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Abstract

Non-interactive key exchange (NIKE) is a fundamental notion in Cryptography. This notion
was introduced by Diffie and Hellman in 1976. They proposed the celebrated 2-party NIKE
protocol and left open as a fascinating question, whether NIKE could be realized in the mul-
tiparty setting. NIKE has since then been an active area of research with an ultimate goal of
obtaining best possible security in the multiparty setting. Although this has evaded researchers
for many decades, advancements have been made through relaxations in multiple directions such
as restricting to 3-parties, static/semi-static model (where the adversary needs to commit to the
set of parties he wishes to be challenged upon ahead of time), random-oracle model, allowing
initial setup, etc.

In this work, we settle the longstanding open question: we present the first multiparty NIKE
protocol that is adaptively secure with no setup and in the standard model.

Our construction is based on indistinguishability obfuscation and obliviously-patchable punc-
turable pseudorandom functions, a new notion that we introduce.

We employ novel techniques of using indistinguishability obfuscation, which are interesting
in their own right and which we believe would find wider applications in other settings. One
such technique pertains overcoming, the somewhat inherent, drawback of non-adaptivity of the
puncturing technique introduced by Sahai and Waters [STOC’14]. Central to this technique
is our new notion of obliviously-patchable puncturable pseudorandom functions. We present a
concrete construction of these pseudorandom functions using multilinear maps.

Note that pseudorandom functions amounts to an interactive assumption. We shall establish
via a meta-reduction technique that, in natural settings, an interactive assumption is necessary
(even with setup).
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1 Introduction

In a seminal work, Diffie and Hellman introduced the fundamental notion of non-interactive key
exchange [DH76]. This notion enables any set of parties to come together and just by knowing
one another’s public keys be able to derive a common secret key without requiring any interaction.
Although this notion sounds infeasible on the face value, in the same work, Diffie and Hellman
presented a NIKE protocol for two parties; the question of generalizing it to a multiparty setting
was left as an important open problem.

Before we proceed, let us review at a high level the utility and security of multiparty NIKE. We
consider a setting of N parties, who to begin with, do not share any common information. Each
party simply publishes a public value.

Utility: Consider any subset of the parties who wish to derive a common secret key. It is
required that every party in the subset derives the same common key as every other party in
the subset.

Security: For security, we require that, for every party who is not a part of a subset, the com-
mon key for the subset is indistinguishable from a uniform random string. This requirement
is formalized by the following security game between an adversary and a challenger.

- The game is structured as the adversary making multiple kinds of queries to the chal-
lenger. We detail the different kinds of queries in the ensuing.

- Query the challenger to register an honest party – upon this query, the challenger outputs
a public value. The adversary can also register a (malicious) party – by publishing a
public value by himself.

- Query the challenger to reveal the secret value of some honest party (the party is then
deemed ‘corrupted’).

- Query the challenger to reveal the common key for some subset as derived by some honest
party.

- At some point along the way, present a challenge query, which is a subset of honest
parties, upon which the challenger responds via either the common key for this subset
or a random string, corresponding respectively to the so-called ‘real’ and ‘ideal’ worlds.

Finally, the adversary presents its guess for the world it is playing in, and succeeds if it guesses
correctly. A multiparty NIKE protocol is said to be secure if no efficient adversary can succeed
with probability non-negligibly more than 1/2.

The notion of NIKE has found immense applications in practice [DH76, CGP+13, DKSW09,
BMP04, DR06, JSI96]. Besides the theoretical importance of this fascinating notion, the wide
applications also triggered active research in the area. However, achieving the aforementioned holy
grail has proven to be extremely challenging and has evaded researchers for over three decades.
Consequently, multiple relaxations have appeared in the literature towards advancing the state-of-
the-art. We shall review in the following some of the important relaxations and the results achieved
with these relaxations.

One of the first improvements was by Joux who gave the first 3-party NIKE protocol [Jou04]
based on Weil and Tate bilinear maps. Boneh and Silverberg [BS02] showed how this result could
be extended to get a multiparty NIKE protocol if multilinear maps existed; however, their security
notion was restricted to the public values being only honestly generated. The candidate multilinear
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map constructions by Garg, Gentry, and Halevi [GGH13a] using ideal lattices, and by Coron,
Lepoint, and Tibouchi [CLT13] over the integers, provide the first implementations for N parties,
but also require a trusted setup phase. Another line of relaxation considers a specific form of setup,
namely, a master public key; the notion is named identity-based NIKE (IB-NIKE) [DE06, FHKP13,
HKKW14, PS09, SOK00]. Finally, another line of relaxation is to have the adversary commit to the
subset of parties he wishes to be challenged upon – the so-called ‘static/semi-static’ model, recently
realized by Boneh and Zhandry [BZ14].

Our Contribution. In this work, we solve the longstanding open problem and give the first
multiparty NIKE protocol that is adaptively-secure without any setup in the standard model. Our
construction is based on hybrid trapdoor commitments [CV07], indistinguishability obfuscation, and
obliviously-patchable puncturable pseudorandom functions (PRFs), a new notion that we introduce.
Stated informally, following is our main result. (A formal version appears as Theorem 3).

Theorem 1 (Informal). Assume that there exists an indistinguishability obfuscator, a hybrid trap-
door commitment scheme, and an obliviously patchable puncturable PRF, then there exists a multi-
party non-interactive key exchange protocol with no setup that is adaptively secure in the standard
model.

One of the main tools used in our work is the puncturing technique, of employing indistinguisha-
bility obfuscation, introduced in the influential work of [SW14]. This technique has found immense
applications since its inception [BZ14, DSKR14, GGHR14, HSW14]. However, a shortcoming of
this technique is the somewhat inherent non-adaptivity of the security that can be achieved with
this technique. This shortcoming has had strong implications, for instance, in the aforementioned
work of Boneh and Zhandry who constructed multiparty NIKE but only in the semi-static model.
We introduce novel techniques to overcome this shortcoming in employing indistinguishability ob-
fuscation via the puncturing technique. These techniques are interesting in their own right and
we believe would find wider applications. A central tool to our techniques is the new notion of
obliviously-patchable puncturable PRFs.

Furthermore, one might hope to improve the setting by relying on non-interactive assumptions
alone (Note that obliviously-patchable puncturable PRFs are an interactive primitive). However,
we ascertain via a meta-reduction technique (see [HJK12] and references therein) that an interactive
assumption is necessary to achieve adaptively-secure multiparty NIKE in the standard model (even
with setup) in most natural settings which we shall characterize shortly.

Other Related Works. The following is a summary of some of the important works relevant in
one aspect or the other.

- As mentioned earlier, static/semi-static security is easier to achieve than the full security of
the adaptive model. However, adaptive security is the notion that captures aptly the real-life
scenarios. Indeed, attackers in a computer network (hackers, viruses, insiders) may break
into the network during the course of the computation, based on partial information that
was already garnered. Moreover, even theoretically, it is easy to come up with examples
of protocols that are secure in a static-corruption model, but that are trivially insecure in
the adaptive setting. This was also evidenced in the setting of generic secure multiparty
computation, active research has resulted in many advancements in the recent past [CGP14,
DPR14, DSKR14, GP14, GS12]. However, these generic results cannot be extended to NIKE
since the former need at least two-rounds of interaction. For NIKE, as mentioned earlier,
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advancements in adaptive security was made in stronger settings like random oracle model,
ID-based model, etc. (See [FHH14, HJK+14, SOK00] and references therein). Furthermore,
no-interaction setting is extremely crucial for key exchange as discussed and argued in many
important works including [DKSW09, FHKP13, JSI96].

- While some works have shown how to obfuscate simple functionalities [Can97, CRV10, CMR98,
BR14a, LPS04, Wee05], it is only recently that obfuscation for poly-size circuits became
possible [GGH+13c, BR14b, BGK+14] and was applied to building higher level cryptographic
primitives [BZ14, HSW14, SW14].

- Freire, Hofheinz, Kiltz, and Paterson [FHKP13] were the first to explicitly study the stronger
model of adversarial registration of parties; earlier works only studied the weaker model.
Therein, they ascertained the additional difficulty in dealing with adversarial registration of
parties. Furthermore, they constructed programmable hash functions (PHFs) from multilinear
maps. By substituting the random oracle in the [SOK00] scheme with PHFs, they obtained
the first IB-NIKE scheme in the standard model. Freire, Hesse, and Hofheinz [FHH14] studied
universal composability (UC) of NIKE for a modular treatment of the important primitive.
They also showed how to achieve adaptive security in the random oracle model. Sakai, Ohgishi
and Kasahara [SOK00] proposed the first efficient and secure IB-NIKE scheme in the random
oracle model, (with security models and formal proofs in follow up works [DE06, PS09]).
[GL03, GK10] studied password-based authenticated key exchange protocols.

- Boneh and Zhandry were the first to present a multiparty NIKE protocol in the semi-static
model without any setup [BZ14].

1.1 Our Techniques

The crux of our techniques is the new notion of obliviously-patchable puncturable PRFs, a variant
of puncturable PRFs. Before we proceed to present our approach, let us quickly take stock of the
current situation.

The background story, Part 1 – puncturable PRFs and indistinguishability obfusca-
tion. Puncturable PRFs are a specific version of constrained PRFs introduced concurrently by
[BW13, KPTZ13, BGI14]. Intuitively, puncturability of a PRF F allows one to ‘puncture’ a PRF
keyK at some input x to obtain a punctured keyK[x] which satisfies the following properties: Given
K[x], one can easily evaluate F at any input other than x; furthermore, even when given K[x], no
adversary can distinguish between F (K,x) and a random string. The same concept can be extended
towards puncturing at a set of input points. Based on the recent breakthrough results on candidate
multilinear maps [GGH13a, CLT13], [GGH+13c] showed how to construct indistinguishability ob-
fuscators for all polynomial-size circuits. Following this, Sahai and Waters, in their influential work
[SW14], showed how to realize a host of primitives using indistinguishability obfuscation. The core
technique introduced in this work is called the puncturing technique that puts together the strengths
of puncturable PRFs and indistinguishability obfuscators. This work spawned a multitude of results
that realized various other primitives [BZ14, DSKR14, GGHR14, HSW14]; the central tool in all
these results is the puncturing technique. Let us review this technique by considering a natural
application to multiparty NIKE (in the semi-static model) as shown in [BZ14].
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The background story, Part 2 – The puncturing technique. Multiparty NIKE protocol
of [BZ14] in the semi-static model is a natural application of the puncturing technique. To see
this, let us try to arrive at this protocol from ground up. Note that each party needs to publish
a public value such that this public value computationally hides the corresponding secret value. A
natural candidate would be to use one-way functions (OWFs); however, we shall use pseudorandom
generators (PRGs) for the reason that will be evident very shortly. Thus, for a party Pi, PRG seed
si will be the secret value and xi = PRG(si) would be the public value. Furthermore, we require
that even if an adversary learns the common keys of some subsets of parties, for any other subset of
honest parties, the actual common key is indistinguishable from a uniform string. Observe that this
requirement is quite akin to the notion of PRFs – namely, even if an adversary knows the output of
the PRF on some inputs, the PRF output on any other input is indistinguishable from a random
string. Thus, a natural solution would be to have the common key for a subset S computed as PRF
output at (xi)i∈S as the input.

Now, what remains is to enforce that only those parties Pj with j ∈ S are able to evaluate the
PRF at (xi)i∈S . This is achieved by obfuscating the program that first checks whether an input to
the program contains the PRG seed sj for a PRG output xj for some j ∈ S and only then evaluates
the PRF at (xi)i∈S . This obfuscated program would be the common reference string (CRS)/setup.
Ignoring that the adversary also gets to see this obfuscated program, we observe that just the secu-
rity of PRFs would have sufficed to achieve the security requirement of multiparty NIKE. However,
to establish security even in the presence of this obfuscated program that contains the PRF key
hardcoded within, we employ the security of puncturable PRFs. Essentially, the idea for proof of
security would be to move to a hybrid where the the PRF key hardcoded is actually punctured at
the input (xi)i∈S∗ , where S∗ is the challenge subset of honest parties. However, now that the pro-
gram cannot compute the output for an input corresponding to (xi)i∈S∗ , we have actually modified
the input/output functionality of the program. This is undesirable as indistinguishability obfus-
cation guarantees indistinguishability of obfuscations of only those programs that are functionally
equivalent. In order to still employ the security of indistinguishability obfuscation, we instead will
puncture at (x∗i )i∈S∗ , where each x∗i thereof is a random string (instead of a PRG output). This
ensures that, with all but negligible probability, the program never evaluates the PRF on this input
(since, with all but negligible probability, there does not exist any PRG seed that would pass the
initial check performed by the obfuscated program) (This is the point where we needed PRG instead
of just any one-way functions).

A crucial point to note in the above illustration of the puncturing technique is the following.
(x∗i )i∈S∗ , and in particular S∗, need to be fixed before generating the obfuscated program, which
is a part of the initial setup. The implication on the best achievable security would be that the
adversary needs to commit to the subset S∗ of honest parties it wishes to be challenged upon even
before it gets to see the CRS. This is the very point that restricts the puncturing technique from
giving us the desired adaptive security.

Now we shall see how we solve the generic problem of adaptivity. We shall first deal with the
problem with a setup and then build on it to remove the setup.

The story ahead with setup. The problem at hand. Now let us dissect the problem at hand.
Recall that to prove secure any multiparty NIKE protocol, we need to construct a reduction R
that when given access to any adversary A that breaks the protocol (in the sense of the security
game described above), it should be able to break some underlying cryptographic hard problem Π.
Now note that such an adversary A makes many queries on the secret values and common keys for
some subset of honest parties and finally wishes to be challenged upon some other subset S∗. Thus,
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intuitively, R must be able to somehow his own challenge for Π into exactly the challenge subset of
honest parties. Clearly, there is a very narrow bottleneck: the reduction does not know ahead of
time what S∗ would be; if R fails to guess it correctly and embed his Π challenge somewhere else,
then he might not be able to answer the rest of the queries made by A. Furthermore, the total
number of subsets can be exponential in the security parameter, implying that R can correctly
guess with only negligible probability, in turn constricting R in exploiting the power of A.
Our solution. Now we have just the right background to get to our solution. Let us start with the
natural idea of enforcing that only those with a secret value can compute the common key, using
indistinguishability obfuscation of the program that first checks for such a secret value and only
then evaluates the PRF. Since the reduction does not know what the challenge subset would be,
puncture at all possible challenge subsets. Now, we are faced with the usual problem of maintaining
functional equivalence of the punctured program: when an adversary corrupts an honest party and
gets its secret value, it needs to be able to run the obfuscated punctured program and the program
should output the common key, which means that the program should somehow get information
about the PRF outputs at the already punctured points. The idea to solve this problem is extremely
simple yet novel: Embed a ‘patch’ to the puncture into the secret value itself. We do it in such a way
that the adversary will not be able to distinguish between an honestly sampled secret value and a
secret value that has a patch embedded within itself. On the other hand, the punctured program
would have some trapdoor hardcoded within itself using which it can recover that patch and still
be able to evaluate the PRF. This trapdoor is hidden, thanks to obfuscation. Now, one may feel
apprehensive that the functional equivalence may still not be entirely established as the PRF could
be evaluated only when the input contains a secret value with a patch embedded in it. Note that
in fact our original program also needs to evaluate the PRF only when the input contains a secret
value. In our solution, we ascertain that the program gets the patch every time it gets a valid secret
value by ensuring that there is only one unique secret value for every public value – and it is the
secret value that has a patch embedded in it.
One slight detail of our solution. Observe that the reduction would not even know for which i,
the adversary would have honest parties registered and for which i the adversary himself would
register malicious parties. However, the reduction needs to have computed the public values of
honest parties ahead of time – i.e., before computing the obfuscated program in the CRS – so that
he can puncture at these values. The solution to this problem is extremely simple. We shall have
the reduction compute the public-value secret-value pair for every i ahead of time and puncture at
all the possible subset of honest parties with those honestly generated public values, and generate
the CRS. Then, the honestly generated public-value secret-value pairs are used only if the adversary
requests to register an honest party for i; otherwise, the reduction would simply ignore the pair.
The core subtlety – a circularity. With the aforementioned idea being one part of the whole idea, the
core subtlety is yet to be met. Note that the inputs on which the PRF would be computed are the
public values. So, in effect, we would be puncturing at honestly generated public values. However,
the core idea is to embed within the secret values, the patch to the PRF key at the punctured
points. But the sequence should be that the patches are first sampled and then they are embedded
within the secret values and then the corresponding public values are computed. Clearly, we have
run into a circularity that simply seems, as yet, unsurmountable.
Breaking the circularity. In breaking the circularity is where the further crux of our solution lies –
obliviously-patchable puncturable PRFs. Before we proceed with our solution, a quick look at the
properties of this new primitive that we introduce is in order. This primitive allows one to sample
patches without knowledge of at what inputs of the PRF these will serve as patches. Then, post
sampling the patches, given any input (or a set of inputs), one can sample a key that is punctured
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at these inputs in such a way that the patches sampled earlier patch the key punctured at these
inputs. Stepping back, this is precisely what we need to break the circularity – the reduction shall
first sample the patches (obliviously of the public values), embed these patches within the secret
value, and then compute the corresponding public values. Then, a PRF key that is punctured at
these public values is sampled and hardcoded in the program that will be obfuscated.
Putting ideas into effect. We shall now explicate how exactly we shall implement the aforementioned
ideas. Our aim is to use the minimally strong tools. Let us begin with the public-value secret-value
pair. These will be just commitment and (message, opening), respectively. (The reason to use
commitments instead of PRGs or OWFs would be evident shortly). Thus, the check performed
within the obfuscated program is whether the secret value (mi, openi) w.r.t. a public value comi

is such that comi = Commit(mi; openi). By the hiding property of the commitment scheme, we
have that the public value hides the secret value. Now, in our protocol, we could have let mi to
be just some random string. However, note that our idea is to somehow embed a patch within mi.
Thus, the idea is to instead prescribe mi to be an encryption cti of some random plaintext pti.
During the reduction, we will set pti to be a patch. Since the secret value is just (cti, openi), the
modification will not be detected by the adversary owing to the CPA security of the encryption
scheme. Furthermore, by using a statistically binding commitment scheme Commit, we are also
guaranteed that the only secret value corresponding to comi is the (cti, openi) where cti is an
encryption of a patch.
The core subtlety – yet another circularity. It is instructive at this point to step back and assess
whether we have constructed the reduction we had desired for – a reduction from breaking our
protocol to breaking the security of the obliviously-patchable puncturable PRF. Before we proceed,
in detail, the reduction needed is as follows: It first invokes the adversary with the obfuscated
program punctured at public values (corresponding to honest parties) and gives the adversary the
public values if and when it requests to register honest parties; then, when the adversary asks
to reveal the secret value of any honest party, we would like that the reduction query the PRF
challenger to obtain a patch, encrypt it, and then somehow give an opening too for the public
value, namely the commitment. On the other hand, assessing the hybrid we are currently at,
patches are computed before computing the public values (the sequence is patches → encryption of
patches→ commitments (public values) to those ciphertexts). Clearly, we have run into yet another
circularity. A naïve solution to this would be to have the commitments equivocable – this is so that
the commitments can be sampled obliviously of what they commit to, and can later be opened
to any desired value, which in our case would be encryptions of patches. However, the problem is
that, as we recall, we needed Commit to be statistically binding, and, equivocability and statistically
binding are two conflicting properties of a commitment scheme.
Breaking the second circularity. We employ hybrid trapdoor commitments introduced by [CV07].
Just as required, these commitments work in two modes – one, the statistically-binding mode, and
the other, the equivocable mode. A commitment’s mode is decided by the CRS used to commit.
The two distributions of the CRS corresponding to the two modes are indistinguishable.

Thus, the way we use these commitments is as follows: in the protocol, the setup would include
the CRS of the commitment scheme for the the statistically-binding mode. In the proof, we shall
move to a hybrid where the committed value is a ciphertext encrypting a patch. Therein, we
shall argue that the ciphertext is the only value the commitment can be opened to, due to the
statistically-binding property. Later, we shall move to a hybrid where we switch the commitment
CRS to the equivocable mode. This would enable us to reach a hybrid which can be deemed our
final reduction – therein, the public values (commitments) are first given to the adversary; later,
when the adversary queries for a secret value, the reduction would query for the corresponding
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patch, encrypt it, and equivocate the commitment to the resulting ciphertext.
Constructing obliviously-patchable puncturable PRFs. We give a concrete construction of the novel
primitive, obliviously-patchable puncturable PRFs, using graded encoding schemes, a candidate
version of multilinear maps, first constructed by [GGH13b]. This construction is proven secure
based on a weak 1-more variant of the Multilinear Decisional Diffie-Hellman Inversion (MDDHI)
assumption. Furthermore, using multilinear maps, we show how to relax the assumption to just a
weak 1-more variant of the Multilinear Decisional Diffie-Hellman (MDDH) assumption. We prove
these assumptions secure in the usual generic group model. We remark here that, in literature, one
of the simplest assumptions used for multilinear maps is the Multilinear Decisional Diffie-Hellman
(MDDH) assumption. 1-weak MDDH assumption (that we shall state later) is a natural variant of
the MDDH assumption in the interactive setting.
Necessity of an interactive assumption. Observe that obliviously-patchable puncturable PRFs is
an interactive assumption. We ascertain via a meta-reduction technique that in natural settings,
an interactive assumption would be necessary to prove secure any multiparty NIKE protocol (even
with setup). More specifically, the natural settings we consider are identical or even weaker than the
conventional settings: here, we rule out that all reductions – that would use the adversary in a black-
box manner and are allowed to even rewind the adversary – to any hard problem corresponding
to a non-interactive assumption. In fact, we provide a bound on the amount of interaction needed
depending on the number of parties in the multiparty NIKE system.

Removing the setup. Recall that by now we have only dealt with setup (obfuscated program
and CRS of the commitment scheme were parts of the setup). Now we shall show how to remove this
setup altogether. A traditional solution to such a problem is to let the parties themselves compute
the setup. Now with multiple setups, the question next is whose setup the parties should use for
computation.

In [BZ14], a simple solution was proposed – to compute the common key for any subset S of
parties, use the setup generated by Pi∗ , where i∗ is the smallest element in S. (Many other choices
could have worked, and the above is one such simple choice). However, as pointed out by [BZ14],
this modification introduces a weak link in security: consider an adversary who registers Pi∗ by
himself. Note that he is expected to output an obfuscated program as a part of his public value.
Potentially, the adversary may compute the program in some malicious manner that the program
leaks some information about the secret value that forms a part of the input on which the program
is run. Now note that an adversary may present a query to receive the common key of some set
S as derived by some honest party Pi; furthermore, let i∗ be the smallest element in S. Then, the
challenger would run the malformed obfuscated program of Pi∗ using the secret value svi of Pi and
present to the adversary the resulting value; this value may leak information about svi. An elegant
solution proposed in [BZ14] is the following. Before using svi to run a program, transform it into a
non-usable form. More specifically, in the no-setup case, public-value secret-value pair is modified
into a verification-key signing-key pair. Then, instead of running the obfuscated program with the
very secret value, a party is instructed to run the program with a signature on S computed with its
secret value. The check inside the program now is verification of the signature. Unforgeability of the
signature scheme ensures non-reusability of the value on which the program is run. [BZ14] observe
that any signature scheme would not suffice; they need what they call constrained signatures and
provide a construction for this primitive using indistinguishability obfuscation.

Now let us see how we can solve the problem. Towards providing a simple solution, here is an
insightful observation on the problem at hand: it is not against the desired security if the maliciously
generated program by Pi∗ leaks information about the secret value that might be reusable for any
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other S ′ which contains i∗. To see this, roughly speaking, note that the adversary (who is playing
the part of Pi∗) could himself have derived the common key by himself. Moreover, the security
game rightly captures the requirement by specifying that the challenge set of parties needs to be a
set of all honest parties. Thus, the leaked information, although reusable for sets like S ′, may not
be reusable for the challenge set of all honest parties (which does not include the malicious Pi∗).
To this end, our solution is the following. Every party will have a (commitment, opening) pair
dedicated towards every other party. Then, when a party needs to run the program generated by
Pi∗ , it would use the (commitment, opening) pair dedicated towards Pi∗ .

A final subtlety in removing the setup is in constructing ciphertexts. It stems from two reasons:
1. Looking ahead, it will be required in the proof of security that a party compute its public value

using the secret value of other parties.
2. We are in the non-interactive setting.

Thus, in the protocol itself, it is not possible to instruct the parties to construct their public values
using the public keys present in other parties’ public values. The idea is to use PKE schemes with
pseudorandom ciphertexts (i.e., ciphertexts that are indistinguishable from random strings). In the
protocol, instead of the ciphertexts, we would have random strings (A crucial point to note is that
no decryption will be performed in the protocol itself: The secret value is simply an opening to the
commitment in the public value; the opened value is cast as a ciphertext only in the proof of security).
Then in the proof, these random strings will be indistinguishably replaced with ciphertexts.

Although there are certain other subtleties, the aforementioned ones capture the crux of the
idea. We shall deal with the subtleties in detail in the formal proof.

On our assumptions. Recall that our construction is based on PKE with pseudorandom cipher-
texts, hybrid trapdoor commitments, indistinguishability obfuscation and obliviously-patchable
puncturable PRFs. [CV07] show that hybrid trapdoor commitments can be constructed from just
OWFs. Furthermore, under the assumption that NP is not solvable in probabilistic polynomial
time in the worst case, Moran and Rosen [MR13] show that indistinguishability obfuscation implies
OWFs. PKE with pseudorandom ciphertexts can be based on Decisional Diffie-Hellman (DDH)
assumption. Also, we show how to obtain obliviously-patchable puncturable PRFs from a variant
of the DDH assumption in the multilinear setting. Thus, effectively, on the same assumption as
[MR13], our construction can be based on indistinguishability obfuscation and on the variant of the
DDH assumption in the multilinear setting.

Roadmap. In Section 2, we shall recall the necessary background. In Section 3, we introduce
formally our new notion of obliviously patchable puncturable PRFs. In Section 4, we present our
protocol with setup, followed by a formal proof of security in Section 5. Then, in Section 6, we
demonstrate how to remove the setup and provide a formal proof of security in Section 7. In
Section 8, we provide a construction based on multilinear maps. Additionally, we also provide
a construction based on leveled-graded encoding schemes, an approximation of multilinear maps,
introduced by [GGH13b]. We prove security of our concrete constructions based on 1-more variants
of the MDDH assumption. In Sections 9 and 10, we prove security of the assumptions in the generic
group model. Finally,in Section 11, we establish via a meta-reduction technique, the necessity of
interactive assumptions for achieving adaptive NIKE even with setup.
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2 Preliminaries

Notations. We shall denote the randomness space of an algorithm A by coins(A). We denote
concatenation of two bit-strings a and b by a ◦ b. U` denotes the uniform distribution over ` bits.

- We often consider a bit string x divided into blocks of sub-strings; we denote the ith block by
x|i.

- Let n,N ∈ N. W e consider strings where some of the blocks can be just ⊥: x ∈ ({0, 1}n ∪ ⊥n
)N . For simplicity, we represent such strings x, where x|i = xi for i ∈ S and x|i = (⊥, . . . ,⊥)
for i 6∈ S, by (S, (xi)i∈S).

- Let 1 ≤ G ≤ N . Also, let n ∈ N. We often consider the set of strings in x′ = (S, (x′i)i∈S) ∈
({0, 1}n ∪ ⊥n)N such that |S| ≤ G. We denote this set by [[n,G,N ]]. (Looking ahead, this
set will form the domain of our PRFs).

- Consider any x ∈ ({0, 1}n)N . We consider the set of all elements x′ ∈ [[n,G,N ]] where, for
every x′|i 6= (⊥, . . . ,⊥), we have x′|i = x|i. We denote the set of such elements by 2xG.

In all games that we consider, it can be efficiently verified whether an adversary’s query is valid
(as specified by the experiment) or not; thus, w.l.o.g. we shall assume that an adversary only
presents valid queries unless specified otherwise.

Indistinguishability Obfuscation. For any two circuits C0, C1 over the same input space, if
for every input x, C0(x) = C1(x), then this is denoted by C0 ≡ C1; such circuits are said to be
‘functionally equivalent’.

Definition 1 (Indistinguishability Obfuscator (iO)). A uniform PPT machine iO is called an in-
distinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

Preserving functionality: For all security parameters λ ∈ N, for all C ∈ Cλ, we have that

Pr[iO(λ,C) ≡ C] = 1

Polynomial slowdown: There exists a universal polynomial p such that for every λ, C ∈ {Cλ},
we have |C ′| ≤ p|C|, where, C ′ ← iO(λ,C).

Indistinguishability: For any (not necessarily uniform) PPT adversaries Samp, D, there exists
a negligible function η such that the following holds: if Pr[C0 ≡ C1 : (C0, C1, aux) ←
Samp(1λ)] > 1− η(λ), then we have:

∣∣∣Pr
[
D(aux, iO(λ,C0)) = 1 : (C0, C1, aux)← Samp(1λ)

]
−Pr

[
D(aux, iO(λ,C1)) = 1 : (C0, C1, aux)← Samp(1λ)

]∣∣∣ ≤ η(λ)

When clear from context, we will often drop λ as an input to iO and as a subscript for C.
In this paper, we will make use of such indistinguishability obfuscators for all polynomial-size

circuits:
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Definition 2 (Indistinguishability Obfuscator for P/poly). A uniform PPT machine iO is called
an indistinguishability obfuscator for P/poly if the following holds: Let Cλ be the class of circuits of
size at most λ. Then iO is an indistinguishability obfuscator for the class {Cλ}.

The first candidate construction of such obfuscators is due to [GGH+13c].

Hybrid Trapdoor Commitments. We now recall the notion of hybrid trapdoor commitments
introduced by [CV07]. Intuitively an hybrid trapdoor commitment scheme can be either an un-
conditionally binding commitment scheme or a trapdoor commitment scheme depending on the
distribution of the CRS. They are somewhat weaker than the more widely employed mixed commit-
ments [DN02]: hybrid trapdoor commitments can either be polynomially trapdoor commitments or
unconditionally binding commitments, while mixed commitment can either be trapdoor commit-
ments or extractable commitments.

Definition 3 (Commitments). A triplet of ppt algorithms (Gen,Commit,Ver) is a commitment
scheme if the following conditions hold.

Completeness. For all m it holds that

Pr

[
Ver(crs, com, (m, open)) = 1 :

crs← Gen(1λ)
com← Commit(crs,m; open)

]
= 1

Binding. For any ppt adversary A there is a negligible function negl such that for all sufficiently
large λ it holds that for all but negligible fraction of crs ∈ Gen(1λ),

Pr
[
(com,m0,m1, open0, open1)← A(crs) : Ver(crs, com0, (m0, open0)) = Ver(crs, com1, (m1, open1)) = 1

]
≤ negl(λ)

Hiding. For any ppt adversary A there is a negligible function negl such that, for all m0,m1 where
|m0| = |m1|, and for sufficiently large λ, it holds that

Pr

b← A(crs, com) :
crs← Gen(1λ)
b← {0, 1}

com← com(crs,mb)

 ≤ 1

2
+ negl(λ)

If the binding property holds with respect to a computationally unbounded algorithm A, the
commitment scheme is said to be statistically binding.

Definition 4 (Hybrid trapdoor commitments). HCOM = (HGen,HTGen,HCommit,HTCommit,HTDec,HVer)
is a hybrid trapdoor commitment scheme (HTCS, for short) if the following conditions hold.

Binding. (HGen,HCommit,HVer) is a statistically binding commitment scheme;

Trapdoor property. (HTGen,HCommit,HVer) is a commitment scheme, and HTCommit and HTDec
are polynomial-time algorithms such that, for all m, the following distributions are computa-
tionally indistinguishable even to an adversary that is given aux:

(crs, aux, com, open,m) :
(crs, aux)← HTGen(1λ),

(com, open)← HCommit(crs,m)

and

(crs, aux, com′, open′,m) :
(crs, aux)← HTGen(1λ),

(com′, auxcom′)← HTCommit(crs, aux),
open′ ← HTDec(crs, auxcom′ ,m)

10



Hybrid property. Let HTGen′ be an algorithm that restricts the output (crs, aux) of HTGen(1λ)

to crs, then for every PPT adversary A, AdvhybA is negligible, where,

AdvhybA (λ) := |Pr[1← A(crs0) | crs0 ← HGen(1λ)]− Pr[1← A(crs1) | crs1 ← HTGen(1λ)]|.

2.1 PKE With Pseudorandom Ciphertexts

We now define PKE schemes with pseudorandom ciphertexts [CLOS02, BC05]. Roughly, these are
the schemes with a property that for any plaintext message a randomly generated ciphertext is
computationally indistinguishable from a uniform random string of the same length.

Definition 5 (PKE with pseudorandom ciphertexts). A public-key encryption scheme Σ = (E.Gen,
Enc,Dec) is said to have pseudorandom ciphertexts if, for (pk, ·) ← E.Gen(1λ), for any plaintext
messagem, the distribution ensembles Enc(pk,m) and U`′ are all computationally indistinguishable,
where the ciphertexts of Σ are of length `′.

In [CLOS02], Canetti et al. also provide a simple construction of such schemes based on trapdoor
permutations. Briefly, the construction in [CLOS02] is as follows. With the public key as the
description of f , a trapdoor function, encryption of a bit b is: f(x), b ⊕HC(x), where x is chosen
at random from the domain of f and HC(·) is a hard-core predicate of f . Notice that for this
scheme, the distribution of encryption of a random bit b is itself a uniform distribution over strings
of the same length as the ciphertexts. This primitive can also be constructed based on Decisional
Diffie-Hellman assumption.

Adaptive Multiparty Non-interactive Key Exchange. An adaptive multiparty NIKE pro-
tocol has the following three algorithms:

Setup(λ,N,G): The setup algorithm takes a security parameter λ and two integers G and N . G
is the maximum number of parties that can derive a common secret key, and N is an upper
bound on the number of parties in the system. It outputs public parameters params.

Publish(λ, params, i): Each party executes the publishing algorithm, which takes as input the public
parameters and the index of the party, and generates two values: a secret key svi and a public
value pvi. Party Pi keeps svi as his secret value, and publishes pvi to the other parties.

KeyDerive(params,S, (pvi)i∈S , j, svj): Finally, to derive the common key kS for a subset S ⊆ [N ],
each party in S runs KeyGen with params, its secret value svj , and the public values {pvi}i∈S
of the parties in S.

For correctness, we require that each party derives the same secret key. That is, for all S ⊆ [N ],
|S| ≤ G, i, i′ ∈ S,

KeyDerive(params,S, (pvj)j∈S , i, svi) = KeyDerive(params,S, (pvj)j∈S , i
′, svi′). (1)

One can talk about a secret value svi for pvi satisfying correctness w.r.t. some svi′ for pvi′ . This
would mean that for every S ⊆ [N ], |S| ≤ G, such that i, i′ ∈ S,

KeyDerive(params,S, (pvj)j∈S , i, svi) = KeyDerive(params,S, (pvj)j∈S , i
′, svi′).
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The security notion is captured by the game below. Herein, the adversary can corrupt parties
and reveal the common secret for arbitrary subsets of parties of its choice.

More formally, for an adversary A, consider the experiments realaNIKEA and randaNIKE
A de-

scribed below. For for expt ∈ {real,rand}, exptaNIKE
A is defined as follows. The experiment is

parameterized by the total number of parties N , the maximal group size G (where potentially G is
the same as N), and an adversary A:

params← Setup(λ,N)

b′ ← AReg(·),RegCorr(·,·),Ext(·),Rev(··· ),Test(··· )(λ,N, params)

where,

Reg(i ∈ [N ]) registers an honest party Pi. It takes an index i, and runs (svi, pvi)← Publish(params, i).
The challenger records the tuple (i, svi,pvi, honest), and sends pvi to A.

RegCorr(i ∈ [N ], pvi) registers a corrupt party P ∗i . It takes an index i and a public value pvi.
The challenger records (i,⊥,pvi, corrupt). The adversary may make multiple queries for a
particular identity, in which case the challenger only uses the most recent record.

Ext(i) extracts the secret key for an honest registered party. The challenger looks up the tuple
(i, svi, pvi, honest), and returns svi to the challenger.

Rev(S, i) reveals the common secret for a group S ⊆ [N ], |S| ≤ G of parties, as computed by
the ith party, where i ∈ S. We require that party Pi was registered as honest. The challenger
uses the secret key for party Pi to derive the common secret key kS , which it returns to the
adversary.

Test(ChQ) takes a set ChQ ⊆ [N ], |ChQ| ≤ G of parties, all of which were registered as honest.
If expt = real, the challenger runs KeyGen to determine the common secret key (arbitrarily
choosing which party to calculate the key), which it returns to the adversary. Otherwise (i.e.,
if expt = rand), the challenger generates a random key k to return to the adversary.

We require that all reveal and test queries are for distinct sets, and no extract query is allowed
on any party in a reveal query. We require that all register queries and register-corrupt queries are
for distinct i, and that pvi 6= pvj for any i 6= j. We define

AdvaNIKEA (λ) := |Pr[realaNIKEA → 1]− Pr[randaNIKE
A → 1]|

Definition 6 (Adaptively-secure NIKE). Amultiparty key exchange protocol (Setup,Publish,KeyGen)
is adaptively secure if, for any polynomial N , and any PPT adversary A, the function AdvaNIKEA (λ)
is negligible.

Definition 7 (Adaptively-secure NIKE with no trusted setup). A NIKE protocol has untrusted
setup if the random coins used by Setup are part of the public parameters params. That is,
Setup(λ,N,G; r) = (params, r).

An even stronger notion is that of no setup:

Definition 8 (Adaptively-secure NIKE with no setup). A NIKE protocol has no setup if Setup
does nothing. That is, Setup(λ,N,G; r) = (λ,N,G).
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3 Special PRFs

Definition 9 (Obliviously patchable puncturable PRFs). Let n,G,N,m be polynomials in λ such
that 1 ≤ G ≤ N . Let F : K×[[n,G,N ]]→ Z, where Z ⊂ {0, 1}m. We call F an obliviously patchable
puncturable PRF if there exist associated algorithms (F.ParamGen,F.KeyGen,Puncture,PatchGen,Eval,
OPatchGen,OPuncture), such that PatchGen is deterministic and the following properties hold.

◦ [Functionality preserved under puncturing.] For every set1 S ⊆ [[n,G,N ]], for every
x ∈ [[n,G,N ]] where x /∈ S, we have that:

Pr

F (K,x) = Eval(K[S], x) :
F.params← F.ParamGen(1λ, n,G,N),

K ← F.KeyGen(1λ,F.params),
K[S] = Puncture(K,S)

 = 1

◦ [Block-wise patchable.] For every i ∈ [N ], xi ∈ {0, 1}n, K ∈ K,

patch(K, (i, xi))← PatchGen(K, i, xi)

for every x ∈ ({0, 1}n)N such that x|i = xi, we have that

F (K,x′) = Eval((K[2xG], patch(K, (i, xi))), x
′)

where, x′ ∈ 2xG. (Recall that 2xG is the set of all x′ ∈ [[n,G,N ]] where, for every x′|i 6=
(⊥, . . . ,⊥), we have x′|i = x|i.)

◦ [Obliviously patchable.] For every x ∈ ({0, 1}n)N , output distributions of the following
two processes are identical:

F.params← F.ParamGen(1λ, n,G,N) F.params← F.ParamGen(1λ, n,G,N)
K ← F.KeyGen(1λ,F.params)
K[2xG]← Puncture(K, 2xG)
∀i, patch(K, (i, xi))← PatchGen(K, i, xi) ({patchi}i∈[N ], o.state)← OPatchGen(1λ,F.params))

K[2xG]← OPuncture(1λ, o.state, x)
Return (K[2xG], {patch(K, (i, xi))}i∈[N ]) Return (K[2xG], {patchi}i∈[N ])

◦ [Succinct patches.] There exists a polynomial P such that, for any λ, any polynomials G,N
in λ, polynomial n = n(λ,G,N), K ∈ K, the size of a patch |patch(K, (i, xi))| is bounded by
P (λ,G,N) (i.e., the size of the patches can be bounded above by a single polynomial P for
all polynomials n = n(λ,G,N)).

◦ [Pseudorandom at punctured points.] For every ppt adversary A, for every polynomials
n,G,N (in the security parameter), AdvF,A(λ) is negligible in λ, where,

AdvF,A(λ) := |Pr[realPRFF,A (λ)→ 1]− Pr[randPRF
F,A (λ)→ 1]|

and for expt ∈ {real,rand}, exptPRF
F,A is defined as follows.

1Although we present a generic definition of puncturing a key at any subset of the domain, in this work, it would
suffice to be able to puncture only at subsets of the form 2xG.
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1. F.params← F.ParamGen(1λ, n,G,N)
2. x̃← A(F.params), where, x̃ ∈ ({0, 1}n)N and x̃ = (x̃1, . . . , x̃N )
3. K ← F.KeyGen(1λ,F.params), K[2x̃G]← Puncture(K, 2x̃G)
4. b← AO(K[2x̃G]), where, O takes three kinds of queries and responds to them as follows:

– On query (patch-at i), where i ∈ [N ], respond via patch(K, (i, x̃i));
– On query (eval-at S), where S ⊆ [N ] and |S| ≤ G, respond via F (K, (S, (x̃i)i∈S));
– On query (chal-at ChQ), where ChQ ⊆ [N ] and |ChQ| ≤ G, respond via{

F (K, (ChQ, (x̃i)i∈ChQ)) if expt = real

y if expt = rand

where y is a random element from the co-domain, {0, 1}m, of F .
By the time A outputs b, let Q1 be the set of i for which A makes patch-at queries and
Q2 be the set of S for which A makes eval-at queries. We require that ChQ ⊆ [N ] \Q1

and ChQ 6∈ Q2.

4 Adaptive NIKE With Setup

In this section, we present our first construction of adaptively secure multiparty non-interactive key
exchange with setup.

Ingredients.

– CPA-secure encryption scheme. Let Σ = (E.Gen,Enc,Dec) be a CPA-secure encryption scheme.

– Obliviously patchable puncturable PRF. Let F , associated with algorithms (F.ParamGen,F.KeyGen,
Puncture,PatchGen,Eval,OPatchGen,OPuncture), be an obliviously patchable puncturable PRF
with succinct patches.

– Hybrid trapdoor commitment scheme. Let HCOM = (HGen,HTGen,HCommit,HTCommit,HTDec,
HVer) be a hybrid trapdoor commitment scheme.

– Indistinguishability obfuscator. Let iO be an indistinguishability obfuscator for all P/poly
circuits.

Setting up parameters. Given the following parameters:

λ: security parameter,

N : total number of parties,

G: maximum number of parties that can derive a common secret key,

we define the following parameters.

Patch size `: Let ` = `(λ,G,N) be the number of bits required to represent any patch generated
with parameters (λ, n,G,N), where, n is any polynomial in λ,G,N .
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Ciphertext size `′: The message space of the encryption scheme Σ is {0, 1}`. Let the correspond-
ing ciphertext space be a subset of {0, 1}`′ .

Commitment size n: The message space of the hybrid trapdoor commitment scheme HCOM is
{0, 1}`′ . Let the size of any commitment be n.

Block size n: For the block-wise puncturable PRF F , the block-sizes are set to be n.

Number of blocks N : For the block-wise puncturable PRF F , the number of blocks is set to be
N .

Construction 1. The protocol aNIKE = (Setup,Publish,KeyDerive) is described as follows.

Setup(λ,N,G) .

◦ For λ, let ` be the size of patches as defined above. Run the parameter-generation
algorithms of the PRF, HCOM and Σ: let F.params ← F.ParamGen(1λ, n,G,N), crs ←
HGen(1λ) and (pk, ·)← E.Gen(1λ).

◦ Choose K ← F.KeyGen(1λ,F.params).

◦ For a relation RHCOM defined later in Equation (2), build the key-derivation program
KD-Prog in Figure 1, padded to the appropriate length2. Output ˜KD-Prog ← iO(KD-Prog)
and F.params, crs, pk as the public parameters params.

Publish(params, λ, i). Party Pi computes its public and secret values as follows. Choose a random
element pti ← {0, 1}` and encrypt it with pk as cti ← Enc(pk,pti). Commit to cti: comi =
HCommit(crs, cti; openi) for uniformly chosen random coins openi. Publish i as the ID and
comi as pvi. Save (cti, openi) as the secret value svi.

We shall denote the public-value and secret-value relation as RHCOM; more precisely, parsing
pv = com and sv = (ct, open),

RHCOM(pv, sv) = 1, if and only if HVer(crs, pv, sv) = 1 (2)

KeyDerive(( ˜KD-Prog,F.params, crs,pk),S, {(i,pvi)}i∈S , j, svj): Run ˜KD-Prog on input (S, {(i,pvi)}i∈S , j, svj).
The resultant value is defined to be the ‘common key ’ derived by parties in S.

5 Proof of Security

Theorem 2. If iO is indistinguishably secure, Σ is a CPA-secure encryption scheme, HCOM is a
hybrid trapdoor commitment scheme, and F is an obliviously patchable puncturable PRF, then
Construction 1 is an adaptively secure multiparty non-interactive key exchange protocol.

Proof. Assume towards contradiction that an adversary A has non-negligible advantage in breaking
the adaptive security of our Construction 1 as in Definition 6. We arrive at a contradiction through
a carefully designed sequence of several hybrids Hyb0,Hyb1, . . . ,Hyb10. If the challenger in Hybi

2To prove security, we will replace KD-Prog with the obfuscation of other programs which may be of size larger
than KD-Prog. In order to be able to employ the security property of the indistinguishability obfuscation, all the
programs must be of the same size.
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KD-Prog

Constants:

◦ F.params, crs,pk

◦ K

Input: (S, (pvi)i∈S , j, svj), where S ⊆ [N ], |S| ≤ G.
Procedure:

1. Check whether j ∈ S; if not, output ⊥. Then, check whether (pvj , svj) ∈ RHCOM (defined in
Equation (2)); if not, output ⊥. Otherwise, proceed as follows.

2. Compute and output F (K, (S, (pvi)i∈S)).

Figure 1: Key-derivation Program

chooses to play the real experiment (respectively, the random experiment) and A outputs 1, then
we denote the event by realHybiA → 1 (respectively, randHybi

A → 1). The advantage of A in Hybi is
defined as

Adv
Hybi
A (λ) := |Pr[realHybiA → 1]− Pr[randHybi

A → 1]| (3)

Furthermore, we shall use Hybi to also denote the view of the adversary in the hybrid whenever the
connotation is unambiguous.

To maintain ease of verification for the reader, we present a full description of each hybrid
experiment, each one given on a separate page. The modification introduced in the current hybrid
in comparison with the previous hybrid will be highlighted in red underlined font. Furthermore, if
a value is removed as we move from one hybrid to the next, then in the latter hybrid, we highlight
the value within a red frame with a red strike-through. Also, let’s say that while switching to the
next hybrid, a value is moved from one step of execution to a later step; then in the latter hybrid,
value shall appear at its position in the previous hybrid and value shall appear at its new position
in the current hybrid.

Hyb0. This experiment is the same as the original experiment in Definition 6. Here, we simply
unwrap the original experiment as per our construction. The challenger behaves as follows.
It begins by choosing expt ∈ {real,rand} uniformly at random, and executes with A the
experiment exptHyb0

A defined as follows.

1. Run F.params← F.ParamGen(1λ, n,G,N), crs← HGen(1λ), and (pk, ·)← E.Gen(1λ).
2. Compute ˜KD-Prog as follows.

- K ← F.KeyGen(1λ,F.params).

- For K, generate KD-Prog0 as in Figure 2, and compute ˜KD-Prog ← iO(KD-Prog0).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

3. Upon receiving Reg(i ∈ [N ]), run Publish(( ˜KD-Prog,F.params, crs, pk), λ, i). Namely,
sample pti ← {0, 1}`, encrypt pti as cti ← Enc(pk,pti), and commit to cti as comi

= HCommit(crs, cti; openi). Set svi = (cti, openi) and pvi = comi. Respond via pvi.

4. Upon receiving Ext(i) for a registered honest Pi, respond via svi.
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5. Upon receiving Rev(S, j), run ˜KD-Prog on input (S, (pvi)i∈S , j, svj) and respond via the
output.

6. Upon receiving Test(ChQ), choose j ← ChQ, compute Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj)
and sample Yrand ← {0, 1}m, where {0, 1}m is the co-domain of F . Respond to the ad-
versary via Yexpt.

7. Finally, output whatever A outputs.

KD-Prog0

Constants:

◦ F.params, crs,pk

◦ K

Input: (S, (pvi)i∈S , j, svj), where S ⊆ [N ], |S| ≤ G.
Procedure:

1. Check whether j ∈ S; if not, output ⊥. Then, check whether (pvj , svj) ∈ RHCOM (defined in
Equation (2)); if not, output ⊥. Otherwise, proceed as follows.

2. Compute and output F (K, (S, (pvi)i∈S)).

Figure 2: Key-derivation Program
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Hyb1. This experiment is the same as Hyb0 except for the following modification. Essentially, this
modification corresponds to the sequence in which the challenger computes certain values.
Namely, before the adversary begins presenting queries, the challenger samples the public-
value secret-value pairs ahead of time – we shall denote these pairs as (p̃vi, s̃vi). Recall that
the challenger does not know ahead of time for which i the adversary would issue Reg(i ∈ [N ])
(for which the challenger is supposed to compute a public-value) and for which other i it would
issue RegCorr(i ∈ [N ],pvi) (for which the challenger need not compute a public-value). Thus,
in this hybrid, the challenger, who samples the pairs ahead of time, samples the pairs for for
every i ∈ [N ]. Later, it would use (p̃vi, s̃vi) only if the adversary issues Reg(i ∈ [N ]). Details
follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb1

A defined as follows.

1. Run F.params ← F.ParamGen(1λ, n,G,N), crs ← HGen(1λ), and (pk, ·) ← E.Gen(1λ).
(Defer generating the program ˜KD-Prog to later).

2. Then, for every i ∈ [N ], compute (p̃vi, s̃vi) as follows and store (p̃vi, s̃vi): sample pti ←
{0, 1}`, encrypt pti as cti ← Enc(pk, pti), and commit to cti as comi = HCommit(crs, cti; openi).
Set s̃vi = (cti, openi) and p̃vi = comi. (Observe that, in our protocol, the algorithm
Publish(params, λ, i) depends only on crs, pk, and in particular, does not depend on
˜KD-Prog. Thus, this step of the challenger is still well-defined.)

3. Compute ˜KD-Prog as follows.
- K ← F.KeyGen(1λ,F.params).

- For K, generate KD-Prog1 as in Figure 3 and compute ˜KD-Prog ← iO(KD-Prog1).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ],pvi), then simply
ignore (p̃vi, s̃vi).)

5. Upon receiving Ext(i) for a registered honest Pi, respond via svi = s̃vi.

6. Upon receiving Rev(S, j), run ˜KD-Prog on input (S, (pvi)i∈S , j, svj) and respond via the
output.

7. Upon receiving Test(ChQ), choose j ← ChQ, compute Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj)
and sample Yrand ← {0, 1}m, where {0, 1}m is the co-domain of F . Respond to the ad-
versary via Yexpt.

8. Finally, output whatever A outputs.

Lemma 1. Hyb0 ≈c Hyb1.

Proof. Observe that the only difference between Hyb0 and Hyb1 is in the sequence of the values
computed and an additional constant, {p̃vi}i∈[N ], in the program KD-Prog1 of Hyb1, that is not
present in program KD-Prog0 of Hyb0. As for the first difference, in Hyb1 the challenger computes
(p̃vi, s̃vi) for every i ahead of time and uses them only if necessary (i.e., if the adversary requests
to register i as an honest party). Observe that this does not cause any deviation in the distribution
of (p̃vi, s̃vi) for identities i under which the adversary requests to register honest parties. As for
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KD-Prog1

Constants:

◦ F.params, crs,pk

◦ K

◦ {p̃vi}i∈[N ]

Input: (S, (pvi)i∈S , j, svj), where S ⊆ [N ], |S| ≤ G.
Procedure:

1. Check whether j ∈ S; if not, output ⊥. Then, check whether (pvj , svj) ∈ RHCOM; if not,
output ⊥. Otherwise, proceed as follows.

2. Compute and output F (K, (S, (pvi)i∈S)).

Figure 3: Key-derivation Program

the next difference, since the input/output relation of both the programs KD-Prog0 and KD-Prog1

are identical, from the security of iO, we have that their obfuscations are computationally indistin-
guishable. Hence, we have that Hyb0 ≈c Hyb1.
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Hyb2. This experiment is the same as Hyb1 except for the following modification in the way the key
is sampled for constructing KD-Prog2.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb2

A defined as follows.

1. Run F.params ← F.ParamGen(1λ, n,G,N), crs ← HGen(1λ), and (pk, ·) ← E.Gen(1λ).
(Defer generating the program ˜KD-Prog to later).

2. Then, for every i ∈ [N ], compute (p̃vi, s̃vi) as follows and store (p̃vi, s̃vi): sample pti ←
{0, 1}`, encrypt pti as cti ← Enc(pk, pti), and commit to cti as comi = HCommit(crs, cti; openi).
Set s̃vi = (cti, openi) and p̃vi = comi. (Observe that, in our scheme, the algorithm
Publish(params, λ, i) depends only on crs, pk, and in particular, does not depend on
˜KD-Prog. Thus, this step of the challenger is still well-defined.)

3. Compute ˜KD-Prog as follows.
- Sample a key, K ← F.KeyGen(1λ,F.params).
- Puncture K at 2p̃v

G : K[2p̃v
G ]← Puncture(K, 2p̃v

G ), where p̃v = (p̃v1, . . . , p̃vN ).

- Generate patches forK[2p̃v
G ] at every ith block: patch(K, (i, p̃vi)) ← PatchGen(K, i, p̃vi).

- For (K[2p̃v
G ], {patch(K, (i, p̃vi))}i∈[N ]), generate KD-Prog1 as in Figure 3 and compute

˜KD-Prog ← iO(KD-Prog1).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ],pvi), then simply
ignore (p̃vi, s̃vi).)

5. Upon receiving Ext(i) for a registered honest Pi, respond via svi = s̃vi.

6. Upon receiving Rev(S, j), run ˜KD-Prog on input (S, (pvi)i∈S , j, svj) and respond via the
output.

7. Upon receiving Test(ChQ), choose j ← ChQ, compute Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj)
and sample Yrand ← {0, 1}m, where {0, 1}m is the co-domain of F . Respond to the ad-
versary via Yexpt.

8. Finally, output whatever A outputs.

Lemma 2. Hyb1 ≈c Hyb2.

Proof. Observe that the only difference between Hyb1 and Hyb2 is in the structure of the key and
the way it is used in computing the final outcome. We shall show that, despite the change, the
input-output relations of the programs KD-Prog1 and KD-Prog2 are identical. Thence, by applying
the security property of iO, we have that Hyb1 ≈c Hyb2. Now to prove the functional equivalence of
KD-Prog1 and KD-Prog2, we shall show that, there exists a one-to-one relation between all possible
keys K of KD-Prog1 and all possible keys (K[2p̃v

G ], {patch(K, (i, p̃vi))}i∈[N ]) of KD-Prog2, and that
the input-output relations of the programs KD-Prog1 and KD-Prog2 are identical for the mapped
keys. Towards establishing the one-to-one mapping, consider any {p̃vi}i∈[N ] (which is a part of
the constants in both the programs). For any K for program KD-Prog1, the corresponding key for
KD-Prog2 is (K[2p̃v

G ], {patch(K, (i, p̃vi))}i∈[N ]). Now consider any input (S, (pvi)i∈S , j, svj). Let us
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KD-Prog2

Constants:

◦ F.params, crs,pk

◦ (K[2p̃vG ], {patch(K, (i, p̃vi))}i∈[N ])

◦ {p̃vi}i∈[N ]

Input: (S, (pvi)i∈S , j, svj), where S ⊆ [N ], |S| ≤ G.
Procedure:

1. Check whether j ∈ S; if not, output ⊥. Then, check whether (pvj , svj) ∈ RHCOM; if not,
output ⊥. Otherwise, proceed as follows.

2. - If (S, (pvi)i∈S) 6∈ 2p̃vG , then compute and output Eval(K[2p̃vG ], (S, (pvi)i∈S)).

- If (S, (pvi)i∈S) ∈ 2p̃vG , then compute and output
Eval((K[2p̃vG ], patch(K, (j, p̃vj))), (S, (pvi)i∈S)).

Figure 4: Key-derivation Program

analyze the outputs for this input as computed by programs KD-Prog1 and KD-Prog2. Observe that
the checks performed at Step 1 in both the programs are identical. In the event that this check
does not go through, both the programs output the same value, namely, ⊥. However, if the check
goes through, KD-Prog1 computes the function F on (S, (pvi)i∈S) with key K; on the other hand,
KD-Prog2 works under two cases:

(a). When (S, (pvi)i∈S) 6∈ 2p̃v
G , it outputs Eval(K[2p̃v

G ], (S, (pvi)i∈S)). Note that Eval(K[2p̃v
G ], (S, (pvi)i∈S))

= F (K, (S, (pvi)i∈S)).

(b). When (S, (pvi)i∈S) ∈ 2p̃v
G , it outputs Eval((K[2p̃v

G ], patch(K, (j, p̃vj))), (S, (pvi)i∈S)). Note
that

Eval((K[2p̃v
G ], patch(K, (j, p̃vj))), (S, (pvi)i∈S)) = F (K, (S, (pvi)i∈S)).

Hence, the programs KD-Prog1 and KD-Prog2 are functionally equivalent, thus allowing us to apply
security of iO and concluding that Hyb1 ≈c Hyb2.
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Hyb3. This experiment is the same as Hyb2 except for the following modification in the sequence of
the computations performed by the challenger. At a high level, the challenger first obliviously
samples the patches for every i (i.e., oblivious of p̃vi). Then it computes (p̃vi, s̃vi) for every
i, after which it computes K[2p̃v

G ] for p̃v := (p̃v1, . . . , p̃vN ). Details follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb3

A defined as follows.

1. Run F.params← F.ParamGen(1λ, n,G,N), crs← HGen(1λ), and (pk, ·)← E.Gen(1λ).
2. Obliviously (of p̃vi) generate the patches: For every i ∈ [N ], compute

({patchi}i∈[N ], o.state)← OPatchGen(1λ,F.params))

3. Compute ˜KD-Prog as follows.
- Then, for every i ∈ [N ], sample (p̃vi, s̃vi) as follows and store (p̃vi, s̃vi): sample

pti ← {0, 1}`, encrypt pti as cti ← Enc(pk,pti), and commit to cti as comi =
HCommit(crs, cti; openi). Set s̃vi = (cti, openi) and p̃vi = comi.

- Recall that p̃vi ∈ {0, 1}n. Using OPuncture, consistent with the already gener-
ated patches and with all p̃vi, generate a key punctured at 2p̃v

G , where, p̃v :=
(p̃v1, . . . , p̃vN ):

K[2p̃v
G ]← OPuncture(1λ, o.state, p̃v)

- (K[2p̃v
G ], {patchi}i∈[N ]), generate KD-Prog3 exactly the same way as KD-Prog2 and

compute ˜KD-Prog ← iO(KD-Prog3).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ],pvi), then simply
ignore (p̃vi, s̃vi).)

5. Upon receiving Ext(i) for a registered honest Pi, respond via svi = s̃vi.

6. Upon receiving Rev(S, j), run ˜KD-Prog on input (S, (pvi)i∈S , j, svj) and respond via the
output.

7. Upon receiving Test(ChQ), choose j ← ChQ, compute Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj)
and sample Yrand ← {0, 1}m, where {0, 1}m is the co-domain of F . Respond to the ad-
versary via Yexpt.

8. Finally, output whatever A outputs.

Lemma 3. Hyb2 ≡ Hyb3.

Proof. Observe that the only difference between Hyb2 and Hyb3 is in the sequence in which the
challenger computes the values. Namely, in Hyb3, the challenger first samples the patches obliviously
of p̃vi using the algorithm OPatchGen, while in the previous hybrid, the patches were generated
as a function of p̃vi using the algorithm PatchGen. Furthermore, in Hyb3, the punctured key
K[2p̃v

G ] is sampled using the algorithm OPuncture using the o.state information generated by the
algorithm OPatchGen that had obliviously generated the patches; on the other hand, in the previous
hybrid, K[2p̃v

G ] is generated by running F.KeyGen followed by the algorithm Puncture. This difference

22



corresponds exactly to the two modes of generating a punctured key and its block-wise patches,
that are guaranteed to give identical joint distributions, from the property of oblivious patchability
of F . Thus, we have that, the view of the adversary in Hyb3 is identical to its view in Hyb2. Hence,
Hyb2 ≡ Hyb3.
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Hyb4. This experiment is the same as Hyb3 except for the following modification in the distribution
from which the challenger samples (p̃vi, s̃vi) for all i ∈ [N ]. Recall that in Hyb3, p̃vi is a
commitment to the ciphertext cti ← Enc(pk,pti), where, pti is chosen uniformly at random.
The modification we introduce in this hybrid, more specifically, is in the way pti is sampled:
here, we set pti to be patchi. (Observe that in Hyb3, the challenger computes patchi before
sampling p̃vi. Hence, this modification is well-defined.) Details follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb4

A defined as follows.

1. Run F.params← F.ParamGen(1λ, n,G,N), crs← HGen(1λ), and (pk, ·)← E.Gen(1λ).
2. Obliviously (of p̃vi) generate the patches: For every i ∈ [N ], compute

({patchi}i∈[N ], o.state)← OPatchGen(1λ,F.params))

3. Compute ˜KD-Prog as follows.
- Then, for every i ∈ [N ], sample (p̃vi, s̃vi) as follows and store (p̃vi, s̃vi): set pti ← patchi,
encrypt pti as cti ← Enc(pk,pti), and commit to cti as comi = HCommit(crs, cti; openi).
Set s̃vi = (cti, openi) and p̃vi = comi.

- Recall that p̃vi ∈ {0, 1}n. Using OPuncture, consistent with the already gener-
ated patches and with all p̃vi, generate a key punctured at 2p̃v

G , where, p̃v :=
(p̃v1, . . . , p̃vN ):

K[2p̃v
G ]← OPuncture(1λ, o.state, p̃v)

- For (K[2p̃v
G ], {patchi}i∈[N ]), generate KD-Prog4 exactly the same way as KD-Prog3

and compute ˜KD-Prog ← iO(KD-Prog4).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ],pvi), then simply
ignore (p̃vi, s̃vi).)

5. Upon receiving Ext(i) for a registered honest Pi, respond via svi = s̃vi.

6. Upon receiving Rev(S, j), run ˜KD-Prog on input (S, (pvi)i∈S , j, svj) and respond via the
output.

7. Upon receiving Test(ChQ), choose j ← ChQ, compute Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj)
and sample Yrand ← {0, 1}m, where {0, 1}m is the co-domain of F . Respond to the ad-
versary via Yexpt.

8. Finally, output whatever A outputs.

Lemma 4. Hyb3 ≈c Hyb4.

Proof. Observe that the only difference between Hyb3 and Hyb4 is in the distribution from which the
challenger samples plaintexts pti in the process of computing (p̃vi, s̃vi) for all i ∈ [N ]. Intuitively,
since these plaintexts are encrypted, and since neither the secret key nor the random coins used
in encrypting is used anywhere else in the execution of either hybrid, we will be able to argue
that owing to CPA security of the encryption scheme Σ = (E.Gen,Enc,Dec), the two hybrids are
computationally indistinguishable.
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Let A be an adversary that distinguishes Hyb3 and Hyb4; that is, |Adv
Hyb3
A (λ) − Adv

Hyb4
A (λ)| is

non-negligible in λ, where, AdvHybiA (λ) is as defined in Equation (6). Recall that, AdvHybiA (λ) :=

|Pr[realHybi
A → 1]−Pr[randHybi

A → 1]|. This implies that there exists ẽxpt ∈ {real,rand} such
that |Pr[ẽxpt

Hyb3
A → 1]− Pr[ẽxpt

Hyb4
A → 1]| = ε, where, ε = ε(λ) is non-negligible in λ. We shall

build an adversary B that emulates either ẽxpt
Hyb3
A or ẽxpt

Hyb4
A and breaks the CPA security of

Σ. Details follow.
For simplicity, we consider a variant of the standard CPA game that is equivalent to the stan-

dard CPA game through a simple hybrid argument which loses a factor of 1/N in the adversary’s
advantage. The modified game is as follows. Upon receiving the public key pk, the adversary B
gives to the challenger two N -vectors of plaintext messages and receives an N -vector of ciphertexts
that encrypts one of the two plaintext vectors. The objective of the adversary would be to guess
which plaintext vector was encrypted. Note that neither the secret key nor the random coins used in
encrypting are used anywhere else in the either of the hybrids Hyb3 and Hyb4; hence, the description
of B is well-defined.
Description of B. Corresponding respectively to the two plaintext vectors, the adversary B emulates
to A either ẽxpt

Hyb3
A or ẽxpt

Hyb4
A , respectively, and exploits the success probability of A in the

CPA game. Let the experiment with A as emulated by B be denoted by ẽxpt3−4. Upon receiving
pk from its challenger, B proceeds as follows.

1. Run F.params← F.ParamGen(1λ, n,G,N) and crs← HGen(1λ).
2. Obliviously (of p̃vi) generate the patches: For every i ∈ [N ], compute

({patchi}i∈[N ], o.state)← OPatchGen(1λ,F.params))

3. Compute ˜KD-Prog as follows.

- For every i ∈ [N ], compute (p̃vi, s̃vi) as follows and store (p̃vi, s̃vi): Firstly, compute two
N -vectors of plaintexts (pt

(3)
1 , . . . ,pt

(3)
N ) and (pt

(4)
1 , . . . ,pt

(4)
N ) as follows.

- For every i ∈ [N ], sample pt
(3)
i ← {0, 1}`.

- For every i ∈ [N ], set pt
(4)
i ← patchi.

Present the two N -vectors of plaintexts, (pt
(3)
1 , . . . ,pt

(3)
N ) and (pt

(4)
1 , . . . ,pt

(4)
N ) to the

CPA challenger. The CPA challenger flips a coin b ∈ {0, 1} and if b = 0 encrypts
(pt

(3)
1 , . . . ,pt

(3)
N ) and if b = 1 encrypts (pt

(4)
1 , . . . ,pt

(4)
N ). He gives the resultant N -

vector of ciphertexts (ct1, . . . , ctN ) to B. B then commits to these ciphertexts comi =
HCommit(crs, cti; openi) and sets s̃vi = (cti, openi) and p̃vi = comi.

- Recall that p̃vi ∈ {0, 1}n. Using OPuncture, consistent with the already generated
patches and with all p̃vi, generate a key punctured at 2p̃v

G , where, p̃v := (p̃v1, . . . , p̃vN ):

K[2p̃v
G ]← OPuncture(1λ, o.state, p̃v)

- For (K[2p̃v
G ], {patchi}i∈[N ]), generate KD-Prog3−4 exactly the same way as KD-Prog3 and

compute ˜KD-Prog ← iO(KD-Prog3−4).

Thus, set params = ( ˜KD-Prog,F.params, crs, pk) and give it to A. Then respond to the adversary’s
queries as follows.
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4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ], pvi), then simply
ignore (p̃vi, s̃vi).)

5. Upon receiving Ext(i) for a registered honest Pi, respond via svi = s̃vi.

6. Upon receiving Rev(S, j), run ˜KD-Prog on input (S, (pvi)i∈S , j, svj) and respond via the out-
put.

7. Upon receiving Test(ChQ), choose j ← ChQ, compute Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj)
and sample Yrand ← {0, 1}m, where {0, 1}m is the co-domain of F . Respond to the adversary
via Yẽxpt.

Finally, output whatever A outputs.
Analysis. Before we proceed, recall that the programs KD-Prog3 and KD-Prog4 are identical. Hence,
the only difference between ẽxpt in Hyb3 and the experiment ẽxpt3−4 emulated by ẽxpt3−4 is in
the distribution from which pti are sampled. Thus, if the CPA challenger encrypts (pt

(3)
1 , . . . ,pt

(3)
N ),

then the view of A in ẽxpt3−4 is identical to that in ẽxpt of Hyb3; on the other hand, if the
CPA challenger encrypts (pt

(4)
1 , . . . ,pt

(4)
N ), then the view of A in ẽxpt3−4 is identical to that in

ẽxpt of Hyb4. Therefore, B distinguishes the ciphertexts of two distinct plaintexts with probability
|Pr[ẽxpt

Hyb3
A → 1]−Pr[ẽxpt

Hyb4
A → 1]| = ε which by assumption is non-negligible, hence breaking

the CPA security of Σ.
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Hyb5. This experiment is the same as Hyb4 except for the following modification in the way the
program KD-Prog5 obtains patchj . Recall that in KD-Prog4, {patchi}i∈[N ] formed a part
of the constants of the program. Furthermore, recall that for an input (S, (pvi)i∈S , j, svj)
where pvj = p̃vj (and where the checks performed in the program KD-Prog4 go through),
the output of the program is Eval((K[2p̃v

G ], patchj), (S, (pvi)i∈S)). Thus, roughly speaking, to
compute the output of an input (S, (pvi)i∈S , j, svj), the program KD-Prog4 does not need any
of {patchi}i 6=j . Keeping this in mind, the modification we introduce here is that in KD-Prog5,
we do not provide any of {patchi}i∈[N ] as constants to the program. Instead, we include sk
of the encryption scheme as a part of the constants in the program. Then, upon an input
(S, (pvi)i∈S , j, svj), where, pvj = p̃vj and svj = (ctj ; openj) (an opening of the commitment
pvj = comj), the program KD-Prog5 would decrypt ctj to get patchj , and compute and
output Eval((K[2p̃v

G ], patchj), (S, (pvi)i∈S)). The crucial point which will be necessary in order
to establish indistinguishability from the previous hybrid is that for every such input, ctj is
indeed an encryption of the required patch. Details follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb5

A defined as follows.

1. Run F.params← F.ParamGen(1λ, n,G,N), crs← HGen(1λ), and (pk, sk)← E.Gen(1λ).
2. Obliviously (of p̃vi) generate the patches: For every i ∈ [N ], compute

({patchi}i∈[N ], o.state)← OPatchGen(1λ,F.params))

3. Compute ˜KD-Prog as follows.
- Then, for every i ∈ [N ], sample (p̃vi, s̃vi) as follows and store (p̃vi, s̃vi): set pti ←
patchi, encrypt pti as cti ← Enc(pk, pti), and commit to cti as comi = HCommit(crs, cti; openi).
Set s̃vi = (cti, openi) and p̃vi = comi.

- Recall that p̃vi ∈ {0, 1}n. Using OPuncture, consistent with the already gener-
ated patches and with all p̃vi, generate a key punctured at 2p̃v

G , where, p̃v :=
(p̃v1, . . . , p̃vN ):

K[2p̃v
G ]← OPuncture(1λ, o.state, p̃v)

- For (K[2p̃v
G ], {patchi}i∈[N ]), generate KD-Prog5 exactly the same way as KD-Prog4

and compute ˜KD-Prog ← iO(KD-Prog5).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ],pvi), then simply
ignore (p̃vi, s̃vi).)

5. Upon receiving Ext(i) for a registered honest Pi, respond via svi = s̃vi.

6. Upon receiving Rev(S, j), run ˜KD-Prog on input (S, (pvi)i∈S , j, svj) and respond via the
output.

7. Upon receiving Test(ChQ), choose j ← ChQ, compute Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj)
and sample Yrand ← {0, 1}m, where {0, 1}m is the co-domain of F . Respond to the ad-
versary via Yexpt.

8. Finally, output whatever A outputs.
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KD-Prog5

Constants:

◦ F.params, crs,pk

◦ {p̃vi}i∈[N ]

◦ (K[2p̃vG ], {patchi}i∈[N ])

◦ sk

Input: (S, (pvi)i∈S , j, svj), where S ⊆ [N ], |S| ≤ G, where, svj = (ctj , openj).
Procedure:

1. Check whether j ∈ S; if not, output ⊥. Then, check whether (pvj , svj) ∈ RHCOM; if not,
output ⊥. Otherwise, proceed as follows.

2. - If (S, (pvi)i∈S) 6∈ 2p̃vG , then compute and output Eval(K[2p̃vG ], (S, (pvi)i∈S)).

- If (S, (pvi)i∈S) ∈ 2p̃vG , then obtain patchj by decrypting ctj as patchj ← Dec(sk, ctj),

compute and output Eval((K[2p̃vG ], patchj), (S, (pvi)i∈S)).

Figure 5: Key-derivation Program

Lemma 5. Hyb4 ≈c Hyb5.

Proof. Observe that the only difference between the two hybrids is in the way the programs KD-Prog4

and KD-Prog5 behave when input (S, (pvi)i∈S , j, svj) which goes through the check performed in
the first step and for which (S, (pvi)i∈S) ∈ 2p̃v

G . More specifically, upon such an input, the output
is computed as Eval((K[2p̃v

G ], patchj), (S, (pvi)i∈S)) in both the programs; however, the difference is
in how the programs obtain patchj . In the former hybrid, this value formed a part of the constants
within the program. However, in the latter hybrid, this is no longer a part of the program’s constants;
the program instead obtains it as follows. Parse s̃vi ← (cti, openi) and p̃vi ← comi. Then obtain
patchj by decrypting ctj as patchj ← Dec(sk, ctj).

Thus, if we show that, despite the disparate ways of obtaining patchj , the distribution of patchj
is distributed the same way w.r.t. to the rest of the elements in the game, then we can conclude
that the programs are functionally equivalent.

In Hyb5, recall how the challenger samples (p̃vi, s̃vi) for every i. The challenger first computes
patchi for all i (just like in Hyb4). Then it encrypts patchi with pk, denoting the plaintext patchi
by pti and the resulting ciphertext by cti. Then, it commits to cti with random coins openi to
get comi, assigning s̃vi ← (cti, openi) and p̃vi ← comi. The crucial fact for our current interest is
that s̃vj = (ctj , ·), where, ctj is an encryption of patchj . Next, recall that the program KD-Prog5

obtains patchj by decrypting ctj with sk. Thus, we will be able to argue function equivalence of
the two programs KD-Prog4 and KD-Prog5, provided, for every input (S, (pvi)i∈S , j, svj) that passes
the check in the program, if (S, (pvi)i∈S) ∈ 2p̃v

G , then svj = (ctj , ·), where ctj is an encryption of
patchj .

We now prove that, for every j ∈ [N ], for every p̃vj , there exists only one value for svj such that
for an input (S, (pvi)i∈S , j, svj) (with with (S, (pvi)i∈S) ∈ 2p̃v

G which implies that pvj = p̃vj), the

check (namely, RHCOM(pvj , svj) = HVer(crs,pvj , svj)
?
= 1, as per Equation (2)) in Step 1 in program

KD-Prog5 passes. Towards this end, observe that the commitment pvj = comj is computed using
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crs that is sampled as crs← HGen(1λ). Now recall that, with all but negligible probability, for crs
that is sampled using HGen, the resulting commitment scheme is unconditionally binding. Hence,
there can exist only one svj = (ctj , openj) such that comj = HCommit(crs, ctj ; openj). Thus, on
such an input, the program KD-Prog5 is assured to obtain patchj with all but negligible probability,
hence maintaining functional equivalence with KD-Prog4 even for the case when (S, (pvi)i∈S) ∈ 2p̃v

G .
In conclusion, with all but negligible probability, the programs KD-Prog4 and KD-Prog5 are

functionally equivalent, thus allowing us to apply security of iO and concluding that Hyb4 ≈c Hyb5.
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Hyb6. This experiment is the same as Hyb5 except for the following modification in the way crs
for the commitment scheme is sampled. Recall that the challenger in Hyb5 sampled crs
as crs ← HGen(1λ). Now the modification for Hyb6 is that the challenger samples crs as
(crs, aux)← HTGen(1λ). Details follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb6

A defined as follows.

1. Run F.params← F.ParamGen(1λ, n,G,N), (crs, aux)← HTGen(1λ), and (pk, sk)← E.Gen(1λ).
(Ignore aux).

2. Obliviously (of p̃vi) generate the patches: For every i ∈ [N ], compute

({patchi}i∈[N ], o.state)← OPatchGen(1λ,F.params))

3. Compute ˜KD-Prog as follows.
- Then, for every i ∈ [N ], sample (p̃vi, s̃vi) as follows and store (p̃vi, s̃vi): set pti ←
patchi, encrypt pti as cti ← Enc(pk, pti), and commit to cti as comi = HCommit(crs, cti; openi).
Set s̃vi = (cti, openi) and p̃vi = comi.

- Recall that p̃vi ∈ {0, 1}n. Using OPuncture, consistent with the already gener-
ated patches and with all p̃vi, generate a key punctured at 2p̃v

G , where, p̃v :=
(p̃v1, . . . , p̃vN ):

K[2p̃v
G ]← OPuncture(1λ, o.state, p̃v)

- For (K[2p̃v
G ], {patchi}i∈[N ]), generate KD-Prog6 exactly the same way as KD-Prog5

and compute ˜KD-Prog ← iO(KD-Prog6).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ],pvi), then simply
ignore (p̃vi, s̃vi).)

5. Upon receiving Ext(i) for a registered honest Pi, respond via svi = s̃vi.

6. Upon receiving Rev(S, j), run ˜KD-Prog on input (S, (pvi)i∈S , j, svj) and respond via the
output.

7. Upon receiving Test(ChQ), choose j ← ChQ, compute Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj)
and sample Yrand ← {0, 1}m, where {0, 1}m is the co-domain of F . Respond to the ad-
versary via Yexpt.

8. Finally, output whatever A outputs.

Lemma 6. Hyb5 ≈c Hyb6.

Proof. Observe that the only difference in Hyb5 and Hyb6 is that while the challenger in Hyb5

samples the CRS for the commitment scheme using HGen crs(5) ← HGen(1λ), the challenger in
Hyb5 samples it using HTGen as (crs(6), aux) ← HTGen(1λ), (while ignoring aux in the rest of the
experiment).

We shall show that Hyb5 ≈c Hyb6 by applying the ‘hybrid property’ of the hybrid trapdoor
commitment scheme HCOM (See Definition 4).
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Assume for contradiction that there exists an adversary A that distinguishes the two hybrids
Hyb5 and Hyb6; that is, |Adv

Hyb5
A (λ)−Adv

Hyb6
A (λ)| is non-negligible in λ, where, AdvHybiA (λ) is as de-

fined in Equation (6). Recall that, for any i, AdvHybiA (λ) := |Pr[realHybiA → 1]−Pr[randHybi
A → 1]|.

This implies that there exists ẽxpt ∈ {real,rand} such that |Pr[ẽxpt
Hyb5
A → 1]−Pr[ẽxpt

Hyb6
A →

1]| = ε, where, ε = ε(λ) is non-negligible in λ. We shall build an adversary B that emulates either
ẽxpt

Hyb5
A or ẽxpt

Hyb6
A and breaks the hybrid property of HCOM. Details follow.

Corresponding respectively to the two distributions of crs, the adversary B emulates to A either
ẽxpt

Hyb5
A or ẽxpt

Hyb6
A , respectively, and exploits the success probability of A in its own hybrid

security game. Let the experiment with A as emulated by B be denoted by ẽxpt5−6.
From its challenger, B receives crs that is sampled using either HGen or HTGen. The objective

of B is to tell the two cases apart. B proceeds as follows.
Adversary B runs A just like the challenger of Hyb5 runs A except that, instead of sampling by

itself the CRS for the commitment scheme, it uses crs that it received from its challenger. Finally,
B outputs whatever A outputs.

Observe that at no point in the execution of the Hyb5 experiment do we need the random coins
used in generating the crs. Hence, the adversary B is well-defined.

Now observe that when crs given by the challenger of B is sampled using HGen, then the view of
A generated by B is identical to that generated by Hyb5. On the other hand, when crs is sampled
using HTGen, then the view of A generated by B is identical to that generated by Hyb6. Hence,

AdvhybB (λ) = |Pr[1← B(crs0) : crs0 ← HGen(1λ)]− Pr[1← B(crs1) : crs1 ← HTGen(1λ)]|

= |Pr[ẽxpt
Hyb5
A → 1]− Pr[ẽxpt

Hyb6
A → 1]|

= ε

thus, arriving at a contradiction.
Hence, we have that Hyb5 ≈c Hyb6.
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Hyb7. This experiment is the same as Hyb6 except for the following modification in the way in which
the challenger computes the public values p̃vi = comi for honest parties. Roughly speaking,
instead of computing comi as a commitment to a specific value (namely, an encryption of
patchi) using HCommit algorithm, the modification is that the challenger, using HTCommit,
first computes comi, along with a trapdoor. Since the challenger is able to open comi to any
value, it opens it to an encryption of patchi, later. Details follow.

1. Run F.params ← F.ParamGen(1λ, n,G,N), (crs, aux) ← HTGen(1λ), and (pk, sk) ←
E.Gen(1λ). (Ignore aux).

2. Obliviously (of p̃vi) generate the patches: For every i ∈ [N ], compute

({patchi}i∈[N ], o.state)← OPatchGen(1λ,F.params))

3. Compute ˜KD-Prog as follows.
- For every i ∈ [N ], compute (comi, auxi)← HTCommit(crs, aux). Set p̃vi ← comi.
- Recall that p̃vi ∈ {0, 1}n. Using OPuncture, consistent with the already gener-
ated patches and with all p̃vi, generate a key punctured at 2p̃v

G , where, p̃v :=
(p̃v1, . . . , p̃vN ):

K[2p̃v
G ]← OPuncture(1λ, o.state, p̃v)

- For (K[2p̃v
G ], {patchi}i∈[N ]), generate KD-Prog7 exactly the same way as KD-Prog6

and compute ˜KD-Prog ← iO(KD-Prog7).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ],pvi), then simply
ignore p̃vi.)

5. Upon receiving Ext(i) for a registered honest Pi, compute an encryption of patchi as cti ←
Enc(pk, patchi) as follows. Then, compute the opening of comi to cti as openi ← HTDec(auxi, cti),
where auxi was the auxiliary information created when comi was generated earlier. With
this, set svi = s̃vi = (cti, openi) and then respond to the adversary’s query via svi.

6. Upon receiving Rev(S, j), respond via ˜KD-Prog(S, (pvi)i∈S , k, svk), where k is determined
as follows:

- Suppose there exists k′ ∈ S such that Pk′ was initially registered as an honest party,
but has already been corrupted (via query Ext(k′)) by the adversary. Then k is such
an arbitrary, say the smallest, k′.

- Otherwise, choose any arbitrary (say the smallest) k ∈ S, and compute s̃vi as above.

7. Upon receiving Test(ChQ), choose j ← ChQ, compute svj = s̃vj as before, compute
Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj) and sample Yrand ← {0, 1}m, where {0, 1}m is
the co-domain of F . Respond to the adversary via Yexpt.

8. Finally, output whatever A outputs.

Lemma 7. Hyb6 ≈c Hyb7.
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Proof. Observe that the only differences between Hyb6 and Hyb7 is in the way the challenger com-
putes (p̃vi, s̃vi). More specifically, recall that, while in both the hybrids, crs for the commitment
scheme is sampled using the HTGen algorithm, the difference in the hybrid lies in the way this crs
is used in computing the commitments. In detail:

- In Hyb6, the challenger first computes cti, an encryption of patchi, and then commits to cti
as comi = HCommit(crs, cti; openi), finally setting s̃vi = (cti, openi) and p̃vi = comi.

- On the other hand, in Hyb7, the challenger computes comi as an equivocable commitment
using HTCommit as (comi, auxi) ← HTCommit(crs, aux), and then computes an opening of
this commitment comi to cti as openi ← HTDec(auxi, cti), finally setting s̃vi = (cti, openi)
and p̃vi = comi.

Observe that the above difference in the two hybrids Hyb6 and Hyb7 corresponds to the two cases
in the security game for trapdoor property of the hybrid trapdoor commitment scheme HCOM. Thus,
any adversary who distinguishes the two hybrids can be reduced to one that breaks the trapdoor
property of HCOM, as we shall show below.

Let A be an adversary that distinguishes Hyb6 and Hyb7; that is, |AdvHyb6A (λ) − Adv
Hyb7
A (λ)|

is non-negligible in λ, where, Adv
Hybi
A (λ) is as defined in Equation (6). Recall that, for any i,

Adv
Hybi
A (λ) := |Pr[realHybiA → 1] − Pr[randHybi

A → 1]|. This implies that there exists ẽxpt ∈
{real,rand} such that |Pr[ẽxpt

Hyb6
A → 1] − Pr[ẽxpt

Hyb7
A → 1]| = ε, where, ε = ε(λ) is non-

negligible in λ. We shall build an adversary Atrap that emulates either ẽxpt
Hyb6
A or ẽxpt

Hyb7
A and

breaks the trapdoor property of HCOM. Details follow.
Recall from Definition 4 that Atrap first receives (crs, aux) from the challenger. Then Atrap

gives to its challenger a message, upon which the challenger computes a commitment either using
HCommit or HTCommit algorithm and gives Atrap the resulting commitment and its opening to the
message. The objective of the adversary is to tell apart the two cases. Atrap is described as below.
Atrap behaves the same way as the challenger in Hyb6 except for the way it computes (p̃vi, s̃vi)

for all i. Namely, instead of computing p̃vi = comi by itself, it uses the commitments received from
its challenger. In detail, upon receiving (crs, aux) from the challenger, Atrap proceeds as follows.

1. Run F.params← F.ParamGen(1λ, n,G,N), (crs, aux)← HTGen(1λ) , and (pk, sk)← E.Gen(1λ).
(Ignore aux).

2. Obliviously (of p̃vi) generate the patches: For every i ∈ [N ], compute

({patchi}i∈[N ], o.state)← OPatchGen(1λ,F.params))

3. Compute ˜KD-Prog as follows.

- For every i, encrypt patchi as cti ← Enc(pk, patchi). Present to the challenger {cti}i∈[N ] to
receive N commitments and corresponding openings {(comi, openi)}i∈[N ] to {cti}i∈[N ], resp.
Set s̃vi = (cti, openi).

- Recall that p̃vi ∈ {0, 1}n. Using OPuncture, consistent with the already generated
patches and with all p̃vi, generate a key punctured at 2p̃v

G , where, p̃v := (p̃v1, . . . , p̃vN ):

K[2p̃v
G ]← OPuncture(1λ, o.state, p̃v)

- For (K[2p̃v
G ], {patchi}i∈[N ]), generate KD-Prog6−7 exactly the same way as KD-Prog6 and

compute ˜KD-Prog ← iO(KD-Prog6−7).
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Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the adversary’s
queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ], pvi), then simply
ignore p̃vi.)

5. Upon receiving Ext(i) for a registered honest Pi, respond via svi = s̃vi generated earlier with
the help of the challenger.

6. Upon receiving Rev(S, j), respond via ˜KD-Prog(S, (pvi)i∈S , k, svk), where k is determined as
follows:

- Suppose there exists k′ ∈ S such that Pk′ was initially registered as an honest party,
but has already been corrupted (via query Ext(k′)) by the adversary. Then k is such an
arbitrary, say the smallest, k′.

- Otherwise, choose any arbitrary (say the smallest) k ∈ S.

7. Upon receiving Test(ChQ), choose j ← ChQ, compute svj = s̃vj as before, compute
Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj) and sample Yrand ← {0, 1}m, where {0, 1}m is the
co-domain of F . Respond to the adversary via Yexpt.

8. Finally, output whatever A outputs.

This completes the description of Atrap. Observe that if the challenger computes the com-
mitments comi using HCommit as comi = HCommit(crs, cti; openi), then the view of A as gener-
ated by Atrap is the same as the view of A in Hyb6. On the other hand, if the challenger com-
putes the commitments comi using HTCommit and HTDec as (comi, auxi)← HTCommit(crs, aux),
openi ← HTDec(auxi, cti), then the view of A as generated by Atrap is the same as the view of A
in Hyb7.

AdvtrapAtrap
(λ) =

∣∣Pr[1← Atrap(crs, aux, {(comi, openi)}i∈[N ]) : (comi, openi)← HCommit(crs, cti)]

− Pr

[
1← Atrap(crs, aux, {(comi, openi)}i∈[N ]) :

(comi, auxcomi)← HTCommit(crs, aux),
openi ← HTDec(auxcomi , cti)

] ∣∣
=|Pr[ẽxpt

Hyb6
A → 1]− Pr[ẽxpt

Hyb7
A → 1]|

=ε

thus, arriving at a contradiction.
Hence, Hyb6 ≈c Hyb7.
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Hyb8. This experiment is the same as Hyb7 except for the following modification. Recall that,
earlier, we sampled the patches obliviously of p̃vi, since, it was crucial that the patches were
sampled before we computed p̃vi. This, to recall again, is because p̃vi was computed as a
function of patchi (namely, as a commitment to an encryption of patchi). However, by Hyb7,
we had modified the computation of p̃vi as just generating an equivocal commitment, that
could later be opened to any value, and in particular to an encryption of patchi. Thus, we do
not need to have computed patchi ahead of time. Thus, in the current hybrid, we switch back
to computing the patches using the algorithm PatchGen, consistent with the punctured key.
Details follow.

1. Run F.params ← F.ParamGen(1λ, n,G,N), (crs, aux) ← HTGen(1λ), and (pk, sk) ←
E.Gen(1λ).

2. Obliviously (of p̃vi) generate the patches: For every i ∈ [N ], compute

({patchi}i∈[N ], o.state)← OPatchGen(1λ,F.params))

3. Compute ˜KD-Prog as follows.
- For every i ∈ [N ], compute (comi, auxi)← HTCommit(crs, aux). Set p̃vi ← comi.
- Recall that p̃vi ∈ {0, 1}n. Let p̃v := (p̃v1, . . . , p̃vN ). Sample a key and puncture it
at 2p̃v

G :
- Sample a key, K ← F.KeyGen(1λ,F.params).

- Puncture K at 2p̃v
G : K[2p̃v

G ]← Puncture(K, 2p̃v
G ).

- Generate patches forK[2p̃v
G ] at every ith block: patch(K, (i, p̃vi))← PatchGen(K, i, p̃vi).

- For K[2p̃v
G ], generate KD-Prog8 exactly the same way as KD-Prog7 and compute

˜KD-Prog ← iO(KD-Prog8).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ],pvi), then simply
ignore p̃vi.)

5. Upon receiving Ext(i) for a registered honest Pi, compute an encryption of patch(K, (i, p̃vi))
as cti ← Enc(pk, patch(K, (i, p̃vi))) as follows. Then, compute the opening of comi to
cti as openi ← HTDec(auxi, cti), where auxi was the auxiliary information created when
comi was generated earlier. With this, set svi = s̃vi = (cti, openi) and then respond to
the adversary’s query via svi.

6. Upon receiving Rev(S, j), respond via ˜KD-Prog(S, (pvi)i∈S , k, svk), where k is determined
as follows:

- Suppose there exists k′ ∈ S such that Pk′ was initially registered as an honest party,
but has already been corrupted (via query Ext(k′)) by the adversary. Then k is such
an arbitrary, say the smallest, k′.

- Otherwise, choose any arbitrary (say the smallest) k ∈ S.
7. Upon receiving Test(ChQ), choose j ← ChQ, compute svj = s̃vj as before, compute
Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj) and sample Yrand ← {0, 1}m, where {0, 1}m is
the co-domain of F . Respond to the adversary via Yexpt.
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8. Finally, output whatever A outputs.

Lemma 8. Hyb7 ≡ Hyb8.

Proof. Observe that the only difference between Hyb7 and Hyb8 is in the way the punctured key and
its patches are computed. While in Hyb7, they are computed using algorithmsOPatchGen,OPuncture,
in Hyb8, they are computed using Puncture,PatchGen. Recall that this exactly corresponds to switch-
ing back the difference introduced while moving from Hyb2 to Hyb3. As noted in Lemma 3, these
two different processes of generating the key and its patches result in identical distributions. Hence,
the Lemma.
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Hyb9. This experiment is the same as Hyb8 except for the following modification. Note that in
Hyb8, we computed the patches soon after we computed the punctured key. The modification
we introduce in this hybrid is that we would compute patchj (and its encryption ctj) only
if necessary: that is, only if the adversary presents a query that is either Ext(j) (i.e., query
for the secret value s̃vj of Pj) or Rev(S, j) (Recall that the challenger in Hyb8, for certain
S, j, used svj = s̃vj to compute response to such a query; more specifically, it executed the
program ˜KD-Prog on input (S, (pvi)i∈S , j, svj)). Details follow.

1. Run F.params ← F.ParamGen(1λ, n,G,N), (crs, aux) ← HTGen(1λ), and (pk, sk) ←
E.Gen(1λ).

2. Compute ˜KD-Prog as follows.
- For every i ∈ [N ], compute (comi, auxi)← HTCommit(crs, aux). Set p̃vi ← comi.
- Recall that p̃vi ∈ {0, 1}n. Let p̃v := (p̃v1, . . . , p̃vN ). Sample a key and puncture it
at 2p̃v

G :
- Sample a key, K ← F.KeyGen(1λ,F.params).
- Puncture K at 2p̃v

G : K[2p̃v
G ]← Puncture(K, 2p̃v

G ).

- Generate patches forK[2p̃v
G ] at every ith block: patch(K, (i, p̃vi))← PatchGen(K, i, p̃vi) .

- For K[2p̃v
G ], generate KD-Prog9 exactly the same way as KD-Prog8 and compute

˜KD-Prog ← iO(KD-Prog9).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ],pvi), then simply
ignore p̃vi.)

5. Upon receiving Ext(i) for a registered honest Pi, firstly compute a patch of 2p̃v
G at

the ith block as patch(K, (i, p̃vi))← PatchGen(K, i, p̃vi) , compute an encryption of
patch(K, (i, p̃vi)) as cti ← Enc(pk, patch(K, (i, p̃vi))) as follows. Then, compute the
opening of comi to cti as openi ← HTDec(auxi, cti), where auxi was the auxiliary infor-
mation created when comi was generated earlier. With this, set svi = s̃vi = (cti, openi)
and then respond to the adversary’s query via svi.

6. Upon receiving Rev(S, j), respond via ˜KD-Prog(S, (pvi)i∈S , k, svk), where k is determined
as follows:

- Suppose there exists k′ ∈ S such that Pk′ was initially registered as an honest party,
but has already been corrupted (via query Ext(k′)) by the adversary. Then k is such
an arbitrary, say the smallest, k′.

- Otherwise, choose any arbitrary (say the smallest) k ∈ S.
7. Upon receiving Test(ChQ), choose j ← ChQ, compute svj = s̃vj as before, compute
Yreal := ˜KD-Prog(ChQ, (pvi)i∈ChQ, j, svj) and sample Yrand ← {0, 1}m, where {0, 1}m is
the co-domain of F . Respond to the adversary via Yexpt. Respond to the adversary via
Yexpt.

8. Finally, output whatever A outputs.

Lemma 9. Hyb8 ≡ Hyb9.
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Proof. Observe that the only difference between Hyb8 and Hyb9 is the following. At a high level,
in Hyb8, we computed all the patches ahead of time and used them if and when necessary. On the
other hand, in Hyb9, we generate the patches only if and when they are required. This clearly does
not introduce any deviation in the view of the adversary. Hence, the Lemma.
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Hyb10. This experiment is the same as Hyb9 except for the following modification. Note that
responses to certain valid queries can be computed by the adversary himself; for instance,
a query Rev(S, j) where there exists j′ ∈ S and Pj′ has been corrupted by the adversary –
the response to this query, namely the common key for the set S, can be computed by the
adversary himself, since, this common key is the same as the common key derived by any
party in S and in particular Pj′ . Having recalled this aspect, the modification we introduce
in this hybrid is the following. For the queries the responses to which the adversary can
himself compute, the challenger behaves the same way as it did in the previous hybrid –
namely, it simply runs the program in the CRS. On the other hand, for the rest of the queries,
the challenger computes the response by evaluating the PRF F directly. On the same lines,
response to the challenge query is also computed by evaluating the PRF F directly. Details
follow.

1. Run F.params ← F.ParamGen(1λ, n,G,N), (crs, aux) ← HTGen(1λ), and (pk, sk) ←
E.Gen(1λ).

2. Compute ˜KD-Prog as follows.
- For every i ∈ [N ], compute (comi, auxi)← HTCommit(crs, aux). Set p̃vi ← comi.
- Recall that p̃vi ∈ {0, 1}n. Let p̃v := (p̃v1, . . . , p̃vN ). Sample a key and puncture it
at 2p̃v

G :
- Sample a key, K ← F.KeyGen(1λ,F.params).
- Puncture K at 2p̃v

G : K[2p̃v
G ]← Puncture(K, 2p̃v

G ).

- For K[2p̃v
G ], generate KD-Prog10 exactly the same way as KD-Prog9 and compute

˜KD-Prog ← iO(KD-Prog10).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the
adversary’s queries as follows.

4. Upon receiving Reg(i ∈ [N ]), respond via pvi = p̃vi. (On the other hand, if the adversary
himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ],pvi), then simply
ignore p̃vi.)

5. Upon receiving Ext(i) for a registered honest Pi, firstly compute a patch of 2p̃v
G at

the ith block as patch(K, (i, p̃vi)) ← PatchGen(K, i, p̃vi), compute an encryption of
patch(K, (i, p̃vi)) as cti ← Enc(pk, patch(K, (i, p̃vi))) as follows. Then, compute the
opening of comi to cti as openi ← HTDec(auxi, cti), where auxi was the auxiliary infor-
mation created when comi was generated earlier. With this, set svi = s̃vi = (cti, openi)
and then respond to the adversary’s query via svi.

6. Upon receiving Rev(S, j), consider the following cases:

- If there exists j′ ∈ S such that Pj′ was registered as an honest party (i.e., via
Reg(j′ ∈ [N ])) and the adversary has already queried Ext(j′) and received svj′ = s̃vj′ ,
then output ˜KD-Prog(S, (pvi)i∈S , j

′, svj′) and then respond to the adversary’s query
via the output of the program.

- Else, compute and respond via F (K, (S, (pvi)i∈S)).

7. Upon receiving Test(ChQ), choose j ← ChQ and compute F (K, (ChQ, (p̃vi)i∈ChQ)) and
sample Yrand ← {0, 1}m, where {0, 1}m is the co-domain of F . Respond to the adversary
via Yexpt.

8. Finally, output whatever A outputs.
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Lemma 10. Hyb9 ≡ Hyb10.

Proof. Observe that the only difference between Hyb9 and Hyb10 is the following. For certain queries,
while the challenger in Hyb9 responded by running the program in the CRS, the challenger in Hyb10

responds by computing the PRF directly. Since the program also works by effectively evaluating
the PRF, the view of the adversary is identical in both the hybrids. Hence, the Lemma.

Lemma 11. Let F be an obliviously patchable puncturable PRF. Then the advantage of any PPT
algorithm A in Hyb10, namely Adv

Hyb10
A (·), is negligible in the security parameter.

Proof. Assume for contradiction that there exists a PPT algorithm A with non-negligible advantage
ε in Hyb10. That is, Adv

Hyb10
A (λ) = ε. Then we construct an adversary B that breaks the security of

F also with a non-negligible probability.
Recall that upon B presenting p̃v ∈ ({0, 1}n)N , it receives K[2p̃v

G ]. Then, it is given access to
an oracle O to which it can either make queries for patches or for PRF outputs for any inputs in
2p̃v
G . Then, along the way, the adversary makes a challenge query ChQ ⊆ [N ] that satisfies certain

conditions; it either receives the output of the PRF computed on (ChQ, (p̃vi)i∈ChQ) or a random
element from the co-domain of F , and its objective is to distinguish them.

We shall show that using the given values and access to the oracle O, B can simulate to A the
hybrid game Hyb10 such that the following holds. If A has a non-negligible advantage in Hyb10,
then B can break the security of F also with a non-negligible advantage.

At a high level, B predominantly behaves as the challenger of Hyb10 except that it obtains all
the values pertaining to the PRF from its interaction with its own challenger and the oracle O. For
clarity and ease of reading, these values shall be highlighted in a red underlined font.

1. Let F.params be the parameters received by B from its challenger. Run (crs, aux)← HTGen(1λ),
and (pk, sk)← E.Gen(1λ).

2. Compute ˜KD-Prog as follows.

- For every i ∈ [N ], compute (comi, auxi) ← HTCommit(crs, aux). Set p̃vi ← comi.
Furthermore, if the adversary requests to register an honest party under an identity i,
then set (pvi, svi) = (p̃vi, s̃vi) and henceforth use this pair. On the other hand, if the
adversary himself registers a (corrupted) party P ∗i by presenting RegCorr(i ∈ [N ], pvi),
then the challenger simply ignores (p̃vi, s̃vi).

- Recall that p̃vi ∈ {0, 1}n. Let p̃v := (p̃v1, . . . , p̃vN ). Query the challenger with p̃v to
receive K[2p̃v

G ], a key punctured at 2p̃v
G .

- For K[2p̃v
G ], generate generate KD-Progredu exactly the same way as KD-Prog10 and com-

pute ˜KD-Prog ← iO(KD-Progredu).

Thus, set params = ( ˜KD-Prog,F.params, crs,pk) and give it to A. Then respond to the adversary’s
queries as follows.

4. Upon receiving Ext(i) for a registered honest Pi, queryO with (patch-at i); let patch(K, (i, p̃vi)),
a patch of K[2p̃v

G ] at the ith block, be the response received; then compute an encryption of
patch(K, (i, p̃vi)) as cti ← Enc(pk, patch(K, (i, p̃vi))) as follows. Then, compute the opening
of comi to cti as openi ← HTDec(auxi, cti), where auxi was the auxiliary information created
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when comi was generated earlier. With this, set svi = s̃vi = (cti, openi) and then respond to
the adversary’s query via svi.

5. Upon receiving Rev(S, j), consider the following cases:

- If there exists j′ ∈ S such that Pj′ was registered as an honest party (i.e., via Reg(j′ ∈
[N ])) and the adversary has already queried Ext(j′) and received svj′ = s̃vj′ , then output
˜KD-Prog(S, (pvi)i∈S , j

′, svj′) and then respond to the adversary’s query via the output
of the program.

- Else, query O with (eval-at S) and respond to A via the response given by O.

6. Upon receiving Test(ChQ), queryO with (chal-at ChQ) and respond toA via the response given by O.

7. Finally, output whatever A outputs.

From the above description of B, we have that if B interacts with its own challenger in the real
game, then the view of A during its interaction with B is identical to its view in the real experiment
of Hyb10, namely realHyb10A . On the other hand, if B interacts with its challenger in the random
experiment, then the view of A during its interaction with B is identical to its view in the random
experiment of Hyb10, namely randHyb10

A . Therefore,

AdvF,A(λ) =|Pr[realPRFF,A (λ)→ 1]− Pr[randPRF
F,A (λ)→ 1]|

=|Pr[realHyb10A → 1]− Pr[randHyb10
A → 1]|

=ε,

thus arriving at a contradiction. Hence, the lemma.

6 Adaptive NIKE Without Any Setup

In this section, we present our first construction of adaptively secure multiparty non-interactive key
exchange without setup assumption.

Ingredients.

– CPA-secure encryption scheme with pseudorandom ciphertexts. Let Σ = (E.Gen,Enc,Dec)
be a CPA-secure encryption scheme with pseudorandom ciphertexts (See Definition 5).

– Obliviously patchable puncturable PRF. Let F , associated with algorithms (F.ParamGen,
F.KeyGen,Puncture,PatchGen,Eval,OPatchGen,OPuncture), be an obliviously patchable punc-
turable PRF.

– Hybrid trapdoor commitment scheme. Let HCOM = (HGen,HTGen,HCommit,HTCommit,HTDec,
HVer) be a hybrid trapdoor commitment scheme.

– Indistinguishability obfuscator. Let iO be an indistinguishability obfuscator for all P/poly
circuits.
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Setting up parameters. Given the following parameters:

λ: security parameter,

N : total number of parties,

G: maximum number of parties that can derive a common secret key,

we define the following parameters.

Patch size `: Let ` = `(λ,G,N) be the number of bits required to represent any patch generated
with parameters (λ, n,G,N), where, n is any polynomial in λ,G,N .

Public-key size pkLen and ciphertext size `′: The message space of the encryption scheme Σ
is {0, 1}`. Let the corresponding public-key size be pkLen and the ciphertext space be a subset
of {0, 1}`′ .

Subset representation with s bits: Let s be the number of bits required to represent any subset
S of [N ] where |S| ≤ G.

CRS size crsLen and commitment size comLen: The message space of the hybrid trapdoor
commitment scheme HCOM is {0, 1}max{s,N`′}. Let the size of the CRS (from algorithm
HGen or HTGen) be crsLen. Let the size of commitments be comLen = comLen(λ).

n: Define
n := pkLen + 2 · crsLen + 2 · comLen.

Construction 2. The scheme aNIKE-noSetup = (Setup,Publish,KeyDerive) is described as follows.

Setup(λ,N,G) .

◦ Simply output params = (λ,N,G).

Publish(params, λ, î). Party Pi computes its public value pv(̂i) and secret value sv(̂i), where, pv(̂i) =

(x(̂i), ioP(̂i)), as follows.
Computing (x(̂i), sv(̂i)).

◦ Run the statistically-binding parameter-generation algorithm of HCOM: crs(̂i) ← HGen(1λ).
Sample uniformly at random ct

(̂i)
1 , . . . , ct

(̂i)
N ← {0, 1}`′ . Commit to ct

(̂i)
j : com

(̂i)
j =

HCommit(crs(̂i), ct
(̂i)
j ; open

(̂i)
j ) using uniformly chosen random coins open

(̂i)
j .

Define
x(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and
sv(̂i) := ((ct

(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N )).

Computing the program ioP(̂i).

◦ Run the parameter-generation algorithms of the PRF: F.params(̂i) ← F.ParamGen(1λ, n,G,N).

◦ Choose K (̂i) ← F.KeyGen(1λ,F.params(̂i)).
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◦ For K (̂i), build the key-derivation program KD-Prog(̂i) in Figure 6, padded to the appro-
priate length3. (The function RHCOM

(·) that KD-Prog(̂i) uses is defined shortly.) Compute

ioP(̂i) ← iO(KD-Prog(̂i)).

Let
pv(̂i) := (x(̂i), ioP(̂i))

Publish î as the ID and also publish pv(̂i). Save the secret value sv(̂i).

KeyDerive(S, (̂i,pv(̂i))̂i∈S , ĵ, sv
(ĵ)) :

◦ If ĵ 6∈ S, then output ⊥. Otherwise, proceed as follows.

◦ For every î ∈ S, parse pv(̂i) = (x(̂i), ioP(̂i)) and x(̂i) = (crs(̂i), com
(̂i)
1 , . . . , com

(̂i)
N ). Also

parse sv(ĵ) = (ct
(ĵ)
1 , open

(ĵ)
1 ), . . . , (ct

(ĵ)
N , open

(ĵ)
N ). Define

sv
(ĵ)

î∗
:= (ct

(ĵ)

î∗
, open

(ĵ)

î∗
) (4)

Output ioP(î∗)(S, {(̂i, x(̂i))}î∈S , ĵ, sv
(ĵ)

î∗
).

◦ Let us define the following relation, RHCOM
(·) : For x, y parsed as x = (crs, com1, . . . , comN )

and y = (ctî∗ , openî∗),

RHCOM
S (x, y) = 1, if and only if

î∗ is the smallest element in S
&

HVer(crs, comî∗ , ctî∗ , openî∗) = 1

(5)

KD-Prog(̂i)

Constants:

◦ F.params(̂i)

◦ K (̂i)

Input: (S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î
), where S ⊆ [N ], |S| ≤ G.

Procedure:

1. Check whether ĵ ∈ S; if not, output ⊥. Then, check whether (x(ĵ), sv
(ĵ)

î
) ∈ RHCOM

S (defined
in Equation (5)); if not, output ⊥. Otherwise, proceed as follows.

2. Compute and output F (K (̂i), (S, (x(k̂))k̂∈S)).

Figure 6: Key-derivation Program

3To prove security, we will replace KD-Prog(̂i) with the obfuscation of another program KD-Prog(̂i), which may be
larger than KD-Prog(̂i). In order to be able to employ the security property of the differing-input obfuscation, both
programs must be of the same size.
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7 Proof of Security

Theorem 3. If iO is indistinguishably secure, Σ is a CPA-secure encryption scheme with pseudoran-
dom ciphertexts, HCOM is a hybrid trapdoor commitment scheme, and F is an obliviously patchable
puncturable PRF, then Construction 2 is an adaptively secure non-interactive key exchange scheme
with no setup.

Proof. Assume towards contradiction that an adversary A has non-negligible advantage in breaking
the adaptive security of our Construction 2 as in Definition 8. We arrive at a contradiction through
a carefully designed sequence of several hybrids Hyb0,Hyb1, . . .. If the challenger in Hybi chooses to
play the real experiment (respectively, the random experiment) and A outputs 1, then we denote
the event by realHybiA → 1 (respectively, randHybi

A → 1). The advantage of A in Hybi is defined as

Adv
Hybi
A (λ) := |Pr[realHybiA → 1]− Pr[randHybi

A → 1]| (6)

Furthermore, we shall use Hybi to also denote the view of the adversary in the hybrid whenever the
connotation is unambiguous.

To maintain ease of verification for the reader, we present a full description of each hybrid
experiment, each one given on a separate page. The modification introduced in the current hybrid
in comparison with the previous hybrid will be highlighted in red underlined font. Furthermore, if
a value is removed as we move from one hybrid to the next, then in the latter hybrid, we highlight
the value within a red frame with a red strike-through. Also, let’s say that while switching to the
next hybrid, a value is moved from one step of execution to a later step; then in the latter hybrid,
value shall appear at its position in the previous hybrid and value shall appear at its new position
in the current hybrid.

Hyb0. This experiment is same as the original experiment in Definition 6. Here, we simply unwrap
the original experiment as per our construction. The challenger behaves as follows. It begins
by choosing expt ∈ {real,rand} uniformly at random, and executes with A the experiment
exptHyb0

A defined as follows.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output
of the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. Upon receiving Reg(̂i ∈ [N ]), run Publish(params, λ, î) to obtain (pv(̂i), sv(̂i)), where pv(̂i) =

(x̃(̂i), ioP(̂i)), proceed as follows.
Computing (x̃(̂i), s̃v(̂i)).
◦ Run the statistically-binding parameter-generation algorithm of HCOM: crs(̂i) ←
HGen(1λ). Sample uniformly at random ct

(̂i)
1 , . . . , ct

(̂i)
N ← {0, 1}`

′ . Commit to ct
(̂i)
j :

com
(̂i)
j = HCommit(crs(̂i), ct

(̂i)
j ; open

(̂i)
j ) using uniformly chosen random coins open

(̂i)
j .

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and
s̃v(̂i) := ((ct

(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N )).

Computing the program ioP(̂i).
◦ Run the parameter-generation algorithms of the PRF: F.params(̂i) ← F.ParamGen(1λ, n,G,N).

◦ Choose K (̂i) ← F.KeyGen(1λ,F.params(̂i)).
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- For K (̂i), build the key-derivation program KD-Prog(̂i)
0 in Figure 7, padded to the

appropriate length. Compute ioP(̂i) ← iO(KD-Prog(̂i)
0 ).

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).

3. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).

4. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input
(S, (x(k̂))k̂∈S , ĵ, sv

(ĵ)

î∗
) and respond via the output.

5. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and
run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv

(ĵ)

î∗
) and sample Yrand ← {0, 1}m,

where {0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.

6. Finally, output whatever A outputs.

KD-Prog(̂i)0

Constants:

◦ F.params(̂i)

◦ K (̂i)

Input: (S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
), where S ⊆ [N ], |S| ≤ G.

Procedure:

1. Check whether ĵ ∈ S; if not, output ⊥. Then, check whether (x(ĵ), sv
(ĵ)

î∗
) ∈ RHCOM

S (defined
in Equation (5)); if not, output ⊥. Otherwise, proceed as follows.

2. Compute and output F (K, (S, {x(k̂)}k̂∈S)).

Figure 7: Key-derivation Program
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Hyb1. This experiment is the same as Hyb0 except for the following modification. Essentially, this
modification corresponds to the sequence in which the challenger computes certain values.
Namely, before the adversary begins presenting queries, the challenger samples the public-
value secret-value pairs ahead of time – we shall denote these pairs as (p̃v(̂i), s̃v(̂i)). A further
modification is that in computing {(p̃v(̂i), s̃v(̂i))}î∈[N ], the challenger first samples (x̃(̂i), s̃v(̂i))

for every î ∈ [N ] before computing the remaining portion of the public value p̃v(̂i), namely,
the program ioP(̂i) for any î. (Recall that pv(̂i) = (x(̂i), ioP(̂i)).) In other words, only after
having computed (x̃(̂i), s̃v(̂i)) for every î ∈ [N ] does the challenger start computing ioP(ĵ) for
any ĵ. This modification is well-defined since in Hyb0, for every î, the order of computation
is that the challenger first computes x(̂i), s̃v(̂i) and then computes ioP(̂i); furthermore, for any
ĵ, the computation of ioP(ĵ) does not depend on (x̃(̂i), s̃v(̂i)) for any î ∈ [N ]. Additionally, in
every ioP(̂i), we introduce {x̃(k̂)}k̂∈[N ] as constants. Since this does not affect the input/output
functionality of the programs, applying the security of indistinguishability obfuscation, we will
be able to argue indistinguishability of the current hybrid from Hyb0. Details follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb1

A defined as follows.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output
of the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):

Computing (x̃(̂i), s̃v(̂i)).

◦ Run the statistically-binding parameter-generation algorithm of HCOM: crs(̂i) ←
HGen(1λ). Sample uniformly at random ct

(̂i)
1 , . . . , ct

(̂i)
N ← {0, 1}`

′ . Commit to ct
(̂i)
j :

com
(̂i)
j = HCommit(crs(̂i), ct

(̂i)
j ; open

(̂i)
j ) using uniformly chosen random coins open

(̂i)
j .

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and
s̃v(̂i) := ((ct

(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N )).

3. Then, for every î ∈ [N ], compute programs ioP(̂i):

Computing the program ioP(̂i).

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).

- Choose K (̂i) ← F.KeyGen(1λ,F.params(̂i)).

- For K (̂i), build the key-derivation program KD-Prog(̂i)
1 in Figure 8, padded to the

appropriate length. Compute ioP(̂i) ← iO(KD-Prog(̂i)
1 ).

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
4. Upon receiving Reg(̂i ∈ [N ]), then set (pv(̂i), sv(̂i)) = (p̃v(̂i), s̃v(̂i)). On the other hand,

if the adversary himself registers a (corrupted) party P ∗
î

by presenting RegCorr(̂i ∈
[N ], pv(̂i)), then the challenger simply ignores (p̃v(̂i), s̃v(̂i)).

5. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).
6. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input

(S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
) and respond via the output.
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7. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and
run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv

(ĵ)

î∗
) and sample Yrand ← {0, 1}m,

where {0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.
8. Finally, output whatever A outputs.

KD-Prog(̂i)1

Constants:

◦ F.params(̂i)

◦ K (̂i)

◦ {x̃(k̂)}k̂∈[N ]

Input: (S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
), where S ⊆ [N ], |S| ≤ G.

Procedure:

1. Check whether ĵ ∈ S; if not, output ⊥. Then, check whether (x(ĵ), sv
(ĵ)

î∗
) ∈ RHCOM

S ; if not,
output ⊥. Otherwise, proceed as follows.

2. Compute and output F (K (̂i), (S, {x(k̂)}k̂∈S)).

Figure 8: Key-derivation Program

Lemma 12. Hyb0 ≈c Hyb1.

Proof. Observe that the only difference between Hyb0 and Hyb1 is in the sequence of the values
computed and an additional constant, {x̃(̂i)}î∈[N ], in the programs KD-Prog(̂i)

1 for Hyb1. As for the

first difference, in Hyb1 the challenger computes (p̃v(̂i), s̃v(̂i)) for every î ahead of time and uses
them only when the challenger would use them in Hyb0. Observe that this does not cause any
change in the distribution of the values (p̃v(̂i), s̃v(̂i)) for every identity î under which the adversary
requests to register an honest party. As for the next difference, since for every î the input/output
relation of both the programs KD-Prog(̂i)

0 and KD-Prog(̂i)
1 are identical, applying the security of iO

for every obfuscated program, through a standard hybrid argument, we have that the hybrids are
computationally indistinguishable. Hence, Hyb0 ≈c Hyb1.
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Hyb2. This experiment is the same as Hyb1 except for the following modification in the way the key
is sampled for constructing program KD-Prog(̂i)

2 for every î. Details follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb2

A defined as follows.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output
of the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i), s̃v(̂i)).

◦ Run the statistically-binding parameter-generation algorithm of HCOM: crs(̂i) ←
HGen(1λ). Sample uniformly at random ct

(̂i)
1 , . . . , ct

(̂i)
N ← {0, 1}`

′ . Commit to ct
(̂i)
j :

com
(̂i)
j = HCommit(crs(̂i), ct

(̂i)
j ; open

(̂i)
j ) using uniformly chosen random coins open

(̂i)
j .

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and
s̃v(̂i) := ((ct

(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N )).

3. Then, for every î ∈ [N ], compute programs ioP(̂i):
Computing the program ioP(̂i).

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).
- Sample a key, K (̂i) ← F.KeyGen(1λ,F.params).
- Puncture K at 2x̃G: K

(̂i)[2x̃G]← Puncture(K (̂i), 2x̃G), where x̃ = (x̃(1), . . . , x̃(N)).

- Generate patches forK (̂i)[2x̃G] at every ĵth block: patch(K (̂i)[2x̃G], (ĵ, x̃(ĵ)))← PatchGen(K (̂i), ĵ, x̃(ĵ)).

- For (K (̂i)[2x̃G], {patch(K (̂i)[2x̃G], (k̂, x̃(k̂)))}k̂∈[N ]), build the key-derivation program KD-Prog(̂i)
2

in Figure 9, padded to the appropriate length. Compute ioP(̂i) ← iO(KD-Prog(̂i)
2 ).

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
4. Upon receiving Reg(̂i ∈ [N ]), then set (pv(̂i), sv(̂i)) = (p̃v(̂i), s̃v(̂i)). On the other hand,

if the adversary himself registers a (corrupted) party P ∗
î

by presenting RegCorr(̂i ∈
[N ], pv(̂i)), then the challenger simply ignores (p̃v(̂i), s̃v(̂i)).

5. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).
6. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input

(S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
) and respond via the output.

7. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and
run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv

(ĵ)

î∗
) and sample Yrand ← {0, 1}m,

where {0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.
8. Finally, output whatever A outputs.

Lemma 13. Hyb1 ≈c Hyb2.

Proof. Observe that the only difference between Hyb1 and Hyb2 is in the structure of the key and
the way it is used in computing the final outcome. Consider any î. We shall show that, despite the
change, the input-output relations of the programs KD-Prog(̂i)

1 and KD-Prog(̂i)
2 are identical. Thence,
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KD-Prog(̂i)2

Constants:

◦ F.params(̂i)

◦ (K (̂i)[2x̃G], {patch(K (̂i)[2x̃G], (k̂, x̃(k̂)))}k̂∈[N ])

◦ {x̃(k̂)}k̂∈[N ]

Input: (S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
), where S ⊆ [N ], |S| ≤ G.

Procedure:

1. Check whether ĵ ∈ S; if not, output ⊥. Then, check whether (x(ĵ), sv
(ĵ)

î∗
) ∈ RHCOM

S ; if not,
output ⊥. Otherwise, proceed as follows.

2. - If (S, (x(k̂))k̂∈S) 6∈ 2x̃G, then compute and output Eval(K (̂i)[2x̃G], (S, (x(k̂))k̂∈S)).

- If (S, (x(k̂))k̂∈S) ∈ 2x̃G, then compute and output
Eval((K (̂i)[2x̃G], patch(K (̂i)[2x̃G], (ĵ, x̃(ĵ)))), (S, (x(k̂))k̂∈S)).

Figure 9: Key-derivation Program

by applying the security property of iO, we have that Hyb1 ≈c Hyb2. Now to prove the functional
equivalence of KD-Prog(̂i)

1 and KD-Prog(̂i)
2 , we shall show that, there exists a one-to-one relation be-

tween all possible keysK (̂i) of KD-Prog(̂i)
1 and all possible keys (K (̂i)[2x̃G], {patch(K (̂i)[2x̃G], (k̂, x̃(k̂)))}k̂∈[N ])

of KD-Prog(̂i)
2 , and that the input-output relations of the programs KD-Prog(̂i)

1 and KD-Prog(̂i)
2 are

identical for the mapped keys. Towards establishing the one-to-one mapping, consider any {x̃(̂i)}î∈[N ]

(which is a part of the constants in both the programs). For any K (̂i) for program KD-Prog(̂i)
1 , the

corresponding key for KD-Prog(̂i)
2 is (K (̂i)[2x̃G], {patch(K (̂i)[2x̃G], (k̂, x̃(k̂)))}k̂∈[N ]). Now consider any

input (S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
). Let us analyze the outputs for this input as computed by programs

KD-Prog(̂i)
1 and KD-Prog(̂i)

2 . Observe that the checks performed at Step 1 in both the programs are
identical. In the event that this check does not go through, both the programs output the same
value, namely, ⊥. However, if the check goes through, KD-Prog(̂i)

1 computes the function F on

(S, (x(̂i))i∈S) with key K; on the other hand, KD-Prog(̂i)
2 works under two cases:

(a). When (S, (x(k̂))k̂∈S) 6∈ 2x̃G, it outputs Eval(K
(̂i)[2x̃G], (S, (x(k̂))k̂∈S)). Note that

Eval(K (̂i)[2x̃G], (S, (x(k̂))k̂∈S)) = F (K (̂i), (S, (x(k̂))k̂∈S)).

(b). When (S, (x(k̂))k̂∈S) ∈ 2x̃G, it outputs Eval((K
(̂i)[2x̃G], patch(K (̂i)[2x̃G], (ĵ, x̃(ĵ)))), (S, (x(k̂))k̂∈S)).

Note that Eval((K (̂i)[2x̃G], patch(K (̂i)[2x̃G], (ĵ, x̃(ĵ)))), (S, (x(k̂))k̂∈S)) = F (K (̂i), (S, (x(k̂))k̂∈S)).

Hence, the programs KD-Prog(̂i)
1 and KD-Prog(̂i)

2 are functionally equivalent, thus allowing us to
apply security of iO and concluding that Hyb1 ≈c Hyb2.
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Hyb3. This experiment is the same as Hyb2 except for the following modification in the sequence of
the computations performed by the challenger in computing (p̃v(̂i), s̃v(̂i)) for every î. Recall
that in Hyb2, towards computing (p̃v(̂i), s̃v(̂i)), the challenger first computed (x̃(̂i), s̃v(̂i)) and
then sampled the key (K (̂i)[2x̃G], {patch(K (̂i)[2x̃G], (k̂, x̃(k̂)))}k̂∈[N ]). At a high level, the following
is the modification. For every î, the challenger first obliviously samples all the patches (i.e.,
oblivious of x̃); then, as a function of the patches, it computes (x̃(̂i), s̃v(̂i)) for every î, after
which it computes K (̂i)[2x̃G] for x̃ := (x̃(1), . . . , x̃(N)). Details follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb3

A defined as follows.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output
of the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. For every î ∈ [N ], obliviously compute all patches as follows.
Obliviously sampling patches.

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).
- Obliviously (of x̃(ĵ)) generate the patches: For every ĵ ∈ [N ], compute

({patch(̂i)

ĵ
}ĵ∈[N ], o.state

(̂i))← OPatchGen(1λ,F.params(̂i)))

3. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i), s̃v(̂i)).
◦ Run the statistically-binding parameter-generation algorithm of HCOM: crs(̂i) ←

HGen(1λ). Sample uniformly at random ct
(̂i)
1 , . . . , ct

(̂i)
N ← {0, 1}`

′ . Commit to ct
(̂i)
j :

com
(̂i)
j = HCommit(crs(̂i), ct

(̂i)
j ; open

(̂i)
j ) using uniformly chosen random coins open

(̂i)
j .

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and
s̃v(̂i) := ((ct

(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N )).

4. Then, for every î ∈ [N ], compute the punctured key K (̂i)[2x̃G] and ioP(̂i):

Puncturing a key and computing ioP(̂i).
- Recall that x̃(ĵ) ∈ {0, 1}n. Using OPuncture, consistent with the already gener-
ated patches {patch(̂i)

ĵ
}ĵ∈[N ] and with all x̃(ĵ), generate a key punctured at 2x̃G,

where, x̃ := (x̃(1), . . . , x̃(N)):

K (̂i)[2x̃G]← OPuncture(1λ, o.state(̂i), x̃)

- For (K (̂i)[2x̃G], {patch(̂i)

ĵ
}ĵ∈[N ]), generate KD-Prog(̂i)

3 exactly the same way as

KD-Prog(̂i)
2 and compute ioP(̂i) ← iO(KD-Prog(̂i)

3 ).

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
5. Upon receiving Reg(̂i ∈ [N ]), then set (pv(̂i), sv(̂i)) = (p̃v(̂i), s̃v(̂i)). On the other hand,

if the adversary himself registers a (corrupted) party P ∗
î

by presenting RegCorr(̂i ∈
[N ], pv(̂i)), then the challenger simply ignores (p̃v(̂i), s̃v(̂i)).
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6. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).
7. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input

(S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
) and respond via the output.

8. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and
run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv

(ĵ)

î∗
) and sample Yrand ← {0, 1}m,

where {0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.
9. Finally, output whatever A outputs.

Lemma 14. Hyb2 ≡ Hyb3.

Proof. Observe that the only difference between Hyb2 and Hyb3 is in the sequence of the steps of
computation in generating (p̃v(̂i), s̃v(̂i)) for all î. Namely, in Hyb2, the challenger first computes
(x̃(̂i), s̃v(̂i)) for all î. Then, using algorithms PatchGen,Puncture, it punctures and patches a key
depending on x̃ = (x̃(1), . . . , x̃(N)) to get (K (̂i)[2x̃G], {patch(K (̂i)[2x̃G], (ĵ, x̃(ĵ)))}ĵ∈[N ]) for all î and

generates the programs the program ioP(̂i) for all î. On the other hand, in Hyb3, the challenger
first samples the patches obliviously of x̃(ĵ) using the algorithm OPatchGen. Furthermore, the
punctured key K (̂i)[2x̃G] is sampled using the algorithm OPuncture using the o.state(̂i) information
generated by the algorithm OPatchGen that had obliviously generated the patches. This difference
corresponds exactly to the two modes of generating a punctured key and its block-wise patches,
that are guaranteed to give identical joint distributions, from the property of oblivious patchability
of F . Thus, we have that, the view of the adversary in Hyb3 is identical to its view in Hyb2. Hence,
Hyb2 ≡ Hyb3.
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Hyb4. This experiment is the same as Hyb3 except for the following modification in the distribution
from which the challenger samples (x̃(̂i), s̃v(̂i)) for all î ∈ [N ]. Parse x(̂i) = (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N ).

Recall that in Hyb3, com
(̂i)

ĵ
is a commitment to the a random value ct

(̂i)

ĵ
← {0, 1}`′ , where

`′ is the length of ciphertexts for the encryption scheme Σ. The modification we introduce
in this hybrid, more specifically, is in the way ct

(̂i)

ĵ
is sampled: at a high level, ct

(̂i)

ĵ
is set as

an encryption of a value that can be used by program ioP(ĵ) to compute the common key for
a set S for which ĵ ∈ S. More specifically: recall that in Hyb3, the program ioP(ĵ) consists
of K(ĵ)[2x̃G] from which common keys for only some S can be efficiently computed; namely,
if S is such that for every î ∈ S, x(̂i) = x̃(̂i), then it is not possible to efficiently compute
the common key for S given just K(ĵ)[2x̃G] using the Eval algorithm. Thus, in Hyb3, the pro-

gram ioP(ĵ) computes F , which besides K(ĵ)[2x̃G], gets a patch patch
(ĵ)

î
(See Figure 9) – this

value essentially allows one to still run the Eval algorithm for inputs for which only K(ĵ)[2x̃G]
would not have sufficed. Now the modification in the current hybrid, Hyb4, is that we encrypt
this patch patch

(ĵ)

î
and commit to the resulting ciphertext to get com

(̂i)

ĵ
, that is used by the

program ioP(ĵ). Details follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb4

A defined as follows.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output
of the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. For every î ∈ [N ], obliviously compute all patches as follows.
Obliviously sampling patches.

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).
- Obliviously (of x̃(ĵ)) generate the patches: For every ĵ ∈ [N ], compute

({patch(̂i)

ĵ
}ĵ∈[N ], o.state

(̂i))← OPatchGen(1λ,F.params(̂i)))

3. For every î ∈ [N ], sample a public key using the key-generation algorithm of Σ: (pk(̂i), ·)← E.Gen(1λ).

4. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i), s̃v(̂i)).
◦ Run the statistically-binding parameter-generation algorithm of HCOM: crs(̂i) ←

HGen(1λ). Compute ct
(̂i)
1 , . . . , ct

(̂i)
N as follows: For every ĵ ∈ [N ], set plaintexts pt

(̂i)

ĵ
← patch

(ĵ)

î
,

and encrypt these plaintexts ct
(̂i)

ĵ
← Enc(pk(ĵ),pt

(̂i)

ĵ
) (where patch(ĵ)

î
is the patch used

by ioP(ĵ) whenever it needs to compute the common key for any S (with î ∈ S), for
every k̂ ∈ S, x(k̂) = x̃(k̂), and the derived secret key as derived by party Pî). Com-

mit to ct
(̂i)

ĵ
: com

(̂i)

ĵ
= HCommit(crs(̂i), ct

(̂i)

ĵ
; open

(̂i)

ĵ
) using uniformly chosen random

coins open
(̂i)

ĵ
.

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and
s̃v(̂i) := ((ct

(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N )).
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5. Then, for every î ∈ [N ], compute the punctured key K (̂i)[2x̃G] and ioP(̂i):
Puncturing a key and computing ioP(̂i).

- Recall that x̃(ĵ) ∈ {0, 1}n. Using OPuncture, consistent with the already gener-
ated patches {patch(̂i)

ĵ
}ĵ∈[N ] and with all x̃(ĵ), generate a key punctured at 2x̃G,

where, x̃ := (x̃(1), . . . , x̃(N)):

K (̂i)[2x̃G]← OPuncture(1λ, o.state(̂i), x̃)

- For (K (̂i)[2x̃G], {patch(̂i)

ĵ
}ĵ∈[N ]), generate KD-Prog(̂i)

4 exactly the same way as

KD-Prog(̂i)
3 and compute ioP(̂i) ← iO(KD-Prog(̂i)

4 ).

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
6. Upon receiving Reg(̂i ∈ [N ]), then set (pv(̂i), sv(̂i)) = (p̃v(̂i), s̃v(̂i)). On the other hand,

if the adversary himself registers a (corrupted) party P ∗
î

by presenting RegCorr(̂i ∈
[N ], pv(̂i)), then the challenger simply ignores (p̃v(̂i), s̃v(̂i)).

7. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).
8. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input

(S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
) and respond via the output.

9. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and
run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv

(ĵ)

î∗
) and sample Yrand ← {0, 1}m,

where {0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.
10. Finally, output whatever A outputs.

Lemma 15. Hyb3 ≈c Hyb4.

Proof. Observe that the only difference between Hyb3 and Hyb4 is in the distribution from which the
challenger samples (x̃(̂i), s̃v(̂i)) for all î ∈ [N ]. More specifically, parse x(̂i) = (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N ).

On one hand, in Hyb3, com
(̂i)

ĵ
commits to a random element. On the other hand, in Hyb4, com

(̂i)

ĵ
is

a commitment of a ciphertext that encrypts patch(ĵ)

î
.

Observe that in either of the hybrids, none of the programs (generated by the challenger on
behalf of the honest parties) contains the secret key for the encryption scheme. We shall thus see
that owing to CPA security of the encryption scheme Σ = (E.Gen,Enc,Dec), the two hybrids are
computationally indistinguishable.

Let A be an adversary that distinguishes Hyb3 and Hyb4; that is, |AdvHyb3A (λ) − Adv
Hyb4
A (λ)|

is non-negligible in λ, where, Adv
Hybi
A (λ) is as defined in Equation (6). Recall that, for any i,

Adv
Hybi
A (λ) := |Pr[realHybiA → 1] − Pr[randHybi

A → 1]|. This implies that there exists ẽxpt ∈
{real,rand} such that |Pr[ẽxpt

Hyb3
A → 1] − Pr[ẽxpt

Hyb4
A → 1]| = ε, where, ε = ε(λ) is non-

negligible in λ. We shall build an adversary B that emulates either ẽxpt
Hyb3
A or ẽxpt

Hyb4
A and

breaks the CPA security of Σ. Details follow.
For simplicity, we consider a variant of the standard CPA game that is equivalent to the standard

CPA game through a simple hybrid argument that loses a factor of 1/N2 in the adversary’s advan-
tage. The modified game is as follows. Upon receiving N -many public keys pk(̂i), the adversary B
gives to the challenger N -many N -vectors of plaintext messages and receives N -many N -vectors of
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elements that are either random elements or encryptions of the given vector of plaintexts with the
corresponding public key (Recall that the encryption scheme we use enjoys pseudorandom cipher-
texts). The objective of the adversary would be to tell apart the two cases. Note that none of the
programs generated by the challenger (on behalf of the honest parties), in either KD-Prog(̂i)

3 and

KD-Prog(̂i)
4 , uses the secret keys of the encryption scheme; hence, the description of B is well-defined.

Description of B. Corresponding respectively to the two plaintext vectors, the adversary B emulates
to A either ẽxpt

Hyb3
A or ẽxpt

Hyb4
A , respectively, and exploits the success probability of A in the CPA

game. Let the experiment with A, as emulated by B, be denoted by ẽxpt3−4. This experiment is
the same as ẽxpt

Hyb4
A except that instead of performing the encryptions by himself, the B presents

to its challengerN -many N -vectors of patches as plaintexts. We shall highlight this deviation from
ẽxpt

Hyb4
A . In detail, upon receiving pk from its challenger, B proceeds as follows.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output of
the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. For every î ∈ [N ], obliviously compute all patches as follows.
Obliviously sampling patches.

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).

- Obliviously (of x̃(ĵ)) generate the patches: For every ĵ ∈ [N ], compute

({patch(̂i)

ĵ
}ĵ∈[N ], o.state

(̂i))← OPatchGen(1λ,F.params(̂i)))

3. For every î ∈ [N ], sample a public key using the key-generation algorithm of Σ: (pk(̂i), ·)← E.Gen(1λ) .

4. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i), s̃v(̂i)).

◦ Run the statistically-binding parameter-generation algorithm of HCOM: crs(̂i) ← HGen(1λ).
Compute ct

(̂i)
1 , . . . , ct

(̂i)
N as follows: For every ĵ ∈ [N ], set pt

(̂i)

ĵ
← patch

(ĵ)

î
, and present patch(ĵ)

î

to the challenger; let ct
(̂i)

ĵ
be the corresponding value received. Commit to ct

(̂i)

ĵ
:

com
(̂i)

ĵ
= HCommit(crs(̂i), ct

(̂i)

ĵ
; open

(̂i)

ĵ
) using uniformly chosen random coins open

(̂i)

ĵ
.

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and
s̃v(̂i) := ((ct

(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N )).

5. Then, for every î ∈ [N ], compute the punctured key K (̂i)[2x̃G] and ioP(̂i):
Puncturing a key and computing ioP(̂i).

- Recall that x̃(ĵ) ∈ {0, 1}n. Using OPuncture, consistent with the already generated
patches {patch(̂i)

ĵ
}ĵ∈[N ] and with all x̃(ĵ), generate a key punctured at 2x̃G, where,

x̃ := (x̃(1), . . . , x̃(N)):

K (̂i)[2x̃G]← OPuncture(1λ, o.state(̂i), x̃)
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- For (K (̂i)[2x̃G], {patch(̂i)

ĵ
}ĵ∈[N ]), generate KD-Prog

(̂i)
3−4 exactly the same way as KD-Prog(̂i)

3

and compute ioP(̂i) ← iO(KD-Prog(̂i)
3−4)

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
6. Upon receiving Reg(̂i ∈ [N ]), then set (pv(̂i), sv(̂i)) = (p̃v(̂i), s̃v(̂i)). On the other hand, if the

adversary himself registers a (corrupted) party P ∗
î
by presenting RegCorr(̂i ∈ [N ], pv(̂i)), then

the challenger simply ignores (p̃v(̂i), s̃v(̂i)).
7. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).

8. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input (S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
)

and respond via the output.
9. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and

run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv
(ĵ)

î∗
) and sample Yrand ← {0, 1}m, where

{0, 1}m is the co-domain of F . Respond to the adversary via Yẽxpt.

Finally, output whatever A outputs.
Analysis. Observe that if, on one hand, the responses by the CPA-game challenger are randomly
distributed elements, then the view of A in ẽxpt3−4 is identical to that in ẽxpt of Hyb3. On
the other hand, if the responses by the challenger are encryptions of the patches, then the view
of A in ẽxpt3−4 is identical to that in ẽxpt of Hyb4. Therefore, B distinguishes the ciphertexts
of two distinct plaintexts with probability |Pr[ẽxpt

Hyb3
A → 1] − Pr[ẽxpt

Hyb4
A → 1]| = ε which is

non-negligible, hence breaking the CPA security of Σ.
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Hyb5. This experiment is the same as Hyb4 except for the following modification in the way in
which the programs computed by the challenger (on behalf of the honest parties) obtain the
patches. Recall that in Hyb4, in program ioP(̂i), the patches {patch(̂i)

ĵ
}ĵ∈[N ], corresponding

to {x̃(ĵ)}ĵ∈[N ], formed a part of the constants of the program. Also, recall that the patch

patch
(̂i)

ĵ
is utilized by the program when it is invoked with an input of the following form:

(S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
), where x(k̂) = x̃(k̂) for all k̂ ∈ S.

The modification we introduce here in Hyb5 is that in every program ioP(̂i) generated by the
challenger, we do not include any of {patch(̂i)

ĵ
}ĵ∈[N ] as constants to the program. Instead,

we include the secret key sk of the encryption scheme as a part of the constants in the
program. Then, upon an input (S, (x(k̂))k̂∈S , ĵ, sv

(ĵ)

î∗
), recall that sv

(ĵ)

î∗
, when parsed, contains

an opening of a commitment in x(ĵ) to an encryption of the required patch. The program
simply decrypts that ciphertext to obtain the patch. Note that the commitment in question is
generated by the challenger using a CRS (of the commitment scheme) that is also sampled by
the challenger using the statistically-binding mode of the commitment scheme. Hence, with
all but negligible probability, the resulting programs generated by the challenger do obtain
the required patches when run on such inputs. Thus, with all but negligible probability, the
programs are functionally equivalent to their respective counterparts in Hyb4. Details follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb5

A defined as follows.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output
of the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. For every î ∈ [N ], obliviously compute all patches as follows.
Obliviously sampling patches.

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).
- Obliviously (of x̃(ĵ)) generate the patches: For every ĵ ∈ [N ], compute

({patch(̂i)

ĵ
}ĵ∈[N ], o.state

(̂i))← OPatchGen(1λ,F.params(̂i)))

3. For every î ∈ [N ], sample a public key using the key-generation algorithm of Σ: (pk(̂i), sk(̂i))←
E.Gen(1λ).

4. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i), s̃v(̂i)).
◦ Run the statistically-binding parameter-generation algorithm of HCOM: crs(̂i) ←

HGen(1λ). Compute ct
(̂i)
1 , . . . , ct

(̂i)
N as follows: For every ĵ ∈ [N ], set plaintexts

pt
(̂i)

ĵ
← patch

(ĵ)

î
, and encrypt these plaintexts ct

(̂i)

ĵ
← Enc(pk(ĵ), pt

(̂i)

ĵ
) (where patch(ĵ)

î

is the patch used by ioP(ĵ) whenever it needs to compute the common key for any S
(with î ∈ S), for every k̂ ∈ S, x(k̂) = x̃(k̂), and the derived secret key as derived by
party Pî). Commit to ct

(̂i)

ĵ
: com

(̂i)

ĵ
= HCommit(crs(̂i), ct

(̂i)

ĵ
; open

(̂i)

ĵ
) using uniformly

chosen random coins open
(̂i)

ĵ
.

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )
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and
s̃v(̂i) := ((ct

(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N )).

5. Then, for every î ∈ [N ], compute the punctured key K (̂i)[2x̃G] and ioP(̂i):
Puncturing a key and computing ioP(̂i).

- Recall that x̃(ĵ) ∈ {0, 1}n. Using OPuncture, consistent with the already gener-
ated patches {patch(̂i)

ĵ
}ĵ∈[N ] and with all x̃(ĵ), generate a key punctured at 2x̃G,

where, x̃ := (x̃(1), . . . , x̃(N)):

K (̂i)[2x̃G]← OPuncture(1λ, o.state(̂i), x̃)

- For K (̂i)[2x̃G], generate KD-Prog(̂i)
5 exactly the same way as KD-Prog(̂i)

4 and com-

pute ioP(̂i) ← iO(KD-Prog(̂i)
5 ).

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
6. Upon receiving Reg(̂i ∈ [N ]), then set (pv(̂i), sv(̂i)) = (p̃v(̂i), s̃v(̂i)). On the other hand,

if the adversary himself registers a (corrupted) party P ∗
î

by presenting RegCorr(̂i ∈
[N ], pv(̂i)), then the challenger simply ignores (p̃v(̂i), s̃v(̂i)).

7. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).
8. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input

(S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
) and respond via the output.

9. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and
run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv

(ĵ)

î∗
) and sample Yrand ← {0, 1}m,

where {0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.
10. Finally, output whatever A outputs.

Lemma 16. Hyb4 ≈c Hyb5.

Proof. Observe that the only difference between the two hybrids is in the way the programs
KD-Prog(̂i)

4 and KD-Prog(̂i)
5 behave when input (S, (x(k̂))k̂∈S , ĵ, sv

(ĵ)

î∗
) which goes through the check

performed in the Step 1, and for which (S, (x(k̂))k̂∈S) ∈ 2x̃G. Before we proceed, we note that in both

the programs, upon such an input, the output is computed as Eval((K (̂i)[2x̃G], patch
(̂i)

ĵ
), (S, (x(k̂))k̂∈S));

however, the difference is in how the programs obtain patch
(̂i)

ĵ
. In the former hybrid, this value

formed a part of the constants within the program. However, in the latter hybrid, this is no
longer a part of the program’s constants; the program instead obtains it as follows. Parse sv

(ĵ)

î∗
=

(∗, (ct
(ĵ)

î
, ∗)). Then obtain patch

(̂i)

ĵ
by decrypting ct

(ĵ)

î
as patch(̂i)

ĵ
← Dec(sk(̂i), ct

(ĵ)

î
).

Thus, if we show that, despite the disparate ways of obtaining patch
(̂i)

ĵ
, patch(̂i)

ĵ
is distributed

the same way w.r.t. to the rest of the elements in the game, then we can conclude that the programs
are functionally equivalent.

In Hyb5, recall how the challenger samples (x(ĵ), sv
(ĵ)

î∗
) for every ĵ. The challenger first computes

patch
(̂i)

ĵ
for all î (just like in Hyb4). Then it encrypts patch

(̂i)

ĵ
with pk, denoting the plaintext

patch
(̂i)

ĵ
by pt

(ĵ)

î
and the resulting ciphertext by ct

(ĵ)

î
. Then, it commits using crs(ĵ) to ct

(ĵ)

î
with
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KD-Prog(̂i)5

Constants:

◦ F.params(̂i)

◦ K (̂i)[2x̃G], ({patch(̂i)
k̂
}k̂∈[N ])

◦ {x̃(k̂)}k̂∈[N ]

◦ sk(̂i)

Input: (S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
), where S ⊆ [N ], |S| ≤ G.

Procedure:

1. Check whether ĵ ∈ S; if not, output ⊥. Then, check whether (x(ĵ), sv
(ĵ)

î∗
) ∈ RHCOM

S ; if not,
output ⊥. Otherwise, proceed as follows.

2. - If (S, (x(k̂))k̂∈S) 6∈ 2x̃G, then compute and output Eval(K (̂i)[2x̃G], (S, (x(k̂))k̂∈S)).

- If (S, (x(k̂))k̂∈S) ∈ 2x̃G, then, parse sv
(ĵ)

î∗
= (∗, (ct

(ĵ)

î
, ∗)) and obtain

patch
(̂i)

ĵ
by decrypting ct

(ĵ)

î
as patch

(̂i)

ĵ
← Dec(sk(̂i), ct

(ĵ)

î
), compute and output

Eval((K (̂i)[2x̃G], patch
(̂i)

ĵ
), (S, (x(k̂))k̂∈S)).

Figure 10: Key-derivation Program

random coins open
(ĵ)

î
to get com

(ĵ)

î
, assigning sv(ĵ) = (∗, (ct

(ĵ)
1 , open

(ĵ)
1 ), . . . , (ct

(ĵ)
N , open

(ĵ)
N )) and

x(ĵ) ← (crs(ĵ), com
(ĵ)
1 , . . . , com

(ĵ)
N ). Then, w.r.t. a set S, sv(ĵ) is transformed into sv

(ĵ)

î∗
using the

function NR. We note from Equation (4) that NR transforms only the first component of sv(ĵ) while
leaving (ct

(ĵ)

î
, open

(ĵ)

î
) intact. Thus, sv

(ĵ)

î∗
= (ct

(ĵ)

î
, open

(ĵ)

î
).

The crucial fact for our current interest is that sv
(ĵ)

î∗
contains ct

(ĵ)

î
, where, ct

(ĵ)

î
is an encryption

of patch(̂i)

ĵ
. Next, recall that the program KD-Prog(̂i)

5 obtains patch
(̂i)

ĵ
by decrypting ct

(ĵ)

î
with sk.

Thus, we will be able to argue function equivalence of the two programs KD-Prog(̂i)
4 and KD-Prog(̂i)

5 ,

provided, for every input (S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
) that passes the check in the program, if x(ĵ) = x̃(ĵ),

then sv
(ĵ)

î∗
contains ct

(ĵ)

î
, where ct

(ĵ)

î
is an encryption of patch(̂i)

ĵ
.

We now prove that, for every ĵ ∈ [N ], for every x(ĵ), there exists only one value for sv
(ĵ)

î∗
is

unique upto containing ct
(ĵ)

î
such that for an input (S, (x(k̂))k̂∈S , ĵ, (sv

(ĵ)

î∗
)′) (with x(ĵ) = x̃(ĵ)), if the

check in Step 1 goes through then (sv
(ĵ)

î∗
)′ contains ct

(ĵ)

î
.

Now recall that for crs(ĵ) sampled using HGen, the resulting commitment scheme unconditionally
binding. Hence, sv

(ĵ)

î∗
for which the check passes is unique upto containing ct

(ĵ)

î
such that com

(̂i)
j =

HCommit(crs(̂i), ct
(̂i)
j ; open

(̂i)
j ). Thus, on such an input, the program KD-Prog(̂i)

5 is assured to obtain

patch
(̂i)

ĵ
with all but negligible probability, hence maintaining functional equivalence with KD-Prog(̂i)

4

even for the case when (S, (x(k̂))k̂∈S) ∈ 2x̃G.
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Hyb6. This experiment is the same as Hyb5 except for the following modification in the distribution
from which the challenger samples crs(̂i) for every î ∈ [N ]. Recall that the challenger in Hyb5

sampled crs(̂i) using algorithm HGen (crs(̂i) ← HGen(1λ)). Now the modification for Hyb6 is
that the challenger samples crs(̂i) as (crs(̂i), aux

(̂i)
crs)← HTGen(1λ). Details follow.

The challenger behaves as follows. It begins by choosing expt ∈ {real,rand} uniformly at
random, and executes with A the experiment exptHyb6

A defined as follows.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output
of the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. For every î ∈ [N ], obliviously compute all patches as follows.
Obliviously sampling patches.

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).
- Obliviously (of x̃(ĵ)) generate the patches: For every ĵ ∈ [N ], compute

({patch(̂i)

ĵ
}ĵ∈[N ], o.state

(̂i))← OPatchGen(1λ,F.params(̂i)))

3. For every î ∈ [N ], sample a public key using the key-generation algorithm of Σ: (pk(̂i), sk(̂i))←
E.Gen(1λ).

4. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i), s̃v(̂i)).

◦ Run again the trapdoor parameter-generation algorithm of HCOM: (crs(̂i), aux
(̂i)
crs)← HTGen(1λ).

(Ignore aux
(̂i)
crs). Compute ct

(̂i)
1 , . . . , ct

(̂i)
N as follows: For every ĵ ∈ [N ], set plaintexts

pt
(̂i)

ĵ
← patch

(ĵ)

î
, and encrypt these plaintexts ct

(̂i)

ĵ
← Enc(pk(ĵ), pt

(̂i)

ĵ
) (where patch(ĵ)

î

is the patch used by ioP(ĵ) whenever it needs to compute the common key for any S
(with î ∈ S), for every k̂ ∈ S, x(k̂) = x̃(k̂), and the derived secret key as derived by
party Pî). Commit to ct

(̂i)

ĵ
: com

(̂i)

ĵ
= HCommit(crs(̂i), ct

(̂i)

ĵ
; open

(̂i)

ĵ
) using uniformly

chosen random coins open
(̂i)

ĵ
.

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and
s̃v(̂i) := ((ct

(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N )).

5. Then, for every î ∈ [N ], compute the punctured key K (̂i)[2x̃G] and ioP(̂i):
Puncturing a key and computing ioP(̂i).

- Recall that x̃(ĵ) ∈ {0, 1}n. Using OPuncture, consistent with the already gener-
ated patches {patch(̂i)

ĵ
}ĵ∈[N ] and with all x̃(ĵ), generate a key punctured at 2x̃G,

where, x̃ := (x̃(1), . . . , x̃(N)):

K (̂i)[2x̃G]← OPuncture(1λ, o.state(̂i), x̃)

- For K (̂i)[2x̃G], generate KD-Prog(̂i)
6 exactly the same way as KD-Prog(̂i)

5 and com-

pute ioP(̂i) ← iO(KD-Prog(̂i)
6 ).
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Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
6. Upon receiving Reg(̂i ∈ [N ]), then set (pv(̂i), sv(̂i)) = (p̃v(̂i), s̃v(̂i)). On the other hand,

if the adversary himself registers a (corrupted) party P ∗
î

by presenting RegCorr(̂i ∈
[N ],pv(̂i)), then the challenger simply ignores (p̃v(̂i), s̃v(̂i)).

7. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).
8. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input

(S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
) and respond via the output.

9. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and
run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv

(ĵ)

î∗
) and sample Yrand ← {0, 1}m,

where {0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.
10. Finally, output whatever A outputs.

Lemma 17. Hyb5 ≈c Hyb6.

Proof. Observe that the only difference in Hyb5 and Hyb6 is that while in Hyb5, for every î ∈ [N ],
the challenger samples crs(̂i) using the statistically-binding parameter-generation algorithm HGen, in
Hyb6, the for every î ∈ [N ], the challenger samples crs(̂i) using the trapdoor parameter-generation
algorithm HTGen. With this being the only modification as we switch between the hybrids, we
remark in particular that the challenger in Hyb6 does not use the auxiliary information output by
HTGen while generating crs(̂i). This allows us to apply the ‘hybrid property’ of the hybrid trapdoor
commitment scheme HCOM (See Definition 4) to argue indistinguishability between the hybrids.
Details follow.

Assume for contradiction that there exists an adversary A that distinguishes the two hybrids
Hyb5 and Hyb6; that is, |Adv

Hyb5
A (λ)−Adv

Hyb6
A (λ)| is non-negligible in λ, where, AdvHybiA (λ) is as de-

fined in Equation (6). Recall that, for any i, AdvHybiA (λ) := |Pr[realHybiA → 1]−Pr[randHybi
A → 1]|.

This implies that there exists ẽxpt ∈ {real,rand} such that |Pr[ẽxpt
Hyb5
A → 1]−Pr[ẽxpt

Hyb6
A →

1]| = ε, where, ε = ε(λ) is non-negligible in λ. We shall build an adversary B that emulates either
ẽxpt

Hyb5
A or ẽxpt

Hyb6
A and breaks the hybrid property of HCOM.

Corresponding respectively to the two distributions of crs, the adversary B emulates to A either
ẽxpt

Hyb5
A or ẽxpt

Hyb6
A , respectively, and exploits the success probability of A in its own hybrid

security game. Let the experiment with A as emulated by B be denoted by ẽxpt5−6.
From its challenger, B receives N -many CRS that are all either sampled either using the algo-

rithm HGen or the algorithm HTGen. The objective of B is to tell the two cases apart. B proceeds
as follows.

Adversary B runs A just like the challenger of Hyb5 runs A except that, instead of sampling
by itself crs(1̂), . . . , crs(N̂), it uses the CRS values that it received from its challenger. Finally, B
outputs whatever A outputs.

Observe that at no point in the execution of the Hyb5 experiment do we need the random coins
used in generating the CRS values. Hence, the adversary B is well-defined.

Now observe that when the CRS values given by the challenger of B are all sampled using HGen,
then the view of A generated by B is identical to that generated by Hyb5. On the other hand, when
the CRS values are all sampled using HTGen, then the view of A generated by B is identical to
that generated by Hyb6. Hence, with probability |Pr[ẽxpt

Hyb5
A → 1]− Pr[ẽxpt

Hyb6
A → 1]| = ε, the

adversary B distinguishes statistically-binding CRS vales from trapdoor CRS values, thus, leading
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to a contradiction.
Hence, we have that Hyb5 ≈c Hyb6.
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Hyb7. This experiment is the same as Hyb6 except for the following modification in the way in
which for every î ∈ [N ] the challenger computes the commitments com

(̂i)
1 , . . . , com

(̂i)
N (which

form a part of x̃(̂i)). Roughly speaking, instead of computing com
(̂i)

ĵ
as a commitment to a

specific value (namely, an encryption of patch(ĵ)

î
) using HCommit algorithm, the modification

is that the challenger, using HTCommit, first computes com
(̂i)

ĵ
, along with a trapdoor. Since

the challenger is able to open com
(̂i)

ĵ
to any value, it opens it to an encryption of patch(ĵ)

î
,

later. Details follow.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output
of the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. For every î ∈ [N ], obliviously compute all patches as follows.
Obliviously sampling patches.

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).
- Obliviously (of x̃(ĵ)) generate the patches: For every ĵ ∈ [N ], compute

({patch(̂i)

ĵ
}ĵ∈[N ], o.state

(̂i))← OPatchGen(1λ,F.params(̂i)))

3. For every î ∈ [N ], sample a public key using the key-generation algorithm of Σ: (pk(̂i), sk(̂i))←
E.Gen(1λ).

4. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):

Computing (x̃(̂i), s̃v(̂i) ).

◦ Run again the trapdoor parameter-generation algorithm of HCOM: (crs(̂i), aux
(̂i)
crs)←

HTGen(1λ). (Ignore aux
(̂i)
crs). Compute com

(̂i)
1 , . . . , com

(̂i)
N as follows: For every ĵ ∈

[N ], (com
(̂i)

ĵ
, aux

(̂i)
comĵ

) ← HTCommit(crs(̂i), aux
(̂i)
crs).

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and

sv(̂i) := ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

5. Then, for every î ∈ [N ], compute the punctured key K (̂i)[2x̃G] and ioP(̂i):
Puncturing a key and computing ioP(̂i).

◦ Now continue to build the rest of the program ioP(̂i) as follows.
- Recall that x̃(ĵ) ∈ {0, 1}n. Using OPuncture, consistent with the already gener-
ated patches {patch(̂i)

ĵ
}ĵ∈[N ] and with all x̃(ĵ), generate a key punctured at 2x̃G,

where, x̃ := (x̃(1), . . . , x̃(N)):

K (̂i)[2x̃G]← OPuncture(1λ, o.state(̂i), x̃)

- For K (̂i)[2x̃G], generate KD-Prog(̂i)
7 exactly the same way as KD-Prog(̂i)

6 and com-

pute ioP(̂i) ← iO(KD-Prog(̂i)
7 ).

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
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6. Upon receiving Reg(̂i ∈ [N ]), compute s̃v(̂i): compute an encryption of patch(ĵ)

î
as

ct
(̂i)

ĵ
← Enc(pk(ĵ), patch

(ĵ)

î
). Finally, compute the opening for com

(̂i)

ĵ
to ct

(̂i)

ĵ
as

open
(̂i)

ĵ
← HTDec(crs(̂i), aux

(̂i)
comĵ

, ct
(̂i)

ĵ
). With this, set

s̃v(̂i) = ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

and respond to the adversary’s query via p̃v(̂i). On the other hand, if the adversary
himself registers a (corrupted) party P ∗

î
by presenting RegCorr(̂i ∈ [N ], pv(̂i)), then the

challenger simply ignores (p̃v(̂i), s̃v(̂i)).
7. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).
8. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input

(S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
) and respond via the output.

9. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and
run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv

(ĵ)

î∗
) and sample Yrand ← {0, 1}m,

where {0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.
10. Finally, output whatever A outputs.

Lemma 18. Hyb6 ≈c Hyb7.

Proof. Observe that the only differences between Hyb6 and Hyb7 is in the way the challenger com-
putes (x̃(̂i), s̃v(̂i)). Also, recall that in both the hybrids, for every î ∈ [N ], crs(̂i) is sampled using
HTGen algorithm. However, the difference in the hybrid lies in the way this crs(̂i) is used in com-
puting the commitments. In detail, for every î ∈ [N ]:

- In Hyb6, the challenger first computes an encryption of patch(ĵ)

î
to get ct

(̂i)

ĵ
, and then commits

to ct
(̂i)

ĵ
as com

(̂i)

ĵ
= HCommit(crs(̂i), ct

(̂i)

ĵ
; open

(̂i)

ĵ
), finally setting s̃v(̂i) = (∗, ((ct

(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N )))

and x̃(̂i) = ((∗, ∗), (crs(̂i), com
(̂i)
1 , . . . , com

(̂i)
N )).

- On the other hand, in Hyb7, the challenger computes com
(̂i)

ĵ
as an equivocable commitment

using HTCommit as (com
(̂i)

ĵ
, aux

(̂i)
comĵ

)← HTCommit(crs(̂i), aux
(̂i)
crs) and then computes an open-

ing of this commitment com
(̂i)

ĵ
to ct

(̂i)

ĵ
as open

(̂i)

ĵ
← HTDec(crs(̂i), aux

(̂i)
comĵ

, ct
(̂i)

ĵ
), finally setting

s̃v(̂i) = (∗, ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))) and x̃(̂i) = ((∗, ∗), (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )).

Observe that the above difference in the two hybrids Hyb6 and Hyb7 corresponds to the two cases
in the hybrid game of the hybrid trapdoor commitment scheme HCOM. Thus, any adversary who
distinguishes the two hybrids can be reduced to one that breaks the trapdoor property of HCOM,
as we shall show below.

Let A be an adversary that distinguishes Hyb6 and Hyb7; that is, |AdvHyb6A (λ) − Adv
Hyb7
A (λ)|

is non-negligible in λ, where, Adv
Hybi
A (λ) is as defined in Equation (6). Recall that, for any i,

Adv
Hybi
A (λ) := |Pr[realHybiA → 1] − Pr[randHybi

A → 1]|. This implies that there exists ẽxpt ∈
{real,rand} such that |Pr[ẽxpt

Hyb6
A → 1] − Pr[ẽxpt

Hyb7
A → 1]| = ε, where, ε = ε(λ) is non-

negligible in λ. We shall build an adversary Atrap that emulates either ẽxpt
Hyb6
A or ẽxpt

Hyb7
A and

breaks the trapdoor property of HCOM. Details follow.
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We shall consider a slight variant of the trapdoor game in Definition 4 that is equivalent upto
a polynomial factor by a standard hybrid argument. The adversary Atrap first receives N -many
CRS values crs(1̂), . . . , crs(N̂) each sampled using HTGen. Then Atrap gives to its challenger N -many
N -vector of messages, upon which the challenger, either using HCommit or HTCommit, computes
commitments of the îth N -vector of messages for crs(̂i) and gives Atrap the resulting commitments
and their openings. The objective of the adversary is to tell apart the two cases. Atrap is described
as below.
Atrap behaves the same way as the challenger in Hyb7 except for the way it computes (x̃(̂i), s̃v(̂i))

for all î. It proceeds as follows:
1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output of

the Setup algorithm. Next, respond to the adversary’s queries as follows.
2. For every î ∈ [N ], obliviously compute all patches as follows.
Obliviously sampling patches.

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).

- Obliviously (of x̃(ĵ)) generate the patches: For every ĵ ∈ [N ], compute

({patch(̂i)

ĵ
}ĵ∈[N ], o.state

(̂i))← OPatchGen(1λ,F.params(̂i)))

3. For every î ∈ [N ], sample a public key using the key-generation algorithm of Σ: (pk(̂i), sk(̂i))←
E.Gen(1λ).

4. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i),s̃v(̂i)).

◦ For every ĵ ∈ [N ], ct
(̂i)

ĵ
← Enc(pk(ĵ), patch

(ĵ)

î
). Upon receiving crs(̂i) from the challenger,

give (ct
(̂i)
1 , . . . , ct

(̂i)
N ) to the challenger. Let ((com

(̂i)
1 , aux

(̂i)
com1), . . . , (com

(̂i)
N , aux

(̂i)
comN )) be

the commitment-opening pairs received.

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and

sv(̂i) := ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

5. Then, for every î ∈ [N ], compute the punctured key K (̂i)[2x̃G] and ioP(̂i):
Puncturing a key and computing ioP(̂i).

◦ Now continue to build the rest of the program ioP(̂i) as follows.

- Recall that x̃(ĵ) ∈ {0, 1}n. Using OPuncture, consistent with the already generated
patches {patch(̂i)

ĵ
}ĵ∈[N ] and with all x̃(ĵ), generate a key punctured at 2x̃G, where,

x̃ := (x̃(1), . . . , x̃(N)):

K (̂i)[2x̃G]← OPuncture(1λ, o.state(̂i), x̃)

- For K (̂i)[2x̃G], generate KD-Prog(̂i)
7 exactly the same way as KD-Prog(̂i)

6 and compute

ioP(̂i) ← iO(KD-Prog(̂i)
7 ).
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Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
6. Upon receiving Reg(̂i ∈ [N ]), compute s̃v(̂i): compute an encryption of patch(ĵ)

î
as

ct
(̂i)

ĵ
← Enc(pk(ĵ), patch

(ĵ)

î
). Finally, compute the opening for com

(̂i)

ĵ
to ct

(̂i)

ĵ
as

open
(̂i)

ĵ
← HTDec(crs(̂i), aux

(̂i)
comĵ

, ct
(̂i)

ĵ
). With this, set

s̃v(̂i) = ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

and respond to the adversary’s query via p̃v(̂i). On the other hand, if the adversary himself
registers a (corrupted) party P ∗

î
by presenting RegCorr(̂i ∈ [N ], pv(̂i)), then the challenger

simply ignores (p̃v(̂i), s̃v(̂i)).
7. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).
8. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input (S, (x(k̂))k̂∈S , ĵ,

sv
(ĵ)

î∗
) and respond via the output.

9. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and
run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv

(ĵ)

î∗
) and sample Yrand ← {0, 1}m, where

{0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.
10. Finally, output whatever A outputs.
This completes the description of Atrap. Observe that if the challenger computes the commit-

ments using HCommit, then the view of A as generated by Atrap is the same as the view of A
in Hyb6. On the other hand, if the challenger computes the commitments using HTCommit and
HTDec, then the view of A as generated by Atrap is the same as the view of A in Hyb7.

AdvtrapAtrap
(λ) =|Pr[ẽxpt

Hyb6
A → 1]− Pr[ẽxpt

Hyb7
A → 1]|

=ε

thus, arriving at a contradiction.
Hence, Hyb6 ≈c Hyb7.

66



Hyb8. This experiment is the same as Hyb7 except for the following modification. Recall that earlier,
we sampled the patches obliviously of every x̃(̂i), since, it was crucial that the patches were
sampled before we computed x̃(̂i). This, to recall again, is because x̃(̂i) was computed as a
function of the patches patch(ĵ)

î
(namely, commitments to encryptions of these patches formed

a part of x̃(̂i)). However, by Hyb7, we had modified the computation of x̃(̂i) as follows: in place
of the aforementioned commitments, we generate equivocal commitments, that could later be
opened to any values, and in particular to encryptions of the corresponding patches. Thus,
we do not need to have computed the patches ahead of time. Thus, in the current hybrid,
we switch back to computing the patches using the algorithm PatchGen, consistent with the
punctured keys. Details follow.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output
of the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. For every î ∈ [N ], generate parameters for F as follows.

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).
- Obliviously (of x̃(ĵ)) generate the patches: For every ĵ ∈ [N ], compute

({patch(̂i)

ĵ
}ĵ∈[N ], o.state

(̂i))← OPatchGen(1λ,F.params(̂i)))

3. For every î ∈ [N ], sample a public key using the key-generation algorithm of Σ: (pk(̂i), sk(̂i))←
E.Gen(1λ).

4. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i),s̃v(̂i)).

◦ Run again the trapdoor parameter-generation algorithm of HCOM: (crs(̂i), aux
(̂i)
crs)←

HTGen(1λ). Compute com
(̂i)
1 , . . . , com

(̂i)
N as follows: For every ĵ ∈ [N ],

(com
(̂i)

ĵ
, aux

(̂i)
comĵ

) ← HTCommit(crs(̂i), aux
(̂i)
crs).

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and

sv(̂i) := ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

5. Then, for every î ∈ [N ], compute the punctured key K (̂i)[2x̃G], its patches
{patch(K (̂i)[2x̃G], (ĵ, x̃(ĵ)))}ĵ∈[N ], and ioP(̂i):

Puncturing a key, sampling patches, and computing ioP(̂i).

◦ Now continue to build the rest of the program ioP(̂i) as follows.
- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).
- Sample a key, K (̂i) ← F.KeyGen(1λ,F.params).

- Puncture K at 2x̃G: K
(̂i)[2x̃G]← Puncture(K (̂i), 2x̃G).

- Generate patches forK (̂i)[2x̃G] at every ĵth block: patch(K (̂i)[2x̃G], (ĵ, x̃(ĵ)))← PatchGen(K (̂i), ĵ, x̃(ĵ)).

- For K (̂i)[2x̃G], generate KD-Prog(̂i)
8 the same way as KD-Prog(̂i)

7 .

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
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6. Upon receiving Reg(̂i ∈ [N ]), compute s̃v(̂i): compute an encryption of patch(ĵ)

î
as

ct
(̂i)

ĵ
← Enc(pk(ĵ), patch(K(ĵ)[2x̃G], (̂i, x̃(̂i)))). Finally, compute the opening for com

(̂i)

ĵ
to

ct
(̂i)

ĵ
as open

(̂i)

ĵ
← HTDec(crs(̂i), aux

(̂i)
comĵ

, ct
(̂i)

ĵ
). With this, set

s̃v(̂i) = ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

and respond to the adversary’s query via p̃v(̂i). On the other hand, if the adversary
himself registers a (corrupted) party P ∗

î
by presenting RegCorr(̂i ∈ [N ], pv(̂i)), then the

challenger simply ignores (p̃v(̂i), s̃v(̂i)).
7. Upon receiving Ext(̂i) for a registered honest Pî, respond via sv(̂i).
8. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Run ioP(î∗) on input

(S, (x(k̂))k̂∈S , ĵ, sv
(ĵ)

î∗
) and respond via the output.

9. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Choose ĵ ← ChQ and
run ioP(î∗) as Yreal := ioP(î∗)(ChQ, (x(k̂))k̂∈ChQ, ĵ, sv

(ĵ)

î∗
) and sample Yrand ← {0, 1}m,

where {0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.
10. Finally, output whatever A outputs.

Lemma 19. Hyb7 ≡ Hyb8.

Proof. Observe that the only difference between Hyb7 and Hyb8 is in the way the punctured key and
its patches are computed. While in Hyb7, they are computed using algorithmsOPatchGen,OPuncture,
in Hyb8, they are computed using Puncture,PatchGen. Recall that this exactly corresponds to switch-
ing back the difference introduced in moving from Hyb2 to Hyb3. As noted in Lemma 3, these two
different processes of generating the key and its patches result in identical distributions. Hence, the
Lemma.
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Hyb9. This experiment is the same as Hyb8 except for the following modification. Note that in
Hyb8, we computed the patches soon after we computed the punctured key. The modification
we introduce in this hybrid is that we would compute patches (and their encryptions) only if
necessary. Details follow.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output of
the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. For every î ∈ [N ], generate parameters for F as follows:

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).

3. For every î ∈ [N ], sample a public key using the key-generation algorithm of Σ: (pk(̂i), sk(̂i))←
E.Gen(1λ).

4. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i),s̃v(̂i)).

◦ Run again the trapdoor parameter-generation algorithm of HCOM: (crs(̂i), aux
(̂i)
crs) ←

HTGen(1λ). Compute com
(̂i)
1 , . . . , com

(̂i)
N as follows: For every ĵ ∈ [N ], (com

(̂i)

ĵ
, aux

(̂i)
comĵ

)

← HTCommit(crs(̂i), aux
(̂i)
crs).

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and

sv(̂i) := ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

5. Then, for every î ∈ [N ], compute the punctured key K (̂i)[2x̃G] and ioP(̂i):
Puncturing a key and computing ioP(̂i).

◦ Now continue to build the rest of the program ioP(̂i) as follows.

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).

- Sample a key, K (̂i) ← F.KeyGen(1λ,F.params).

- Puncture K at 2x̃G: K
(̂i)[2x̃G]← Puncture(K (̂i), 2x̃G).

- Generate patches forK (̂i)[2x̃G] at every ĵth block: patch(K (̂i)[2x̃G], (ĵ, x̃(ĵ)))← PatchGen(K (̂i), ĵ, x̃(ĵ)) .

- For K (̂i)[2x̃G], generate KD-Prog(̂i)
9 the same way as KD-Prog(̂i)

8 .

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).

6. Upon receiving Reg(̂i ∈ [N ]), compute s̃v(̂i) , respond via p̃v(̂i). On the other hand, if the

adversary himself registers a (corrupted) party P ∗
î
by presenting RegCorr(̂i ∈ [N ], pv(̂i)), then

the challenger simply ignores (p̃v(̂i), s̃v(̂i)).
7. Upon receiving Ext(̂i) for a registered honest Pî, firstly compute the following patches that

will need to be used in computing the secret value of Pî: {patch(K(ĵ)[2x̃G], (̂i, x̃(̂i)))}ĵ∈[N ] as

patch(K(ĵ)[2x̃G], (̂i, x̃(̂i)))← PatchGen(K(ĵ), î, x̃(̂i)) . Then, compute an encryption of

patch(K(ĵ)[2x̃G], (̂i, x̃(̂i))) as ct
(̂i)

ĵ
← Enc(pk(ĵ), patch(K(ĵ)[2x̃G], (̂i, x̃(̂i)))). Finally, compute an

opening for com
(̂i)

ĵ
to ct

(̂i)

ĵ
as open

(̂i)

ĵ
← HTDec(crs(̂i), aux

(̂i)
comĵ

, ct
(̂i)

ĵ
). With this, set
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s̃v(̂i) = ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

and respond to the adversary’s query via s̃v(̂i).
8. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Then, consider the following

three cases:
1. Consider the case when Pî∗ was registered as an honest party via Reg(î∗ ∈ [N ]) and there

exists î ∈ S such that Pî was registered as an honest party and was corrupted by the

adversary via Ext(̂i). Under this case, run ioP(î∗) on input (S, (x(k̂))k̂∈S , î, sv
(̂i)

î∗
) and

respond via the output. (Note here that sv
(̂i)

î∗
was already computed while responding to

Ext(̂i)).
2. Consider the case when Pî∗ was registered as an honest party via Reg(î∗ ∈ [N ]) and for

every î ∈ S, Pî was registered as an honest party and was never corrupted. Under this

case, choose î← S, compute sv
(̂i)

î∗
(by computing patch(K(î∗)[2x̃G], (̂i, x̃(̂i))), encrypting

ct
(̂i)

î∗
← Enc(pk(î∗), patch(K(î∗)[2x̃G], (̂i, x̃(̂i)))), and finally computing an opening for com

(̂i)

î∗

to ct
(̂i)

î∗
as open

(̂i)

î∗
← HTDec(crs(̂i), aux

(̂i)
com

î∗
, ct

(̂i)

î∗
)). Then, run ioP(î∗) on input (S, (x(k̂))k̂∈S , î, sv

(̂i)

î∗
)

and respond via the output.
3. Finally, consider the case when Pî∗ was registered as a corrupt party via RegCorr(̂i ∈

[N ], pv(̂i)). Then, compute sv
(̂i)

î∗
(by computing patch(K(î∗)[2x̃G], (̂i, x̃(̂i))), encrypting

ct
(̂i)

î∗
← Enc(pk(î∗), patch(K(î∗)[2x̃G], (̂i, x̃(̂i)))), and finally computing an opening for com

(̂i)

î∗

to ct
(̂i)

î∗
as open

(̂i)

î∗
← HTDec(crs(̂i), aux

(̂i)
com

î∗
, ct

(̂i)

î∗
)). Then, run ioP(î∗) on input (S, (x(k̂))k̂∈S , î, sv

(̂i)

î∗
)

and respond via the output. We remark here that the patch patch(K(î∗)[2x̃G], (̂i, x̃(̂i))) was
computed for a key K(î∗)[2x̃G] that is not a part of any obfuscated program – this is so,
since, ioP(î∗) was registered as a corrupted party. Just to see what to look ahead for, this
will be crucial in later hybrids when we move to setting ct

(̂i)

î∗
from being a ciphertext to

just a random element. The reason we will do so will be clear as we reach those hybrids
where we introduce this modification.

4. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Comparing to the cases we
explored while responding to query Rev(S, ĵ), ChQ would always correspond to Case 2. This
is because, for for every î ∈ S, Pî was registered as an honest party and was never corrupted.
Yreal is computed the same way as the response to Rev(S, ĵ) under Case 2. Also, sample
Yrand ← {0, 1}m, where {0, 1}m is the co-domain of F . Respond to the adversary via Yexpt.

5. Finally, output whatever A outputs.

Lemma 20. Hyb8 ≡ Hyb9.

Proof. Observe that the only difference between Hyb8 and Hyb9 is the following. At a high level,
in Hyb8, we computed all the patches ahead of time and used them if and when necessary. On
the other hand, in Hyb9, we generate the patches only if and when they are required. This clearly
does not introduce any deviation in the view of the adversary. Furthermore, as a consequence of
computing the patches only when necessary, we computed the responses to queries Rev(S, ĵ) and
Test(ChQ) depending on what patches have already been computed. However, this again does not
introduce an deviation in the view of the adversary. Hence, the Lemma. Hence, the Lemma.
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Hyb10. This experiment is the same as Hyb9 except for the following modification. Note that
responses to certain valid queries can be computed by the adversary himself; for instance, a
query Rev(S, ĵ) such that the following holds: for î∗ that is the smallest element in S, Pî∗
was registered as an honest party via Reg(î∗ ∈ [N ]) and there exists î ∈ S such that Pî was
registered as an honest party and was corrupted by the adversary via Ext(̂i). Under such a case,
the adversary as the secret value of Pî using which it can run the program ioP(î∗) to generate
the response. This argument holds water since ioP(î∗) was in fact generated by the challenger
himself and the common key derived by any party Pˆ̂j

belonging to the set S is the same as
the common key derived by any other party (in particular, Pî) in S. Now, having recalled
this aspect, the modification we introduce in this hybrid is the following. For the queries the
responses to which the adversary can himself compute, the challenger behaves the same way
as it did in the previous hybrid – namely, it simply runs the corresponding programs. On the
other hand, for the rest of the queries, the challenger computes the response by evaluating
the PRF F directly. On the same lines, response to the challenge query is also computed by
evaluating the PRF F directly. Details follow.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output of
the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. For every î ∈ [N ], generate parameters for F as follows:

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).

3. For every î ∈ [N ], sample a public key using the key-generation algorithm of Σ: (pk(̂i), sk(̂i))←
E.Gen(1λ).

4. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i),s̃v(̂i)).

◦ Run again the trapdoor parameter-generation algorithm of HCOM: (crs(̂i), aux
(̂i)
crs) ←

HTGen(1λ). Compute com
(̂i)
1 , . . . , com

(̂i)
N as follows: For every ĵ ∈ [N ],

(com
(̂i)

ĵ
, aux

(̂i)
comĵ

) ← HTCommit(crs(̂i), aux
(̂i)
crs).

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and

sv(̂i) := ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

5. Then, for every î ∈ [N ], compute the punctured key K (̂i)[2x̃G] and ioP(̂i):
Puncturing a key and computing ioP(̂i).

◦ Now continue to build the rest of the program ioP(̂i) as follows.

- Run F.params(̂i) ← F.ParamGen(1λ, n,G,N).

- Sample a key, K (̂i) ← F.KeyGen(1λ,F.params).

- Puncture K at 2x̃G: K
(̂i)[2x̃G]← Puncture(K (̂i), 2x̃G).

- For K (̂i)[2x̃G], generate KD-Prog(̂i)
10 the same way as KD-Prog(̂i)

9 .

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
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6. Upon receiving Reg(̂i ∈ [N ]), respond via p̃v(̂i). On the other hand, if the adversary himself
registers a (corrupted) party P ∗

î
by presenting RegCorr(̂i ∈ [N ],pv(̂i)), then the challenger

simply ignores (p̃v(̂i), s̃v(̂i)).
7. Upon receiving Ext(̂i) for a registered honest Pî, firstly compute the following patches that

will need to be used in computing the secret value of Pî: {patch(K(ĵ)[2x̃G], (̂i, x̃(̂i)))}ĵ∈[N ], as

patch(K(ĵ)[2x̃G], (̂i, x̃(̂i)))← PatchGen(K(ĵ), î, x̃(̂i)). Then, compute an encryption of
patch(K(ĵ)[2x̃G], (̂i, x̃(̂i))) as

ct
(̂i)

ĵ
← Enc(pk(ĵ), patch(K(ĵ)[2x̃G], (̂i, x̃(̂i)))). Finally, compute an opening for com

(̂i)

ĵ
to ct

(̂i)

ĵ
as

open
(̂i)

ĵ
← HTDec(crs(̂i), aux

(̂i)
comĵ

, ct
(̂i)

ĵ
). With this, set

s̃v(̂i) = ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

and respond to the adversary’s query via s̃v(̂i).
8. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Then, consider the following

three cases:
1. Consider the case when Pî∗ was registered as an honest party via Reg(î∗ ∈ [N ]) and there

exists î ∈ S such that Pî was registered as an honest party and was corrupted by the

adversary via Ext(̂i). Under this case, run ioP(î∗) on input (S, (x(k̂))k̂∈S , î, sv
(̂i)

î∗
) and

respond via the output. (Note here that sv
(̂i)

î∗
was already computed while responding to

Ext(̂i)).
2. Consider the case when Pî∗ was registered as an honest party via Reg(î∗ ∈ [N ]) and for

every î ∈ S, Pî was registered as an honest party and was never corrupted. Under this
case, respond via F (K(î∗), (S, {x(k̂)}k̂∈S)).

3. Finally, consider the case when Pî∗ was registered as a corrupt party via RegCorr(̂i ∈
[N ],pv(̂i)). Then, compute sv

(̂i)

î∗
(by computing patch(K(î∗)[2x̃G], (̂i, x̃(̂i))), encrypting

ct
(̂i)

î∗
← Enc(pk(î∗), patch(K(î∗)[2x̃G], (̂i, x̃(̂i)))), and finally computing an opening for com

(̂i)

î∗

to ct
(̂i)

î∗
as open

(̂i)

î∗
← HTDec(crs(̂i), aux

(̂i)
com

î∗
, ct

(̂i)

î∗
)). Then, run ioP(î∗) on input (S, (x(k̂))k̂∈S , î, sv

(̂i)

î∗
)

and respond via the output. We remark here that the patch patch(K(î∗)[2x̃G], (̂i, x̃(̂i))) was
computed for a key K(î∗)[2x̃G] that is not a part of any obfuscated program – this is so,
since, ioP(î∗) was registered as a corrupted party. Just to see what to look ahead for, this
will be crucial in later hybrids when we move to setting ct

(̂i)

î∗
from being a ciphertext to

just a random element. The reason we will do so will be clear as we reach those hybrids
where we introduce this modification.

4. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. Compute Yreal as
Yreal := F (K(î∗), (ChQ, {x(k̂)}k̂∈ChQ)). Also, sample Yrand ← {0, 1}m, where {0, 1}m is the
co-domain of F . Respond to the adversary via Yexpt.

5. Finally, output whatever A outputs.

Lemma 21. Hyb9 ≡ Hyb10.

Proof. Observe that the only difference between Hyb9 and Hyb10 is the following. For certain queries,
while the challenger in Hyb9 responded by running the programs, the challenger in Hyb10 responds
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by computing the PRF directly. Since the programs also work by effectively evaluating the PRF,
the view of the adversary is identical in both the hybrids. Hence, the Lemma.

Lemma 22. Let F be an obliviously patchable puncturable PRF. Then the advantage of any PPT
algorithm A in Hyb10, namely Adv

Hyb10
A (·), is negligible in the security parameter.

Proof. Assume for contradiction that there exists a PPT algorithm A with non-negligible advantage
ε in Hyb10. That is, Adv

Hyb10
A (λ) = ε. Then we construct an adversary B that breaks the security of

F also with a non-negligible probability.
Let N be any polynomial in the security parameter. Consider the following experiment which

is a slight modification of the experiment exptPRF
F,A (cf. Definition 9) that tests pseudorandom at

punctured points of the PRF F against adversary A. Consider N such experiments played by
a single adversary A. All other parameters of the game are freshly and independently sampled.
The adversary can make all kinds of queries that he is allowed to make in the original experiment,
with the only difference that he is allowed to make the challenge query only in a single game. His
success/failure in the modified game is then is defined to be his success/failure, respectively, in the
game where he chooses to make the challenge query. We observe that, through a standard hybrid
argument, this modified game is equivalent to the original game by a security loss of 1/N. We shall
work in this modified game in the current proof. However, for simplicity of notation, we shall refer
to the modified game also by exptPRF

F,A . However, to distinguish between the multiple PRF keys, we
will explicitly specify the key we wish to refer to in a query to the oracle O. We shall outline the
modified game in the following. The modified game, like the original game begins by the adversary
presenting x̃ = (x̃(1), . . . , x̃(N)); upon this, the challenger of the experiment exptPRF

F,A samples N
keys independently and punctures each of them at 2x̃G and gives the punctured keys {K (̂i)[2x̃G]}î∈[N ]
to the adversary. Then, the adversary is given access to an oracle O, that takes three kinds of
queries and responds to them as follows:

◦ On query (patch ĵ at î), respond via patch(K(ĵ)[2x̃G], (̂i, x̃(̂i)));

◦ On query (eval ĵ at S), where S ⊆ [N ] and |S| ≤ G, respond via F (K(ĵ), (S, {x(k̂)}k̂∈S));

◦ On query (chal ĵ at ChQ), where ChQ ⊆ [N ] and |ChQ| ≤ G, respond via{
F (K(ĵ), (ChQ, {x(k̂)}k̂∈ChQ)) if expt = real

y if expt = rand

where y is a random element from the co-domain, {0, 1}m, of F .

By the time A outputs b, let Q(ĵ)
1 be the set of î for which A makes (patch ĵ at î) queries and

Q
(ĵ)
2 be the set of S for which A makes (eval ĵ at S) queries. Let the challenger query made by

the adversary be (chal ĵ at ChQ); then we require that ChQ ⊆ [N ] \Q(ĵ)
1 and ChQ 6∈ Q(ĵ)

2 .
The objective of the adversary would be to distinguish the two cases.
We shall show that using the given values and access to the oracle O, B can simulate to A the

hybrid game Hyb10 such that the following holds. If A has a non-negligible advantage in Hyb10,
then B can break the security of F also with a non-negligible advantage.
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At a high level, B predominantly behaves as the challenger of Hyb10 except that it obtains all
the values pertaining to the PRF from its interaction with its own challenger and the oracle O. For
clarity and ease of reading, these values shall be highlighted in a red underlined font.

1. Initiate by running the Setup algorithm. Namely, simply output (λ,N,G) as the output of
the Setup algorithm. Next, respond to the adversary’s queries as follows.

2. Let {F.params(̂i)}î∈[N ] be the parameters received by B from its challenger.

3. For every î ∈ [N ], sample a public key using the key-generation algorithm of Σ: (pk(̂i), sk(̂i))←
E.Gen(1λ).

4. Then, for every î ∈ [N ], firstly compute (x̃(̂i), s̃v(̂i)):
Computing (x̃(̂i),s̃v(̂i)).

◦ Run again the trapdoor parameter-generation algorithm of HCOM: (crs(̂i), aux
(̂i)
crs) ←

HTGen(1λ). Compute com
(̂i)
1 , . . . , com

(̂i)
N as follows: For every ĵ ∈ [N ], (com

(̂i)

ĵ
, aux

(̂i)
comĵ

)

← HTCommit(crs(̂i), aux
(̂i)
crs).

Let
x̃(̂i) := (crs(̂i), com

(̂i)
1 , . . . , com

(̂i)
N )

and

sv(̂i) := ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

5. Then, for every î ∈ [N ], obtain the punctured key K (̂i)[2x̃G]:

◦ Query the challenger with x̃ := (x̃(1), . . . , x̃(N)) to receive {K (̂i)[2x̃G]}î∈[N ]

6. For every î ∈ [N ], construct ioP(̂i):

◦ For K (̂i)[2x̃G], generate KD-Prog(̂i)
redu the same way as KD-Prog(̂i)

10 .

Let pv(̂i) = p̃v(̂i) = (x̃(̂i), ioP(̂i)).
7. Upon receiving Reg(̂i ∈ [N ]), respond via p̃v(̂i). On the other hand, if the adversary himself

registers a (corrupted) party P ∗
î

by presenting RegCorr(̂i ∈ [N ],pv(̂i)), then the challenger

simply ignores (p̃v(̂i), s̃v(̂i)).
8. Upon receiving Ext(̂i) for a registered honest Pî, for every ĵ ∈ [N ], proceed as follows: query
O with (patch ĵ at î) to obtain patch(K(ĵ)[2x̃G], (̂i, x̃(̂i))). Then, compute an encryption of

patch(K(ĵ)[2x̃G], (̂i, x̃(̂i))) as ct
(̂i)

ĵ
← Enc(pk(ĵ), patch(K(ĵ)[2x̃G], (̂i, x̃(̂i)))). Finally, compute an

opening for com
(̂i)

ĵ
to ct

(̂i)

ĵ
as open

(̂i)

ĵ
← HTDec(crs(̂i), aux

(̂i)
comĵ

, ct
(̂i)

ĵ
). With this, set

s̃v(̂i) = ((ct
(̂i)
1 , open

(̂i)
1 ), . . . , (ct

(̂i)
N , open

(̂i)
N ))

and respond to the adversary’s query via s̃v(̂i).
9. Upon receiving Rev(S, ĵ), let î∗ be the smallest element in S. Then, consider the following

three cases:
1. Consider the case when Pî∗ was registered as an honest party via Reg(î∗ ∈ [N ]) and there

exists î ∈ S such that Pî was registered as an honest party and was corrupted by the

adversary via Ext(̂i). Under this case, run ioP(î∗) on input (S, (x(k̂))k̂∈S , î, sv
(̂i)

î∗
) and
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respond via the output. (Note here that sv
(̂i)

î∗
was already computed while responding to

Ext(̂i)).
2. Consider the case when Pî∗ was registered as an honest party via Reg(î∗ ∈ [N ]) and for

every î ∈ S, Pî was registered as an honest party and was never corrupted. Under this
case, query O with (eval î∗ at S) and respond to A via the response given by O.

3. Finally, consider the case when Pî∗ was registered as a corrupt party via RegCorr(̂i ∈
[N ],pv(̂i)). Then, compute sv

(̂i)

î∗
(by computing patch(K(î∗)[2x̃G], (̂i, x̃(̂i))), encrypting

ct
(̂i)

î∗
← Enc(pk(î∗), patch(K(î∗)[2x̃G], (̂i, x̃(̂i)))), and finally computing an opening for com

(̂i)

î∗

to ct
(̂i)

î∗
as open

(̂i)

î∗
← HTDec(crs(̂i), aux

(̂i)
com

î∗
, ct

(̂i)

î∗
)). Then, run ioP(î∗) on input (S, (x(k̂))k̂∈S , î, sv

(̂i)

î∗
)

and respond via the output. We remark here that the patch patch(K(î∗)[2x̃G], (̂i, x̃(̂i))) was
computed for a key K(î∗)[2x̃G] that is not a part of any obfuscated program – this is so,
since, ioP(î∗) was registered as a corrupted party. Just to see what to look ahead for, this
will be crucial in later hybrids when we move to setting ct

(̂i)

î∗
from being a ciphertext to

just a random element. The reason we will do so will be clear as we reach those hybrids
where we introduce this modification.

4. Upon receiving Test(ChQ), let î∗ be the smallest element in ChQ. query O with (chal î∗ at
ChQ) and respond to A via the response given by O.

5. Finally, output whatever A outputs.
From the above description of B, we have that if B interacts with its own challenger in the real

game, then the view of A during its interaction with B is identical to its view in the real experiment
of Hyb10, namely realHyb10A . On the other hand, if B interacts with its challenger in the random
experiment, then the view of A during its interaction with B is identical to its view in the random
experiment of Hyb10, namely randHyb10

A . Therefore,

AdvF,A(λ) =|Pr[realPRFF,A (λ)→ 1]− Pr[randPRF
F,A (λ)→ 1]|

=|Pr[realHyb10A → 1]− Pr[randHyb10
A → 1]|

=ε,

thus arriving at a contradiction. Hence, the lemma.

8 Concrete Constructions of Obliviously Patchable Puncturable PRFs

8.1 Preliminaries

Notations. We denote a multi-set consisting of m copies of an element g by {g}m times.
We denote an ordered m-tuple (g1, . . . , gm) by (gi)i∈[m]. Furthermore, to denote an ordered

sub-tuple consisting of gi only at i ∈ S, we write (gi)i∈S .
We shall denote the jth bit of a bit string xi by xi[j].
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Multilinear Maps. We assume the existence of a multilinear group generation algorithm GrpGen,
which takes as input a security parameter λ and a positive integer κ to indicate the number of
allowed pairing operations. GrpGen(1λ, κ) outputs a sequence of groups

−→
G = (G1, . . . ,Gκ) each of

large prime order p > 2λ. In addition, we let gi be a canonical generator of Gi (and we let the
group’s description contain gi). We let g = g1.

We assume the existence of a set of bilinear maps {ei,j : Gi ×Gj ← Gi+j | i, j ≥ 1; i+ j ≤ κ}.
The map ei,j satisfies the following relation for every a, b ∈ Zp:

ei,j(g
a
i , g

b
j) = gabi+j .

We observe that one consequence of the above relation is that ei,j(gi, gj) = gi+j for every valid
i, j. For simplicity, we denote the output of GrpGen as grpparams := (

−→
G , g, p, ei,j)← GrpGen(1λ, κ).

We shall follow the following simplifying shorthands throughout the paper.

- When the context is obvious, we will sometimes abuse notation and drop the subscripts i, j
to specify the mapping; for example, we may simply write:

e(gai , g
b
j) = gabi+j .

- Furthermore, we write e(h1, h2, . . . , hj) to denote e(h1, e(h2, . . . , hj)).

- Also, for convenience of notation, we sometimes represent the inputs via set notation; for eg.,
e({hi}i∈[j]) = e(h1, h2, . . . , hj).

- Let h ∈ Gm1 and let m2 > m1. Then we denote by e(m2)(h) the representation of h at level
m2. That is, e(m2)(h) = e(h, gm2−m1). Observe e(m2)(h) ∈ Gm2 . The reader is suggested to
read e(m2)(h) as ‘raise h to level m2’.

- Let h ∈ Gm1 and let g̃ ∈ G1. Then we denote by e
(m2)
(g̃) (h) the representation of h raised to level

m2 by pairing with g̃ (instead of g as in e(m2)(h)). That is, e
(m2)
(g̃) (h) = e(h, e({g̃}(m2−m1) times)).

Observe e
(m2)
(g̃) (h) ∈ Gm2 . The reader is suggested to read e

(m2)
(g̃) (h) as ‘raise h to level m2 with

g̃’.

Remark 2. We remark here that e(m2)({hi}i∈[n1], {ci}i∈[n2]) can be efficiently computed, provided,
e({hi}i∈[n1]) ∈ Gm1 with m1 ≤ m2.

Succinct Multilinear Maps. We consider a class of multilinear maps where, roughly speaking,
the size of group elements (number of bits needed to represent them) can be bounded by a polynomial
that depends only on the security parameter and not on the multilinearity level. Observe that this
property is satisfied by multilinear maps in the generic model; therein, for instance, we consider
a random mapping Φ : Zp × [κ] ← {0, 1}`. The group elements can thus be represented in
`+ log(κ) ≤ `+ λ bits. We define such class of multilinear maps, more formally, below.

Definition 10 (Succinct Multilinear Maps). Let GrpGen specify a class of multilinear maps. These
maps are said to be succinct maps if there exists a polynomial P , such that for any polynomial
κ(·), the following holds. For any ((G1, . . . ,Gκ(λ)), g, p, ei,j) ← GrpGen(1λ, κ), for any i ∈ [κ], any
element h ∈ Gi can be represented in P (λ) bits.
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8.2 Construction Based On Succinct Multilinear Maps

Computational Assumption. Now we define the One-more Weak (n,G,N)-Multilinear Deci-
sional Diffie-Hellman ((n,G,N)-1wMDDH) assumption as follows:

Assumption 1 (Weak One-more (n,G,N)-Multilinear Decisional Diffie-Hellman Assumption: (n,G,N)-1wMDDH
Assumption). The One-moreWeak (n,G,N)-Multilinear Decisional Diffie-Hellman ((n,G,N)-1wMDDH)
Assumption is said to hold for GrpGen if, for every PPT adversary A, the following is negligible:

Adv
(n,G,N)-1wMDDH
A (λ) := |Pr[real1wMDDH

A → 1]− Pr[rand1wMDDH
A → 1]|

where, for expt ∈ {real,rand}, expt1wMDDH
A is defined as follows.

Experiment expt1wMDDH
A :

grpparams := (
−→
G , g, p, ei,j)← GrpGen(1λ, nG)

Sample β, η ← Zp, {di[1], . . . , di[n]}i∈[N ] ← Zp
Compute (B,E) = (gβ, gηn), ∀i ∈ [N ], (Di[1], . . . , Di[n]) = (gdi[1], . . . , gdi[n])

Output b← AO.1wMDDH(grpparams, B,E, {Di[1], . . . , Di[n]}i∈[N ])

where, the oracle O.1wMDDH takes three kinds of queries:

1. On query (one-more-at i) for i ∈ [N ], O.1wMDDH returns P̃rodi = g
β(di[1]···di[n])
n . By

the end of the experiment, let Q1 denote the set of all i for which the adversary queries
(one-more-at i).

2. On query (combine S) for S ∈ [N ] and |S| ≤ G, O.1wMDDH returns g

(
β
∏
i∈S

(di[1]···di[n])

)
η(G−|S|)

nG .
By the end of the experiment, let Q2 denote the set of all S for which the adversary queries
(combine S).

3. On query (chal-at ChQ) for ChQ ∈ [N ] and |S| ≤ G, O.1wMDDH returns P̃rodexpt that

is computed as follows: Let P̃rodreal = g

(
β
∏

i∈ChQ
(di[1]···di[n])

)
η(G−|ChQ|)

nG ; let P̃rodrand ← GnG. A
is allowed to make only one such query. It is required that |ChQ| ≤ G, ChQ ⊆ [N ] \Q1, and
ChQ 6∈ Q2.

We now present our first concrete construction of obliviously patchable puncturable PRF F ,
which is based on succinct multilinear maps.

Let n,G,N be polynomials. We shall construct a function family F : K× [[n,G,N ]]→ Z associ-
ated with ppt algorithms (F.ParamGen,F.KeyGen,Puncture,PatchGen,Eval,OPatchGen,OPuncture).

Algorithm F.ParamGen(1λ, n,G,N) : F.ParamGen simply runs GrpGen of the succinct multilinear
maps for multilinearity nG: (

−→
G , g, p, ei,j)← GrpGen(1λ, nG). Return F.params := (

−→
G , g, p, ei,j).

Algorithm F.KeyGen(1λ,F.params) :

- Sample β, η ← Zp.

- For i ∈ [N ], sample
(
di[1, 0]

, . . . ,
di[n, 0]

di[1, 1] di[n, 1]

)
← Z2×n

p . Return

- Return K :=

(
β, η,

{(
di[1, 0]

, . . . ,
di[n, 0]

di[1, 1] di[n, 1]

)}
i∈[N ]

)
.
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Function F (K,x) : F takes as inputs a key K generated by F.KeyGen and x ∈ [[n,G,N ]]. Parse

K =

(
β, η,

{(
di[1, 0]

, . . . ,
di[n, 0]

di[1, 1] di[n, 1]

)}
i∈[N ]

)
and x = (S, (xi)i∈S).

Its output is defined to be F (K,x) := g

(
β
∏
i∈S

(di[1,xi[1]]···di[n,xi[n]])

)
η(G−|S|)

nG .

Algorithm Puncture(K, 2x̃G) : Puncture takes as input a keyK and a set 2x̃G, where, x ∈ ({0, 1}n)N .
(Recall that 2x̃G is the set of all x′ ∈ [[n,G,N ]] where, for every x′|i 6= (⊥, . . . ,⊥), we have x′|i =

x|i.) Parse K =

(
β, η,

{(
di[1, 0]

, . . . ,
di[n, 0]

di[1, 1] di[n, 1]

)}
i∈[N ]

)
. Also, parse x = (x̃1, . . . , x̃N ).

- Compute (B,E)← (gβ, gηn);

- For every i ∈ [N ], for the positions specified by xi[1], . . . , xi[n], compute
(Di[1, xi[1]], . . . , Di[n, xi[n]])← (gdi[1,xi[1]], . . . , gdi[n,xi[n]]).

- Return4 K[2x̃G] :=

(
B,E,

{
Di[1, xi[1]]

, . . . ,
Di[n, xi[n]]

di[1, (1− xi[1])] di[n, (1− xi[n])]

}
i∈[N ]

)
.

Algorithm PatchGen(K, i, xi, statei) : PatchGen takes as input a key K, an index i ∈ [N ], and

xi ∈ {0, 1}n. Parse K =

(
β, η,

{(
di[1, 0]

, . . . ,
di[n, 0]

di[1, 1] di[n, 1]

)}
i∈[N ]

)
.

- Compute gβ(di[1,xi[1]]···di[n,xi[n]])
n .

- Return patch(K, (i, xi)) := g
β(di[1,xi[1]]···di[n,xi[n]])
n .

Algorithm Eval(K[2x̃G], x) / Eval((K[2x̃G], patch(K, (j, x̃j))), x) : Eval takes two kinds of queries:

Eval(K[2x̃G], x): One kind corresponds to evaluating the PRF output for inputs not in 2x̃G
using a key punctured at 2x̃G. More formally: For x̃ ∈ ({0, 1}n)N , x̃ = (x̃1, . . . , x̃N ),

parse K[2x̃G] =

(
B,E,

{
Di[1, x̃i[1]]

, . . . ,
Di[n, x̃i[n]]

di[1, (1− x̃i[1])] di[n, (1− x̃i[n])]

}
i∈[N ]

)
. Now consider

an input x 6∈ 2x̃G, where, x = (S, (xi)i∈S); we have that there exists j ∈ S such that
xj 6= x̃j . On input (K[2x̃G], x), proceed as follows.

- For every i ∈ S \ {j}, compute Prodi ∈ Gn as

Prodi =
(

e(n)({Di[k, x̃i[k]]}k : xi[k]=x̃i[k])
) ∏

k′ : xi[k
′]=1−x̃i[k

′]
di[k
′,(1−x̃i[k′])]

= g(di[1,xi[1]]···di[n,xi[n]])
n

- Compute Prodj ∈ Gn as

Prodj =
(

e(n)(B, {Dj [k, x̃j [k]]}k : xj [k]=x̃j [k])
) ∏

k′ : xj [k
′]=1−x̃j [k

′]
dj [k′,(1−x̃j [k′])]

= g
β(dj [1,xj [1]]···dj [n,xj [n]])
n

4Observe, we present all the elements that have been raised to Level-1 in the upper row, for simplicity. We shall
assume that whether they correspond to 0 or 1 will be an additional information given alongside.
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- Return

Eval(K[2x̃G], x) := e({Prodi}i∈[S], {E}(G−|S|) times))

= g

(
β
∏
i∈S

(di[1,xi[1]]···di[n,xi[n]])

)
η(G−|S|)

nG (7)

Eval((K[2x̃G], patch(K, (j, x̃j))), x): The other kind corresponds to evaluating the PRF output
for inputs in 2x̃G using a key punctured at 2x̃G and using a patch. More formally: For
x̃ ∈ ({0, 1}n)N , x̃ = (x̃1, . . . , x̃N ), parse

K[2x̃G] =

(
B,E,

{
Di[1, x̃i[1]]

, . . . ,
Di[n, x̃i[n]]

di[1, (1− x̃i[1])] di[n, (1− x̃i[n])]

}
i∈[N ]

)
. Now consider an

input x ∈ 2x̃G, where, x = (S, (xi)i∈S); we have that for every i ∈ S, xi = x̃i. On input
((K[2x̃G], patch(K, (j, x̃j))), x) for some j ∈ S proceed as follows.

- For every i ∈ S \ {j}, compute Prodi ∈ Gn as

Prodi =
(

e(n)({Di[k, x̃i[k]]}k : xi[k]=x̃i[k])
) ∏

k′ : xi[k
′]=1−x̃i[k

′]
di[k
′,(1−x̃i[k′])]

= g(di[1,xi[1]]···di[n,xi[n]])
n

- Recall that patch(K, (j, x̃j)) = g
β(dj [1,x̃j [1]]···dj [n,x̃j [n]])
n . Define Prodj := patch(K, (j, x̃j)).

- Return

Eval((K[2x̃G], patch(K, (i, x̃i))), x) := e({Prodi}i∈[S], {E}(G−|S|) times))

= g

(
β
∏
i∈S

(di[1,xi[1]]···di[n,xi[n]])

)
η(G−|S|)

nG (8)

Algorithm OPatchGen(1λ,F.params) : OPatchGen takes as input group parameters F.params =

(
−→
G , g, p, ei,j) and outputs a set of patches and some state information as follows.

- Sample β ← Zp, and compute B = gβ .

- For every i ∈ [N ], sample (di[1], . . . , di[n])← Znp , and compute

(D̂i[1], . . . , D̂i[n])← (gdi[1], . . . , gdi[n]).

- Define o.state := (B, {(D̂i[1], . . . , D̂i[n])}i∈[N ]).

- For every i ∈ [N ], define patchi := g
β(di[1]···di[n])
n .

- Return ({patchi}i∈[N ], o.state).

Algorithm OPuncture(1λ, o.state, x) : OPuncture takes as inputs the security parameter, the state
information output by OPatchGen and x̃ ∈ ({0, 1}n)N . Parse o.state = (B, {(D̂i[1], . . . , D̂i[n])}i∈[N ])

and x̃ = (x̃1, . . . , x̃N ). It outputs a punctured key at 2x̃G consistent with o.state as follows.

- Sample η ← Zp, and compute E = gη.

- For the positions specified by x̃i[1], . . . , x̃i[n], assign
(Di[1, x̃i[1]], . . . , Di[n, x̃i[n]])← (D̂i[1], . . . , D̂i[n]).

- Sample (di[1, (1− x̃i[1])], . . . , di[n, (1− x̃i[n])])← Znp .
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- Return K[2x̃G] :=

(
B,E,

{
Di[1, x̃i[1]]

, . . . ,
Di[n, x̃i[n]]

di[1, (1− x̃i[1])] di[n, (1− x̃i[n])]

}
i∈[N ]

)
.

Theorem 4. Let the One-moreWeak (n,G,N)-Multilinear Decisional Diffie-Hellman ((n,G,N)-1wMDDH)
Assumption hold for GrpGen. Then F is an obliviously patchable puncturable PRF.

Proof. We shall show that F satisfies all the properties specified in Definition 9.
By simple analyzing of the description of the associated algorithms, it is clear that F satisfies the

following properties : Functionality preserved under puncturing, block-wise patchable, obliviously
patchable.

Succinct patches. Observe that each patch is just a single group element. Since the current
construction in using succinct multilinear maps, the size of the group elements is just a function of
λ and is independent of n (and G,N), as required.

Pseudorandom at punctured points. We shall establish this property under the assumption
that (n,G,N)-1wMDDH Assumption hold for GrpGen. Assume for contradiction that there exists
an adversary A for which AdvF,A(λ) = ε(λ) that is non-negligible. Then we construct an adversary
B that breaks the security of F also with a non-negligible probability.
B, upon receiving (grpparams, B,E, {Di[1], . . . , Di[n]}i∈[N ]) from its own challenger, proceeds as

follows.

- B invokes A with grpparams.

- A then gives x̃ ∈ ({0, 1}n)N and expects to receive a key punctured at 2x̃G.

- B then executes the following step: For every i ∈ [N ], for the positions specified by x̃i[1], . . . , x̃i[n],
set (Di[1, x̃i[1]], . . . , Di[n, x̃i[n]])← (Di[1], . . . , Di[n]).

- Sample (di[1, (1− x̃i[1])], . . . , di[n, (1− x̃i[n])])← Znp .

- Give to A, K[2x̃G] :=

(
B,E,

{
Di[1, x̃i[1]]

, . . . ,
Di[n, x̃i[n]]

di[1, (1− x̃i[1])] di[n, (1− x̃i[n])]

}
i∈[N ]

)
.

- Answer to A’s queries as follows.
1. On query (patch-at i), where i ∈ [N ], query the 1wMDDH challenger with (one-more-at i).

Let the response received from by B be P̃rodi = g
β(di[1]···di[n])
n . Respond to A via

patch(K, (i, x̃i)) := P̃rodi.
2. On query (eval-at S), where S ⊆ [N ] and |S| ≤ G, query the 1wMDDH challenger with

(combine S). Respond to A via the response received from by B, namely,

g

(
β
∏
i∈S

(di[1]···di[n])

)
η(G−|S|)

nG .
3. On query (chal-at ChQ), where ChQ ⊆ [N ] and |ChQ| ≤ G, query the 1wMDDH chal-

lenger with (chal-at ChQ). Let the response received from by B be P̃rodexpt. Respond
to A via P̃rodexpt.
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Analysis. We observe that if the experiment played by the 1wMDDH challenger is the real experi-
ment, namely real1wMDDH

A , then the view of A when run by B is identical to its view in the real
experiment of pseudorandomness of punctured PRFs. On the other hand, if the experiment played
by the 1wMDDH challenger is the random experiment, namely rand1wMDDH

A , then the view of A
when run by B is identical to its view in the random experiment of pseudorandomness of punctured
PRFs.

Thus, we have that,

Adv
(n,G,N)-1wMDDH
B (λ) =|Pr[real1wMDDH

B → 1]− Pr[rand1wMDDH
B → 1]|

=|Pr[realPRFF,A (λ)→ 1]− Pr[randPRF
F,A (λ)→ 1]|

=ε(λ),

thus arriving at a contradiction. Hence, the lemma.

8.3 Construction Based On Graded Encoding Schemes

Computational Assumption. Now define the One-more Weak (n,G,N)-Multilinear Decisional
Diffie-Hellman Inversion ((n,G,N)-1wMDDHI) assumption as follows:

Assumption 2 (Weak One-more (n,G,N)-Multilinear Decisional Diffie-Hellman Inversion: (n,G,N)-1wMDDHI).
GrpGen is said to satisfy the One-moreWeak (n,G,N)-Multilinear Decisional Diffie-Hellman ((n,G,N)-1wMDDHI)
problem states that for every PPT adversary A, the following is negligible:

Adv
(n,G,N)-1wMDDHI
A (λ) := |Pr[real1wMDDHI

A → 1]− Pr[rand1wMDDHI
A → 1]|

where, for expt ∈ {real,rand}, expt1wMDDHI
A is defined as follows.

Experiment expt1wMDDHI
A :

grpparams := (
−→
G , g, p, ei,j)← GrpGen(1λ, 2G)

β, η, {αi}i∈[N ] ← Zp
Compute (B,E) = (gβ, gη2), ∀i ∈ [N ], (Ai[1], . . . , Ai[n− 1]) = (gαi , . . . , gα

n−1
i )

Output b← AO(grpparams, B,E, {Ai[1], . . . , Ai[n− 1]}i∈[N ])

where, the oracle O.1wMDDHI takes three kinds of queries:

1. On query (one-more-at i) for i ∈ [N ], O.1wMDDHI returns P̃rodi = g
βαn

i
2 . By the end of

the experiment, letQ1 denote the set of all i for which the adversary queries (one-more-at i).

2. On query (combine S) for S ∈ [N ] and |S| ≤ G, O.1wMDDHI returns g
(β
∏
i∈S

αn
i )η(G−|S|)

2G .
By the end of the experiment, let Q2 denote the set of all S for which the adversary queries
(combine S).

3. On query (chal-at ChQ) for ChQ ∈ [N ] and |S| ≤ G, O.1wMDDHI returns P̃rodexpt that is

computed as follows: Let P̃rodreal = g
(β

∏
i∈ChQ

αn
i )η(G−|ChQ|)

2G ; let P̃rodrand ← G2G. A is allowed
to make only one such query. It is required that |ChQ| ≤ G, ChQ ⊆ [N ] \Q1, and ChQ 6∈ Q2.
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We now present our second concrete construction of obliviously patchable puncturable PRF F .
This can be constructed using the existing candidate constructions of multilinear maps (leveled
graded encoding schemes).

Let n,G,N be polynomials. We shall construct a function family F : K× [[n,G,N ]]→ Z associ-
ated with ppt algorithms (F.ParamGen,F.KeyGen,Puncture,PatchGen,Eval,OPatchGen,OPuncture).

Algorithm F.ParamGen(1λ, n,G,N) : F.ParamGen simply runs GrpGen of the succinct multilinear
maps for multilinearity 2G: (

−→
G , g, p, ei,j)← GrpGen(1λ, 2G). Return F.params := (

−→
G , g, p, ei,j).

Algorithm F.KeyGen(1λ,F.params) :

- Sample β, η ← Zp.

- For i ∈ [N ], sample
(
di[1, 0]

, . . . ,
di[n, 0]

di[1, 1] di[n, 1]

)
← Z2×n

p . Return

- Return K :=

(
β, η,

{(
di[1, 0]

, . . . ,
di[n, 0]

di[1, 1] di[n, 1]

)}
i∈[N ]

)
.

Function F (K,x) : F takes as inputs a key K generated by F.KeyGen and x ∈ [[n,G,N ]]. Parse

K =

(
β, η,

{(
di[1, 0]

, . . . ,
di[n, 0]

di[1, 1] di[n, 1]

)}
i∈[N ]

)
and x = (S, (xi)i∈S).

Its output is defined to be F (K,x) := g

(
β
∏
i∈S

(di[1,xi[1]]···di[n,xi[n]])

)
η(G−|S|)

2G .

Algorithm Puncture(K, 2x̃G) : Puncture takes as input a keyK and a set 2x̃G, where, x̃ ∈ ({0, 1}n)N .
(Recall that 2x̃G is the set of all x′ ∈ [[n,G,N ]] where, for every x′|i 6= (⊥, . . . ,⊥), we have x′|i =

x̃|i.) Parse K =

(
β, η,

{(
di[1, 0]

, . . . ,
di[n, 0]

di[1, 1] di[n, 1]

)}
i∈[N ]

)
. Also, parse x = (x̃1, . . . , x̃N ).

- Compute (B,E)← (gβ, gη2);

- For every i ∈ [N ], sample αi ← Zp and compute (Ai[1], Ai[2], . . . , Ai[n−1]) = (gαi , gα
2
i , . . . , gα

n−1
i ).

- Then, for every i ∈ [N ], for the positions specified by x̃i[1], . . . , x̃i[n], for every j ∈ [n],
compute ci[j, x̃i[j]] such that di[j, x̃i[j]]← αici[j, x̃i[j]]. We thus have that (gdi[1,x̃i[1]], . . . , gdi[n,x̃i[n]]) =

(Ai[1]ci[1,x̃i[1]], . . . , Ai[1]ci[n,x̃i[n]]).

- Return (K[2x̃G], state), where,

K[2x̃G] :=

(
B,E, {Ai[1], . . . , Ai[n]}i∈[N ],

{
ci[1, x̃i[1]]

, . . . ,
ci[n, x̃i[n]]

di[1, (1− x̃i[1])] di[n, (1− x̃i[n])]

}
i∈[N ]

)
and state := (state1, . . . , stateN ), for all i, statei := αi.

Algorithm PatchGen(K, i, x̃i, statei) : PatchGen takes as input a key K, an index i ∈ [N ], x̃i ∈

{0, 1}n, and statei = αi ∈ Zp. Parse K =

(
β, η,

{(
di[1, 0]

, . . . ,
di[n, 0]

di[1, 1] di[n, 1]

)}
i∈[N ]

)
.

- Compute gβα
n
i

2 .

- Return patch(K, (i, x̃i)) := g
βαn

i
2 .
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Algorithm Eval(K[2x̃G], x) / Eval((K[2x̃G], patch(K, (j, x̃j))), x) : Eval takes two kinds of queries:

Eval(K[2x̃G], x): One kind corresponds to evaluating the PRF output for inputs not in 2x̃G us-
ing a key punctured at 2x̃G. More formally: For x̃ ∈ ({0, 1}n)N , x̃ = (x̃1, . . . , x̃N ), parse

K[2x̃G] =

(
B,E, {Ai[1], . . . , Ai[n− 1]}i∈[N ],

{
ci[1, x̃i[1]]

, . . . ,
ci[n, x̃i[n]]

di[1, (1− x̃i[1])] di[n, (1− x̃i[n])]

}
i∈[N ]

)
.

Now consider an input x 6∈ 2x̃G, where, x = (S, (xi)i∈S); we have that there exists j ∈ S
such that xj 6= x̃j . On input (K[2x̃G], x), proceed as follows.

- For every i ∈ S \ {j}, compute Prodi ∈ Gn as follows:
– If xi 6= x̃i, then φ(x̃i, xi) < n, φ(x̃i, xi) is the number of bit-positions at which

strings x̃i, xi agree. Under this case, compute

Prodi = (e(g,Ai[φ(x̃i, xi)]))

∏
k : xi[k]=x̃i[k]

ci[k,(x̃i[k])]
∏

k′ : xi[k
′]=1−x̃i[k

′]
di[k
′,(1−x̃i[k′])]

= g
(di[1,xi[1]]···di[n,xi[n]])
2

– If xi = x̃i, then φ(x̃i, xi) = n. Under this case, compute

Prodi = (e(Ai[1], Ai[n− 1]))

∏
k
ci[k,(x̃i[k])]

= g
(di[1,xi[1]]···di[n,xi[n]])
2

- Since xj 6= x̃j , we have that φ(x̃j , xj) < n. Compute Prodj ∈ Gn as follows.

Prodj = (e(B,Ai[φ(x̃i, xi)]))

∏
k : xi[k]=x̃i[k]

ci[k,(x̃i[k])]
∏

k′ : xj [k
′]=1−x̃j [k

′]
dj [k′,(1−x̃j [k′])]

= g
β(dj [1,xj [1]]···dj [n,xj [n]])
2

- Return

Eval(K[2x̃G], x) := e({Prodi}i∈[S], {E}(G−|S|) times))

= g

(
β
∏
i∈S

(di[1,xi[1]]···di[n,xi[n]])

)
η(G−|S|)

2G (9)

Eval((K[2x̃G], patch(K, (j, x̃j))), x): The other kind corresponds to evaluating the PRF output
for inputs in 2x̃G using a key punctured at 2x̃G and using a patch. More formally: For
x̃ ∈ ({0, 1}n)N , x̃ = (x̃1, . . . , x̃N ), parse

K[2x̃G] =

(
B,E, {Ai[1], . . . , Ai[n− 1]}i∈[N ],

{
ci[1, x̃i[1]]

, . . . ,
ci[n, x̃i[n]]

di[1, (1− x̃i[1])] di[n, (1− x̃i[n])]

}
i∈[N ]

)
and patch(K, (j, x̃j)) = g

βαn
j

2 . Now consider an input x ∈ 2x̃G, where, x = (S, (xi)i∈S);
we have that for every i ∈ S, xi = x̃i. On input ((K[2x̃G], patch(K, (j, x̃j))), x) for some
j ∈ S proceed as follows.

- For every i ∈ S \ {j}, compute Prodi ∈ Gn as follows (Recall that since xi = x̃i,
φ(x̃i, xi) = n):

Prodi = (e(Ai[1], Ai[n− 1]))

∏
k
ci[k,(x̃i[k])]

= g
(di[1,xi[1]]···di[n,xi[n]])
2

83



- Recall that patch(K, (j, x̃j)) = g
βαn

j

2 . Define Prodj := patch(K, (j, x̃j)).
- Return

Eval((K[2x̃G], patch(K, (j, x̃j))), x) := e({Prodi}i∈[S], {E}(G−|S|) times))

= g

(
β
∏
i∈S

(di[1,xi[1]]···di[n,xi[n]])

)
η(G−|S|)

2G (10)

Algorithm OPatchGen(1λ,F.params) : OPatchGen takes as input group parameters F.params =

(
−→
G , g, p, ei,j) and outputs a set of patches and some state information as follows.

- Sample β ← Zp, and compute B = gβ .

- For every i ∈ [N ], sample αi ← Zp and compute (Ai[1], Ai[2], . . . , Ai[n−1]) = (gαi , gα
2
i , . . . , gα

n−1
i ).

- Define o.state := (B, {Ai[1], . . . , Ai[n− 1]}i∈[N ]).

- For every i ∈ [N ], define patchi := g
βαn

i
2 .

- Return ({patchi}i∈[N ], o.state).

Algorithm OPuncture(1λ, o.state, x) : OPuncture takes as inputs the security parameter, the state
information output by OPatchGen and x̃ ∈ ({0, 1}n)N . Parse o.state = (B, {Ai[1], . . . , Ai[n−
1]}i∈[N ]) and x̃ = (x̃1, . . . , x̃N ). It outputs a punctured key at 2x̃G consistent with o.state as
follows.

- Sample η ← Zp, and compute E = gη2 .

- For the positions specified by x̃i[1], . . . , x̃i[n], sample (ci[1, x̃i[1]], . . . , cn[1, x̃i[n]]) ← Znp
and (di[1, (1− x̃i[1])], . . . , di[n, (1− x̃i[n])])← Znp .

- Return

K[2x̃G] :=

(
B,E, {Ai[1], . . . , Ai[n− 1]}i∈[N ],

{
ci[1, x̃i[1]]

, . . . ,
ci[n, x̃i[n]]

di[1, (1− x̃i[1])] di[n, (1− x̃i[n])]

}
i∈[N ]

)
.

Theorem 5. Let the One-more Weak (n,G,N)-Multilinear Decisional Diffie-Hellman Inversion
((n,G,N)-1wMDDHI) Assumption hold for GrpGen. Then F is an obliviously patchable puncturable
PRF.

Proof. We shall show that F satisfies all the properties specified in Definition 9.
By simple analyzing of the description of the associated algorithms, it is clear that F satisfies the

following properties : Functionality preserved under puncturing, block-wise patchable, obliviously
patchable.

Succinct patches. Observe that each patch is just a single group element. Since the multilinearity
of the graded encoding schemes we work with is 2G, the size of the group elements is only a function
of λ,G. In particular, the size of the group elements is independent of n, as required.
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Pseudorandom at punctured points. We shall establish this property under the assumption
that (n,G,N)-1wMDDH Assumption hold for GrpGen. Assume for contradiction that there exists
an adversary A for which AdvF,A(λ) = ε(λ) that is non-negligible. Then we construct an adversary
B that breaks the security of F also with a non-negligible probability.
B, upon receiving (grpparams, B,E, {Ai[1], . . . , Ai[n−1]}i∈[N ]) from its own challenger, proceeds

as follows.

- B invokes A with grpparams.

- A then gives x̃ ∈ ({0, 1}n)N and expects to receive a key punctured at 2x̃G.

- B then executes the following step: For the positions specified by x̃i[1], . . . , x̃i[n], sample
(ci[1, x̃i[1]], . . . , cn[1, x̃i[n]])← Znp and (di[1, (1− x̃i[1])], . . . , di[n, (1− x̃i[n])])← Znp .

- Give to A,

K[2x̃G] :=

(
B,E, {Ai[1], . . . , Ai[n− 1]}i∈[N ],

{
ci[1, x̃i[1]]

, . . . ,
ci[n, x̃i[n]]

di[1, (1− x̃i[1])] di[n, (1− x̃i[n])]

}
i∈[N ]

)
.

- Answer to A’s queries as follows.
1. On query (patch-at i), where i ∈ [N ], query the 1wMDDHI challenger with (one-more-at i).

Let the response received from by B be P̃rodi = g
βαn

i
2 . Respond toA via patch(K, (i, x̃i)) :=

P̃rodi.
2. On query (eval-at S), where S ⊆ [N ] and |S| ≤ G, query the 1wMDDHI challenger with

(combine S). Respond toA via the response received from by B, namely, g
(β
∏
i∈S

αn
i )η(G−|S|)

2G .
3. On query (chal-at ChQ), where ChQ ⊆ [N ] and |ChQ| ≤ G, query the 1wMDDHI chal-

lenger with (chal-at ChQ). Let the response received from by B be P̃rodexpt. Respond
to A via P̃rodexpt.

Analysis. We observe that if the experiment played by the 1wMDDHI challenger is the real experi-
ment, namely real1wMDDHI

A , then the view of A when run by B is identical to its view in the real
experiment of pseudorandomness of punctured PRFs. On the other hand, if the experiment played
by the 1wMDDHI challenger is the random experiment, namely rand1wMDDHI

A , then the view of A
when run by B is identical to its view in the random experiment of pseudorandomness of punctured
PRFs.

Thus, we have that,

Adv
(n,G,N)-1wMDDHI
B (λ) =|Pr[real1wMDDHI

B → 1]− Pr[rand1wMDDHI
B → 1]|

=|Pr[realPRFF,A (λ)→ 1]− Pr[randPRF
F,A (λ)→ 1]|

=ε(λ),

thus arriving at a contradiction. Hence, the lemma.

We define the One-moreWeak (n,G,N)-Multilinear Decisional Diffie-Hellman Inversion ((n,G,N)-1wMDDHI)
assumption as follows:
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Assumption 3 (Weak One-more (n,G,N)-Multilinear Decisional Diffie-Hellman Inversion: (n,G,N)-1wMDDHI).
GrpGen is said to satisfy the One-moreWeak (n,G,N)-Multilinear Decisional Diffie-Hellman ((n,G,N)-1wMDDHI)
problem states that for every PPT adversary A, the following is negligible:

Adv
(n,G,N)-1wMDDHI
A (λ) := |Pr[real1wMDDHI

A → 1]− Pr[rand1wMDDHI
A → 1]|

where, for expt ∈ {real,rand}, expt1wMDDHI
A is defined as follows.

Experiment expt1wMDDHI
A :

(
−→
G , g, p, ei,j)← GrpGen(1λ, 2G)

β, η ← Zp
Compute (B,E) = (gβ, gη2)

{αi}i∈[N ] ← Zp
Compute ∀i ∈ [N ], (Ai[1], Ai[2], . . . , Ai[n− 1]) = (gαi , gα

2
i , . . . , gα

n−1
i )

← AO(B,E, {Ai[1], . . . , Ai[n− 1]}i∈[N ])

Compute P̃rodreal = g
(β

∏
i∈ChQ

αn
i )η(G−|ChQ|)

2G

Sample P̃rodrand ← G2G

Output A(, P̃rodexpt)

where, the oracle O takes two kinds of inputs:

1. On input i ∈ [N ], O returns P̃rodi = g
βαn

i
2 . Let Q1 denote the set of such queries queried by

A to the oracle.

2. On input S ∈ [N ] for |S| ≤ G, O returns g
(β

∏
i∈ChQ

αn
i )η(G−|S|)

2G . Let Q2 denote the set of such
queries queried by A to the oracle.

It is required that |ChQ| ≤ G, ChQ ⊆ [N ] \Q1, and ChQ 6∈ Q2.

9 Generic Security of the One-more Weak (n,G,N)-MDDH As-
sumption

In this section, we discuss the security of our One-more Weak (n,G,N)-MDDH assumption, de-
fined in Assumption 1, in the generic multilinear group model. In particular, we explain why our
assumption is secure in the generic model, provided p is sufficiently large.

Generic Multilinear Maps. Generic multilinear maps are a generalization of the generic group
model. Roughly speaking, in the generic bilinear group model, elements of the groups appear to
be encoded as arbitrary unique strings, so that no property other than equality can be directly
tested by the adversary. For instance, like in our proof, the representation uses random-looking
strings. Furthermore, the adversary performs operations on group elements by interacting with
various oracles to that perform either multiplying two elements of the same group or pairing of two
elements. Details follow.

We represent the group elements using a random injective function Φ : Zp × [nG] ← {0, 1}`.
More precisely, an encoding of an element x ∈ Zp at level i (that is, in group Gi) is given by Φ(x, i),
where, m = log(p). We are given oracles Mult and Pair to compute the induced multiplication and
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pairing5 operations. More precisely, any algorithm in the generic multilinear map model interacts
with the multilinear map using the following queries:

Encode(x, i): For x ∈ Zp and i ∈ [nG], respond via Φ(x, i). Note that we can recover the generator
gi for the group Gi as Encode(1, i).

Mult(ζx1 , ζx2 , b): If ζx1 = Φ(x1, i1) and ζx2 = Φ(x2, i2), where i1 = i2 = i, then return Φ(x1 +
(−1)bx2, i). Otherwise, return ⊥.

Pair(ζx1 , ζx2): If ζx1 = Φ(x1, i1) and ζx2 = Φ(x2, i2), where i1+i2 = i ≤ nG, then return Φ(x1 ·x2, i).
Otherwise, return ⊥.

Generic security of our assumption.

Theorem 6. For any generic adversary A whose total number of queries to Encode,Mult,Pair is
polynomial in λ, A has negligible advantage in breaking the One-more Weak (n,G,N)-MDDH
assumption, provided 1/p is negligible in λ.

Proof. Let A be a generic attacker. A plays the following game:

◦ The challenger flips a coin uniformly at random and chooses whether to play the either the
real or the random experiment: expt ∈ {real,rand}.

◦ The challenger also samples β, η ← Zp, and for every i ∈ [N ], {di[1], . . . , di[n]}i∈[N ] ← Zp.

◦ A receives Φ(x, 1) for every x ∈ {β, {di[1], . . . , di[n]}i∈[N ]}. A also receives Φ(η, n).

◦ A can adaptively query the One-more wMDDH oracle O with two kinds of queries: If A
queries a singleton {i}, then it receives Φ(β(di[1] · · · di[n]), n). On the other hand, if A queries
S ⊆ [N ] for 2 ≤ |S| ≤ G, then, it receives Φ((β

∏
i∈S

(di[1] · · · di[n]))η(G−|S|), nG). Let Q denote

the set of queries made by A to the One-more wMDDH oracle.

◦ A can also adaptively make queries to the oracles, Encode,Mult,Pair.

◦ A makes a challenge query on a set ChQ ⊆ [N ], subject to the restriction that |ChQ| ≤ G,
for every {i} ∈ Q, i 6∈ ChQ, and for every S ∈ Q, S 6= ChQ. In response, A receives
Φ(p̃rodexpt, nG), where, p̃rodreal = (β

∏
i∈ChQ

(di[1] · · · di[n]))η(G−|ChQ|) and p̃rodrand ← Zp.

◦ A can continue making queries to the One-more wMDDH oracle and to Encode,Mult,Pair
oracles.

◦ A guesses which experiment it is in by outputting a bit b∗.

The advantage of A in the above game is |Pr[A → 1 | expt = real] − Pr[A → 1 | expt =
rand]|. Our goal is to show that this is negligible.

Now consider an algorithm B that plays the above game with A. Rather than choosing values
for β, η, di[1], . . . , di[n], p̃rodrand, algorithm B treats them as formal variables. B maintains a list

L = {(pj , ij , ζj)},
5We allow the adversary to successively pair elements together, rather than only providing the full multilinear

map. This reflects the structure of current map candidates.
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where, pj is a polynomial in the variables β, η, di[1], . . . , di[n]}i∈[N ], the integer ij indexes the groups,
and ζj is a string in {0, 1}`. The list is initialized with the following tuples:

- (px, 1, ζx), for every x ∈ {β, {di[1], . . . , di[n]}i∈[N ]} for randomly generated strings ζx,

- (η, n, ζη).

Initially, L contains nG+ 2 entries.
The game starts with B giving A the tuple of strings {ζx}x∈L. Now, A is allowed to make the

following queries:

Encode(x, i): If x ∈ Zp and i ∈ [nG], then B looks for a tuple (p, i, ζ), where p is the constant
polynomial equal to x. If such a tuple exists, then B responds via ζ. Otherwise, B generates a
random string ζ ∈ {0, 1}`, adds the tuple (p, i, ζ) (again, where p is the constant polynomial
equal to x) to L, and responds via ζ.

Mult(ζj , ζk, b): B looks for tuples (pj , ij , ζj) and (pk, ik, ζk) in L. If either tuple does not exist, then B
responds via ⊥. If both tuples are found, but ij 6= ik, then B responds via ⊥. Otherwise, B lets
i := ij = ik, computes the polynomial p = pj + (−1)bpk, and looks for a tuple (p, i, ζ) ∈ L. If
the tuple is found, then B responds via ζ. Otherwise, B generates a random string ζ ∈ {0, 1}`,
adds the tuple (p, i, ζ) to L, and responds via ζ.

Pair(ζj , ζk): B looks for tuples (pj , ij , ζj) and (pk, ik, ζk) in L. If either tuple does not exist, then
B responds via ⊥. If both tuples are found, but i := ij + ik > nG, then B responds via ⊥.
Otherwise, B lets i := ij + ik, computes the polynomial p = pj · pk, and looks for a tuple
(p, i, ζ) ∈ L. If the tuple is found, then B responds via ζ. Otherwise, B generates a random
string ζ ∈ {0, 1}`, adds the tuple (p, i, ζ) to L, and responds via ζ.

O(S): If S = {i}, B creates a new formal variable β(di[1] · · · di[n]) and adds the tuple ((β(di[1] · · · di[n])), n, ζ)
to L for a randomly generated ζ ∈ {0, 1}`, and gives A the string ζ. On the other hand, if
2 ≤ |S| ≤ G, then B creates a new formal variable ((β

∏
i∈S

(di[1] · · · di[n]))η(G−|S|)). It adds

the tuple ((β
∏
i∈S

(di[1] · · · di[n])η(G−|S|)), nG, ζ) to L for a randomly generated ζ ∈ {0, 1}`, and

gives A the string ζ.

Challenge: On input a challenge subset ChQ ⊆ [N ], B creates a new formal variable y∗ and adds
the tuple (y∗, nG, ζ) to L for a randomly generated ζ ∈ {0, 1}` and gives A the string ζ.

After a polynomial number of queries, A ultimately produces a guess b∗. Now, B chooses
uniformly at random expt ∈ {real,rand}, as well as values for β, η, di[1], . . . , di[n]. Furthermore,
it also chooses a random value p̃rodrand ← Zp.
B can increase m arbitrarily, thus making strings ζ hard to guess. Therefore, we can assume

without loss of generality that A only makes Mult and Pair queries on strings obtained from B.
The simulation provided by B is perfect unless our choices for the variables β, η, di[1], . . . , di[n], y∗

results in an equality between values for two values pj ,pk that is not an equality for polynomials.
More precisely the simulation is perfect unless for some j, k the following hold:

◦ ij = ik,

◦ (pj − pk)(β, η, d1[1], . . .) = 0, yet the polynomials pj ,pk are not equal.
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Let Fail be the event that these conditions hold for some j, k. We need to bound the probability
that Fail occurs. First, prior to choosing values for all the variables, consider setting

y∗ = (β
∏
i∈ChQ

(di[1] · · · di[n]))η(G−|ChQ|) (11)

as polynomials. We claim that this does not create any new polynomial equalities.

Claim 1. Substituting the formal variable y∗ with the polynomial (β
∏

i∈ChQ
(di[1] · · · di[n]))η(G−|ChQ|)

does not create any new polynomial equalities. That is, if pj 6= pk before the substitution, the same
is true after the substitution too.

Before proving Claim 2, we use it to complete the proof of Theorem 7. Notice that each of the
polynomials has degree at most nG. The Swartz-Zipel lemma then shows that if pj − pk 6= 0, the
probability that the polynomial (pj − pk)(β, η, d1[1], . . .) evaluates to zero is at most nG/(p−1). This
means that pj ,pk evaluate to the same value with probability at most nG/(p−1).

Now, let qe, qm, qp, qO be the total number of Encode,Mult,Pair,O queries made by A. Then the
total length of L is at most

|L| ≤ qe + qm + qp + qO + nG+ 2.

Therefore, the number of pairs is at most( |L|
2

)
≤ (qe + qm + qp + qO + nG+ 2)2

2
.

Therefore, Fail happens with probability at most

(qe + qm + qp + qO + nG+ 2)2 · nG
2(p− 1)

For polynomials in λ, qe, qm, qp, qO, G, n,N , this is negligible in λ, provided 1/p is negligible, as
desired. It remains to prove Claim 2. Suppose there are two polynomials pj ,pk such that, when we
replace the variable y∗ with p̃rodreal = (β

∏
i∈ChQ

(di[1] · · · di[n]))η(G−|ChQ|). This means pj − pk = 0.

Consider expanding pj−pk out into monomials prior to the substitution. First, this expansion must
contain a y∗ term, and this term cannot have been multiplied by other variables (since polynomials
involving y∗ can only exist in the target group GnG). Therefore, we can write pj − pk as

pj − pk =cy∗ (12)

+ poly1

(
β, {di[1], . . . , di[n]}i∈[N ]

)
(13)

+
∑
S∈Q

c2,S

((
β
∏
i∈S

(di[1] · · · di[n])

)
η(G−|S|)

)
(14)

+
∑
{i}∈Q

(βdi[1] · · · di[n])

poly3,i,1

(
{(βdi′ [1] · · · di′ [n])}{i′}∈Q

)
poly3,i,2

(
β, {di[1], . . . , di[n]}i′∈[N ]

)
poly3,i,3(η)

 (15)

+ poly4 (η)

[
poly4,i,1

(
{(βdi′ [1] · · · di′ [n])}{i′}∈Q

)
poly4,i,2

(
β, {di[1], . . . , di[n]}i∈[N ]

)] (16)

where,
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- c, c2,S are constants,

- poly1 has degree nG,

- poly3,i,1, poly3,i,2, poly3,i,3 have degrees deg3,i,1, deg3,i,2, deg3,i,3, such that ndeg3,i,1+deg3,i,2+
ndeg3,i,3 = nG− n,

- poly4, poly4,i,1, poly4,i,2 have degrees deg4, deg4,i,1, deg4,i,2, respectively, such that ndeg4 +
ndeg4,i,1 + deg4,i,2 = nG.

c, c2,S are constants, poly1 has degree nG, poly3,i,1 has degree 0 ≤ deg3,i ≤ G− 1 and poly3,i,2

has degree (G − (deg3,i + 1)). If the polynomial pj − pk is non-zero, but substituting y∗ as
(β

∏
i∈ChQ

(di[1] · · · di[n]))η(G−|ChQ|) makes it zero, we can conclude the following:

◦ c 6= 0, and

◦ c′ = −c, where, c′ is the co-efficient of y∗ in (Term (13)+Term (14)+Term (15)+Term (16)).

We shall now compute the coefficients contributed by each of Term (13), Term (14), Term (15),

and Term (16) to y∗. Firstly, recall that the polynomial y∗ =

(
β
∏

i∈ChQ
(di[1] · · · di[n])

)
η(G−|ChQ|)

(as per Equation (17)). We begin by analyzing the ways in which this polynomial can be constructed
in each of the Terms in question, one by one, below.

◦ Observe that none of the arguments of poly1 contains η or η(G−|ChQ|) as a factor. Hence, no
monomial in poly1 can be equal to y∗. Thus, the contribution to the co-efficient of y∗ from
Term (19) is 0.

◦ Recall that, for every S ∈ Q, S 6= ChQ. Thus, for every S ∈ Q,
((

β
∏
i∈S

(di[1] · · · di[n])

)
η(G−|S|)

)
6=

y∗ =

(
β
∏

i∈ChQ
(di[1] · · · di[n])

)
η(G−|ChQ|), thus implying that the contribution to the co-

efficient of y∗ from Term (14) also is 0.

◦ Observe that every term in Term (15) contains (βdi[1] · · · di[n]) for some {i} ∈ Q. However,
for every {i} ∈ Q, i 6∈ ChQ. Thus, the contribution to the co-efficient of y∗ from Term (15)
also is 0.

◦ Observe the only way to get
∏

i∈ChQ
(di[1] · · · di[n]) from the arguments of poly1 is to multiply

each of ({di[1], . . . , di[n]}i∈ChQ) amounting to a degree of n|ChQ|. Furthermore, the only way
to get η(G−|ChQ|) from the arguments of poly1 is to multiply η in the argument (G− |ChQ|)
times itself amounting to a degree of (G− |ChQ|). Hence, by now, the total degree ‘used up’
is nG, which is the degree of poly1. However, β is still not factored in and the only way to
factor it in is to multiply it with the current partial product raising the degree to nG+1. This
is not possible since that would exceed the maximum degree of poly1. Thus, the contribution
to the co-efficient of y∗ from Term (13) is 0.

◦ Let us begin with poly4,i,1. Observe that every argument in poly4,i,1 contains (βdi[1] · · · di[n])
for some {i′} ∈ Q. However, for every {i′} ∈ Q, i′ 6∈ ChQ; in other words, for every {i′} ∈ Q,
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di′ [j] is not a factor in y∗. Thus, if deg4,i,1 6= 0, then including a factor of such an di′ [j] would
entail ‘canceling’ it out. However, there is no variable with 1/di′ [j] as a factor. Hence, we can
conclude that deg4,i,1 = 0.

Now, observe that in Term (16), only poly4 contains η as a factor. Since (G − |ChQ|) is the
degree of η in y∗, the only way to get η(G−|ChQ|) is by multiplying η, (G−|ChQ|) times. Thus,
deg4 ≥ (G− |ChQ|).
Observe that none of the arguments of poly4,i,2 contains di[j]di[j′] as a factor for any j, j′.
Hence, for every i ∈ ChQ, (di[1] · · · di[n]) can be obtained only by multiplying the variables
di[1], . . . , di[n]. This amounts to already using up n degrees of poly4,i,2 for every i ∈ ChQ.

That is, deg4,i,2 ≥ n|ChQ|. Adding up, in order to obtain

( ∏
i∈ChQ

(βdi[1] · · · di[n])

)
η(G−|ChQ|),

we have that deg4 ≥ (G − |ChQ|) and deg4,i,2 ≥ |ChQ|. However, we need to work with the
constraint that ndeg4 + ndeg4,i,1 + deg4,i,2 = nG. Thus, we have used all of the available nG
degrees. However, we have not yet taken into account the β factor, but there is no room left to
take this factor into account. Thus, the contribution to the co-efficient of y∗ from Term (22)
is 0.

In conclusion, the monomial y∗ did not exist in (Term (13)+Term (14)+Term (15)+Term (16))
before the substitution. Thus, the monomial is not existent in the sum even after the substitution.
Thus, even after substitution, we are left with the monomial cy∗ in the polynomial pj −pk, making
it non-zero, thus leading to a contradiction.

10 Generic Security of the One-more Weak (n,G,N)-MDDHI As-
sumption

In this section, we discuss the security of our One-more Weak (n,G,N)-MDDHI assumption, defined
in Assumption 3, in the generic multilinear group model.

Generic security of our assumption.

Theorem 7. For any generic adversary A whose total number of queries to Encode,Mult,Pair is
polynomial in λ, A has negligible advantage in breaking the One-more Weak (n,G,N)-MDDHI
assumption, provided 1/p is negligible in λ.

Proof. Let A be a generic attacker. A plays the following game:

◦ The challenger flips a coin uniformly at random and chooses whether to play the either the
real or the random experiment: expt ∈ {real,rand}.

◦ The challenger also samples β, η ← Zp, and for every i ∈ [N ], {αi}i∈[N ] ← Zp.

◦ A receives Φ(x, 1) for every x ∈ {β, {αi, α2
i , . . . , α

n−1
i }i∈[N ]}. A also receives Φ(η, 2).

◦ A can adaptively query the One-more wMDDHI oracle O with two kinds of queries: If A
queries a singleton {i}, then it receives Φ(βαni , 2). On the other hand, if A queries S ⊆ [N ]
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for 2 ≤ |S| ≤ G, then, it receives Φ(((β
∏

i∈ChQ
αni )η(G−|S|)), 2G). Let Q denote the set of queries

made by A to the One-more wMDDHI oracle.

◦ A can also adaptively make queries to the oracles, Encode,Mult,Pair.

◦ A makes a challenge query on a set ChQ ⊆ [N ], subject to the restriction that |ChQ| ≤ G,
for every {i} ∈ Q, i 6∈ ChQ, and for every S ∈ Q, S 6= ChQ. In response, A receives
Φ(p̃rodexpt, 2G), where, p̃rodreal = (β

∏
i∈ChQ

αni )η(G−|ChQ|)) and p̃rodrand ← Zp.

◦ A can continue making queries to the One-more wMDDHI oracle and to Encode,Mult,Pair
oracles.

◦ A guesses which experiment it is in by outputting a bit b∗.

The advantage of A in the above game is |Pr[A → 1 | expt = real] − Pr[A → 1 | expt =
rand]|. Our goal is to show that this is negligible.

Now consider an algorithm B that plays the above game with A. Rather than choosing values
for β, η, αi, p̃rodrand, algorithm B treats them as formal variables. B maintains a list

L = {(pj , ij , ζj)},

where, pj is a polynomial in the variables β, η, αi, α2
i , . . . , α

n−1
i , the integer ij indexes the groups,

and ζj is a string in {0, 1}`. The list is initialized with the following tuples:

- (px, 1, ζx), for every x ∈ {β, {αi, α2
i , . . . , α

n−1
i }i∈[N ]} for randomly generated strings ζx,

- (η, 2, ζη)

Initially, L contains nN + 2 entries.
The game starts with B giving A the tuple of strings {ζx}x∈L. Now, A is allowed to make the

following queries:

Encode(x, i): If x ∈ Zp and i ∈ [2G], then B looks for a tuple (p, i, ζ), where p is the constant
polynomial equal to x. If such a tuple exists, then B responds via ζ. Otherwise, B generates a
random string ζ ∈ {0, 1}`, adds the tuple (p, i, ζ) (again, where p is the constant polynomial
equal to x) to L, and responds via ζ.

Mult(ζj , ζk, b): B looks for tuples (pj , ij , ζj) and (pk, ik, ζk) in L. If either tuple does not exist, then B
responds via ⊥. If both tuples are found, but ij 6= ik, then B responds via ⊥. Otherwise, B lets
i := ij = ik, computes the polynomial p = pj + (−1)bpk, and looks for a tuple (p, i, ζ) ∈ L. If
the tuple is found, then B responds via ζ. Otherwise, B generates a random string ζ ∈ {0, 1}`,
adds the tuple (p, i, ζ) to L, and responds via ζ.

Pair(ζj , ζk): B looks for tuples (pj , ij , ζj) and (pk, ik, ζk) in L. If either tuple does not exist, then
B responds via ⊥. If both tuples are found, but i := ij + ik > nN , then B responds via ⊥.
Otherwise, B lets i := ij + ik, computes the polynomial p = pj · pk, and looks for a tuple
(p, i, ζ) ∈ L. If the tuple is found, then B responds via ζ. Otherwise, B generates a random
string ζ ∈ {0, 1}`, adds the tuple (p, i, ζ) to L, and responds via ζ.
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O(S): If S = {i}, B creates a new formal variable (βαni ) and adds the tuple ((βαni ), 2, ζ) to L
for a randomly generated ζ ∈ {0, 1}`, and gives A the string ζ. On the other hand, if
2 ≤ |S| ≤ G, then B creates a new formal variable ((β

∏
i∈ChQ

αni )η(G−|S|)). It adds the tuple

(((β
∏

i∈ChQ
αni )η(G−|S|)), 2G, ζ) to L for a randomly generated ζ ∈ {0, 1}`, and gives A the

string ζ.

Challenge: On input a challenge subset ChQ ⊆ [N ], B creates a new formal variable y∗ and adds
the tuple (y∗, 2G, ζ) to L for a randomly generated ζ ∈ {0, 1}` and gives A the string ζ.

After a polynomial number of queries, A ultimately produces a guess b∗. Now, B chooses
uniformly at random expt ∈ {real,rand}, as well as values for β, η, αi. Furthermore, it also
chooses a random value p̃rodrand ← Zp.
B can increase ` arbitrarily, thus making strings ζ hard to guess. Therefore, we can assume

without loss of generality that A only makes Mult and Pair queries on strings obtained from B.
The simulation provided by B is perfect unless our choices for the variables β, η, αi, y∗ results

in an equality between values for two values pj ,pk that is not an equality for polynomials. More
precisely the simulation is perfect unless for some j, k the following hold:

◦ ij = ik,

◦ (pj − pk)(β, η, αi, α2
i , . . .) = 0, yet the polynomials pj ,pk are not equal.

Let Fail be the event that these conditions hold for some j, k. We need to bound the probability
that Fail occurs. First, prior to choosing values for all the variables, consider setting

y∗ =

β ∏
i∈ChQ

αni

 η(G−|ChQ|) (17)

as polynomials. We claim that this does not create any new polynomial equalities.

Claim 2. Substituting the formal variable y∗ with the polynomial (β
∏

i∈ChQ
αni )η(G−|ChQ|) does not

create any new polynomial equalities. That is, if pj 6= pk before the substitution, the same is true
after the substitution too.

Before proving Claim 2, we use it to complete the proof of Theorem 7. Notice that each of the
polynomials has degree at most 2G. The Swartz-Zipel lemma then shows that if pj − pk 6= 0, the
probability that the polynomial (pj−pk)(β, η, αi, α2

i , . . .) evaluates to zero is at most 2G/(p−1). This
means that pj ,pk evaluate to the same value with probability at most 2G/(p−1).

Now, let qe, qm, qp, qO be the total number of Encode,Mult,Pair,O queries made by A. Then the
total length of L is at most

|L| ≤ qe + qm + qp + qO + nN + 2.

Therefore, the number of pairs is at most( |L|
2

)
≤ (qe + qm + qp + qO + nN + 2)2

2
.

Therefore, Fail happens with probability at most

(qe + qm + qp + qO + nN + 2)2 · 2G
2(p− 1)
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For polynomials in λ, qe, qm, qp, qO, G, n,N , this is negligible in λ, provided 1/p is negligible, as
desired. It remains to prove Claim 2. Suppose there are two polynomials pj ,pk such that, when we
replace the variable y∗ with p̃rodreal = (β

∏
i∈ChQ

αni )η(G−|ChQ|). This means pj − pk = 0. Consider

expanding pj−pk out into monomials prior to the substitution. First, this expansion must contain a
y∗ term, and this term cannot have been multiplied by other variables (since polynomials involving
y∗ can only exist in the target group G2G). Therefore, we can write pj − pk as

pj − pk =cy∗ (18)

+ poly1

(
β,
{
αi, α

2
i , . . . , α

n−1
i

}
i∈[N ]

)
(19)

+
∑
S∈Q

c2,S

((
β
∏
i∈S

αni

)
η(G−|S|)

)
(20)

+
∑
{i}∈Q

(βαni )

 poly3,i,1

(
{(βαni′)}{i′}∈Q

)
poly3,i,2

(
β,
{
αi′ , α

2
i′ , . . . , α

n−1
i′
}
i′∈[N ]

)
poly3,i,3(η)

 (21)

+ poly4 (η)

[
poly4,i,1

(
{(βαni′)}{i′}∈Q

)
poly4,i,2

(
β,
{
αi′ , α

2
i′ , . . . , α

n−1
i′
}
i′∈[N ]

)] (22)

where,

- c, c2,S are constants,

- poly1 has degree 2G,

- poly3,i,1, poly3,i,2, poly3,i,3 have degrees deg3,i,1,deg3,i,2,deg3,i,3, such that 2deg3,i,1 +deg3,i,2 +
2deg3,i,3 = 2G− 2,

- poly4, poly4,i,1, poly4,i,2 have degrees deg4,deg4,i,1,deg4,i,2, respectively, such that 2deg4 +
2deg4,i,1 + deg4,i,2 = 2G.

If the polynomial pj−pk is non-zero, but substituting y∗ as (β
∏

i∈ChQ
αni )η(G−|ChQ|) makes it zero,

we can conclude the following:

◦ c 6= 0, and

◦ c′ = −c, where, c′ is the co-efficient of y∗ in (Term (19)+Term (20)+Term (21)+Term (22)).

We shall now compute the coefficients contributed by each of Term (19), Term (20), Term (21),

Term (22) to y∗. Firstly, recall that the polynomial y∗ =

(
β
∏

i∈ChQ
αni

)
η(G−|ChQ|) (as per Equa-

tion (17)). We begin by analyzing the ways in which this polynomial can be constructed in each of
the Terms in question, one by one, below.

◦ Observe that none of the arguments of poly1 contains η or η(G−|ChQ|) as a factor. Hence, no
monomial in poly1 can be equal to y∗. Thus, the contribution to the co-efficient of y∗ from
Term (19) is 0.
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◦ Recall that, for every S ∈ Q, S 6= ChQ. Thus, for every S ∈ Q,
(
β
∏
i∈S

αni

)
η(G−|S|) 6= y∗

=

(
β
∏

i∈ChQ
αni

)
η(G−|ChQ|), thus implying that the contribution to the co-efficient of y∗ from

Term (20) also is 0.

◦ Observe that every term in Term (20) contains (βαni ) for some {i} ∈ Q. However, for every
{i} ∈ Q, i 6∈ ChQ. Thus, the contribution to the co-efficient of y∗ from Term (21) also is 0.

◦ Let us begin with poly4,i,1. Observe that every argument in poly4,i,1 contains (βαni′) for some
{i′} ∈ Q. However, for every {i′} ∈ Q, i′ 6∈ ChQ; in other words, for every {i′} ∈ Q, αi′ is
not a factor in y∗. Thus, if deg4,i,1 6= 0, then including a factor of such an αi′ would entail
‘canceling’ it out. However, there is no variable with 1/αi′ as a factor. Hence, we can conclude
that deg4,i,1 = 0.

Now, observe that in Term (22), only poly4 contains η as a factor. Since (G − |ChQ|) is the
degree of η in y∗, the only way to get η(G−|ChQ|) is by multiplying η, (G−|ChQ|) times. Thus,
deg4 ≥ (G− |ChQ|).
Observe that none of the arguments of poly4,i,2 contains αiαj as a factor for any i 6= j. Hence,∏
i∈ChQ

αni can be obtained only by multiplying variables that contain αni as a factor. This

amounts to already using up |ChQ| degree of poly4,i,2. Now consider any i ∈ ChQ. In order
to obtain αni , since no argument contains αni , the only way to obtain it is by multiplying two
variables, say αi and αn−1

i , thus contributing degree 2 per i ∈ ChQ. Thus, to obtain
∏

i∈ChQ
αni

itself, one needs to spend the 2|ChQ| of the available degrees. That is, deg4,i,2 ≥ 2|ChQ|.

Adding up, in order to obtain

( ∏
i∈ChQ

αni

)
η(G−|ChQ|), we have that deg4 ≥ (G − |ChQ|) and

deg4,i,2 ≥ |ChQ|. However, we need to work with the constraint that 2deg4 + 2deg4,i,1 +
deg4,i,2 = 2G. Thus, we have used all of the available 2G degrees. However, we have not yet
taken into account the β factor, but there is no room left to take this factor into account.
Thus, the contribution to the co-efficient of y∗ from Term (22) is 0.

In conclusion, the monomial y∗ did not exist in (Term (19)+Term (20)+Term (21)+Term (22))
before the substitution. Thus, the monomial is not existent in the sum even after the substitution.
Thus, even after substitution, we are left with the monomial cy∗ in the polynomial pj −pk, making
it non-zero, thus leading to a contradiction.

11 Interactive Cryptographic Assumption is Necessary

In this Section, we shall ascertain that an interactive assumption would be necessary in natural
settings to achieve adaptive NIKE even with setup.

11.1 Cryptographic Problems

We recall the formalism of cryptographic problems from [FF13].
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Definition 11 (Cryptographic Problem). A cryptographic problem Π is characterized by four
algorithms, Π = (InsGen,Orcl,Vrfy,Thresh):

InsGen: The instance generator InsGen takes as input the security parameter 1λ and outputs a
problem instance ins. The set of all possible instances output by InsGen is denoted by I.

Orcl: The computationally unbounded and stateful oracle algorithm Orcl takes as input a query
q ∈ {0, 1}∗ and outputs a response resp ∈ {0, 1}∗ or a special symbol ⊥ indicating that q was
not a valid query.

Vrfy: The deterministic verification algorithm Vrfy takes as input a problem instance ins ∈ I and a
candidate solution sol ∈ S. The algorithm outputs b ∈ {0, 1}. We say ins is a valid solution
to instance ins if and only if b = 1.

Thresh: The efficient threshold algorithm Thresh takes as input a problem instance ins and outputs
some sol. The threshold algorithm is a special adversary and as such also has access to Orcl.

We note that the algorithms InsGen,Orcl,Vrfy potentially have access to shared state that persists
for the duration of an experiment.

Definition 12 (Hard Cryptographic Problem). For a cryptographic problem Π = (InsGen,Orcl,Vrfy,Thresh)
and an adversary A we define the following experiment:

Experiment exptΠ
A(λ):

ins← InsGen(1λ)
sol← AOrcl

b← Vrfy(ins, sol)
Output b.

The problem Π is said to be hard if and only if for all probabilistic polynomial-time algorithms
A the following advantage function is negligible in the security parameter λ

AdvΠ
A(λ) = Pr[exptΠ

A(λ)→ 1]− Pr[exptΠ
Thresh(λ)→ 1]

where the probability is taken over the random tapes of InsGen and A.

Remark 3 (Monotone Problem). We shall only consider the natural class of problems, namely,
monotone problems; namely, the ones in which whether any sol for a problem instance is verified to
be a solution or not does not depend on the number of queries made by A to the oracle Orcl. More
specifically, a problem is said to be monotone if and only if for all instances ins ← InsGen(1λ),
all solutions sol ∈ S, all λ ∈ N, and all sequences of queries q1, . . . , qn, the following holds: If
Vrfy(ins, sol) = 1 holds after executing the queries Orcl(q1), . . . ,Orcl(qn) then this already held
before Orcl(q1) was executed.

We shall only consider monotone problems in this work.
Below, we recall certain relevant aspects of the black-box model.

Black-box reductions. An algorithm R is said to be a black-box reduction from a problem Π2 to a
problem Π1 if for any algorithm A solving Π1, algorithm RA solves Π2 thanks to an oracle (a.k.a.
black-box) access to A. Below, we provide more details about our black-box model. Namely, we
recall what is meant by “oracle access” and give a characterization of the classes of algorithms A we
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will consider. In other words, we specify which algorithms are transformed by R and how R can
interact with them.
Oracle access. A black-box access essentially means that R is allowed to use A as a subroutine
without taking advantage of its internal structure (code). R can only provide the inputs to A and
observe the resulting outputs. If A has access to an oracle, the corresponding queries must be
answered by R. Below, we specify what interactions R can perform with A.

We allow R to rewind A with a previously used random tape. Our approach is formalized by
restricting the reductionR to sequentially execute some of the following operations when interacting
with A:

- [Launch/Relaunch.] Any previously launched execution of A is aborted. R launches a new
execution of A with a fresh random tape on an input of its choice.

- [Rewind.] Any previously launched execution of A is aborted. R restarts A with a previously
used random tape and an input of its choice.

- [Stop.] R definitely stops the interaction with A.

We shall reserve the term “stop” to only interactions of R with A. For other interactions such as
those between R and the external challenger of Π, we use the term “abort”.

Definition 13 (Black-box Reductions). A ppt algorithmR is said to be a black-box (εA, εR, τA, τR)-
reduction from problem Π1 to problem Π2, if given an oracle access to a ppt algorithm A that solves
Π2 with probability εA and time complexity τA, R solves Π1 with probability εR and time com-
plexity τR.

Admissible Reductions. We shall rule out a class of black-box reductions, that we refer to as
‘admissible reductions’. Intuitively, in some respect, we wish to fix the common key derived by
secret values that the reduction presents to the adversary when the adversary makes Ext queries.
This is so that we can rewind R and obtain some trapdoor information such that this trapdoor
can be used in simulating A in the main thread; fixing the common key somehow will keep R from
detecting that we have used trapdoor derived from rewinding R. WE explain this in detail in the
ensuing.

More specifically, an admissible reduction would be such that the parameters and public values
(for honest parties) generated by the reduction (information-theoretically) determine the common
keys for every subset such that the following holds: For any set of secret values corresponding to the
public values, if all the secret values satisfy the correctness property w.r.t. one another, as formalized
in Equation 1, then they always derive the unique common key that is determined by the parameters
and the public values; let us refer to such secret values as ‘valid secret values’. Furthermore, the
secret values of honest parties provided by an admissible reduction to the adversary are valid
secret values. We shall define the class of admissible reductions more formally in the ensuing. This
requirement on the reductions can be relaxed in multiple ways and still have our impossibility result
apply. We shall discuss the relaxations later in the Section. However, for a cleaner presentation of
the proof, we shall stick to the following class of admissible reductions.

Definition 14 (Admissible Reductions). A reduction R from an adaptively-secure non-interactive
key exchange protocol aNIKE to a computational problem Π is said to be admissible if for every
parameters params and public values {p̃vi}i∈[N ] (for honest parties) on which it runs an adversary
satisfy the following properties.
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◦ For every params and {p̃vi}i∈[N ] output by R, there exists a unique common key for every set
of honest parties S such that the following holds: For every set6 of secret values corresponding
to the public values of the honest parties, where, the secret values satisfy correctness w.r.t.
one other (cf. Equation 1), the common key derived using these secret values is the unique
common key. Such secret values are referred to as ‘valid secret values’.

◦ For every public value p̃vi output by the reduction for an ith honest party, the corresponding
secret-value s̃vi revealed by the reduction (upon every query Ext(i)) is a valid secret value.

Theorem 8. Let Π = (InsGen,Orcl,Vrfy,Thresh) be a hard cryptographic problem. Let aNIKE be
an adaptively-secure N(λ)-party non-interactive key exchange protocol. If there exists an admissible
reduction R that, for infinitely many λ ∈ N, black-box (εA, εR, τA, τR)-reduces breaking adaptive
security of aNIKE to solving Π such that the total number of relaunches (or rounds) of A executed
by R is r, the set of queries made by R to Orcl in an ith round with A is Qi, then there exists a
ppt machine B that solves Π with probability εΠ :=

∑
ins∈InsGen

εins Pr[ins], where, εins = ε
(1)
insηins +

ε
(2)
ins(1 − ηins)

(
1−

r∑
i=1

η
(N−G)−|Qi|
ins

)
, εR =

∑
ins∈InsGen

(
ε

(1)
insηins + ε

(2)
ins(1− ηins)

)
Pr[ins], for some

0 ≤ ε(1)
ins, ε

(2)
ins, ηins ≤ 1.

Remark 4 (Implication of Theorem 8). Intuitively, Theorem 8 asserts that in order to have a
reduction to a hard problem the reduction R needs to make queries at least of the order of N −G
in at least one of the rounds.

Proof of Theorem 8. We shall first provide an intuition for the proof.
Intuition. Let R be an admissible reduction. Let A be an adversary that runs in time τA and
breaks the adaptive security of aNIKE with probability εA. Then we show existence of a meta-
reduction B that given just an oracle access to R will break the hardness of Π with polynomial
probability, if εA is also polynomial (in the security parameter). We shall present this proof of
contradiction for a bound G ∈ ω(logN).

We shall first prove the theorem for the case when the reduction runs only a single copy of
A without rewinding. Therein, we shall first prove that before the reduction gives params to the
adversary, it needs to have received the problem instance from InsGen of Π. This intuitively follows
from the following rationale. Recall that the challenge common key A is challenged upon is already
determined by params and public values. If R receives the problem instance ins after giving params
and public values to A, then the challenge common key is distributed independently of ins. Thus,
intuitively, distinguishing the challenge common key from random should not facilitate the reduction
in solving ins.

We shall next treat the case when the reduction launches the adversary just once and does not
rewind it, like before, but receives problem instance from InsGen after it provides params and public
values to the adversary. In this execution, we shall recognize the ‘slots’ at which it is ‘safe’ to rewind
R without risking rewinding the external challenger of problem Π. Then, we shall show that by
rewinding at these slots, one can query the reduction for some information that suffices to break the
adaptive security of aNIKE in the main thread. In particular, in the rewound thread we can have
the adversary A query R to reveal a secret value s̃vi corresponding to the public value p̃vi for an
i ∈ ChQ, where, ChQ is the set of parties on which the adversary has chosen to be challenged upon

6Note that it might be possible that a NIKE protocol is such that there are multiple valid secret values for a public
value.
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in the main thread. Recall that, since the reduction is admissible, there is a unique common key for
ChQ; also, the secret values, for public values of honest parties, revealed by the reduction are valid
– i.e., the common keys recovered using these secret values are the ones information-theoretically
determined by the parameters and the public values. Hence, without being ‘detected’ by R that
we are using the value received by R from the rewound thread in the main thread, we can solve
the aNIKE challenge in the main thread. By considering an adversary that queries R to reveal the
secret values of (N −G) ∈ (N − ω(log(N))) public values chosen uniformly random depending on
the given parameters and the set of public keys, we can solve Π with probability ≥ εΠ.

Then, we show how to deal with an admissible reduction that might rewind the adversary. We
shall show that by rewinding, the reduction can derive no further advantage. This is because, even
when rewound the adversary would query the reduction with the same set of queries as in the
thread from which the reduction has rewound A. Thus, rewinding will not help R. Furthermore,
in the threads where the meta-reduction rewinds R, the meta-reduction is not required to answer
the challenge queries since the trapdoor information that it hopes to get from the rewound thread
would most definitely be obtained before it reaches the stage where it needs to answer the challenge
query; thus, it can simply abort the interaction in the rewound threads before the challenge phase.
A further detailed discussion will appear later in the proof.

Next, we shall deal with the case when R, besides rewinding A (by running A with the same
random coins but with different inputs), also relaunches A by running it with different random
coins and different inputs. The idea is to simply maintain a list of queries queried by A in any
round for specific random coins. Then, when rewound with the same coins and same parameters
and public values, A makes the same queries as before. If rewound with the same coins but with
different parameters or public values, then A queries with a freshly chosen random set of indices of
the public values. When relaunched with distinct coins, we would again query the reduction with
a freshly chosen random set of indices of the public values. Observe that our final goal is to build
a meta-reduction that can simulate A to R. Even when the reduction rewinds or relaunches the
adversary, the meta-reduction will still be able to simulate the adversary since it would only need
to query on the same queries it has already queried for any particular parameters and set of public
values. Now, we identify slots that are safe to rewind just as in the previous case of rewinding – we
identify such slots for every round like in the case of rewinding. More details would follow later in
the proof.

We shall now build upon the above intuition and provide a formal proof.
Formal Proof.
Case 1 – Single round (i.e., no relaunching), no rewinding. We shall begin with the case
that the reduction runs A only once. Herein, we shall consider two cases.
Case 1a – ins is independent of params, {p̃vi}. Firstly, we shall focus on the following simple
case: R gives the adversary params, and {p̃vi}i∈S for some set S ⊆ [N ] before it receives a Π
problem instance ins from the external challenger. Then, it gives the rest of the public values p̃vi.
If the set of parties ChQ that the adversary wishes to be challenged upon is such that ChQ 6⊆ S,
then the reduction simply stops interacting with the adversary.

For this case, we shall first build an ideal adversary Aideal which breaks the security of aNIKE
with probability εA. Then, we shall construct a meta-reduction B that simulates Aideal to R.
Note that one cannot naïvely follow the traditional way of solving such problem, namely, compute
the response to the challenge ahead of time and give it as a succinct “advice” to the adversary.
This subtlety is because, since we are in the adaptive setting, the challenge set of parties is not
known ahead of time before the reduction gives the adversary the instance ins; moreover, there are
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exponentially-many possible challenge sets ChQ of parties. This is where we employ admissibility
of the reduction R. The idea would be to compute, not the common key, but a valid secret value
for every p̃vi for i ∈ S, before ins is given to R. We are assured from the admissibility property
that the common key derived using valid secret values is unique. Upon the meta-reduction being
given the challenge key, it can then match it with the common key it can compute using the secret
values received as advice, and distinguish the actual key from random. Given such an adversary,
by the hypothesis of the theorem, the reduction R solves Π with probability εR; hence, so does B.
Since the meta-reduction runs in polynomial time, it is valid to regard it as a ppt adversary that
solves Π with some probability. Details follow.
Ideal Adversary Aideal. The ideal adversary Aideal that breaks the security of aNIKE with probability
εA is defined as follows.

- Upon given params, Aideal queries to register N -many honest parties. Let the public values
output by R be {p̃vi}i∈[N ].

- Aideal chooses a random set of parties ChQ← 2[N ], such that |ChQ| ≤ G.

- Aideal queries ChQ as the challenge set of parties.

- Aideal tosses a coin that takes 1 with probability εA and 0 otherwise.

- Upon receiving k∗, if the coin-toss outcome has resulted in a 1, then output 1 if k∗ =
KeyDerive(params,ChQ, (pvj)j∈ChQ, i, svi) for some arbitrary i ∈ ChQ and s̃vi being a valid
secret value, and 0 otherwise. If the coin-toss outcome has resulted in a 0, then output a
random bit.

This completes the description of Aideal. Observe that Aideal breaks the security of aNIKE with
probability εA. Thus, from the hypothesis, the reduction R, when given a black-box access to Aideal,
should solve the problem Π with probability εR. We now describe an algorithm B that interacts
with R and simulates Aideal to R.
Ideal Adversary Aideal. The ideal adversary Aideal that breaks the security of aNIKE with probability
εA is defined as follows.
Meta-reduction B. B is described as follows.

- Upon R invoking the simulated adversary with params, query R to register N -many honest
parties.

- Let R respond via {p̃vi}i∈S for some set S ⊆ [N ], before it requests to receive ins.

- Run in exponential time and compute a valid secret value s̃vi corresponding to p̃vi for every
i ∈ S.

- Upon the reduction requesting for the problem instance of Π, relay its request to the external
challenger to receive ins.

- Upon giving ins to R, let R proceed to present the rest of the public values.

- Choose a random set of parties ChQ← 2[N ], such that |ChQ| ≤ G. Abort interaction with the
external challenger of Π if ChQ 6⊆ S. Otherwise proceed as follows.

- Compute kreal := KeyDerive(params,ChQ, (p̃vj)j∈ChQ, i, s̃vi) for some arbitrary i ∈ ChQ.
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- Query the reduction with ChQ. Let the response from R be k∗.

- Toss a coin that takes 1 with probability εA and 0 otherwise.

- If the coin-toss outcome has resulted in a 1, then output 1 if k∗ = kreal for some arbitrary
i ∈ ChQ and 0 otherwise. If the coin-toss outcome has resulted in a 0, then output a random
bit to R.

- Finally, output whatever R outputs.

Analysis of B. Let Q be the set of queries made by R to the external oracle Orcl. Observe
that from the admissibility of the reduction, params, {p̃vi}i∈S information-theoretically determine
the common key derived for ChQ (under the interesting case of ChQ ⊆ S). Thus, B is able to
compute the actual common key, namely, kreal. Finally, when challenged to distinguish this key
from random, B can do so. Since, by definition, it distinguishes with probability εA, we have
that B identically simulates Aideal, conditioned on Aideal querying for ChQ that satisfies ChQ ⊆ S.
Furthermore, by supposition, R aborts the interaction with the external challenger when ChQ 6⊆ S.
Thus, the view of the external challenger when it interacts with RAideal is identical to that when it
interacts with BR. Also, by supposition, recall that, when given oracle access to Aideal, R solves
Π with probability εR. Since B simply outputs the output of R, we have that B also solves Π

with probability εR by running in polynomial time upon given the instance. Since ε(1)
R + ε

(2)
R =

εR ≥ ε
(1)
R + ε

(2)
R

(
1−

(
1− ε(2)

R

)(N−G)−|Q|
)

= εΠ, where G ∈ ω(logN), we meet the bounds of the

theorem.
Case 1b – params, {p̃vi} are constructed based on ins. We now consider the case when the
reduction first receives ins from the external challenger and then invokes the adversary with params.
(This can be easily generalized to the case where the reduction first sends the parameters, and some
public values {p̃vi}i∈S before receiving ins and sends rest of the public values after receiving ins;
furthermore, the reduction may not stop interacting with the adversary if ChQ 6⊆ S.) We shall first
build an ideal adversary that we shall later show how to simulate.
Ideal Adversary Aideal. The ideal adversary Aideal that breaks the security of aNIKE with probability
εA is defined as follows.

- Upon given params, Aideal queries to register N -many honest parties. Let the public values
output by R be {p̃vi}i∈[N ].

- Aideal chooses a random sequence (i1, . . . , iN−G)) of N − G) distinct parties and queries for
the secret values of these honest parties in the same sequence. Let ChQ ⊂ [N ] be the thus
chosen set of parties.

- Aideal then queries ChQ as the challenge set of parties, where ChQ is defined as [N ] \ ChQ.

- Aideal tosses a coin that takes 1 with probability εA and 0 otherwise.

- Upon receiving k∗, if the coin-toss outcome has resulted in a 1, then output 1 if k∗ =
KeyDerive(params,ChQ, (pvj)j∈ChQ, i, s̃vi) for some i ∈ ChQ and s̃vi being a valid secret value,
and 0 otherwise. If the coin-toss outcome has resulted in a 0, then output a random bit.

This completes the description of Aideal. Observe that Aideal breaks the security of aNIKE with
probability εA. Thus, from the hypothesis, the reduction R, when given a black-box access to such
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an adversary, should solve the problem Π with probability εR. We now describe an algorithm B
that interacts with R and simulates Aideal to R.

Before we describe B, we shall first set some terminologies.

Slot: In an execution of an adversary by R, we shall consider the pair of messages – a query made
by the adversary q and the response resp given by R. We call this pair of messages a ‘slot’.
We shall identify this slot by the sequence of query-response pairs till then.

Safe slot: In an execution of an adversary by R, we shall call a slot s = (q, resp) ‘safe’, if after
the adversary presents the query q and before it receives the response resp to q, R does not
send any message to the external challenger.

Meta-reduction B. B is described as follows.

- Upon R invoking the adversary with params, query R to register N -many honest parties. Let
the public values output by R be {p̃vi}i∈[N ].

- Choose a random sequence (i1, . . . , iN−G) of N − G parties. Let ChQ be the set of parties
thus chosen. Define ChQ as [N ] \ ChQ.

- Query R to reveal the secret values of the N−G parties one by one as per the above sequence.
As soon as a safe slot ((Ext(i1), s̃vi1), . . . , (Ext(ij), s̃vij )) is encountered, choose a random
i∗ ← ChQ and rewind R to the point after ((Ext(i1), s̃vi1), . . . , (Ext(ij−1), s̃vij−1)) and query
with Ext(i∗). If the reduction does not abort, then let s̃vi∗ as a response. Otherwise, continue
to execute the main thread.

- If R aborts interaction with the simulated Aideal at any point in time, then output whatever
R outputs. Otherwise, upon completing all the queries (Ext(i1), . . . ,Ext(iN−G)) and after
having received the corresponding responses, present ChQ as the challenge query. Let k∗ be
the received value.

- If there exit does not exist any rewound slot ((Ext(i1), s̃vi1), . . . , (Ext(i∗), s̃vi∗)) where s̃vi∗ 6=⊥,
then output a random bit toR. Otherwise, compute kreal as KeyDerive(params,ChQ, (p̃vj)j∈ChQ, i

∗, s̃vi∗).

- Query the reduction with ChQ, where ChQ is defined as [N ] \ ChQ. Let the response from R
be k∗.

- Toss a coin that takes 1 with probability εA and 0 otherwise.

- If the coin toss results in 1, then check if k∗ ?
= kreal. If yes, then output 1, and 0 otherwise.

On the other hand, if the coin toss is 0, then output a random bit to R.

- Finally, output whatever R outputs.

Analysis of B. Recall that RAideal denotes the execution of the reduction with the ideal adversary,
and RB denotes the execution of the reduction with the adversary simulated by B. We begin by
defining the following events.

Abort: Abort is the event that R aborts an interaction Aideal before it responds to the challenge
query of Aideal.
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E(1)
ins: E

(1)
ins is the event that the reduction R solves the instance ins conditioned on R aborting its

interaction with Aideal. Define ε(1)
ins := Pr[exptΠ

RAideal
(λ) = 1|Abort ∧ ins].

E(2)
ins: E

(2)
ins is the event that the reduction R solves the instance ins conditioned on R not aborting

its interaction with Aideal. Define ε(2)
ins := Pr[exptΠ

RAideal
(λ) = 1|¬Abort ∧ ins].

Furthermore, define ηins := Pr[Abort|ins].
We have:

Pr[exptΠ
RAideal

(λ) = 1|ins]

= Pr[exptΠ
RAideal

(λ) = 1|Abort ∧ ins] Pr[Abort|ins] + Pr[exptΠ
RAideal

(λ) = 1|¬Abort ∧ ins] Pr[¬Abort|ins]

= ε
(1)
insηins + ε

(2)
ins(1− ηins)

From above, we get:

Pr[RAideal(ins)→ sol : Vrfy(ins, sol)]− Pr[RB(ins)→ sol : Vrfy(ins, sol)]

≤ Pr[exptΠ
RAideal

(λ) = 1|¬Abort ∧ ins] Pr[¬Abort|ins] · (Pr[Abort|ins])(N−G)−|Q|

= ε
(2)
ins(1− ηins)η

(N−G)−|Q|
ins

Overall, we gather that the success probability of RB for an instance ins is:

εins = Pr[RB(ins)→ sol : Vrfy(ins, sol)]

≥ Pr[RAideal(ins)→ sol : Vrfy(ins, sol)]− ε(2)
ins(1− ηins)η

(N−G)−|Q|
ins

= ε
(1)
insηins + ε

(2)
ins(1− ηins)− ε

(2)
ins(1− ηins)η

(N−G)−|Q|
ins

= ε
(1)
insηins + ε

(2)
ins(1− ηins)

(
1− η(N−G)−|Q|

ins

)
Finally, weighing the above probability with that of the occurrence of ins gives us that εΠ =∑

ins∈InsGen
εins Pr[ins]. This establishes the theorem for the current case.

Case 2 – Rewinding/Relaunching. We shall next move to the case when the adversary is
rewound for the same/multiple initial values namely, params, {p̃vi}i∈[N ], and the adversary’s random
coins. When rewound for the same initial values, the adversary is rewound for different responses
to its queries. For instance, if a slot ((Ext(i1), s̃vi1), . . . , (Ext(ij), s̃vij )) appears in the main thread,
the rewound thread corresponds to running the adversary with ((Ext(i1), s̃vi1), . . . , (Ext(ij), s̃v

′
ij ))

where s̃v′ij 6= s̃vij . The ideal adversary for this case is similar to that for Case 1; we shall highlight
the differences here below.
Case 2a – ins is independent of params, {p̃vi}, only rewinding. Observe that in the case of
single execution, roughly speaking, the simulation of the ideal adversary works regardless of whether
the adversary was rewound or not. Herein too, the ideal adversary would proceed in the same way.
Moreover, the meta-reduction simply ran in exponential time to compute the secret values before
the reduction continued any further interaction with the adversary. The meta-reduction in this case
would also proceed in the same way.
Case 2b – params, {p̃vi} are constructed based on ins. The ideal adversary and the meta-
reduction B in this case are similar to the ones in Case 1b, except for a few subtleties that we
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shall explore shortly. The ideal adversary is identical to the one in Case 1b. A crucial point that
needs attention in this case is that the sequence of Ext queries by Aideal is only a function of the
parameters and the public values; in particular, this sequence does not depend on the responses to
previous Ext queries made by Aideal. This implies that the set to parties on which Aideal wishes to
be challenged upon does not vary when R rewinds Aideal. This in turn implies that it suffices if B
(somehow) obtains s̃vi∗ (for i∗ ∈ ChQ) in any of the rewound threads of execution of (simulated)
Aideal by R; s̃vi∗ would allow the simulated Aideal to compute kreal and complete every thread that
is not stopped by R.

Another point of cruciality concerns rewinding R itself by the meta-reduction B; it is pivotal
to bear in mind the exact reason why our meta-reduction needs to rewind R, (lest any overkill will
lead to a more complex proof or even disallow us from obtaining a full proof). Our meta-reduction
rewinds R in a hope to obtain s̃vi∗ for just any single i∗ ∈ ChQ. Note thus, that it is never the case
that the meta-reduction needs to answer any challenge query in the threads corresponding to R
being rewound; this is because, in those threads, by the time Aideal reaches a point where it needs
to answer

Now we shall see the difference in the meta-reduction when compared to Case 1b: The only differ-
ence would be in its behavior when the adversary is rewound. Observe that the ideal adversary when
rewound presents the same queries. Thus, B simulates the ideal adversary in the rewound threads
also by presenting the same sequence of queries as in the main thread. The safe slot for which the
meta-reduction would rewind the reduction is redefined as follows: ((Ext(i1), s̃vi1), . . . , (Ext(ij), s̃vij ))
is a safe slot if R does not query the external oracle Orcl after the adversary sends Ext(ij) and before
R responds with s̃vj 6=⊥, and if the adversary (in any of the executions maintained by R) has not
queried Ext(ij) before (This is because, our ideal adversary decides on the sequence of Ext queries
as a function of the initial parameters; once the parameters are fixed, and if the simulated adver-
sary reveals to the reduction a part of the sequence in one thread, it cannot change the sequence
in another thread as the reduction then clearly distinguish the simulated adversary from the ideal
one). Upon encountering such a safe slot, B rewinds R to present another query Ext(i∗), where
i∗ ← ChQ. If R aborts this thread, then B simply switches back to the main thread and continues
the interaction with R. Otherwise, it saves the response as s̃vi∗ . Finally, B presents ChQ as the
challenge set and derives kreal (if any of the rewindings have resulted in a non-aborting response
from R) and responds to the challenge as before. Before we analyze the success probability of B in
solving the given instance of problem Π, we shall treat the even more general case when R not only
rewinds the adversary but relaunches it. After we specify the modifications to B for this general
case, we shall analyze B.
Case 2c – params, {p̃vi} are constructed based on ins, rewinding and relaunching. Fol-
lowing [KK12], we shall refer to every execution of Aideal with distinct params and {p̃vi}i∈[N ] as
a ‘round ’. The ideal adversary would remain the same as before in Case 2b: upon given params
and {p̃vi}i∈[N ], it would freshly choose a random sequence of Ext(·) queries and finally answer the
challenge query correctly with probability εA and randomly otherwise. The corresponding meta-
reduction would simulate the ideal adversary as follows. Instead of choosing the random sequences
of queries uniformly at random for every new round, B chooses a random key for a PRF and then
chooses the pseudorandom sequence depending on the PRF output for params, {p̃vi}i∈[N ] as inputs.
Then, in any execution of the adversary by R for a particular params, {p̃vi}i∈[N ], the meta-reduction
would use the same sequence except for the following case: when meta-reduction reaches a safe slot,
which is just as defined for Case 2b, it rewinds R and presents a different query like in Case 2b.
Finally, the response to the challenge query for every relaunch is computed also the same way as in
Case 2b.
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Analysis of B. The analysis is much similar to that of Case 1b. Like in Case 1b, we shall begin by
(re)defining the following events.

Abort: Abort is the event that the reduction aborts the interaction with Aideal in all the relaunched
rounds.

E(1)
ins: E

(1)
ins is the event that the reduction R solves the instance ins conditioned on R aborting

the interaction with Aideal in all the relaunched rounds. Define ε(1)
ins := Pr[exptΠ

RAideal
(λ) =

1|Abort ∧ ins].

E(2)
ins: E

(2)
ins is the event that the reduction R solves the instance ins conditioned on R not aborting

all the interaction with Aideal. Define ε(2)
ins := Pr[exptΠ

RAideal
(λ) = 1|¬Abort ∧ ins].

Furthermore, define ηins := Pr[Abort|ins].
Just like in Case 1b, we have:

Pr[exptΠ
RAideal

(λ) = 1|ins]

= Pr[exptΠ
RAideal

(λ) = 1|Abort ∧ ins] Pr[Abort|ins] + Pr[exptΠ
RAideal

(λ) = 1|¬Abort ∧ ins] Pr[¬Abort|ins]

= ε
(1)
insηins + ε

(2)
ins(1− ηins)

Let Qi be the set of queries made by R to the external oracle Orcl during the ith round. With
r denoting the total number of rounds, from above, we get:

Pr[RAideal(ins)→ sol : Vrfy(ins, sol)]− Pr[RB(ins)→ sol : Vrfy(ins, sol)]

≤ Pr[exptΠ
RAideal

(λ) = 1|¬Abort ∧ ins] Pr[¬Abort|ins] ·
r∑
i=1

(Pr[Abort|ins])(N−G)−|Qi|

= ε
(2)
ins(1− ηins)

r∑
i=1

η
(N−G)−|Qi|
ins

Whence, the success probability of RB for an instance ins is:

εins = Pr[RB(ins)→ sol : Vrfy(ins, sol)]

≥ Pr[RAideal(ins)→ sol : Vrfy(ins, sol)]− ε(2)
ins(1− ηins)

r∑
i=1

η
(N−G)−|Qi|
ins

= ε
(1)
insηins + ε

(2)
ins(1− ηins)− ε

(2)
ins(1− ηins)

r∑
i=1

η
(N−G)−|Qi|
ins

= ε
(1)
insηins + ε

(2)
ins(1− ηins)

(
1−

r∑
i=1

η
(N−G)−|Qi|
ins

)

Finally, accounting the success for every ins as per the probability of occurrence of ins, we
have, εΠ =

∑
ins∈InsGen

εins Pr[ins]. This establishes the theorem for the generic case too.
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