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Abstract

There is a large body of work on using noisy communication channels for realizing different crypto-
graphic tasks. In particular, it is known that secure message transmission can be achieved uncondition-
ally using only one-way communication from the sender to the receiver. In contrast, known solutions
for more general secure computation tasks inherently require interaction, even when the entire input
originates from the sender.

We initiate a general study of cryptographic protocols over noisy channels in a setting where only
one party speaks. In this setting, we show that the landscape of what a channel is useful for is much
richer. Concretely, we obtain the following results.

• Relationships between channels. The binary erasure channel (BEC) and the binary symmetric
channel (BSC), which are known to be securely reducible to each other in the interactive setting,
turn out to be qualitatively different in the setting of one-way communication. In particular, a
BEC cannot be implemented from a BSC, and while the erasure probability of a BEC can be
manipulated in both directions, the crossover probability of a BSC can only be manipulated in one
direction.

• Zero-knowledge proofs and secure computation of deterministic functions. One-way commu-
nication over BEC or BSC is sufficient for securely realizing any deterministic (possibly reactive)
functionality which takes its inputs from a sender and delivers its outputs to a receiver. This pro-
vides the first truly non-interactive solutions to the problem of zero-knowledge proofs.

• Secure computation of randomized functions. One-way communication over BEC or BSC can-
not be used for realizing general randomized functionalities which take input from a sender and
deliver output to a receiver. On the other hand, one-way communication over other natural chan-
nels, such as bursty erasure channels, can be used to realize such functionalities. This type of
protocols can be used for distributing certified cryptographic keys without revealing the keys to
the certification authority.
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1 Introduction

The seminal work of Wyner [Wyn75] demonstrated the usefulness of noise for secure communication. Since
then, there has been a large body of work on basing various cryptographic primitives, such as key agreement
and commitment [BBCM95, BBR88, Mau91, DKS99, WNI03, Wul09, RTWW11], on different types of
noisy communication channels.

In 1988, Crépeau and Kilian [CK88] showed that noise in a communication channel can be used to
realize essentially everything a cryptographer could wish for. In particular, they showed that any non-
trivial binary-symmetric channel (BSC) can be used to realize oblivious transfer (OT) which is sufficient
for realizing two-party secure computation. (More efficient construction were later considered in [KM01,
SW02, IKO+11b].) Finally, Crépeau, Morozov and Wolf [CMW04] generalized these results to arbitrary
discrete memory-less channels. Other results towards characterizing the types of channels on which OT can
be based appeared in [Kil88, DKS99, DFMS04, Wul07, Wul09].

Following the work of Crépeau and Kilian [CK88], the entire body of research on secure two-party
computation over noisy channels requires parties to interact. In contrast, the present paper considers cryp-
tographic protocols which only use one-way communication, namely ones in which only one party speaks.
There has been a considerable amount of work on realizing information-theoretic secure message trans-
mission in this setting. These works are motivated not only by the goal of achieving information-theoretic
security, but also by the goal of efficiency; see [BTV12] for discussion. Our goal is to extend this study to
more general cryptographic tasks, including useful special cases of secure two-party computation in which
the input originates from only one party.

1.1 Our Model

We model a channel as an ideal functionality C. This is done in order to capture the security properties of
the channel in a clean way and in order to facilitate the use of composition theorems. A channel provides a
communication medium between a sender and a receiver. The sender can invoke the channel C on an input
of its choice. The channel “based on its nature” processes the input and outputs the processed value to the
receiver. The correctness and secrecy requirements of a channel and the protocols we build on top of it can
be specified in terms of UC security. For example, consider a binary erasure channel (BEC) parameterized
by a probability p ∈ (0, 1). For this channel, the sender inputs a bit x ∈ {0, 1} and the channel outputs (for
the receiver) x with a probability p and ⊥ with a probability 1 − p. 1 Even for this basic channel, stating
the correctness and security properties is non-trivial. Correctness requires that if the sender sends x then
the receiver outputs either x or ⊥ with the right probability distribution. Security is a bit more involved; it
requires that no malicious sender can figure out whether the receiver actually received the sent bit or not, and
that a malicious receiver does not learn any partial information about the sent bit in the case of an erasure.

In this work, we consider various such channels. Two other channels that would be of great interest
to us are the binary symmetric channel (BSC) and the random oblivious transfer (ROT) channel. A BSC
is parameterized by a probability p ∈ (1

2 , 1). For this channel, the sent bit is transmitted correctly with
probability p and is flipped with probability 1 − p. An ROT channel takes as input two strings m0 and m1

from the sender and outputs either (m0,⊥) or (⊥,m1) to the receiver, with equal probability.
When considering protocols built on top of such channels, we distinguish between the weaker semi-

honest model, where the sender follows the protocol but tries to learn information about the receiver’s
output from its random coins, and the malicious model, where the sender may send arbitrary information
over the channel. When the sender follows the protocol, the receiver’s output should be as specified by the
functionality. When the sender deviates from the protocol, the security requirement uses the standard real-
ideal paradigm, asserting that the sender’s strategy can be simulated by a distribution over honest strategies.

1In the literature, p sometimes stands for the error probability, while in our paper it is the probability of the “no noise” event.
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Figure 1: Relationships among different kinds of channels and their applications. Solid arrows are used to
denote a positive reduction, i.e. A → B implies that B can be constructed given A. On the other hand,
dashed arrows indicate negative results, i.e. A 99K B implies that B cannot be constructed given A. Solid
self-edge of BEC indicates that the transmission probability of a BEC can be manipulated in both directions.
On the other hand, the solid and dashed self-edges of BSC respectively indicate that the probability of correct
transmission of a BSC can be diminished (and brought closer to 1

2 ) but cannot be amplified.

It is important to note, however, that in this case the standard definition of “security with abort” also allows
the sender to make the protocol fail, as long as the receiver can detect this failure. By default, the term
“secure” refers to the malicious model, though most of our negative results apply also to the semi-honest
model.

1.2 Our Results

We initiate a general study of one-way secure computation (OWSC) protocols over noisy channels in a
setting where only one party speaks. Surprisingly, the one-way setting is strikingly different from the in-
teractive setting. In the interactive setting, all finite channels are either trivial, equivalent to secure message
transmission, or equivalent to oblivious transfer. On the other hand, in the setting of OWSC, the landscape of
what a channel is useful for is much richer. Specifically, we obtain the following results. All the implications
have been summarized in Figure 1.

• Relationships between channels. Binary erasure channel (BEC) and binary symmetric channel
(BSC), which are known to be securely reducible to each other in the interactive setting, turn out
to be qualitatively very different in the setting of one-way communication. In particular, we show that
a BEC cannot be implemented given a BSC. Also, somewhat surprisingly, we show that while the era-
sure probability of a BEC can be manipulated in both directions the probability of correct transmission
of a BSC can only be manipulated in one direction.

• Deterministic functions. We show that both BEC and and BSC are sufficient for securely realizing
any deterministic (possibly reactive) functionality that takes input from a sender and delivers its output
to a receiver with only one-way communication. This provides the first truly non-interactive solution
to the problem of zero-knowledge. We extend our results to the Generalized Erasure Channel (GEC)
which is a generalization of BEC (see Section 4 for formal definition).

2



• Randomized functions. We show that neither BEC nor BSC can be used (even assuming compu-
tational assumptions) for the task of realizing randomized functionalities which take input from a
sender and deliver output to a receiver, in the setting of one-way communication. Nonetheless, one-
way communications over natural channels, such as bursty erasure channels, can be used to realize
such functionalities. This result is obtained by first constructing a random oblivious-transfer channel
(ROT) and building on the techniques from [IPS08, IKO+11a]. This provides the first non-trivial
feasibility result for secure-computation in a setting where only one party speaks.

1.3 Applications

OWSC both for deterministic and randomized functionalities enable a number of applications for which
there are no known solutions.

Truly non-interactive zero-knowledge. Non-interactive zero-knowledge proof systems (NIZKs) [BFM90,
FLS99] are a fundamental tool in cryptography with widespread applications. However, all known construc-
tions rely on a common random string (or a random oracle)2 and inherently fail to achieve useful features
such as non-transferability or deniability [Pas03]. OWSC for deterministic functions provides the first truly
non-interactive solution to the problem of zero-knowledge. This solution does not rely on a shared string
between parties or a random oracle and achieves non-transferability and deniability properties. Furthermore,
this solution achieves information theoretic and composable security.

Oblivious certification of cryptographic keys. Public-key cryptography relies on the existence of certi-
fication authorities (like Verisign) who sign the public keys of different parties. All known implementations
of this certification procedure rely on interaction. Our OWSC for randomized functionalities provides for
the first candidate to realize this procedure with just one-way communication. More specifically, our pro-
tocol allows the certification authority to send a public-key secret-key pair along with a certificate on the
public key with just one-way communication. We stress that in this setting the certification authority itself
does not learn the secret key of the recipient party, as the randomness used in its generation is derived from
the channel. However, if the certificate authority deviates from the protocol, the recipient may detect failure
rather than output a pair of keys.

Fair puzzle distribution. Consider a Sudoku Puzzle competition where the organizer of the competition
would like to generate signed puzzles for all the participants. However the participants do not trust the
organizer and would like their challenge Sudoku puzzles to be of the same difficulty. More specifically,
we would like to have a mechanism that allows the competition organizer to provide independent puzzles
of a pre-specified difficulty level (along with a signature on this puzzle) to each of the participants. The
participants should be assured not only that the puzzles were generated independently from the correct
distribution, but also that the organizers do not have an edge in solving the puzzles they generated (e.g., by
generating random solved puzzles). There are no known solutions for this problem in a setting with just
one-way communication. Our OWSC protocol for randomized functions gives the first such solution.

2 Preliminaries

Let λ denote a security parameter. We say that a function is negligible in λ if it is asymptotically smaller
than the inverse of any fixed polynomial in λ. Otherwise, the function is said to be non-negligible in λ. We

2The result of Barak and Pass [BP04] is an exception to this. However they only achieve a weaker notion where security is only
guaranteed against uniform provers. We, on the other hand, are interested in the standard notion of zero-knowledge.
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say that an event happens with overwhelming probability if it happens with probability p(λ) = 1 − ν(λ),
where ν(λ) is a negligible function in λ. We use [n] to denote the set {1, . . . , n}.

Monotone Sets. Let X1, X2 . . . Xn be independent Bernoulli variables with Pr[Xi = 1] = pi. We define
Qn = {0, 1}n (the n-cube) and identify each element a ∈ Qn with the corresponding subset of [n]; i.e.,
{i | ai = 1}. We define a probability measure Pr on Qn by:

Pr(a) =
∏
i∈a

pi
∏
i 6∈a

(1− pi) .

A set A ⊆ Qn is said to be a monotone if a ∈ A and a ⊆ b implies that b ∈ A.

Lemma 1 (Harris [Har60], Kleitman [Kle66]) If A and B are two monotone subsets of Qn then A and B
are positively correlated; namely,

Pr[A ∩B] ≥ Pr[A] Pr[B].

Chernoff bounds. Let X1, X2 . . . Xn be independent Bernoulli variables with Pr[Xi = 1] = pi. Let
X =

∑n
i=1Xi and µ be the expectation of X . Then,

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2µ
3 , for 0 < δ < 1.

Pr(X ≤ (1− δ)µ) ≤ e−
δ2µ
2 , for 0 < δ < 1.

3 Oblivious ZK-PCP

An NP-relation R ⊆ {0, 1}∗ × {0, 1}∗ is given by a deterministic algorithm W (·, ·) that runs in time
polynomial in the length of its first input. The relation is

R = {(x,w) : W (x,w) = 1}.

The associated NP-language LR = {x : ∃w such that W (x,w) = 1}. The witness set for an x ∈ {0, 1}∗ is
R(x) = {w : W (x,w) = 1}.

Consider the setting in which a prover wants to prove to a verifier the knowledge of a witness inR(x), in
zero-knowledge. The prover’s algorithm PoZK(λ, x, w) takes as input the security parameter λ, a statement
x and a witness w ∈ R(x) and generates an n-bit long (n = poly(λ, |x|)) PCP proof π. The verifier VoZK
takes as input x and a partial proof π′ and outputs 1 or 0, where π′ is obtained from π by replacing some of
the bits of π with ⊥. We call the ZK-PCP oblivious because in our setting the verifier does not get to decide
the subset of the bits of π that it receives (intuitively, those are determined by the “channel”).

Definition 1 [Oblivious ZK-PCP] We say that (PoZK, VoZK) is a (c, ν)-oblivious ZK-PCP with knowledge
soundness κ for the relation R if:

Perfect Completeness: ∀x,w, such that (x,w) ∈ R and π ← PoZK(λ, x, w), we have that VoZK(x, π′) = 1
over all choices of π′ obtained by replacing π at arbitrary locations with ⊥.

c-Soundness (Proof of Knowledge): There exists a PPT extractor E such that, for all x and purported
proofs π∗, if E(x, π∗) /∈ R(x) then

Pr[VoZK(x, g(π∗)) = 0] ≥ κ,

where the probability is taken over the random choices of g, and g is a random function that replaces
n− c random locations in π∗ with ⊥ (and leaves the other c locations untouched).
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ν-Zero-Knowledge: There exists a PPT simulator S such that, for all x ∈ LR, the following distributions
are statistically indistinguishable:

• Sample π ← PoZK(λ, x, w). Replace each bit of π with ⊥ with probability 1− ν and output the
resultant value.

• S(λ, x).

The construction of oblivious ZK-PCP was implicit in [ISW03, Ajt10]. The following formal claim is
implied by the construction of Ajtai [Ajt10].

Proposition 1 For any constant ν ∈ (0, 1), there exists a (3, ν)-oblivious ZK-PCP with a knowledge error
κ = 1− 1

ξ(λ) , where ξ(λ) is some polynomial in λ.

We will sketch how the above proposition is directly implied by the construction of Ajtai. Ajtai [Ajt10]
shows that given a circuit C, we can obtain a functionally-equivalent circuit C ′ of size O(|C|m4) (for
appropriate parameter m) such that, even if the value of each wire of the circuit C ′ (obtained by evaluating
C ′ on a certain input x) is independently revealed to the adversary with probability ν, then the input of the
circuit (namely x) remains hidden (except with probability e−αm|C|, for some appropriate constant α).

Applying Ajtai’s transformation to the verification circuit V (x, ·), we obtain a functionally-equivalent
circuit V ′ of size O(|V |m4) such that, even if each wire of the circuit (obtained by computing V ′ on a
valid witness) is independently revealed to the adversary with a probability ν, the witness remains hidden
(except with probability e−αm|V |). In our case, concatenation of the bit values that each wire of the circuit
V ′ gets assigned gives the PCP proof string. The verification procedure VoZK looks at bits at three random
locations in the PCP proof. It always outputs 1 except if the three wires correspond to the input/output wires
of a specific gate and are found to not satisfy the gate relationship. Furthermore, if the output wire of the
gate is also the output of the entire circuit then it also checks that this value is 1. Completeness follows
immediately. Soundness follows from the fact that exitance of an inconsistency will be caught with some
noticeable probability. In fact, if there are no inconsistencies in the proof, then the PCP can be used to extract
the witness used to generate the PCP. The zero-knowledge property, on the other hand, follows directly from
the security of Ajtai’s construction.

4 Different kinds of channels

In this work, we model a channel as an ideal functionality C. This is done in order to capture the security
properties of a channel in a clean way. A channel provides a (one-way) communication medium between a
sender and a receiver. The sender can invoke the channel C on an input of its choice. The channel “based
on its nature”, processes the input and outputs the processed value to the receiver. The correctness and
secrecy requirements of a channel can be specified by a two-party functionality, which takes an input from
the sender, generates some internal randomness, and delivers an output to the receiver. Our formulation of
channel functionalities, as well as the security definition of protocols that build on top of them, follow the
standard UC framework [Can05]. All of our positive results hold with statistical security, and some of our
negative results apply also to the case of computational security. We will consider the following types of
channels.

Binary Erasure Channel. The binary erasure channel (BEC) is perhaps the simplest non-trivial channel
model considered in the literature. We denote this channel by CpBEC . For this channel, the sender inputs a
bit x ∈ {0, 1} and the channel outputs (to the receiver) x with a probability p and⊥ with a probability 1−p.
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Binary Symmetric Channel. The binary symmetric channel (BSC) denoted by CpBSC (for p > 1
2 ) is a

channel in which the sender inputs a bit x ∈ {0, 1} and the channel outputs (for the receiver) x with a
probability p and 1− x with a probability 1− p.

Generalized Erasure Channel. The generalized erasure channel (GEC) is a generalization of the BEC,
where k strings are sent by the sender and some subset of them, determined by a probability distribution D,
is erased. We denote this channel by Ck,`,DGEC . Formally, the functionality takes as input k strings x1, . . . , xk ∈
{0, 1}` from the sender. It samples a string s ∈ {0, 1}k (which we call the randomness of the channel)
according to the distributionD. If si = 1 then set yi = xi and, otherwise, yi = ⊥. The functionality outputs
y1, . . . , yk to the receiver. We will consider the following special cases of the generalized erasure channel.

• `-Bit Random Oblivious Transfer. The `-bit random oblivious transfer channel (`-ROT) denoted by
C`ROT corresponds to the channel C2,`,D2,OT

GEC , where D2,OT is the distribution that outputs a uniformly
random value in {01, 10}. We also consider a p-biased `-bit ROT channel denoted by C`,pROT corre-
sponds to the channel C2,`,D2,p,OT

GEC , where D2,p,OT is the distribution that outputs 10 with probability
p and 01 with a probability 1− p.

• (k, `, p)-Erasure Channel. The (k, `, p)-erasure channel corresponds to the channel Ck,`,Dk,pGEC , where
Dk,p is the distribution that outputs a k bit string s such that, for every i ∈ [k], we have si = 1 with
probability p and si = 0 with probability 1− p.

• (k, `)-Perfect Red-Blue Channel. The (k, `)-Perfect Red-Blue channel corresponds to the channel
Ck,`,Dk,RBGEC , where Dk,RB is any distribution such that each string in its output space (namely {0, 1}k)
may be labeled either Red or Blue (or none) in a way that Pr[Red∪Blue] = 1, Pr[Red] = Pr[Blue]
and ∀r ∈ Red and ∀s ⊆ r we have that s /∈ Blue and, similarly, ∀b ∈ Blue and ∀c ⊆ b we have that
c /∈ Red.3

• (k, `, µ, ν, η)-Statistical Red-Blue Channel. The (k, `, µ, ν, η)-Statistical Red-Blue channel is a re-
laxed version of the Perfect Red-Blue Channel, that corresponds to the channel Ck,`,Dk,µ,ν,ηGEC , where
Dk,µ,ν,η is any distribution whose output space can be labelled Red and Blue such that (i) Pr[Red ∪
Blue] ≥ 1 − µ, (ii) |Pr[Red] − Pr[Blue]| ≤ ν, (iii) Prr∈Red[∃s ⊆ r such that s ∈ Blue] ≤ η, and
(iv) Prb∈Blue[∃c ⊆ b such that c ∈ Red] ≤ η.

• (k, `, b)-Perfect Bursty Channel. This is an erasure channel where all b erasures appear in a “burst”.
Formally, the (k, `, b)-Perfect bursty channel corresponds to the channel Ck,`,Dk,bGEC , where Dk,b is the
distribution that outputs a k bit string such that all the bits are set to 1 besides the bits in locations
x+ 1, x+ 2, . . . , x+ b where x is chosen uniformly from {0, . . . , k − b}.

• (k, `, b, σ)-Noisy Bursty Channel. This is an erasure channel where erasures still appear in a “burst”
but their number b′ is normally distributed around b. Formally, the (k, `, b, σ)-noisy bursty channel
corresponds to the channel Ck,`,Dk,b,σGEC for typical k � b, where Dk,b,σ is the distribution that outputs
a k bit string such that all the bits are set to 1 besides the bits in locations x + 1, x + 2, . . . , x + b′

where b′ is sampled from a gaussian and rounded to the closest non-negative integer ≤ k with mean b
and standard deviation σ and then x is chosen uniformly from {0, . . . , k − b′}.

3Here, again, we identify each a ∈ {0, 1}k with a subset of [k] in the natural way.
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5 Classification of functionalities

Below we define the notion of one-way secure computation (OWSC) over a channel C (thought of as a
non-reactive ideal functionality). We shall refer to such a OWSC scheme as OWSC/C.

An OWSCf/C scheme for a function f : X → Y is a two-party protocol between Sender and Receiver
and it follows the following format:

- Sender gets an input x ∈ X .

- Sender invokes the channel C (possibly multiple instances of the channel) with inputs of its choice.
The channel, based on its nature, processes the input value and outputs it to the Receiver.

- Receiver carries out a local computation and outputs f(x) or an error message.

Similarly, we can consider reactive functionality specified by a stateful function f : Σ ×X → Σ × Y .
The Sender of a OWSCf/C scheme for a stateful function f obtains multiple inputs on the fly. On obtaining
an input x ∈ X , Sender can invoke the channel C multiple times and in each execution the Receiver should
either output y where (σ′, y) ← f(σ, x) (where σ ∈ Σ is the current state and σ′ is the state for the next
execution) or an error message. The first execution of the protocol sets the state to ε.

The correctness and secrecy requirements of an OWSC scheme can be specified in terms of an ideal
functionality. An OWSCf/C scheme for f is required to be a secure realization of the following function
Ff in the C-hybrid model.

- Ff accepts x ∈ X from the Sender and outputs f(x) to the receiver. If x is a special input error,
then it outputs error to the Receiver.

We shall denote the security parameter by λ and require that the sender and the receiver in any scheme run
in time polynomial in λ and the size of the function f . Further, for a scheme to be considered secure, we
require that the simulation error be at most 2−Ω(λ).

Definition 2 (Completeness for deterministic functionalities) A channel C is said to be OWSC complete
for deterministic functionalities, if for every deterministic function f : X → Y there exists a OWSCf/C
scheme that is a UC-secure realization of the functionality Ff in the C-hybrid model.

Definition 3 (Completeness for randomized functionalities) A channel C is said to be OWSC complete
for randomized functionalities, if for every randomized function f : X → Y there exists a OWSCf/C
scheme that is a UC-secure realization of the functionality Ff in the C-hybrid model.

6 Reductions among channels

In this section, we study the relationships between different kinds of channels. Specifically:

• Impossibility results for CROT . One of the key channels of interest to us is the random oblivious
transfer channel. We start by establishing (in Section 6.1) that this channel cannot be securely realized
out of the most basic channels such as CBEC (in fact, from any Ck,`,Dk,pGEC ) and CBSC . In Section 9,
we provide extensions of these results to the computational setting (but ruling out only protocols with
negligible error rather than small noticeable error).

• Positive results for CROT . We consider a variety of more structured channels, such as the Red-Blue
channel and the bursty channel, and give constructions of random oblivious transfer channel from
such channels (Section 6.2).
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• Self-transformations for CBEC and CBSC . We move back to the basic channels (CBEC and CBSC)
and study additional properties of them. Although both these channels do not imply C1

ROT , they are of
a very different nature. We show (in Section 6.3) that erasure probabilities of the CBEC can be easily
manipulated but the flipping probability of CBSC is harder to manipulate. In particular, we show that,
given a CBEC , we can construct another CBEC with amplified or diminished erasure probabilities. On
the other hand, given a CBSC , we can only construct another CBSC with amplified flipping probability.
In fact, diminishing the flipping probability turns out to be is impossible.

We remark that all the impossibility results (in this section) are stated in terms of the simulation based
notion but hold even for a weaker game-based security notion. These stronger impossibility results are
implied by the proofs and are not spelled out explicitly.

6.1 Impossibility results for CROT
In this subsection, we rule out the construction of C1

ROT (random oblivious transfer) from the most basic
channels such as CBEC and CBSC . In particular, we show:

• C`′ROT (and, in fact, even biased-ROT) cannot be non-interactively securely realized from Ck,`,Dk,pGEC .

• Cp
′

BEC cannot be non-interactively securely realized from CpBSC . It is easy to realize C
1
2
BEC from C`′ROT .

Hence, combining with the above result, we also conclude that C`′ROT cannot be non-interactively
securely realized from CpBSC .

The following theorem and its proof can be adapted to rule out even C`
′,q
ROT for any constant q. We state

the result and the proof in the simpler setting where q = 1
2 .

Theorem 1 ∃ ε ∈ (0, 1) and `′ ∈ Z+ such that ∀k, `, p, the channel C`′ROT cannot be ε-securely realized in
the Ck,`,Dk,pGEC hybrid model even against semi-honest adversaries.

We start by giving some intuition for the case of binary erasure channel. The intuition extends to (k, `, p)-
erasure channels in a natural way. In any protocol for non-interactively realizing C1

ROT the sender will need
to encode both its inputs m0,m1 into its first message. Whether the receiver obtains m0 or m1 should
depend solely on the random coins of the channel. In other words, erasure of certain bits (or more generally
one combination from a list of possible choices) allows the receiver to obtain m0 while erasure of another
combination allows the receiver to learn m1. The key issue is that a binary erasure channel erases each bit
sent by the sender independently with a probability 1 − p. Consider the scenario in which a receiver can
obtain m0 from the received bits. In this scenario, since each bit sent by the sender is treated independently
we have that the receiver also obtains m1 with a large enough probability, contradicting the security of the
protocol. Arguing the last step formally is tricky and we rely on the Harris-Kleitman inequality for our
argument. The full proof appears next.

Proof of Theorem 1. For the sake of contradiction, lets start by fixing some ε > 0 and assuming that
there exists a protocol π = 〈S,R〉 that ε-securely realizes C`′ROT in the Ck,`,Dk,pGEC hybrid model. More
specifically, π proceeds as follows: S on input two strings m0,m1 ∈ {0, 1}`

′
generates k strings x =

(x1, x2, . . . , xk) which are provided as input to the functionality Ck,`,Dk,pGEC . The functionality then outputs
strings y = (y1, y2, . . . , yk) to the receiver R. R processes these values and outputs either (m0,⊥) or
(⊥,m1). More formally, consider the experiment EXPT〈S,R〉(m0,m1) in Figure 2.
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EXPT〈S,R〉(m0,m1)

1. x
$← S(m0,m1).

2. ∀i ∈ [k], set yi = xi with probability p and ⊥ with probability 1− p.

3. Set z := R(y).

4. Output (m0,m1,x,y, z).

Figure 2: Execution of the 〈S,R〉 protocol

Properties of the experiment. Let A be the event that z = (m0,⊥) and similarly let B be the event that
z = (⊥,m1). Then, for the above experiment, we have:

Correctness: It implies that,
Pr[A ∪B] ≥ 1− ε.

Let X ′ be the set of x such that Pr[A ∪ B|x] ≥ 1 −
√
ε. By a counting argument, Pr[x ∈ X ′] ≥ 1 −

√
ε.

Otherwise, if Pr[x ∈ X ′] < 1−
√
ε, then Pr[A ∪B] < 1 · (1−

√
ε) + (1−

√
ε) ·
√
ε = 1− ε, which is a

contradiction.

Receiver privacy: It implies that,
|Pr[A]− Pr[B]| ≤ ε.

The above condition is very weak and, in fact, receiver privacy implies something stronger: for a fixed x we
have that A and B happen with roughly the same probability. More formally, receiver privacy implies that
for large enough set X ′′ such that Pr[X ′′] ≥ 1− 2

√
ε, we have that for every x ∈ X ′′,

|Pr[A|x]− Pr[B|x]| ≤
√
ε.

The parameters in the stronger condition above are derived as follows. Assume that Pr[x ∈ X ′′] < 1−2
√
ε,

then a cheating sender (with X ′′ hardcoded in it) can figure out whether A happened or B happened with
probability > (1− 2

√
ε) · 1

2 + 2
√
ε · (1

2 +
√
ε

2 ) = 1
2 + ε, which is a contradiction.

Sender privacy: It implies that, no machine M can output both m0,m1 correctly using just y,

Pr[M(y) = (m0,m1)] ≤ ε .

Our proof will proceed by using correctness and receiver privacy to prove Lemma 2 which will then be
used to reach a contradiction with sender privacy.

Lemma 2 There exists a set X with Pr[x ∈ X] ≥ 1− 3
√
ε such that:

Pr[A|x] ≥ 1

2
−
√
ε,

Pr[B|x] ≥ 1

2
−
√
ε.
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PROOF: Consider the set X = X ′ ∩ X ′′. By union bound, we have that Pr[x ∈ X] ≥ 1 − 3
√
ε.

Furthermore, for all x ∈ X we have Pr[A ∪B|x] ≥ 1−
√
ε and |Pr[A|x]−Pr[B|x]| ≤

√
ε. This implies

that ∀x ∈ X , Pr[A|x] ≥ 1
2 −
√
ε and Pr[B|x] ≥ 1

2 −
√
ε, as needed. �

Contradicting sender privacy. To reach a contradiction, we will construct a machine M that, given y,
outputs (m0,m1) with probability greater than ε.

Some notation. We use yr for any r ∈ {0, 1}k to denote the vector constructed as follows: ∀i ∈ [k], set
yri = yi if ri is 1 and ⊥ otherwise. Consider the following:

• y ∈ C if Pr[A|y] ≥ 1
4 .

• y ∈ D if Pr[B|y] ≥ 1
4 .

• y ∈ C ′ if there exists r such that Pr[A|yr] ≥ 1
4 .

• y ∈ D′ if there exists r such that Pr[B|yr] ≥ 1
4 .

Now we make the following three observations:

1. If y ∈ C then y ∈ C ′ and, similarly, if y ∈ D then y ∈ D′.

2. If y ∈ C ′, with respect to some r, then any y′ such that yr = y′r satisfies y′ ∈ C ′. An analogous
condition holds for the event D′.

3. Pr[A|x] = Pr[A|C] · Pr[C|x] + Pr[A|¬C] · Pr[¬C|x] ≤ Pr[C|x] + Pr[A|¬C] which implies that,

Pr[C|x] ≥ Pr[A|x]− 1

4
, (1)

and similarly,

Pr[D|x] ≥ Pr[B|x]− 1

4
. (2)

Pr[C ′ ∩D′] =
∑
x

Pr[C ′ ∩D′|x] · Pr[x]

≥
∑
x∈X

Pr[C ′ ∩D′|x] · Pr[x]

≥
∑
x∈X

Pr[C ′|x] · Pr[D′|x] · Pr[x] (Observation 2 from above applied to Lemma 1.)

≥
∑
x∈X

Pr[C|x] · Pr[D|x] · Pr[x] (Pr[C ′|x] ≥ Pr[C|x] & Pr[D′|x] ≥ Pr[D|x].)

≥
∑
x∈X

(
Pr[A|x]− 1

4

)
·
(

Pr[B|x]− 1

4

)
· Pr[x] (By Equations 1 and 2.)

≥
(

1

4
−
√
ε

)2

·
∑
x∈X

Pr[x] (By Lemma 2.)

≥
(

1

4
−
√
ε

)2

· (1− 3
√
ε)

=
(1− 4

√
ε)2 · (1− 3

√
ε)

16
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Machine M . M waits for the case in which y ∈ C ′ ∩ D′. In this case, there exist r1, r2 such that
Pr[A|yr1 ] ≥ 1

4 and Pr[B|yr2 ] ≥ 1
4 . Machine M proceeds by executing R on inputs yr1 and yr2 , obtaining

both m0 and m1 with probability 1
16 .

Observe that for ε = 0.0004, we have that M succeeds in outputting both m0 and m1 with probability
0.003107875. Hence, protocol π does not have ε-sender security, leading to a contradiction.

Theorem 2 ∀p ∈ (1
2 , 1), p′ ∈ (0, 1) and protocol π, ∃ε such that π does not ε-securely realize Cp

′

BEC in the
CpBSC-hybrid model even against semi-honest adversaries.

We start by giving some intuition. Any protocol for non-interactively securely realizing CBEC will
need the sender to encode its input m into its first message. Whether the receiver obtains m or not should
depend solely on the random coins of the channel. In other words when certain bits (or, more generally, one
combination from a list of possible choices) is flipped then the receiver loses all information about m while
flipping another combination allows the receiver to learn m completely. Consider a sequence of hybrid
strings between a pair of strings on which the receiver outputs m and ⊥ respectively. Among the hybrid
strings there must exist two strings that differ in exactly one bit but are such that the receiver’s output on
the two differs completely. At this point, we argue that a change of just one bit cannot affect the receiver’s
best guess about the sent bit very dramatically, contradicting the security of the protocol. The key technical
challenge of the proof lies in proving that this happens with a noticeable probability. The full proof appears
next.

Proof of Theorem 2. For the sake of contradiction, fix p ∈ (1
2 , 1) and p′ ∈ (0, 1) and assume that there

exists a protocol π = 〈S,R〉 that ε-securely realizes Cp
′

BEC in the CpBSC hybrid model, for an appropriate ε
(to be decided later). More specifically, S on input a bit m ∈ {0, 1} generates k bits x = (x1, x2, . . . , xk)
which are provided as input to the functionality CpBSC . The functionality outputs bits y = (y1, y2, . . . , yk)
to the receiver R, that processes these values and outputs z ∈ {0, 1,⊥}. More formally, consider the
experiment EXPT〈S,R〉(m) in Figure 3.

EXPT〈S,R〉(m)

1. x
$← S(m).

2. ∀i ∈ [k], set yi = xi with probability p and yi = 1− xi with probability 1− p.

3. Set z := R(y).

4. Output (m,x,y, z).

Figure 3: Execution of the 〈S,R〉 protocol

Without loss of generality, assume that the receiver R is deterministic at the cost of increasing the error
by a constant factor. If the receiver R of the protocol 〈S,R〉 that ε-securely realizes Cp

′

BEC is not determinis-
tic then we use 〈S,R〉 and construct a protocol 〈S′, R′〉 that ε-securely realizes Cp

′

BEC and furthermore has a
deterministic receiver. 〈S′, R′〉 is essentially the same as 〈S,R〉 except howR′ works. R′ on input y outputs
the most likely (breaking ties arbitrarily) output generated by R on input y.

We start by observing that for a large fraction of the inputs y, the receiver R must output the same
value with high probability. More specifically, let B be the set for which this is not true. For this set, either
(1) Pr[R(y) = 1−m] ≥ α, for some small constant α (say α = 1

100 ). Then, we claim that Pr[B] ≤ ε
α , as

otherwise correctness is violated with probability at least ε. Or (2) Pr[R(y) = m] > α, Pr[R(y) = ⊥] > α

11



and Pr[R(y) ∈ {m,⊥}] > 1− α. Therefore, again, we must have that Pr[B] ≤ ε
α otherwise contradicting

sender privacy.

Properties of the experiment. LetA be the event that z = m and, similarly, letB be the event that z = ⊥.
Then for the above experiment we have:

Correctness: It implies that,
Pr[A ∪B] ≥ 1− ε.

Let X ′ be a set such that ∀x ∈ X ′ we have that Pr[A∪B|x] ≥ 1−
√
ε. By a counting argument (argument

follows) it follows that Pr[x ∈ X ′] ≥ 1−
√
ε. Lets start by assuming that Pr[x ∈ X ′] < 1−

√
ε. Then we

have that Pr[A ∪B] < 1 · (1−
√
ε) + (1−

√
ε) ·
√
ε = 1− ε, which is a contradiction.

Receiver privacy: Next given the set X ′, using receiver privacy we claim that there exists a set X ⊆ X ′

such that for all x ∈ X we have
Pr[A|x] ≥ p′ −

√
ε,

Pr[B|x] ≥ 1− p′ −
√
ε,

and
Pr[X] ≥ 1− 3

√
ε.

The parameters in the above condition above are derived as follows. Lets assume that Pr[x ∈ X] < 1−3
√
ε,

then we have that a cheating sender (with X hardcoded in it) can figure out whether A happened with
(ignoring the case when x /∈ X ′, that is probability

√
ε) probability> (1−2

√
ε)·p′+2

√
ε·(p′+

√
ε

2 ) = p′+ε,
which is a contradiction.

Towards Contradiction. Define a set Bad of vectors. Roughly speaking, a vector b ∈ Bad if

• R(b) /∈ {m,⊥}, or

• Pr[R(b) = 1−m|y = b] > 1
2 , or

• Pr[∃ c ∈ {0, 1} such that m = c ∧ R(b) = ⊥|y = b] ≥ 1−p
2p .

Observe that all we are left to argue is that that Pr[Bad] > 6pε
1−p . Because if Pr[Bad] > 6pε

1−p , then at least
one of the above three conditions happens with probability at least 2pε

1−p contradicting correctness, receiver
guarantee or receiver guarantee, respectively.

Probability of Bad. Lets restrict ourselves to the case in which x ∈ X . This happens with probability at
least 1−3

√
ε. Consider any two vectors y and y′ such thatR(y) = m andR(y′) = ⊥. Now consider k+1

hybrid-vectors h0,h1, . . . ,hk where hi = (y′1, y
′
2, . . . , y

′
i, yi+1, . . . , yk). Note that h0 = y and hk = y′.

Note that R(h0) = m and R(hk) = ⊥. We will show that at least one of these hybrid-vectors is in Bad.
If R on any one of these hybrid-vectors outputs a value not in {m,⊥} then that vector is clearly in Bad.

On the other hand, if R on each of these hybrid-vectors outputs a value in {m,⊥} then that implies a switch
at some hybrid-vector. In other words ∃j ∈ {0, 1 . . . , k − 1} such that R(hj) = m and R(hj+1) = ⊥.
Namely, the output of R was switched when just one of the input bits to R was flipped. Next, we argue that
R’s best guess about the sent bit cannot have changed substantially with this one bit flip. In other words, we
will show that either hj or hj+1 is in Bad.

12



If Pr[R(hj) = 1 − m|y = hj ] >
1
2 then we are done. Otherwise, we have that hj+1 differs from

hj in only one bit therefore we can conclude that R’s guess about the sent bit can decrease at most by
a factor of 1−p

p (recall that p ∈ (1
2 , 1)). In other words, Pr[R(hj) = m|y = hj+1] ≥ 1

2 ·
1−p
p where

(m,x,y, z) ← EXPT〈S,R〉(m). However, R(hj+1) = ⊥. In other words R outputs ⊥ even though it can
guess the sent value correctly with a probability at least 1−p

2p . In summary, we claim that for every two
vectors y and y′ such that R(y) = m and R(y′) = ⊥ there exists a hybrid vector (as defined above) that is
in Bad.

EXPT’〈S,R〉(m)

1. x
$← S(m).

2. ∀i ∈ [k], set yi = xi with probability p and yi = 1− xi with probability 1− p.

3. ∀i ∈ [k], set y′i = xi with probability p and y′i = 1− xi with probability 1− p.

4. Choose j randomly in [k] and let wi = yi for i < j and wi = y′i for i ≥ j. Finally set z := R(w).

5. Output (m,x,y,y′,w, z).

Figure 4: Modified Execution of the 〈S,R〉 protocol

Now we are left to argue that R receives the elements in Bad with noticeable probability. We argue
this by considering a modified experiment EXPT’〈S,R〉(m). We start by noting that, in this experiment, the
distribution of each of the outputs y,y′,w individually is identical to the distribution of the y in the output
of EXPT〈S,R〉(m). This, along with conditions proved earlier, implies that Pr[R(y) = m

∧
R(y′) = ⊥] ≥

(1− 3
√
ε) · (1− p′ −

√
ε) · (p′ −

√
ε), where (m,x,y,y′,w, z)← EXPT’〈S,R〉(m).

Finally, observe that in the experiment EXPT’〈S,R〉(m), given that R(y) = m and R(y′) = ⊥, there
exists a hybrid vector (as defined above) such that it is in Bad. Furthermore, w takes this value with
probability 1

k . In other words, w ∈ Bad with probability at least (1− 3
√
ε) · (1− p′ −

√
ε) · (p′ −

√
ε) · 1

k .
Since the distribution of w in the output of EXPT’〈S,R〉(m) is identical to the distribution of y in the output
of EXPT〈S,R〉(m), we can conclude that y in the output of EXPT〈S,R〉(m) is in Bad with probability at

least (1 − 3
√
ε) · (1− p′ −

√
ε) · (p′ −

√
ε) · 1

k ≥
1
2 ·

1−p′
2 · p

′

2 ·
1
k >

6pε
1−p (when ε is at most 1

36 ,
(

1−p′
2

)2
,(

p′

2

)2
and p′(1−p′)(1−p)

48pk ). This is a contradiction when we set ε < min

{(
1−p′

2

)2
,
(
p′

2

)2
, p
′(1−p′)(1−p)

48pk

}
.

6.2 Positive constructions for CROT
We start by presenting a construction of a random oblivious transfer channel in Red-Blue channel hybrid
model. Our construction provides a solution for any arbitrary Red-Blue channel and is inefficient. Further-
more, such a channel in its generality is not very natural. Therefore, we study natural examples of Red-Blue
channels (and their approximate variants) and attempt at more efficient solutions.

We start by considering the basic setting of an arbitrary Red-Blue Channel and prove that it is sufficient
to realize a random oblivious transfer channel.

Theorem 3 C`ROT can be max{µ, ν, η}-UC-securely realized (even against malicious adversaries) in the
(k, `′, µ, ν, η)-Red-Blue Channel hybrid model where `′ = ` · 2k.
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Proof of Theorem 3. We start by giving our construction of C`ROT in the (k, `′, µ, ν, η)-Red-Blue Channel
hybrid model. Recall that for a red blue channel Ck,`,Dk,µ,ν,ηGEC the distribution Dk,µ,ν,η is such that its output
space (namely {0, 1}k) can be partitioned into two events Red and Blue such that Pr[Red ∪ Blue] ≥
1 − µ,|Pr[Red] − Pr[Blue]| ≤ ν and Prr∈Red[∃s ⊆ r such that s ∈ Blue] ≤ η and Prb∈Blue[∃c ⊆
b such that c ∈ Red] ≤ η.

Π = 〈S,R〉 protocol with sender input m0,m1

1. Let r1, r2 . . . , rn be the elements of Red in lexicographic order. For each i ∈ [n], for each j ∈ [k] let αi,j
be randomly chosen strings in {0, 1}` subject to the constraints:

⊕
j∈[k] αi,j = m0 and ∀j ∈ [k] such

that ri,j = 0 (the jth bit of ri is zero) we have αi,j = 0`.

2. Similarly let b1, b2 . . . bn′ be the elements of Blue in lexicographic order and then for each i ∈ [n], j ∈ [k]
let βi,j be randomly chosen strings in {0, 1}` subject to the constraint that

⊕
j∈[k] βi,j = m1 and ∀j ∈ [k]

such that bi,j = 0 (the jth bit of bi is zero) we have βi,j = 0`.

3. For each j ∈ [k] let sj = α1,j ||α2,j . . . αn,j ||β1,j ||β2,j . . . βn′,j .

4. The sender sends s1, s2 . . . sk invoking the Red-Blue Channel.

5. Let t ∈ {0, 1}k be a string such that for each j ∈ [k], tj = 1 (tj being the jth bit of j) if and only if the
receiver obtained sj .

6. If t = ri ∈ Red then the receiver obtains αi,j for each j ∈ [k] either from sj if ri,j = 1 and by setting
it to 0` otherwise. Finally it computes m0 =

⊕
j∈[k] αi,j and outputs (m0,⊥). On the other hand, if

t ∈ Blue then similarly compute m1 and output (⊥,m1). If t 6∈ Red ∪ Blue then output ⊥.

Figure 5: C`ROT in the (k, `′, µ, ν, η)-Red-Blue Channel hybrid model

Correctness. Using the fact that Pr[Red∪Blue] ≥ 1−µ, it follows that the receiver always (except with
probability µ) outputs either (m0,⊥) or (⊥,m1). This proves correctness of our protocol.

Simulating Cheating Receiver. The simulator for a cheating receiver proceeds as follows. Obtain that
value that needs to be forced upon the cheating receiver from the ideal functionality. If the value provided
by the ideal functionality is (m0,⊥) then proceed as follows. Using rejection sampling, sample a string
t ∈ Red from Dk,µ,ν,η. Now generate the messages generated by an honest sender on input (m0,m1) for a
random value of m1. The output generated consists of k strings. For each i ∈ [k], replace the ith string with
⊥ if ti = 0. Provide the generated string for the receiver. It is straightforward to see that this simulation
generates a perfectly indistinguishable transcript. We skip the full proof.

Simulating Cheating Sender. Now we provide the simulator for the cheating sender. From the sender’s
message s we can obtain both m0 and m1, which can then be passed on to the ideal functionality. The
problem with this strategy is that a malicious sender could generate s maliciously and in doing so embed
different messages causing the receiver to output different outputs depending on the random coins of the
channel. However note this is easy to handle by having the simulator sample two random strings t, t′ from
Dk,µ,ν,η such that t ∈ Red and t′ ∈ Blue. It could then obtain the messages m0 (using the string t) and
m1 (using the string t′) which it could then forward to the ideal functionality. This ensures that the output
distributions in the real world and the ideal world are identical. Note that for the case of perfect Red-Blue
Channel, we have that µ = ν = η = 0, and hence C`ROT can be perfectly-UC-securely realized in the
(k, `′)-Perfect Red-Blue Channel hybrid model where `′ = ` · 2k.
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Efficient construction for ROT. We will start by considering the case of perfect bursty channel and show
that it can be used to realize ROT. Recall that a (k, `, b)-perfect bursty channel corresponds to the channel
Ck,`,Dk,bGEC , where Dk,b is the distribution that outputs a k bit string such that all the bits are set to 1 besides
the “burst” of bits in locations x+ 1, x+ 2, . . . , x+ b which are set to 0, where x is chosen uniformly from
{0, . . . , k − b}. In this setting we claim that:

Theorem 4 C`ROT can be UC-securely realized (even against malicious adversaries) in the (k, `, b)-perfect
bursty channel hybrid model when b > k

2 or when b is odd.

PROOF: We start by giving the intuition. The key idea is to use Shamir’s secret sharing (with shares of
length `) and secret share the first string in the first half and the second string in the second half (with
some appropriate threshold). Both when b > k

2 or when b is odd we will have an asymmetry in terms of
the deletion pattern. If more terms from the first half are erased then the first string is deleted and, on the
other hand, if more terms from the second half get erased then the second string is deleted. If k is odd
then our construction will only give a biased-ROT but this bias can be corrected using the transformation
from Section 8. Similarly, we note that in our construction we do not need the distribution over where
the burst happens to be uniform. Our protocol can be very easily modified so that this restriction is not
crucial. This would however only give biased ROT protocols and this bias will need to be corrected using
the transformation from Section 8.

Next we give the construction for the case when b is odd. We assume, for simplicity, that k is even and
t = k

2 . The construction for the setting when k is odd or when b is not necessarily odd but k > b/2 are
identical except that the parameters should be adjusted appropriately.

Π = 〈S,R〉 protocol with sender input m0,m1

1. Let θ = t − bb/2c. Let {α1, . . . , αt} be a θ-out-of-t Shamir’s secret sharing of m0. Similarly, let
{αt+1, . . . , αk} be a θ-out-of-t Shamir’s secret sharing of m1.

2. Send (α1, . . . , αk) to the receiver.

3. Let the starting point of the burst in the symbols received by the receiver be i∗. If i∗ > θ compute m0

using the shares α1, . . . , αθ and output (m0,⊥); otherwise, output (⊥,m1) where m1 is computed using
the shares αk−θ+1, . . . , αk.

Figure 6: C`ROT in the (k, `, b)-perfect bursty channel hybrid model, for odd b

The construction appears in Figure 6. Since b is odd, either in the first half or in the second half at least
db/2e of the strings are erased and hence that value remains hidden. On the other hand, in the other half the
value can always be computed since at most bb/2c strings are deleted. The proof is identical to the case of
Red-Blue Channel (proved earlier) and is therefore omitted. �

Channel with Imprecise Burst. Finally, we consider a bursty erasure channel where the size of burst is
not precisely known but comes from roughly a discrete gaussian distribution. Recall that (k, `, b, σ)-noisy
bursty channel corresponds to the channel Ck,`,Dk,b,σGEC , where Dk,b,σ is the distribution that outputs a k bit
string such that all the bits are set to 1 besides the bits in locations x + 1, x + 2, . . . , x + b′ where b′ is
sampled from a gaussian and rounded to the closest non-negative integer ≤ k with mean b and standard
deviation σ and then x is chosen uniformly from {0, . . . , k − b′}.
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Theorem 5 C`ROT can be (1−α)b
k−(1+α)b + σ2

α2b2
-UC-securely realized in the (k, `, b, σ)-noisy bursty channel

hybrid model for any constant α ∈ (0, 1).

PROOF: We use the same construction as in Figure 6 except the threshold parameter θ of the Shamir secret
sharing. We set it up in a way so that it is possible to obtain m0 if less than (1− α)b/2 symbols are erased
from the first half. Similarly secret sharing is done for the second half. By Chebyshev’s inequality, the
probability that the size of the burst, b′, lies outside the range {(1−α)b, . . . , (1 +α)b} is at most σ2

α2b2
(if b′

is too big the receiver may not learn any value, while if b′ is too small it may learn both values). Assuming
this does not happen, then the receiver gets only one of the sent values as long as the burst does not happen
“in the middle” (i.e., (1− α)b/2 symbols are erased from each half). The probability that the burst happens
in the middle is at most (1−α)b

k−(1+α)b . �

6.3 Self-transformations for CBEC and CBSC
In this subsection, we show that any erasure channel can be used to construct a binary erasure channel with
any desired erasure probability. On the other hand, the case of BSC is very different. The probability of
correct transmission in a BSC channel can be reduced but cannot be increased. Formally,

Theorem 6 ∀ Ck,`,DGEC such that D is not a constant distribution, ∃ p such that CpBEC can be (perfectly)
UC-securely realized (even against malicious adversaries) in the Ck,`,DGEC -hybrid model.

Proof of Theorem 6. This construction is very straightforward. For every channel Ck,`,DGEC we claim that
there exists i ∈ [k] such that Pr[ri = 1|r ← D] is bounded away from both 0 and 1. This follows from the
fact that D is not a constant distribution. Let the probability that this bit is 1 be p. It is easy to implement
a binary erasure channel by embedding the bit that we want to transmit in the ith string sent to Ck,`,DGEC . As
argued above this string (and hence the desired bit) will be received with probability p. The security of the
constructed BEC channel follows in a straight forward manner from the security of the underlying CGEC
channel and the full proof for the same is therefore skipped.

Theorem 7 ∀p, p′ ∈ (0, 1) and ε > 1, ∃p′′ ∈ [p′, εp′], such that Cp
′′

BEC can be (perfectly) UC-securely
realized (even against malicious adversaries) in the CpBEC-hybrid model.

Proof of Theorem 7. We will start by giving protocols for boosting and diminishing the probabilities with
which the BEC channel transmits. We will then use these transformations repeated to obtain a BEC with the
desired transmission probability.

Boosting. The protocol for boosting the transmission probability of BEC is provided in Figure 7. It is easy
to see that the protocol transmits the bit with probability 1− (1−p1)(1−p2). Also, arguing security against
cheating receivers is straight forward. However, proving security against cheating senders requires some
care. More specifically, given an message of the sender for the ideal functionalities Cp1BEC and Cp2BEC , our
simulation we will need to generate a message for the functionality C1−(1−p1)(1−p2)

BEC . If the cheating sender
sends 00 then the simulator sends 0 to C1−(1−p1)(1−p2)

BEC . Similarly if the cheating sender sends 11 then the
simulator sends 1 to C1−(1−p1)(1−p2)

BEC . The complication arises in simulation when the cheating sender sends
different bits. In particular if it sends the bits 01 or 10. In this case our simulator simulates by sending the
first bit with probability p1

p1+p2−p1p2 and the second one with probability p2−p1p2
p1+p2−p1p2 . This will ensure that

the output distributions in the real and the ideal world are identical.
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C1−(1−p1)(1−p2)BEC /Cp1BEC , C
p2
BEC protocol

Sender’s Input: b ∈ {0, 1}.

• S sends two copies of the bit b via independent invocations of Cp1BEC and Cp2BEC .

• Let b1 and b2 be the values R obtains from Cp1BEC and Cp2BEC respectively. If b1 6= ⊥ then output b1 else
output b2.

Figure 7: Boosting transmission probability in Binary Erasure Channel

Diminishing. The protocol for diminishing the transmission probability of BEC is provided in Figure 8.
The basic idea is that the bit sent by the sender remains completely hidden from the receiver as long as at
least one of the bits sent by the receiver is not obtained. We skip a formal argument.

Cp1p2BEC/C
p1
BEC , C

p2
BEC protocol

Sender’s Input: b ∈ {0, 1}.

• S samples a uniformly random bit a and sends a and a ⊕ b via independent invocations of Cp1BEC and
Cp2BEC respectively.

• Let b1 and b2 be the values R obtains from Cp1BEC and Cp2BEC respectively. If b1 6= ⊥ and b2 6= ⊥ then
output b1 ⊕ b2 else output ⊥.

Figure 8: Diminishing transmission probability in Binary Erasure Channel

Putting things together. Now we will describe how to use the above transformations to obtain a Cp
′′

BEC

from CpBEC for some p′′ such that p′′ ∈ [p′, εp′]. First we will proceed by repeatedly using the boosting
transformation and boost the transmission probability of the channel to be just above the desired value of
p′ and then we will diminish it slowly to the desired level. Let r be the smallest positive integer such that
p0 = 1 − (1 − p)r ≥ p′. (Note that if p′ < p then r will be 1 and p0 = p.) We note that constant positive
integer r exists because values (1 − p)r tends to 0 as r becomes large. Similarly, repeated applying the
boosting transforation we obtained a BEC with transmission probability f such that f > 1

ε .
Now step by step we need to diminish the probability p0 and bring it closer to the value p′. In particular,

let t be a positive integer such that p0 · f t+1 ≤ p′ ≤ p0 · f t. Exitance of such a t is guaranteed by the fact
that f t tends to 0 as t becomes large. Finally note that p0 · f t ∈ [p′, εp′].

Theorem 8 ∀p ∈ (1
2 , 1) and t ∈ Z+, the channel Cp

′

BSC can be (perfectly) UC-securely realized (even
against malicious adversaries) in the CpBSC-hybrid model where p′ = 1

2 + 2t−1
(
p− 1

2

)t.
Proof of Theorem 8. We will start by giving a protocol for diminishing the probability with which the
BSC channel transmits correctly. We will then use this transformation repeated to obtain a BSC channel
with the desired transmission probability.

The protocol for diminishing the transmission probability of BSC is provided in Figure 9. Roughly
speaking the sender proceeds by generating two bits such that their exclusive or corresponds to its input.
It then sends the two bits to the receiver via two separate invocations of BSC. The receiver outputs the
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exclusive or of the received bits. The key idea is that received bit matches the senders input if both bits are
transmitted as such or if both bits are flipped. This happens with probability p1p2 + (1− p1)(1− p2) which
evaluates to 1

2 + 2
(
p1 − 1

2

) (
p2 − 1

2

)
. Security follows immediately and we skip the formal argument.

C
1
2+2(p1− 1

2 )(p2− 1
2 )

BSC /Cp1BSC , C
p2
BSC protocol

Sender’s Input: b ∈ {0, 1}.

• S samples a uniformly random bit a and sends a and a ⊕ b via independent invocations of Cp1BSC and
Cp2BEC respectively.

• Let b1 and b2 be the values R obtains from Cp1BSC and Cp2BEC respectively. Output b1 ⊕ b2.

Figure 9: Diminishing transmission probability in Binary Symmetric Channel

Now we can repeated use the above transformations to obtain a Cp
′

BSC from CpBSC for p′ = 1
2 +

2t−1
(

1
2 − p

)t for any non-negative integer t.

Theorem 9 ∀ p, p′ ∈ (1
2 , 1), p′ > p and protocol π, ∃ε such that π does not ε-securely realize Cp

′

BSC in the
CpBSC-hybrid model even against semi-honest adversaries.

Proof of Theorem 9. The proof is very similar to the proof of Theorem 2. We start by giving some
intuition. Any protocol for non-interactively securely realizing Cp

′

BSC will need the sender to encode its
input m into its first message. Whether the receiver obtains m or 1 − m should depend solely on the
random coins of the channel. In other words when certain bits (or more generally one combination from a
list of possible choices) is flipped then the receiver outputs m while on the other hand flipping of another
combination makes the receiver output 1 − m. Consider a sequence of hybrid strings between a pair of
strings on which the receiver outputs m and 1 − m respectively. Among these hybrid strings there must
exist two strings such that they differ in exactly one bit but are such that the receiver’s output on the two
are different. At this point we argue that change of just one bit cannot affect the receiver’s best guess about
the received bit very dramatically contradicting security of the protocol. The key technical challenge of the
proof then lies in proving that this happens with a noticeable probability.

For the sake of contradiction lets start by fixing p, p′ ∈ (1
2 , 1) for p′ > p and assuming that there exists a

protocol π = 〈S,R〉 that ε-securely realizes Cp
′

BSC in the CpBSC hybrid model for appropriate ε, to be decided
later. More specifically, S on input a bit m ∈ {0, 1} generates k bits x = (x1, x2 . . . xk) which are provided
as input to the functionality CpBSC . The functionality outputs bits y = (y1, y2 . . . yk) to the receiver R. R
processes these values and outputs z ∈ {0, 1}. More formally, consider the experiment EXPT〈S,R〉(m) in
Figure 10.

Without loss of generality we assume that the receiver of the protocol is deterministic at the cost of
increasing the error by a constant factor. If the receiver R of the protocol 〈S,R〉 that ε-securely realizes
Cp
′

BSC is not deterministic then we use 〈S,R〉 and construct a protocol 〈S′, R′〉 that ε-securely realizes Cp
′

BSC

and furthermore has a deterministic receiver. 〈S′, R′〉 is essentially the same as 〈S,R〉 except howR′ works.
R′ on input y outputs the best guess (breaking ties arbitrarily) about the bit sent by S′.

We argue that thatR andR′ output the same value for a large fraction of inputs y with probability 1−α.
Let C be the set of choices of y for which this is not true. We claim that Pr[C] ≤ ε

α for some large constant
α. Because if this were not the case then we will have that sender privacy is violated with probability > ε
in the sense that the receiver outputs a value different from what its best guess is.
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EXPT〈S,R〉(m)

1. x
$← S(m).

2. ∀i ∈ [k], set yi = xi with probability p and yi = 1− xi with probability 1− p.

3. Set z := R(y).

4. Output (m,x,y, z).

Figure 10: Execution of the 〈S,R〉 protocol

Properties about the experiment. Let A be the event that z = m and similarly let B be the event that
z = 1−m. Then for the above experiment wee have:

Correctness: It implies that,
Pr[A ∪B] ≥ 1− ε.

Let X ′ be a set such that ∀x ∈ X ′ we have that Pr[A∪B|x] ≥ 1−
√
ε. By a counting argument (argument

follows) it follows that Pr[x ∈ X ′] ≥ 1−
√
ε. Lets start by assuming that Pr[x ∈ X ′] < 1−

√
ε. Then we

have that Pr[A ∪B] < 1 · (1−
√
ε) + (1−

√
ε) ·
√
ε = 1− ε, which is a contradiction.

Receiver privacy: Next given the set X ′, using receiver privacy we claim that there exists a set X ⊆ X ′

such that for all x ∈ X we have
Pr[A|x] ≥ p′ −

√
ε,

Pr[B|x] ≥ 1− p′ −
√
ε,

and
Pr[X] ≥ 1− 3

√
ε.

The parameters in the above condition above are derived as follows. Lets assume that Pr[x ∈ X] < 1−3
√
ε,

then we have that a cheating sender (with X hardcoded in it) can figure out whether A happened with
(ignoring the case when x /∈ X ′, that is probability

√
ε) probability> (1−2

√
ε)·p′+2

√
ε·(p′+

√
ε

2 ) = p′+ε,
which is a contradiction.

Towards Contradiction. Now we define a set Bad of vectors. Roughly speaking a vector b ∈ Bad if

• R(b) /∈ {m, 1−m}, or

• Pr[R(b) = m|y = b] < p′ −
√
ε, or

• Pr[R(b) = 1−m|y = b] > 1− p′ +
√
ε.

Observe that all we are left to argue is that that Pr[Bad] > 3
√
ε. Because if Pr[Bad] > 3

√
ε then we

can claim that at least one of the above three conditions happens with probability at least
√
ε contradicting

correctness, receiver guarantee and receiver guarantee respectively.
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Probability of Bad. Lets restrict ourselves to the case in which x ∈ X . This happens with probability at
least 1− 3

√
ε. Now consider any two vectors y and y′ such that R(y) = m and R(y′) = ⊥. Now consider

k hybrid-vectors h0,h1 . . .hk where hi = (y′1, y
′
2 . . . , y

′
i, yi+1, . . . yk). Note that h0 = y and hk = y′.

Note that R(h0) ∈ m and R(hk) = ⊥. We will show that at least one of these hybrid-vectors is in Bad.
If R on any one of these hybrid-vectors outputs a value not in {0, 1} then that vector is clearly in Bad.

On the other hand if R on each of these hybrid-vectors outputs a value in {m, 1} then that implies a switch
at some hybrid-vector. In other words ∃j ∈ {0, 1 . . . k − 1} such that R(hj) = m and R(hj+1) = ⊥. Now
observe that the output of R was switched when just one of bits of the input to R was flipped. Next we will
argue that R’s best guess about the sent bit cannot have changed substantially with this one bit flip. In other
words we will show that either hj or hj+1 is in Bad.

If Pr[R(hj) = m|y = hj ] < p′ −
√
ε then we are done. Otherwise we have that hj+1 differs from

hj in only one bit therefore we can conclude that the R’s guess about the sent bit can decrease at most by
a factor of 1−p

p (recall that p ∈ (1
2 , 1)). In other words Pr[R(hj) = m|y = hj+1] ≥ (p′ −

√
ε) · 1−p

p =
p′−
√
ε

p − p′ +
√
ε > 1 − p′ +

√
ε when p < p′ −

√
ε where (m,x,y, z) ← EXPT〈S,R〉(m). However,

R(hj+1) = ⊥. In other words R outputs 1 − m even though it can guess the sent value correctly with
a probability at least 1 − p′ +

√
ε. In summary we claim that for every two vectors y and y′ such that

R(y) = m and R(y′) = ⊥ there exists a hybrid vector (as defined above) that is in Bad.
Now we are left to argue that R receives the elements in Bad with noticeable probability. We argue

this by considering a modified experiment EXPT’〈S,R〉(m). We start by noting that in this experiment

EXPT’〈S,R〉(m)

1. x
$← S(m).

2. ∀i ∈ [k], set yi = xi with probability p and yi = 1− xi with probability 1− p.

3. ∀i ∈ [k], set y′i = xi with probability p and y′i = 1− xi with probability 1− p.

4. Choose j randomly in [k] and let wi = yi for i < j and wi = y′i for i ≥ j. Finally set z := R(w).

5. Output (m,x,y,y′,w, z).

Figure 11: Modified Execution of the 〈S,R〉 protocol

EXPT’〈S,R〉(m) the distribution of each of the outputs y,y′,w individually is identical to the distribution of
the y in the output of EXPT〈S,R〉(m). This along with conditions prover earlier, implies that the probability
Pr[R(y) = m

∧
R(y′) = 1 −m] ≥ (1 − 3

√
ε) · (1 − p′ −

√
ε) · (p′ −

√
ε) where (m,x,y,y′,w, z) ←

EXPT’〈S,R〉(m).
Finally observe that in the experiment EXPT’〈S,R〉(m) given thatR(y) = m andR(y′) = 1−mwe have

that there exists a hybrid vector (as defined above) such that it is in Bad. Furthermore w takes this value with
probability 1

k . In other words w ∈ Bad with probability at least (1−3
√
ε)·(1−p′−

√
ε)·(p′−

√
ε)· 1k . Since

the distribution of w in the output of EXPT’〈S,R〉(m) is identical to the distribution of y in the output of
EXPT〈S,R〉(m), therefore we can conclude that y in the output of EXPT〈S,R〉(m) is in Bad with probability

at least (1− 3
√
ε) · (1− p′ −

√
ε) · (p′ −

√
ε) · 1

k ≥
1
2 ·

1−p′
2 · p

′

2 ·
1
k > 3

√
ε (when ε ≤ 1

36 ,
(

1−p′
2

)2
,
(
p′

2

)2

and (p′(1−p′))2
242k

). This is a contradiction when we set ε < min

{(
1−p′

2

)2
,
(
p′

2

)2
, (p′(1−p′))2

242k

}
.
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7 OWSC scheme for Deterministic Functionalities

OWSCf/C is a meaningful notion only for those deterministic functions f such that given a value y iden-
tifying if there exists an input x such that y = f(x) is non-trivial (cannot be done in efficiently). This,
in particular, rules out all functions with polynomial sized input domains. Furthermore, this notion is use-
ful only in the setting of malicious adversaries because it is trivial to realize this notion in the setting of
semi-honest adversaries.

We start by noting that a OWSCf/C scheme, for any deterministic function f , can be realized by using
a OWSCzk/C scheme for the zero-knowledge functionality. This can be achieved simply by having the
sender send the output to the receiver and along with it prove in zero-knowledge, knowledge of an input x
for which f(x) yields the provided output. Here we implicitly assume that besides the channel C the sender
also has access to an error free channel which can be implemented using C itself (with a negligible error).
Formally,

Theorem 10 For every deterministic function f , there exists a OWSCf/C scheme that is a UC-secure
realization (even against malicious adversaries) of the functionality Ff in the C-hybrid model where C ∈
{Ck,`,DGEC , C

p
BSC}.

As already mentioned, proving the above theorem reduces to the task of realizing a OWSCzk/C scheme.
In our construction, we will make use of oblivious ZK-PCPs (see Definition 1).

Lemma 3 There exists a OWSCzk/C scheme that is a UC-secure realization (even against malicious ad-
versaries) of the zero-knowledge functionality in the C-hybrid model where C ∈ {Ck,`,DGEC , C

p
BSC}.

We start by giving some intuition. The key idea is to use an erasure channel or a binary symmetric
channel to send over multiple instances of independently chosen ZK-PCPs and observe the statistical gap
that can be created only if valid proofs were sent. However, a number of difficulties arise in realizing
this intuition, particularly in our construction from BSC. Below, we provide our construction from erasure
channels. The more involved construction from binary symmetric channel is given next.

Erasure Channels. We start by considering the case of binary erasure channels with error probability 1
2 ;

i.e., when C = C
1
2
BEC . It follows from Theorem 6 and Theorem 7 that any Ck,`,DGEC can be used to realize

C
1
2
BEC .4 We give the protocol in Figure 12.

Completeness. For every i ∈ [k], using Chernoff bound, we have that:

Pr
[
Υ(π′i) ≤

n

4

]
≤ e−

n
16 ,

where Υ(π′i) denotes the number of occurrences of ⊥ in π′i.
Hence, except with negligible probability for each i ∈ [k], R receives at least c. Given this the com-

pleteness of the protocol follows from the completeness of the oblivious ZK-PCP.

4Theorem 7 only guarantees a channel Cp
′

BEC with p′ close enough to p. We will use the value 1
2

for concreteness but any value
close enough to 1

2
, say in the range 1

2
to 51

100
, will suffice as well.
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OWSCzk/CpBEC protocol for language L

Common Input: x ∈ {0, 1}λ.
Auxiliary Input for prover P : w such that (x,w) ∈ RL.
Parameters: Let (PoZK, VoZK) be any (c, ν)-oblivious ZK-PCP system (with c ≤ n

4 and ν ≥ 3
4 ) with knowledge

soundness κ. Let ` = λ
κ .

• P samples proofs π1, . . . , π` from PoZK(λ, x, w) and sends (π1, . . . , π`) to V via the erasure channel
CpBEC .

• V receives π′1, . . . , π
′
` and for all i ∈ [`] checks if VoZK(π′i). It outputs accept if all the checks pass and

reject otherwise.

Figure 12: Realizing zero-knowledge from Binary Erasure Channel

Soundness. We will construct an extractor E′, that extracts valid witnesses from any cheating prover P ∗

that makes the honest verifier accept with non-negligible probability. We will first describe our extractor E′

and then argue that it indeed works (with overwhelming probability).
Our extractorE′ proceeds as follows. Let (π1, π2, . . . , π`) be the proofs generated by the cheating prover

P ∗. For every i ∈ [`], E′ obtains yi = E(x, πi). If ∃i∗ ∈ [`] such that yi∗ ∈ R(x) then output yi∗ (breaking
ties arbitrarily). If no such i∗ exists then output ⊥.

Note that since our extractor E′ failed to extract witness out of πi for any i ∈ [`] we have (by soundness
of the ZK-PCP) that Pr[VoZK(x, π′i) = 0] ≥ κ, for every i ∈ [`], where the probability is taken over the
random choices of obtaining π′i from πi. Hence, if E′ outputs ⊥ then the verifier must also always reject,
except with probability at most ≤ (1− κ)`, which is negligible for ` = λ

κ .

Zero-Knowledge. We need to construct a simulator S ′ for our protocol. This construction follows imme-
diately from the ν-zero-knowledge property of the oblivious ZK-PCP.

Proof for the BSC case. We now provide the proof for the more involved case of binary symmetric
channel.

Binary Symmetric Channel. Next we consider the case of binary symmetric channel, i.e. when C =
CpBSC . We give the protocol in Figure 13. We start by giving the intuition. The key idea is to send over
multiple independently chosen ZK-PCPs over the BSC channel and observe the statistical gap that can be
observed only if valid proofs were sent.

Notation, Observations and Intuition. We start by making some observations. We start by observing
that we can use BSC to get a sort of a partial erasure channel. In particular if we repeat and send a bit 2τ
times over BSC and the receiver takes majority of the received bits then this suffices as a sort of erroneous
binary erasure channel. We will choose the parameter τ to be such that the probability that a sent value is

correctly received is
∑

0≤i<τ
(

2τ
i

)
pn−i · (1− p)i ≥ 3

√
2
3 . We argue this by using Chernoff bound. Let X be

the random variable denoting the number of bits among the 2τ bits transmitted that get flipped when each
bit is flipped with a probability 1 − p. Now note that expected number of flips is 2(1 − p)τ . Now by a

Chernoff bound, Pr[X ≥ τ ] = Pr[X ≥ 2(1− p)τ(1 + (2p−1)
2(1−p))] ≤ e−

(2p−1)2τ
6(1−p) (note that p > 1

2 ). Hence the

desired probability is at least 1− e−
(2p−1)2τ
6(1−p) > 3

√
2
3 when τ =

⌈
− 6(1−p)

(2p−1)2
ln
(

1− 3

√
2
3

)⌉
.
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OWSCzk/CpBSC protocol

Common Input: x ∈ {0, 1}λ.
Auxiliary Input for P : w such that (x,w) ∈ RL.
Parameters: Let (PoZK, VoZK) be any (3, α)-oblivious ZK-PCP system with knowledge soundness κ. Let

` =
(
λ·n
κ

)2
, τ =

⌈
− 6(1−p)

(2p−1)2 ln
(

1− 3

√
2
3

)⌉
(n is the length of the ZK-PCP proof) and α =

(
2τ
τ

)
(p(1 − p))τ .

Let U and S be the sets of all possible configurations/accepting states as explained in the text. Let pi,j
be the probability that a value i goes to a value j where i, j ∈ U . Let γj for j ∈ S be constants such that
1 =

∑
i,j∈S pi,jγj . Also Υ(·) outputs the number of occurrences of⊥ in the input string as explained in the text.

• P samples proofs π1, . . . π` from PoZK(λ, x, w) and sends (π1, . . . π`) to V via CpBSC repeating each bit
2τ times.

• V receives π′1, . . . π
′
` for all i ∈ [`] (where each bit is obtained by taking majority over the 2τ copies of

the a sent bit and using ⊥ for a tie). If Υ(π′1, . . . π
′
`) ≥ α` · n+

√
α`nλ then abort everything and output

reject.
Otherwise, for each i ∈ [`] consider 3 random bits in π′i and check if VoZK(λ, x, π′i) = 1. Set ti = γj
if this is the case and the received configuration is j. Output accept if

∑
i ti ≥ ` −

√
`λ and reject

otherwise.

Figure 13: Realizing zero-knowledge from Binary Symmetric Channel

Next note that the PCP verifier looks at a tuple of 3 bits and decides whether to accept or reject. This
allows for 8 combinations out of which only 4 are acceptable. Let U be the set of all state configurations
and let S be the set of possible configurations that are accepting. Let pi,j denote the probability of going
from state i to j such that both i, j ∈ U . Furthermore let γj for each j ∈ S be constants such that

1 =
∑

i,j∈S pi,jγj . Since we have that for each i ∈ S, pi,i > 2
3 (obtained as

(
3

√
2
3

)3

) we can conclude that

for every i ∈ S, γi < 3
2 . Depending on the PCP we could have a different accepting configurations for each

gate and hence the constant γis could also be defined per gate. We will give the construction assuming only
one kind of accepting configuration. It extends to the general setting in a natural way.

Intuitively in our construction γi’s help achieve normalization. In particular consider the case in which
the sender sends an accepting configuration γi for i ∈ S and the receiver obtains γj for some j ∈ U . In our
construction if j ∈ S then the receiver will output γj and if j /∈ S then it will just output 0. This has two
affects. First if i ∈ S then the expected value the receiver outputs is 1 regardless of what the sent value was.
On the other hand if i /∈ S then the expected value the receiver outputs is < 1/2. This follows from the fact
that if i /∈ S then the received value is in S with probability less that 1

3 and each γj is less that 3
2 .

We give the protocol in Figure 13. Let Υ(·) be a function that takes a string over alphabets {0, 1,⊥} as
input and outputs the number of occurrences of ⊥ in the string.

Completeness. Using Chernoff bound we have that:

Pr

[
Υ(π′1|| . . . π′`) ≥ α`n

(
1 +

λ1/2

√
α`n

)]
≤ e−

λ
3

Pr

[∑
i

ti ≤ `

(
1− λ1/2

√
`

)]
≤ e−

λ
2

Given these two facts the completeness of the protocol follows directly.
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Soundness. Let α′ be the least probability that a bit is erased when the input is not all 0 or all 1. In
particular α′ =

(
2τ
τ−1

)
pτ+1(1− p)τ−1. Note that α′ > α. Furthermore lets consider the setting in which the

adversary sends more that c1

√
α`nλ symbols in a way that they are not honestly generated. We will argue

that in this case the adversary almost always gets caught. The expected number of ⊥s that will be received
in this case are > α`n+ c1(α′ − α)

√
α`nλ. Then by a Chenroff bound we (set c1 = c2

(α−α′) ) have that:

Pr

[
Υ(π′1|| . . . π′`) ≤ α`n

(
1 +

λ1/2

√
α`n

)]
= Pr

[
Υ(π′1|| . . . π′`) ≤ (α`n+ c2

√
α`nλ)(1− (c2 − 1)

√
λ

(
√
α`n+ c2

√
λ)

)

]

≤ e−
(c2−1)2λ

2(
√
α`n+c2

√
λ)2
·(α`n+c2

√
α`nλ)

= e
− (c2−1)2λ

√
α`n

2(
√
α`n+c2

√
λ)

< e
− (c2−1)2

√
λ

2c2

(3)

Hence, we have that at most c2

√
α`nλ bits were tampered with. This implies that for at least ` −

c2

√
α`nλ = ` − c2`

3/4 > `
2 (as `1/4 = ω(

√
nλ)) of the proofs we have that none of the bits are tampered

with. In this case the expected value of
∑

i ti is at most `− κ`
4 (κ of the `/2 proof are such that the ti values

for them is less than 1/2). We will now argue that in this case the value
∑

i ti will be more than ` −
√
`λ

only with a negligible probability.

Pr[
∑
i

ti ≥ `−
√
`λ = `(1− κ

4
)(1 +

κ`
4 −
√
`λ

`(1− κ
4 )

)] ≤ e−
(κ`4 −

√
`λ)2

`(1−κ4 ) ≤ e−
κ2`
64 ,

which is negligible for our choice of parameters.
We have just argued that if the prover is not caught then it must be the case that a large number of the

proofs sent by the prover are without inconsistency. Hence they can in fact be used to extract the witness.
The extraction procedure and the argument that it works is identical to the argument for the binary erasure
case.

Zero-Knowledge. We need to construct a simulator S ′ for our protocol. This construction follows imme-
diately from the the α-zero-knowledge property of the oblivious ZK-PCP.

8 C`ROT is OWSC complete for randomized functionalities

In this section, we describe an OWSC scheme for any randomized function in the CROT -hybrid model that
uses only a single round of random OTs and no additional interaction. The functionalities considered here
provide output to only one party. This result follows directly from [IPS08, Appendix B] and we include
the construction and proof in Appendix A for completeness (much of the text have been taken verbatim
from [IPS08, Appendix B]). More efficient alternatives have been considered by [IKO+11a] however we
consider the simplest feasibility result for our setting.

One technical difference in our setting compared to [IPS08] is in the underlying primitive from which
the protocols are constructed. While the protocol in [IPS08] uses a regular 1-out-of-N OT protocol, in our
case we only have access to a 1-out-of-2 ROT protocol and need to convert it to a 1-out-of-N ROT protocol.
(Recall that the choice about which 1-out-of-N strings the receiver obtains is made by the channel in the
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ROT protocol.) This however can be done easily using standard techniques and a sketch of the construction
has been provided in Appendix A.3.

Theorem 11 For every randomized function f , ∃` and a OWSCf/C`ROT scheme that is a UC-secure real-
ization (even against malicious adversaries) of the functionality Ff in the C`ROT -hybrid model.

ε-secure variant. We can also use the ε-UC realization of ROT (based on noisy bursty channel as in
Theorem 5) in order to obtain a ε · r-UC realization of OWSCf where r is the number of ROT calls made
inside our construction. r for our construction is a fixed polynomial in the security parameter λ, independent
of the size of the function being computed.

Construction using biased-ROT. The above theorem is stated just for the case of C`ROT -hybrid model.
However we note that the same construction continues to work in the C`,pROT -hybrid model, for any constant
p ∈ (0, 1), with one small change. When using the C`,pROT channel, the input provided by the channel for
the function evaluation will be biased. This issue can be resolved by using security parameter λ number of
independent bits from the channel to obtain each bit for the functionality being evaluated. More specifically,
each input bit for the functionality is obtained by taking the exclusive or of λ independent input bits. By the
XOR Lemma, we claim that the obtained bits will be close to uniform.

Furthermore, when using the C`,pROT -hybrid model, the construction itself does not depend on the precise
value of the constant p. Hence, our construction is robust in the sense that it remains secure even if the
adversary gets to specify the value of p (within some bounded range).

9 Extending impossibilities for constructing ROT from BEC and BSC to the
Computational Setting

In this section we will show that even with computation assumptions it is impossible to construct ROT using
BEC and BSC.

9.1 Impossibility of ROT from BEC

Theorem 12 ∀k, `, p (k, ` are poly in λ and p is a constant), and any negligible in λ function ε, C1
ROT cannot

be ε-securely realized in the Ck,`,Dk,pGEC hybrid model even against semi-honest computationally bounded
adversaries.

PROOF: For the sake of contradiction lets start by fixing a negligible ε and assuming that there exists
a protocol π = 〈S,R〉 that ε-securely realizes C1

ROT in the Ck,`,Dk,pGEC hybrid model. More specifically π
proceeds as: S on input two bits m0,m1 ∈ {0, 1} generates k strings x = (x1, x2 . . . xk) which are
provided as input to the functionality Ck,`,Dk,pGEC . The functionality then outputs strings y = (y1, y2 . . . yk) to
the receiver R. R processes these values and outputs either (m0,⊥) or (⊥,m1). More formally, consider
the experiment EXPT〈S,R〉(m0,m1) in Figure 14.

Let A be the event that z = (m0,⊥) and similarly let B be the event that z = (⊥,m1). For the
sake of contradiction lets assume that the protocol is indeed secure. Then correctness implies that except
with negligible probability either A or B happens. Also receiver privacy implies that with overwhelming
probability over choices of x sent by the sender we have that A and B happen with roughly the same
probability. To reach a contradiction we will construct a machine M that can output both m0,m1 correctly
using just y with probability noticeably better than 1

2 .
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EXPT〈S,R〉(m0,m1)

1. x
$← S(m0,m1).

2. ∀i ∈ [k], set yi = xi with probability p and ⊥ with probability 1 − p. Set si = 1 if yi = xi and 0
otherwise.

3. Set z := R(y).

4. Output (m0,m1,x,y, s, z).

Figure 14: Execution of the 〈S,R〉 protocol

Our machine M proceeds as follows. M proceeds by following the honest receiver strategy to obtain
one of the values m0 or m1. Let S denote the set of symbols (the set corresponding to the string s) received
by the receiver, and mb be the ROT message output by the receiver. The receiver tries to recover m1−b by
considering a random subset of S of size |S| − 1 and for that subset S′ ⊂ S it runs the honest receiver. If
the receiver guess for S′ makes receiver output m1−b, then M uses this values and otherwise setting it to a
random value in {0, 1}. M finally outputs (m0,m1).

Now we need to argue that M outputs the correct values (m0,m1) with a probability noticeably better
than 1

2 . In particular observe that it suffices to show that (1) with noticeable probability there exists a set S′

such that the honest receiver outputs m1−b, (2) the output value m1−b is correct. We will argue these two
properties using the following lemma (the lemma itself is proved later).

Lemma 4 For any balanced function f : {0, 1}n → {0, 1} (i.e. Prx[f(x) = 1] = Pr[f(x) = 0] = 1
2 ),

Prx[∃ x′ | δ(x, x′) = 1 ∧ f(x′) = 1 − f(x)] ≥ Ω(1/
√
n), where δ(x, x′) denotes the hamming distance

between x and x′. (The distribution on x is as follows. Each bit of x is set to 1 with probability p and 0
otherwise. )

Argument that an S′ exists. Note that with overwhelming probability over the choice of x we have that
the A and B happen with roughly the same probability. Let fx be the function that on input s ∈ {0, 1}k
outputs 1 if deletion of entries in x based on s leads to event A and 0 otherwise. Note that this function fx
is balanced. Hence we have that with probability at least Ω(1/

√
k) an s′ such that δ(s, s′) = 1 exists.

Argument that the value is correct. We will now argue that the valuem1−b output byM is correct except
with negligible probability. For the sake of contradiction lets start by assuming that this is not the case. In
that scenario, we will show that the scheme has non-negligible correctness error. Consider the following
two experiments:

1. Pick a random s ∈ {0, 1}k where each bit is set to 1 with probability p and 0 otherwise.

2. Pick a random s ∈ {0, 1}k as above and then replace a random bit in s that is 1 to 0.

Then the probability of each s happening in the two experiments are polynomially related. This implies that
if the probability of getting an incorrect answer in the second experiment is non-negligible then the same
must be the case in the first experiment. This contradicts the correctness of our scheme. �
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Proof of Lemma 5. Lets start by arguing for the case when the distribution of x is uniform, i.e. p = 1
2 .

Let S be a set such that x ∈ S if we have that f(x) = 0. Then by the isoperimetric inequality (or Harper’s
Theorem) we have that among all sets S of a given size s, the one that has the smallest boundary (namely,
the smallest number of points that have neighbors outside the set) is the Hamming ball. In particular, if
S contains half of the points in 0, 1n, then its boundary is of size at least

(
n
n/2

)
which is at least a 1

Ω(
√
n)

fraction of all the points. This implies the claim.
Next we generalize the argument to the setting where p is an arbitrary fixed constant in (0, 1). In partic-

ular, we can define Qn = {0, 1}n (the n-cube) and identify each element x ∈ Qn with the corresponding
subset of [n]; i.e., {i | xi = 1}. Then the probability measure Pr on Qn is:

Pr(x) =
∏
i∈x

p
∏
i 6∈a

(1− p) .

This gives a weighted cube and we can use a weighted version of the Harper’s Theorem and get an argument
just like for the case of p = 1/2 above. We will argue for the case when p > 1/2. The other case is
symmetric. In particular, as pointed out in [Liu, Pg. 18] we have that even for this weighted cube, the set S
of a fixed weight with the smallest boundary is a Hamming Ball. Let S be a set such that x ∈ S if we have
that f(x) = 0. Then the set S with weight 1/2 and the smallest boundary is the Hamming Ball of radius
at least cn for some constant c. This follows from the fact that for any radius o(pn) we have that using
Hoeffding’s inequality the weight of the Hamming ball is negligible [Wik13]. Therefore the boundary of S
is of size at least

(
n
cn

)
and these points are sampled with a probability at least 1

Ω(
√
n)

.

9.2 Impossibility of ROT from BSC

Theorem 13 ∀k, `, p (k, ` are poly in λ and p is a constant), and any negligible in λ function ε, C1
ROT

cannot be ε-securely realized in the CpBSC hybrid model even against semi-honest computationally bounded
adversaries.

PROOF: The proof is analogous to the proof of Theorem 12 and we just sketch the differences. Note BSC
channel with correct transmission probability p can be thought of as a channel that transmits the bit correctly
with a probability p′ and replaces it with a random value with probability 1− p′ for an appropriate p′. With
this setting in mind similar to proof of Theorem 12, we can also construct a machine M that outputs both
m0,m1 as follows.

Let S denote the set of symbols correctly transmitted by the channel to the receiver, and mb be the ROT
message output by the receiver. Note that the receiver is unaware of the set S itself. The receiver tries
to recover m1−b by considering a uniform position of the received string, inverting it and evaluating the
honest receiver on the obtained string. If the receiver obtains an output m1−b, then M uses this values and
otherwise sets it to a random value in {0, 1}. M finally outputs (m0,m1).

Just like in the proof of Theorem 12 we need to show that this procedure indeed finds the correct value
m1−b with noticeable probability. The argument for this is identical to the argument presented in the proof
of Theorem 12. �
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A Proof of Theorem 11

First, we shall describe a protocol that achieves security against covert-adversaries, but with a deterrence
probability that can be easily reduced to negligible by choosing parameters appropriately. We describe the
protocol in two parts. First we give a scheme OWSCf/Fcov-cROT scheme that is a UC-secure realization of
the functionality Ff in the Fcov-cROT-hybrid model. Subsequently we will give a scheme for securely real-
izing Fcov-cROT in the in the C`ROT -hybrid model for appropriate choice of `. This is very similar to [IPS08]
except that our protocol is in the ROT hybrid model as opposed to the protocol of [IPS08] which was in the
OT hybrid model.

A.1 Reducing Covert-adversary OWSC to Covert-adversary Certified-ROT

We start by defining the functionality Fcov-cROT, for “covert-adversary certified-ROT.”

Covert-adversary Certified-ROT Functionality. Parameters ofFcov-cROT include a functionC, the num-
ber of pairs of strings that are being transferred,m, the length of these strings, and a “deterrence probability”
ε.

1. Fcov-cROT takes from the sender input Γ = ((s1
0, s

1
1), . . . , (sm0 , s

m
1 );w) that is m pairs of strings and

a “witness” w. The receiver has no input and hence the functionality does not take any input from the
receiver .

2. If the sender is corrupt, it allows the sender to send a command cheat also. In this case, with proba-
bility ε, Fcov-cROT will produce the message corrupted as output to both the parties and terminates,
and with probability 1− ε, will allow the sender to specify an output for the receiver.

3. If the sender does not include the cheat command in the input, then the receiver gets (s1
c1 , . . . , s

m
cm ;C(Γ))

where ∀i ∈ [m], ci
$← {0, 1}.
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Given a decomposable randomized encoding h for a function g, it is fairly straight forward to use a
simple generalization of Yao’s protocol to get a OWSC scheme for g in the certified-ROT-hybrid model. In
the Fcov-cROT-hybrid model, this protocol is a secure realization of covert-adversary OWSC of g.

Let g’s input consist of two parts: A’s input a and the random input (provided by the channel in our case)
b. Recall that a decomposable randomized encoding of g can be written as h(x, r) = {hi(xi, r)}|x|i=1, where
x is the input to g. Since x = (a, b), we will rewrite this as h(a, b, r) = {hAi (ai, r)}|a|i=1 ◦ {hBi (bi, r)}|b|i=1.

The function C associated with Fcov-cROT is defined as

C({(si0, si1)}|b|i=1; (a, r)) = ({hAi (ai, r)}|a|i=1;R({(si0, si1)}|b|i=1, r)),

where R is a predicate which checks that {(si0, si1)}|b|i=1 = {(hBi (0, r), hBi (1, r))}|b|i=1.

1. A picks a random string r (for the randomized encoding of g) and prepares the following input for
Fcov-cROT (with the associated function C described above): ({(hBi (0, r), hBi (1, r))}|b|i=1; (a, r)).

2. B obtains ({hBi (bi, r)}|b|i=1; {hAi (ai, r)}|a|i=1; z) where for each i, bi is a random bit chosen by the
channel. B aborts if z 6= 1.

3. B computes g(a, b) from h(a, b, r) = {hAi (ai, r)}|a|i=1 ◦ {hBi (bi, r)}|b|i=1, and outputs it.

Proof of Security. If A is corrupt, the simulation is straight forward: the simulator obtains her inputs to
Fcov-cROT, computes C and checks if the predicate R evaluates to 1 on this input. If so, it sends a to Fcov-g.
If A sends a cheat command to Fcov-cROT, then the simulator also sends a cheat command to Fcov-g. If
Fcov-g responds, then, A sets the outputs of Fcov-cROT, which are received by the simulator, who uses it
to carry out the rest of the protocol of B; the simulator will then instruct Fcov-g to output whatever this
simulated B outputs. It is easily seen that this is a perfect simulation if Fcov-g has the same deterrence
probability as Fcov-cROT.

If B is corrupt, then also there is a simple simulation, which depends on the privacy property of the
randomized encoding. The simulator obtains the output for B from Fcov-g. It then constructs a random
encoding consistent with this output value. This is used to prepare a simulated output from Fcov-cROT.
(Note that Fcov-cROT does not allow B to send a cheat message.)

A.2 Reducing Covert-adversary Certified-ROT to ROT

In this section we give a OWSC protocol cROTROT in the ROT-hybrid model, which achieves the “covert-
adversary” Certified-ROT functionality Fcov-cROT. Our protocol is built by compiling an MPC protocol,
η (involving more than two parties, with a certain level of information theoretic security against passive
corruption) into a two-party protocol in the ROT-hybrid model.

Protocol η. First we describe the requisite properties of the protocol η.

• Participants: There are 2 input clients, q servers and 2Lm+ 1 output clients for some L > 1. (Here
q will be a constant. m is the number of pairs of strings that the sender wants to send in the certified
ROT functionality provided by the compiled protocol. L can be set to 2 to get a deterrence value of
1/2, or if a higher deterrence value is needed, a higher constant.) We denote the 2 input clients by I0

and I1; we denote the 2Lm + 1 output clients by Zi`0 and Zi`1, (for i = 1, . . . ,m and ` = 1, . . . , L)
and Z0.
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• Functionality: We define the following functionality H. Let x0 and x1 denote the inputs of I0 and
I1. H parses x0 ⊕ x1 as m pairs of strings ((s1

0, s
1
1), . . . , (sm0 , s

m
1 )) and a “witness” w.

Z0 is given the function C((s1
0, s

1
1), . . . , (sm0 , s

m
1 );w). For each i, Zi`0 and Zi`1 (` = 1, . . . , L) receive

random strings zi`0 and zi`1 subject to the constraint that
⊕

` z
i
`r`

= si⊕
` r`

for all r ∈ {0, 1}L. That is,

zi`b are random such that
⊕

` z
i
`0 = si0 and zi`1 = zi`0 ⊕ si0 ⊕ si1.

• Security: η must be t0-private, for some t0 ≥ 2. More precisely, it securely realizes the functionality
H against passive (honest-but-curious), adversaries who can corrupt up to t0 servers, and any number
of input and output clients. The security is perfect.

• Structure of the protocol: We will require that the input clients talk only to the servers and that
output clients only receive messages and never send messages.

• Complexity: We require the communication complexity of the protocol to be linear in the circuit size
of C.

Standard MPC protocols from the literature can be easily adapted to obtain a protocol η that fits the
above requirements. So, for instance, let q = 8 and use the BGW protocol [BGW88] (or a simpler protocol
due to Maurer [Mau02]). Note that [IPS08] allowed the protocol to be in the OT-hybrid model and could
use the GMW protocol [GMW87] as well. However we only have access to ROT and hence we cannot use
that. Furthermore we set q = 8 so that it is a power of 2( [IPS08] set q as 5).

Protocol φ. Similar to η we also need a (simpler) protocol for an “equality check,” with a similar protocol
structure and security guarantee. φ has 4 input clients and one output client, and q servers without input
or output. φ (stand-alone) securely realizes the following functionality E , against t0 ≥ 2 passive server
corruptions. The security is perfect.

Let the input clients be I0, I1, I ′0 and I ′1, with inputs x0, x1, x′0 and x′1, respectively. Then E outputs 1
to the output client if and only if x0 ⊕ x1 = x′0 ⊕ x′1.

Protocol cROTROT. The certified-ROT protocol cROTROT proceeds as follows in the ROT-hybrid model.
Let κ be a statistical security parameter. (Later we will set κ to be a constant, independent of the final
security parameter, m and the final circuit size.)

• Run “MPC in the head”: The sender prepares κ total views of the execution of the protocol η and(
κ
2

)
total views of the execution of the protocol φ. We will refer to the κ executions of η as ηj

(j = 1, . . . , κ) and the
(
κ
2

)
executions of φ as φjj′ (for 1 ≤ j < j′ ≤ κ). The servers are distinct in

all these executions (thus there are q(κ+
(
κ
2

)
) servers in all), but the input and output clients in these

different executions are identified as follows. There are 2κ input clients Ij0 and Ij1 with inputs xj0 and
xj1 respectively for j = 1, . . . , κ; ηj has (Ij0, Ij1) as its two input clients; φjj′ has (Ij0, Ij1, Ij′0, Ij′1)
as its four clients. There are Lm + 1 clients Zi`0 and Zi`1, (for i = 1, . . . ,m and ` = 1, . . . , L) and
Z0, which serve as the output clients in all κ instances of η. Further Z0 will serve as the output client
in all the

(
κ
2

)
instances of φ.

In these executions the inputs (xj0, xj1) are set independently for each j as a random additive sharing
of the input to cROTROT, Γ; i.e., xj0 ⊕ xj1 = Γ for each j.

• Cut and choose: Using a single round of multiple (1-out-of-N ) ROTs,5 where N is always a power
of 2, the sender and the receiver do the following:

5We only have 1-out-of-2 ROT at our disposal however it is easy to construct a 1-out-of-N ROT from 1-out-of-2 ROT extending
a construction of [BCR86]. For completeness we describe the modification in Section A.3.
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– For each j, the sender sends views of the pair of input clients (Ij0, Ij1) via a 1-out-of-2 ROT
channel, and the receiver gets one of the views at random.

– In each of the κ executions of η and each of the
(
κ
2

)
executions of φ, the sender makes two lists

of the q server views, and sends each list via a 1-out-of-q ROT channel. From each list, the
receiver gets at random the view of one of the servers.

– For each i = 1, . . . ,m, the sender sends the views of (Zi`0, Z
i
`1) for ` = 1, . . . , L through L

1-out-of-2 ROT channels. The receiver gets the views Zi`r` for a random r ∈ {0, 1}L. It then
sets ci =

⊕
` r`.

In addition, the sender sends the view of the Z0 directly (i.e., by invoking the ROT on input (Z0, Z0)).

• The receiver checks for consistency in the input it received:

1. The input clients: Views of all the exposed input clients are locally correct, i.e., each input
client’s view is according to its program given its initial input and random tapes (In particular
each of them feeds the same input to the instance of η as well as to the κ− 1 instances of φ that
it participates in.)

2. The servers and the “edges”:

– The views of the exposed servers are locally correct (given the incoming messages and the
random tapes).

– The views of the exposed servers are consistent with the incoming messages reported in the
views of the exposed output clients and the outgoing messages implicit in the views of the
exposed input clients.

– The views of the exposed servers are consistent with each other (in particular, if the same
server was exposed twice, the two views are identical).

3. The output clients:

– In all executions φjj′ , (1 ≤ j < j′ ≤ κ), Z0 outputs 1. Also, in all executions ηj , (1 ≤ j ≤
κ), Z0 produces the same output (say γ).

– The views of (i.e., outputs produced by) all the exposed output clients (including Z0) are
correct given the incoming messages.

– Let zij`b denote the output of the output client Zi`b in the ηj . Then, for each i,
⊕
zij`r`

evaluates to the same value (say s̃i) for all j.

If all the verifications succeed, then the receiver outputs (s̃i, . . . , s̃i; γ). Else it aborts the protocol and
outputs abort.

Lemma 5 Given a protocol η satisfying the conditions above, cROTROT defined above is a UC-secure
realization of the certified ROT functionality Fcov-cROT. The simulation is perfect.

PROOF OVERVIEW: The interesting cases are when exactly one of the sender or the receiver is corrupted.
Corrupt Receiver. In this case, the security easily follows from the privacy of the protocol η. Consider a
simulator in the ideal world interacting with Fcov-cROT as the receiver, and simulating the protocol to the
corrupt receiver. Note that a receiver gets to see only the views of some of the servers and some of the
clients. The simulator obtains the outputs for the receiver from Fcov-cROT. Observe that the views that the
receiver obtains in each execution of η or φ are of up to 2 servers, input clients (with only one share of
an additive sharing of Γ) and some output clients. By the security guarantee on η and φ, this view can be
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perfectly simulated given just the outputs that these output clients receive. Since these outputs are available
to the simulator, it can carry out a perfect simulation.
Corrupt Sender. This case is the more interesting one.

Consider the graph on the parties in the protocol with an edge between two parties who can exchange
a message in the protocol. (That is, there are edges between the input clients and the servers, among the q
servers, and between the servers and the output clients.)

Let δ be the minimum probability of detecting an “internally” inconsistent execution of φ or of η. Note
that δ ≥ 1/q2.

The simulator obtains the entire collection of views that the sender submits as inputs to the ROT ex-
ecutions. It examines these views and first prepares an “input consistency graph” as follows: For each j
(j = 1, . . . , κ), such that both Ij0 and Ij1 are locally consistent, add a node to the graph. For each pair
(j, j′) such that the entire execution of φjj′ is correct (given the randomness of the servers), add an edge
between the corresponding nodes (if present) in the graph. Note that for any connected component in this
graph, there is a unique input value Γ such that for all j in the connected component, xj0⊕ xj1 = Γ and the
input clients of ηj use this input.

Now the simulator proceeds as follows:

• The simulator sends the cheat command to Fcov-cROT if any of the following conditions hold.

1. The input consistency graph has no connected component of more than κ/2 nodes.

2. ηj was internally consistent only for κ/2 or fewer values of j.

3. For some i, for all ` (` = 1, . . . , L), output client Zi`0 or Zi`1 was locally incorrect.

Then, with probability ε, Fcov-cROT will send corrupted to both parties; in this case the simulator
aborts the simulated protocol. With probability 1 − ε, Fcov-cROT will allow the simulator to cheat:
the simulator samples random coins for the receiver and calculates the probability p that the simulator
would have aborted the protocol for this randomness. We shall see that p > ε. Then with probability
(p−ε)/(1−ε) the simulator will abort the simulated protocol (so that total probability of the simulated
protocol being aborted is exactly p) and send corrupted to Fcov-cROT; with probability (1−p)/(1−ε)
it will continue the simulation conditioned on the receiver not aborting, derive the output that the
receiver obtains, and send this to Fcov-cROT as the output for the receiver.

• If the above conditions do not hold (and so the simulator does not send cheat to Fcov-cROT), then

1. The simulator can derive an input Γ, which is the input defined by the majority of the nodes in
the input consistency graph.

2. Also, since more than κ/2 executions of η were internally consistent, there is some j such that
ηj was internally consistent and used inputs xj0 and xj1 such that xj0 ⊕ xj1 = Γ.

3. Further, for each i, for at least one ` (` can depend on i), both Zi`0 and Zi`1 were locally correct
(for all κ execution of η).

In this case the simulator proceeds to give a perfect simulation as follows. Note that the only infor-
mation the sender learns is whether the receiver aborts the protocol or not. The simulator carries out
all the checks like the receiver, except for the last step. For the last check, the receiver gets, for each
i, r ∈ {0, 1}L and sets ci =

⊕
` r`. But the simulator (who does not know the randomness of the

channel and hence ci), simply picks a random string r. However, this is equivalent to picking r′ where
the `-th bit of r is flipped. This is because both the views Zi`0 and Zi`1 are locally correct. Thus the
simulated protocol is a perfect simulation of the real protocol so far.

34



If the simulated protocol does not abort, then the simulator sends Γ to Fcov-cROT. Otherwise it sends
corrupted to Fcov-cROT. By the correctness of ηj for some j, we know that the output of the receiver
in the real protocol is perfectly simulated by the output Fcov-cROT delivers in the ideal world, on input
Γ.

To complete the argument we need to argue that the probability p of the real protocol aborting in the
three cases where the simulator would send cheat to Fcov-cROT is indeep at least ε. We consider the three
cases below.

1. If the input consistency graph has no more than κ/2 nodes in a single connected component, then
there must be either Ω(κ) missing nodes (i.e., j for which the node was not added to the graph), or
Ω(κ2) missing edges (i.e., edges (j, j′) that were not added to the graph).

• For each missing node j, one of the two input clients Ij0 and Ij1 is locally incorrect (sending
different inputs to executions of η and φ). If there are d such missing nodes, the probability of the
real protocol aborting is at least 1− 2−d, because for each j there is an independent probability
of at least half of exposing an incorrect view.

• For each missing edge (j, j′) (between nodes which are present in the input consistency graph),
the probability of the protocol aborting is δ if φjj′ is internally inconsistent, or is 1, if Z0 is
either locally incorrect or produces an output 0 in φjj′ . If there are d such missing edges, the
probability of the protocol aborting is at least 1− (1− δ)−d (as these events are independent of
each other).

In any of these cases, the real protocol execution would abort with probability at least p1 = 1− (1−
δ)Ω(κ).

2. If ηj was internally consistent only for κ/2 or fewer values of j, then the protocol will abort with
probability at least p2 = 1− (1− δ)κ/2.

3. If for some i, for all ` (` = 1, . . . , L), at least one of the output clients Zi`0 and Zi`1 was locally
incorrect, then the protocol would abort with probability at least p3 = 1− 2−(L−1).

To ensure that these abort probabilities are at least ε, we set ε := min(p1, p2, p3). Note that with L = 2, and
a large enough κ, we can get ε = 1

2 . By choosing L = Ω(κ), we get ε = 1− 2−Ω(κ). C

A.3 1-out-of-N ROT from 1-out-of-2 ROT

[BCR86] provide a transformation of 1-out-of-N OT (where N is a power of 2) from 1-out-of-2 OT. In our
setting we need a similar transformation for the setting of random OT. The reduction of [BCR86, Section
2.2] works almost directly for us and we can use it to guarantee that the receiver obtains exactly among the
N sent strings. However this protocol does not guarantee that the received string is uniform among the sent
strings. We will next sketch a construction for realizing 1-out-of-N ROT from 1-out-of-2 ROT and hint at
the proof. We will only sketch the construction for the setting of bit-ROT (that is when the sent messages
are actually bits), but the same protocol generalizes to strings in a natural manner.

Suppose the sender’s input bits are b1, b2 . . . bN and the goal of the ROT protocol is to enable the receiver
to obtain exactly one (uniform among the N bits) of these bits. The sender generates a complete binary tree
with N leaves, sampling:

1. a random bit re corresponding to each edge e of the tree (call them edge mask bits), and

2. a random bit ri corresponding to every leaf i ∈ [N ] in the tree.
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The sender generates generates xi = ri ⊕ bi for each i ∈ [N ] and sends it to the receiver. Additionally
it for each node v let rvl and rvr be edge masks for the left and the right edges going out of that node. For
every node v in the tree, the sender uses one execution of 1-out-of-2 ROT to transfer either rvl or rvr to the
receiver.

Observe that the receiver will always get all the edge mask bits from the root to one of the leaves (lets
say the kth leaf). The receiver at this point, xors these edge masks together with xk and outputs the resulting
value as bk.

It is easy to see that k remains hidden from the sender. Arguing that the receiver only obtains a single
value among b1, . . . , b2 requires some work and we will hint at the argument. Notice that if the receiver gets
to see the left edge mask bit of a node then all bits in the right sub-tree are perfectly hidden because the edge
mask for the right edge is hidden. Note however that the receiver still obtains the edge masks for some of
the edges in the right subtree which are correlated with the xi values. But still even with these correlations
we can argue that enough edge masks will be hidden in order to hide every leaf of the subtree. We refer the
reader to [BCR86] for a complete argument (where the same argument is given for a linear structure instead
of a tree structure).
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