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Abstract

At Asiacrypt 2014, Hanser and Slamanig presented a structure-preserving
signatures and prove its EUF-CMA security. Very recently, Fuchsbauer gave
a very surprising attack to point out their claim is flawed by showing how
to generate a valid existential forgery with overwhelming probability with 4
chosen-message queries for l = 2. However, we go further in this paper to
show that the Hanser-Slamanig signature scheme is not unforgeable under the
adaptive chosen message attack. We present a deterministic polynomial-time
chosen-message attack which can forge the valid signature for any message with
3 (resp. 4) chosen-message queries for l = 2 (resp. l ≥ 3 ).

Keywords: Structure-preserving signature, chosen-message attack.

1 Introduction

At Asiacrypt 2014, Hanser and Slamanig [2] presented a structure-preserving sig-
natures on equivalence classes (SPS-EC). Instead of using zero-knowledge proofs of
knowledge of signatures as before, the Hanser-Slamanig signature scheme allows to
randomize the signed message in particular ways to achieve anonymity. They also
showed that their scheme is EUF-CMA secure in the generic group model for SXDH
groups.

However, very recently, Fuchsbauer [1] pointed out their claim is flawed by show-
ing how to generate a valid existential forgery with overwhelming probability with
4 chosen-message queries for l = 2. Hence the Hanser-Slamanig signature scheme is
not EUF-CMA secure.

In this paper, we show that the Hanser-Slamanig signature scheme can not even
be unforgeable under the adaptive chosen message attack. More precisely, we present
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a deterministic polynomial-time chosen-message attack which can forge the valid
signature for any message. The new attack appears more simple and never fails.
To forge a valid signature, we just need 3 chosen-message queries for l = 2. We
also consider the general case when l ≥ 3 and show that 4 chosen-message queries
is needed to forge the signature of any message. In fact, if we take 2 (resp. 3) non-
adaptive chosen-message queries for l = 2 (resp. l ≥ 3) as precomputation, we can
always forge any signature by only 1 additional chosen-message query. Moreover, the
new attack reveals the weakness of the Hanser-Slamanig signature scheme obviously
and seems natural eanough whereas Fuchsbauer’s attack seems too clever so that
one may wonder how he gets it.

2 The Hanser-Slamanig Signature Scheme

Before giving the description of the signature scheme, we first define the equivalence
relation R as used in [2]:

R = {(M,N) ∈ (G∗1)l × (G∗1)l : ∃s ∈ Z∗p s.t. N = sM}.

Then we denote [M ]R all the elements in (G∗1)l equivalent to M ∈ (G∗1)l with relation
R.

As in [1], we just describe the Hanser-Slamanig signature scheme as below but
omit its ChgRep step.

• BGGenR(κ): Given a security parameter κ, output

BG = (p,G1,G2,GT , P, P
′, e),

where prime p is the order of cyclic groups G1, G2, and GT , and G1 and G2 are
additive but GT is multiplicative where there is a bilinear map e : G1 ×G2 →
GT , P and P ′ generate G1 and G2 respectively.

• KeyGenR(BG, l): Given a bilinear group description BG and vector length

l > 1, choose x
R← Z∗p and (xi)

l
i=1

R← (Z∗p)l, set the secret key as sk ←
(x, (xi)

l
i=1), compute the public key pk ← (X ′, (X ′i)

l
i=1) = (xP ′, (xixP

′)li=1)
and output (sk,pk).

• SignR(M, sk): On input a representative M = (Mi)
l
i=1 ∈ (G∗1)l of equivalence

class [M ]R and secret key sk = (x, (xi)
l
i=1), choosey

R← Z∗p and compute

Z ← x

l∑
i=1

xiMi, V ← y

l∑
i=1

xiMi, (Y, Y ′)← y · (P, P ′).

Then, output σ = (Z, V, Y, Y ′) as signature for the equivalence class [M ]R.
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• VerifyR(M,σ,pk): Given a representative M = (Mi)
l
i=1 ∈ (G∗1)l of equiva-

lence class [M ]R, a signature σ = (Z, V, Y, Y ′) and public key pk = (X ′, (X ′i)
l
i=1,

check whether

l∏
i=1

e(Mi, X
′
i)

?
= e(Z,P )

∧
e(Z, Y ′)

?
= e(V,X ′)

∧
e(P, Y ′)

?
= e(Y, P ′)

and if this holds output true and false otherwise.

3 The Attack

3.1 Key Idea

Consider the following map:

ϕ : (G1)
l → G1

(Mi)
l
i=1 7→

∑l
i=1 xiMi.

We claim that

Lemma 1. For any (Ki)
l
i=1 ∈ ker(ϕ), if σ = (Z, V, Y, Y ′) is a valid signature of

any message (Mi)
l
i=1, then it is also a valid signature of (Mi +Ki)

l
i=1

Proof. Notice that the only condition we need check is
∏l

i=1 e(Mi, X
′
i)

?
= e(Z,P ).

Assume Mi = miP and Ki = kiP . Since (Ki)
l
i=1 ∈ ker(ϕ), we have (

∑l
i=1 xiki)P =

0 which yields
∑l

i=1 xiki = 0 mod p. Then we have∏l
i=1 e(Mi +Ki, X

′
i) = e(P, P ′)

∑l
i=1 xxi(mi+ki)

= e(P, P ′)
∑l

i=1 xximi+
∑l

i=1 xxiki

= e(P, P ′)
∑l

i=1 xximi

=
∏l

i=1 e(Mi, X
′
i),

which finishes the proof.

Hence if we find any non-trivial (Ki)
l
i=1 ∈ ker(ϕ), we can forge the signature on

any message (Mi)
l
i=1 by querying the signing oracle with (Mi−Ki)

l
i=1 and outputting

the returned signature.
Next we will show the non-trivial (Ki)

l
i=1 can be obtained with 2 (resp. 3)

chosen-message queries for l = 2 (resp. l ≥ 3).
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3.2 Case l = 2

Consider the following polynomial-time adversary A to obtain a nontrivial element
in ker(ϕ):

1. A receives pk and has access to a signing oracle. A first chooses any invertible
matrix (

a1 a2
a3 a4

)
∈ Z∗2×2p

and computes its inverse (
b1 b2
b3 b4

)
∈ Z2×2

p ,

such that (
b1 b2
b3 b4

)(
a1 a2
a3 a4

)
=

(
1 0
0 1

)
mod p.

2. A makes a signing query with (a1P, a2P ) and gets (Z1, V1, Y1, Y
′
1).

3. A makes a signing query with (a3P, a4P ) and gets (Z2, V2, Y2, Y
′
2).

4. A outputs ((b3Z1 + b4Z2),−(b1Z1 + b2Z2)).

We claim that

Proposition 1. ((b3Z1 + b4Z2),−(b1Z1 + b2Z2)) = (xx2P,−xx1P ) ∈ ker(ϕ)\(0,0).

Proof. It suffices to prove ((b3Z1 +b4Z2),−(b1Z1 +b2Z2)) = (xx2P,−xx1P ). Notice
that

Z1 = x(a1x1 + a2x2)P,Z2 = x(a3x1 + a4x2)P.

Hence
b3Z1 + b4Z2 = b3x(a1x1 + a2x2)P + b4x(a3x1 + a4x2)P

= x((b3a1 + b4a3)x1 + (b3a2 + b4a4)x2)P
= xx2P

and
b1Z1 + b2Z2 = b1x(a1x1 + a2x2)P + b2x(a3x1 + a4x2)P

= x((b1a1 + b2a3)x1 + (b1a2 + b2a4)x2)P
= xx1P.

The proposition follows.

Notice that any fixed a1, a2, a3, a4 can help the attack work well, which shows
one can not make the scheme secure by excluding some classes from the message
space.
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Remark 1. We would like to point out that by the attack in [1], one can also recover
an nontrivial element in Ker(ϕ) with 4 chosen-message queries for l = 2.

3.3 Case l ≥ 3

We can also generalize the attack above for the case l ≥ 3 by involving an invertible
matrix. However, notice that (xx2P,−xx1P,0,0, · · · ,0) is also a nontrivial element
in the corresponding ker(ϕ). We have a more clever attack to obtain a nontrivial
element in ker(ϕ).

1. A receives pk and has access to a signing oracle.

2. A makes a signing query with (P, P, P, · · · , P ) and gets (Z1, V1, Y1, Y
′
1).

3. A makes a signing query with (2P, P, P, · · · , P ) and gets (Z2, V2, Y2, Y
′
2).

4. A makes a signing query with (P, 2P, P, · · · , P ) and gets (Z3, V3, Y3, Y
′
3).

5. A outputs (Z3 − Z1, Z1 − Z2,0, · · · ,0).

Proposition 2. (Z3−Z1, Z1−Z2,0, · · · ,0) = (xx2P,−xx1P,0, · · · ,0) ∈ ker(ϕ)\(0, · · · ,0).

Proof. Notice that

Z1 = x(x1 + x2 +

l∑
i=2

xi)P,Z2 = x(2x1 + x2 +

l∑
i=2

xi)P,Z3 = x(x1 + 2x2 +

l∑
i=2

xi)P.

Hence
Z3 − Z1 = xx2P
Z1 − Z2 = −xx1P.

The proposition follows.

Notice that once the difference of two messages is (P,0, · · · ,0), we can recover
xx1P and so on. It seems hard to make the scheme secure by excluding some classes
from the message space. What’s more, by generalizing the attack in Subsection 3.2,
we can also make the message queried seem random.

Remark 2. We would like to point out that if we replace P with any other non-zero
element in G1, the attacks still hold.
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4 Conclusion

We give a simple attack to forge signature on any message with fewer queries.
However, the attack is still adaptive. In fact, we can get all the integer coefficient
combination of the set {xkxi1x22 · · ·xikP |k = 1, 2, · · · }, but by now we do not know
how to use the fact to construct a non-adaptive chosen-message attack.
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