent.
Assume si1 6= si2 . Since |GR ∩ A| ≥ 1, then there exists a ∈ GR ∩ A. By a similar argument to
the one above, Pr[si1 = sa ∨ sa = si2] ≤ 2/|M|. Assuming si1 6= sa 6= si2 , we again apply lemma
5.3 (by replacing m1, t1 with sa, ta and for l = 0, 2: ml, tl with sil , til), to show that the probability
that sa, si1 , si2 and the corresponding tags are valid for the same key is less or equal to 2 · d · ε. By
the above analysis,

Pr[W] ≤ Pr[W, si1 = si2] + Pr[W, si1 6= si2]

≤ 1/|M|+ Pr[W, si1 6= si2 , (si1 = sa ∨ sa = si2)] + Pr[W, si1 6= si2 , si1 6= sa 6= si2)]

≤ 1/|M|+ 2/|M|+ 2 · d · ε = 2 · d · ε+ 3/|M| (6.9)

25

Putting V and W together. By substituting inequalities 6.8 and 6.9 into inequality 6.7, we get

Pr[X] ≤
∑

R⊆{1,...,n},
|R|=α

(Pr[V] + Pr[W])

≤
∑

R⊆{1,...,n},
|R|=α

(2 · d · ε+ 2/|M|+ 2 · d · ε+ 3/|M|)

≤
∑

R⊆{1,...,n},
|R|=α

(4 · d · ε+ 5/|M|)

≤
(
n

α

)
· (4 · d · ε+ 5/|M|) (6.10)

Putting X and Y together. Now, by substituting inequalities 6.5 and 6.10 into inequality 6.4,
we get

Pr[Rec fails in “Local Computation”] ≤ Pr[X] + Pr[Y]

≤
(
n

α

)
· (4 · d · ε+ 5/|M|) + e−

cβ2

3·2α−1 (6.11)

Putting Default Check and Local Computation together. By inequality 6.3 and 6.11, we
have that

Pr[Rec fails] ≤ Pr[Rec fails in “Default Check”] + Pr[Rec fails in “Local Computation”]

≤ 2 · (t+ 1) · t/|M|+
(
n

α

)
· (4 · d · ε+ 5/|M|) + e−

cβ2

3·2α−1 (6.12)

Corollary 6.2. Given an error-correcting code C with block length c = Θ(g) and constant relative
distance γ and m = Ω(g), there exists positive constants σ1, σ2 such that our construction in Figure
1 and 2 is δ-robust for δ ≤ 2−k and share size is

m+ c+ g = m+ c+ k · σ−11 + σ2 · σ−11 · (log(n) + log(d)) = m+O(k).

Proof. Given γ, we can choose positive constants α and β such that γ > 2 · (1 + β) · 2−α+1. Then,
observe that

2 · (t+ 1) · t/|M| = O(n2 · 2−m),(
n

α

)
· (4 · d · ε+ 5/|M|) = O(nα · (d2 · 2−g + 2−m)),

and d = m/g. Note that e−
cβ2

3·2α−1 ≤ 2−σ
′·g for some positive constant σ′, as c = Ω(g) and

α, β are constants. Thus, combining all of these terms with equation 6.12 yields a quantity δ ≤
2−σ1g+σ2(log(n)+log(d)) for some σ1, σ2, when we have m = Ω(g). Setting

g = k · σ−11 + σ2 · σ−11 · (log(n) + log(d)) ,

26

we get δ ≤ 2−k. Finally, the share size is m+ c+g (i.e. message length + key length + tag length),
and replacing g with the formula above, we get that the share size is

m+ c+ k · σ−11 + σ2 · σ−11 · (log(n) + log(d)) .

Since n = poly(k) (any scheme with super-polynomially many player would not be efficient), we
get g = O(k) and c = O(k); therefore, the share size in our scheme is m+O(k), as claimed.

Note that the restriction that m = Ω(g) can be removed, if one simply shares the shorter
secrets in M with Shamir shares over a field of bit length g. In this case, the share size becomes
g + c+ g = m+ c+O(g) instead of precisely m+ c+ g.

References

[AKL+09] Joël Alwen, Jonathan Katz, Yehuda Lindell, Giuseppe Persiano, abhi shelat, and Ivan
Visconti. Collusion-free multiparty computation in the mediated model. In Shai Halevi,
editor, Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677
of Lecture Notes in Computer Science, pages 524–540. Springer, 2009.

[AKMZ12] Joël Alwen, Jonathan Katz, Ueli Maurer, and Vassilis Zikas. Collusion-preserving com-
putation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science,
pages 124–143. Springer, 2012.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

[Bla79] George Robert Blakley. Safeguarding cryptographic keys. In Managing Requirements
Knowledge, International Workshop on, pages 313–317. IEEE Computer Society, 1979.

[BS97] Carlo Blundo and Alfredo De Santis. Lower bounds for robust secret sharing schemes.
Inf. Process. Lett., 63(6):317–321, 1997.

[CDF01] Ronald Cramer, Ivan Damg̊ard, and Serge Fehr. On the cost of reconstructing a
secret, or VSS with optimal reconstruction phase. In Joe Kilian, editor, Advances in
Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa
Barbara, California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture
Notes in Computer Science, pages 503–523. Springer, 2001.

[Cev11] Alfonso Cevallos. Reducing the share size in robust secret sharing. http://www.

algant.eu/documents/theses/cevallos.pdf, 2011.

[CFOR12] Alfonso Cevallos, Serge Fehr, Rafail Ostrovsky, and Yuval Rabani. Unconditionally-
secure robust secret sharing with compact shares. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in Computer Science,
pages 195–208. Springer, 2012.

27

http://www.algant.eu/documents/theses/cevallos.pdf
http://www.algant.eu/documents/theses/cevallos.pdf

[CSV93] Marco Carpentieri, Alfredo De Santis, and Ugo Vaccaro. Size of shares and probability
of cheating in threshold schemes. In Helleseth [Hel94], pages 118–125.

[CV12] Ran Canetti and Margarita Vald. Universally composable security with local adver-
saries. In Ivan Visconti and Roberto De Prisco, editors, Security and Cryptography
for Networks - 8th International Conference, SCN 2012, Amalfi, Italy, September 5-7,
2012. Proceedings, volume 7485 of Lecture Notes in Computer Science, pages 281–301.
Springer, 2012.

[dB93] Bert den Boer. A simple and key-economical unconditional authentication scheme.
Journal of Computer Security, 2:65–72, 1993.

[DLWW11] Yevgeniy Dodis, Allison B. Lewko, Brent Waters, and Daniel Wichs. Storing secrets on
continually leaky devices. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pages 688–697. IEEE, 2011.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October
25-28, 2008, Philadelphia, PA, USA, pages 293–302. IEEE Computer Society, 2008.

[Hel94] Tor Helleseth, editor. Advances in Cryptology - EUROCRYPT ’93, Workshop on the
Theory and Application of of Cryptographic Techniques, Lofthus, Norway, May 23-27,
1993, Proceedings, volume 765 of Lecture Notes in Computer Science. Springer, 1994.

[JKS93] Thomas Johansson, Gregory Kabatianskii, and Ben J. M. Smeets. On the relation
between a-codes and codes correcting independent errors. In Helleseth [Hel94], pages
1–11.

[Jus72] J. Justesen. Class of constructive asymptotically good algebraic codes. Information
Theory, IEEE Transactions on, 18(5):652–656, Sep 1972.

[LMs05] Matt Lepinski, Silvio Micali, and abhi shelat. Collusion-free protocols. In Harold N.
Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on
Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 543–552. ACM,
2005.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In Moni Naor, editor, Theory of Cryptography, First Theory of Cryptography
Conference, TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings,
volume 2951 of Lecture Notes in Computer Science, pages 278–296. Springer, 2004.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, New York, NY, USA,
2005.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority (extended abstract). In David S. Johnson, editor, Proceedings of
the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,
Washigton, USA, pages 73–85. ACM, 1989.

28

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[Tay93] Richard Taylor. An integrity check value algorithm for stream ciphers. In Douglas R.
Stinson, editor, CRYPTO, volume 773 of Lecture Notes in Computer Science, pages
40–48. Springer, 1993.

29

	Introduction
	Preliminaries
	Message Authentication Codes
	Error-Correcting Codes
	Robust Secret Sharing Schemes

	Lower Bound
	New Tools for Scheme Constructions
	Locally Hiding Function
	Extended Locally Hiding Function
	Locally Hiding Transform

	A Suitable MAC for our Scheme
	The MAC and some of its Algebraic Properties
	Behavior towards Local Adversaries

	An Efficient Scheme
	Construction

