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Abstract. At Asiacrypt 2014, Hanser and Slamanig presented a new
cryptographic primitive called structure-preserving signature scheme on
equivalence classes in the message space (G∗1)`, where G1 is some additive
cyclic group. Based on the signature scheme, they constructed an efficient
multi-show attribute-based anonymous credential system that allows to
encode an arbitrary number of attributes. The signature scheme was
claimed to be existentially unforgeable under the adaptive chosen mes-
sage attacks in the generic group model. However, for ` = 2, Fuchsbauer
pointed out a valid existential forgery can be generated with overwhelm-
ing probability by using 4 adaptive chosen-message queries. Hence, the
scheme is existentially forgeable under the adaptive chosen message at-
tack at least when ` = 2. In this paper, we show that even for the general
case ` ≥ 2, the scheme is existentially forgeable under the non-adaptive
chosen message attack and universally forgeable under the adaptive cho-
sen message attack. It is surprising that our attacks will succeed all
the time and need fewer queries, which give a better description of the
scheme’s security.

Keywords: Structure-preserving signature, equivalence classes, EUF-
CMA, UF-CMA.

1 Introduction

Structure-preserving signatures introduced by Abe et al. [2] have many applica-
tions in cryptographic constructions, such as blind signatures [2, 8], group signa-
tures [2, 8, 14], homomorphic signatures [13, 3], and tightly secure encryption [12,
1]. Typically, the structure-preserving signatures are defined over some groups
equipped with a bilinear map. The public key, the messages and the signatures in
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a structure-preserving signature scheme consist only of group elements, and the
signature can be verified just by deciding group membership and by evaluating
some pairing-product equations.

At Asiacrypt 2014, Hanser and Slamanig [10] proposed a new cryptograph-
ic primitive called structure-preserving signature scheme on equivalence classes
(SPS-EQ), which allows to sign at one time an equivalence class of a group-
element vector instead of just the vector itself. As shown in [10], the SPS-EQ
scheme asks for some additional conditions to enable its applications to construc-
t an efficient attribute-based multi-show anonymous credential systems. First,
given a message-signature pair (here the message can be seen as a representative
of some class), another valid signature for every other representative of the class
can be efficiently produced, without knowing the secret key. Second, any two
representatives of the same class with corresponding signatures seem unlinkable,
which was called class hiding in [10].

Hanser and Slamanig [10] also presented a concrete SPS-EQ scheme on e-
quivalence classes in the message space (G∗1)`, where G1 is some additive cyclic
group. Any two vectors in the same equivalence class are equal up to a scale fac-
tor. The scheme is claimed to be existentially unforgeable under adaptive chosen
message attack (EUF-CMA) in the generic group model for SXDH groups [5].
However, Fuchsbauer [6] later pointed out their claim is flawed when ` = 2 by
showing how to generate a valid existential forgery with overwhelming proba-
bility with 4 chosen message queries. For ` ≥ 3, Fuchsbauer [6] did not give
any discussion and it seems not trivial to generalize his attack to the case when
` ≥ 3. Hence, the signature scheme can not be EUF-CMA secure, at least when
` = 2.

In this paper, we study its security further. Both of the cases when ` = 2
and ` ≥ 3 are considered.

First, we show that the scheme is existentially forgeable under the non-
adaptive chosen message attack. More precisely, we present a polynomial-time
attack which can generate a valid existential forgery with just 2 (resp. 3) non-
adaptive chosen message queries for ` = 2 (resp. ` ≥ 3), which is half of the
number of the queries needed in Fuchsbauer’s adaptive chosen message attack.

Second, we show that the scheme is in fact universally forgeable under the
adaptive chosen message attack. In our polynomial-time attack, we can forge the
valid signature for any given message with 3 (resp. 4) chosen message queries for
` = 2 (resp. ` ≥ 3), which is also less than the number of the queries needed in
Fuchsbauer’s attack.

Moreover, both of our attacks will always succeed, whereas Fuchsbauer’s
attack succeeds with overwhelming probability.

In a revised version [11], Hanser and Slamanig recently pointed out that the
original security proof in [10] was incorrect since in it just the non-adaptive mes-
sage queries were considered, but the adaptive message queries were neglected.
They also proved the scheme can at least provide existential unforgeability under
random message attacks (EUF-RMA). Together with our results, the security of
this scheme is much more clear, which can be summarized as in Table 1.
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Attack Model Security `

Random Message Attack Existential Unforgeability [11] ` ≥ 2

Non-Adaptive Chosen Message Attack Existential Forgeability [this work] ` ≥ 2

Adaptive Chosen Message Attack
Existential Forgeability [6] ` = 2

Universal Forgeability [this work] ` ≥ 2
Table 1. The Security of the Hanser-Slamanig SPS-EQ Scheme

To fix the Hanser-Slamanig scheme, Fuchsbauer, Hanser and Slamanig [7]
presented a new SPS-EQ scheme which is proved to be secure under adaptive
chosen message attacks. We have to point out that the new scheme can resist
our attack.

Roadmap. The remainder of the paper is organized as follows. In Section 2,
we give some preliminaries needed. We describe the Hanser-Slamanig SPS-EQ
scheme in Section 3, and present our attacks in Section 4. Finally, a short con-
clusion is given in Section 5.

2 Preliminaries

We denote by Z the integer ring, by Zp the residue class ring Z/pZ and by Z∗p
the group of all the invertible elements in Zp. Let G be the cyclic group and
G∗ be the set of all the non-zero elements in G. Denote by 1G (resp. 0) the
identity element when G is multiplicative (resp. additive). We denote by ker(ϕ)
the kernel of map ϕ.

2.1 Bilinear Map

As in [10], we first give some definitions about bilinear map.

Definition 1 (Bilinear Map). Let G1, G2 and GT be cyclic groups of prime
order p, where G1 and G2 are additive and GT is multiplicative. Let P and P ′

generate G1 and G2, respectively. We call e : G1 × G2 → GT a bilinear map if
it is efficiently computable and satisfies

– For any a, b ∈ Zp, e(aP, bP ′) = e(P, P ′)ab = e(bP, aP ′).

– e(P, P ′) 6= 1GT
.

Definition 2 (Bilinear Group Generator). A bilinear-group generator is a
probabilistic polynomial-time (PPT) algorithm BGGen that on input a security
parameter 1κ outputs a bilinear group description BG = (p,G1,G2,GT , e, P, P ′)
which satisfies the definition of bilinear map and p is a κ-bit prime.
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2.2 Structure-Preserving Signature Scheme on Equivalence Classes

Given a cyclic group G of prime order p and an integer ` > 1, we first define the
equivalence relation R on length-` vectors of nontrivial group elements as used
in [10]:

R = {(M,N) ∈ (G∗)` × (G∗)` : ∃ρ ∈ Z∗p s.t. N = ρM}.

Then we denote by [M ]R all the elements in (G∗)` equivalent to M ∈ (G∗)` with
relation R, that is,

[M ]R = {N ∈ (G∗)` : ∃ρ ∈ Z∗p s.t. N = ρM}.

We next give the definition of SPS-EQ as in [10].

Definition 3 (Structure-Preserving Signature Scheme for Equivalence
Relation R (SPS-EQ-R)). An SPS-EQ-R scheme consists of the following
polynomial-time algorithms:

– BGGenR(1κ): Given a security parameter κ, outputs a bilinear group de-
scription BG.

– KeyGenR(BG, `): Given BG and vector length ` > 1, outputs a key pair
(sk,pk).

– SignR(M, sk): On input a representative M of equivalence class [M ]R and
secret key sk, outputs a signature σ for the equivalence class [M ]R.

– ChgRepR(M,σ, ρ,pk): On input a representative M of an equivalence class
[M ]R, the corresponding signature σ, a scalar ρ and a public key pk, outputs
(ρM, σ̂), where σ̂ is the signature on ρM .

– VerifyR(M,σ,pk): Given a representative M of equivalence class [M ]R, a
signature σ and public key pk, outputs true if σ is a valid signature for [M ]R
and false otherwise.

2.3 Security of Digital Signature Scheme

As in [9], the security of digital signature scheme can be considered under random
message attack, non-adaptive chosen message attack, adaptive chosen message
attack and so on. We just briefly introduce these three attacks.

– Random message attack: The polynomial-time adversary A has access to a
signing oracle which on every call randomly chooses a message M from the
message space, generates the signature σ on M and returns (M,σ).

– Non-adaptive chosen message attack (directed chosen message attack): The
polynomial-time adversary A has access to a signing oracle and is allowed to
obtain valid signatures for a chosen list of messages M1,M2, · · · ,Mpoly(κ) af-
ter seeing the public key but before knowing any signatures from the signing
oracle.

– Adaptive chosen message attack: The polynomial-time adversary A has ac-
cess to a signing oracle and can query it with any chosen message anytime.
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A digital signature scheme is considered to be existentially unforgeable under
some attack if any PPT adversary A will generate a valid message-signature
pair with only negligible probability, where the message has not been queried to
the signing oracle. To define the existentially unforgeability for the SPS-EQ-R
scheme, a little adaption is needed, that is, not just the message but also the
equivalence class of the message has not been queried. For example, we give the
definition of EUF-CMA as in [10].

Definition 4 (EUF-CMA for SPS-EQ-R scheme). An SPS-EQ-R scheme
on (G∗)` is called existentially unforgeable under adaptive message chosen attack
if for any PPT adversary A having access to a signing oracle O(sk, ·), there is
a negligible function ε(·) such that:

Pr

[
BG← BGGenR(κ), (sk,pk)← KeyGenR(BG, `), (M∗, σ∗)← AO(sk,·)(pk) :

]
[M∗]R 6= [M ]R ∀M ∈ Q ∧ V erifyR(M∗, σ∗,pk) = true

≤ ε(κ),

where Q is the set of queries which A has queried to the signing oracle O.

Similarly we can also define the existentially unforgeability for non-adaptive
chosen message attack and random message attack.

Under any attack model, the SPS-EQ-R scheme is called universal forgeable
if there is a polynomial-time adversary A who can forge with overwhelming
probability valid signature on any message, whose equivalence class has not been
queried to the signing oracle.

3 The Hanser-Slamanig SPS-EQ Scheme

3.1 Description of the Hanser-Slamanig SPS-EQ Scheme

As follows we describe the SPS-EQ scheme proposed by Hanser and Slamanig.

– BGGenR(1κ): Given a security parameter κ, outputs

BG = (p,G1,G2,GT , P, P ′, e),

where prime p is the order of cyclic groups G1, G2, and GT , and G1 and
G2 are additive but GT is multiplicative where there is a bilinear map e :
G1 ×G2 → GT , P and P ′ generate G1 and G2 respectively.

– KeyGenR(BG, `): Given a bilinear group description BG and vector length

` > 1, chooses x
R← Z∗p and (xi)

`
i=1

R← (Z∗p)`, sets the secret key as

sk← (x, (xi)
`
i=1),

computes the public key

pk← (X ′, (X ′i)
`
i=1) = (xP ′, (xixP

′)`i=1)

and outputs (sk,pk).
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– SignR(M, sk): On input a representative M = (Mi)
`
i=1 ∈ (G∗1)` of equiv-

alence class [M ]R and secret key sk = (x, (xi)
`
i=1), chooses y

R← Z∗p and
computes

Z ← x
∑̀
i=1

xiMi, V ← y
∑̀
i=1

xiMi, (Y, Y ′)← y · (P, P ′).

Then, outputs σ = (Z, V, Y, Y ′) as signature for the equivalence class [M ]R.
– ChgRepR(M,σ, ρ,pk): On input a representative M = (Mi)

`
i=1 ∈ (G∗1)` of

an equivalence class [M ]R, the corresponding signature σ = (Z, V, Y, Y ′), a

scalar ρ ∈ Z∗p and a public key pk, this algorithms picks ŷ
R← Z∗p and returns

(M̂, σ̂) where σ̂ ← (ρZ, ŷρV, ŷY, ŷY ′) is the update of signature σ for the
new representative M̂ ← ρ(Mi)

`
i=1.

– VerifyR(M,σ,pk): Given a representative M = (Mi)
`
i=1 ∈ (G∗1)` of e-

quivalence class [M ]R, a signature σ = (Z, V, Y, Y ′) and public key pk =
(X ′, (X ′i)

`
i=1), checks whether

∏̀
i=1

e(Mi, X
′
i)

?
= e(Z,P )

∧
e(Z, Y ′)

?
= e(V,X ′)

∧
e(P, Y ′)

?
= e(Y, P ′)

or not and outputs true if this holds and false otherwise.

3.2 Fuchsbauer’s Attack to Break the EUF-CMA of the Scheme

For completeness, we describe Fuchsbauer’s attack [6] for l = 2 briefly. Consider
the following polynomial-time adversary A:

1. A receives pk and has access to a signing oracle.
2. A makes a signing query (P, P ) and receives the signature (Z1, V1, Y1, Y

′
1).

3. A makes a signing query (Z1, P ) and receives the signature (Z2, V2, Y2, Y
′
2).

4. A makes a signing query (P,Z1) and receives the signature (Z3, V3, Y3, Y
′
3).

5. A makes a signing query (Z1, Z2) and receives the signature (Z4, V4, Y4, Y
′
4).

6. A outputs (Z4, V4, Y4, Y
′
4) as a forgery for the equivalence class represented

by (Z3, Z1).

Fuchsbauer showed that (Z4, V4, Y4, Y
′
4) is a valid signature of (Z3, Z1) and

with overwhelming probability the equivalence class of (Z3, Z1) has not been
queried to the signing oracle. However, Fuchsbauer gave no discussions about
the case when ` ≥ 3 and it seems not trivial to generalize his attack to the case
when ` ≥ 3. Moreover, Fuchsbauer neglected to check whether (Z3, Z1) is in
(G∗1)2 or not in his proof.

4 Our Attacks

4.1 Key Observation of Our Attacks

We first give the key observation of our attacks:
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Lemma 1. Consider the following map:

ϕ : (G1)` → G1

(Mi)
`
i=1 7→

∑̀
i=1

xiMi.

For any K = (Ki)
`
i=1 ∈ ker(ϕ), if σ = (Z, V, Y, Y ′) is a valid signature on

message M = (Mi)
`
i=1, then σ is also a valid signature on M+K = (Mi+Ki)

`
i=1.

Proof. Notice that to verify the signature σ for M +K, the only thing we need

check is
∏`
i=1 e(Mi + Ki, X

′
i)

?
= e(Z,P ). Assume Mi = miP and Ki = kiP .

Since (Ki)
`
i=1 ∈ ker(ϕ), we have (

∑`
i=1 xiki)P = 0 which yields

∑`
i=1 xiki = 0

mod p. Then we have∏`
i=1 e(Mi +Ki, X

′
i) = e(P, P ′)

∑`
i=1 xxi(mi+ki) mod p

= e(P, P ′)
∑`

i=1 xximi+
∑`

i=1 xxiki mod p

= e(P, P ′)
∑`

i=1 xximi mod p

=
∏`
i=1 e(Mi, X

′
i)

= e(Z,P ).

The last equation holds since σ is a valid signature on M .

By Lemma 1, if we can find any nontrivial K ∈ ker(ϕ), we can forge the
signature on any message M by querying the signing oracle with M − K and
outputting the returned signature. Next we will show the nontrivial K can be
obtained efficiently under the non-adaptive chosen message attack.

4.2 Procedure to Find Nontrivial Element in ker(ϕ)

We claim that

Lemma 2. Under the non-adaptive chosen message attack, there is a polyno-
mial time adversary A who can find a nontrivial element in ker(ϕ). Moreover,

– If ` = 2, A needs two non-adaptive chosen message queries;

– If ` ≥ 3, A needs three non-adaptive chosen message queries.

Proof. We present the polynomial-time procedures FindKernel for adversary
A to obtain a nontrivial element in ker(ϕ) in two cases respectively.

i. Case ` = 2

Consider the following procedure FindKernel for adversary A:

1. A receives pk and has access to a signing oracle.
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2. A first chooses any invertible matrix(
a1 a2
a3 a4

)
∈ Z∗2×2p

and computes its inverse (
b1 b2
b3 b4

)
∈ Z2×2

p ,

such that (
b1 b2
b3 b4

)(
a1 a2
a3 a4

)
=

(
1 0
0 1

)
mod p.

3. Amakes a signing query with (a1P, a2P ) and gets its signature (Z1, V1, Y1, Y
′
1).

4. Amakes a signing query with (a3P, a4P ) and gets its signature (Z2, V2, Y2, Y
′
2).

5. A computes ((b3Z1 + b4Z2),−(b1Z1 + b2Z2)).

We claim that

((b3Z1 + b4Z2),−(b1Z1 + b2Z2)) = (xx2P,−xx1P ) ∈ ker(ϕ)\(0,0).

It is obvious that (xx2P,−xx1P ) ∈ ker(ϕ)\(0,0) since x, x1, x2 are not zero. It
remains to prove ((b3Z1 + b4Z2),−(b1Z1 + b2Z2)) = (xx2P,−xx1P ). Notice that

Z1 = x(a1x1 + a2x2)P, Z2 = x(a3x1 + a4x2)P.

Hence
b3Z1 + b4Z2 = b3x(a1x1 + a2x2)P + b4x(a3x1 + a4x2)P

= x((b3a1 + b4a3)x1 + (b3a2 + b4a4)x2)P
= xx2P

and
b1Z1 + b2Z2 = b1x(a1x1 + a2x2)P + b2x(a3x1 + a4x2)P

= x((b1a1 + b2a3)x1 + (b1a2 + b2a4)x2)P
= xx1P.

ii. Case l ≥ 3

We can generalize the procedure above for the case ` ≥ 3 by involving an l-
by-l invertible matrix. However, notice that (xx2P,−xx1P,0,0, · · · ,0) is a non-
trivial element in the corresponding ker(ϕ). We have a more clever procedure
FindKernel for adversary A to obtain (xx2P,−xx1P,0,0, · · · ,0).

1. A receives pk and has access to a signing oracle.

2. A makes a signing query with (P, P, P, · · · , P ) and gets (Z1, V1, Y1, Y
′
1).

3. A makes a signing query with (2P, P, P, · · · , P ) and gets (Z2, V2, Y2, Y
′
2).

4. A makes a signing query with (P, 2P, P, · · · , P ) and gets (Z3, V3, Y3, Y
′
3).

5. A computes (Z3 − Z1, Z1 − Z2,0, · · · ,0).
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We claim that

(Z3 − Z1, Z1 − Z2,0, · · · ,0) = (xx2P,−xx1P,0, · · · ,0) ∈ ker(ϕ)\(0, · · · ,0).

Notice that

Z1 = x(x1+x2+
∑̀
i=2

xi)P,Z2 = x(2x1+x2+
∑̀
i=2

xi)P,Z3 = x(x1+2x2+
∑̀
i=2

xi)P,

which implies
Z3 − Z1 = xx2P,
Z1 − Z2 = −xx1P.

Hence the lemma follows.

Remark 1. For the FindKernel procedure when ` ≥ 3, notice that once the
difference of two messages queried to the oracle is (P,0, · · · ,0), we can recover
xx1P . Similar results hold for xxiP . In fact, we can get all the integer coefficient
combination of the elements in the set {xkxi1xi2 · · ·xikP |k = 1, 2, · · · } with only
non-adaptive chosen message quries.

4.3 Breaking the EUF-Non-Adaptive-CMA of the Scheme

Notice that to find the nontrivial element in ker(ϕ), we just need the non-
adaptive queries. To complete the non-adaptive chosen message attack, it re-
mains to decide which message-signature pair should be outputted. Note that
the outputted message should satisfy

– The equivalence class of the message has not been queried to the signing
oracle;

– The message must be in (G∗1)`, that is, every component of the message is
not zero.

Before giving our attack, we first present some lemmas.

Lemma 3. There is a polynomial time algorithm on input (αP, βP ) ∈ (G∗1)2

and ai, aj ∈ Z∗p that can decide whether (αP, βP ) is equivalent to (aiP, ajP ) or
not without knowing α and β.

Proof. Recall that (αP, βP ) is equivalent to (aiP, ajP ) if and only if there ex-
its ρ ∈ Z∗p such that ρ(αP, βP ) = (aiP, ajP ), which means that (αP, βP ) is
equivalent to (aiP, ajP ) if and only if

det

(
α β
ai aj

)
= 0 mod p,

that is,
aiβ = ajα mod p.

Hence we can decide the equivalence between (αP, βP ) and (aiP, ajP ) by check-
ing if ai(βP ) = aj(αP ) in the group G1, which can be done in polynomial time.
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Lemma 4. For any (αP, βP ) ∈ (G∗1)2 and ai, aj ∈ Z∗p, there must be at least
one element Q in the set {(aiP + ραP, ajP + ρβP ) : ρ = 1, 2, 3}, such that
Q ∈ (G∗1)2.

Proof. For contradiction, suppose that every element in the set has at least one
0 as its component. Then there must be a k ∈ {1, 2} such that there are at
least two 0’s in the k-th components of all the three elements. Without loss of
generality, suppose aiP + ρsαP = aiP + ρtαP = 0, then it can be concluded
that ρs = ρt, which contradicts the fact that ρs 6= ρt.

By the two lemmas above, we have

Theorem 1. The Hanser-Slamanig SPS-EQ scheme is existentially forgeable
under the non-adaptive chosen message attack. Moreover,

– If ` = 2, two non-adaptive chosen message queries is needed;

– If ` ≥ 3, three non-adaptive chosen message queries is needed.

Proof. We prove the theorem for two cases respectively.

i. Case ` = 2

We give our non-adaptive chosen message attack as follows:

1. A runs FindKernel to get (xx2P,−xx1P ) ∈ (G∗1)2
⋂

ker(ϕ), the signature
(Z1, V1, Y1, Y

′
1) for (a1P, a2P ) and the signature (Z2, V2, Y2, Y

′
2) for (a3P, a4P ).

2. If (xx2P,−xx1P ) is equivalent to neither (a1P, a2P ) nor (a3P, a4P ), A can
output the message M = (xx2P,−xx1P ) and the corresponding signature
σ = (0,0, yP, yP ′) for any y ∈ Z∗p.

3. If (xx2P,−xx1P ) is equivalent to (a1P, a2P ), A can output the message
M = (a3P + ρxx2P, a4P − ρxx1P ) and the corresponding signature σ =
(Z2, V2, Y2, Y

′
2), where ρ is chosen as in Lemma 4 such that M ∈ (G∗1)2.

4. If (xx2P,−xx1P ) is equivalent to (a3P, a4P ), A can output the message
M = (a1P + ρxx2P, a2P − ρxx1P ) and the corresponding signature σ =
(Z1, V1, Y1, Y

′
1), where ρ is chosen as in Lemma 4 such that M ∈ (G∗1)2.

It is obvious that M ∈ (G∗1)2 and σ is indeed a valid signature on M by
Lemma 1 since (ρxx2P,−ρxx1P ) ∈ ker(ϕ).

By Lemma 3, the equivalence can be checked in polynomial time. It is easy
to check the attack can be completed in polynomial time.

It remains to show [M ]R has not been queried.

If (xx2P,−xx1P ) is equivalent to neither (a1P, a2P ) nor (a3P, a4P ), [M ]R
has not been queried obviously.

If (xx2P,−xx1P ) is equivalent to (a1P, a2P ), we can write xx2 = ka1 and
−xx1 = ka2 for some k ∈ Z∗p. We claim that now (a3P + ρxx2P, a4P − ρxx1P )
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can not be equivalent to either (a1P, a2P ) or (a3P, a4P ), since

det

(
a1 a2

a3 + ρxx2 a4 − ρxx1

)
= det

(
a1 a2

a3 + kρa1 a4 + kρa2

)
= det

(
a1 a2
a3 a4

)
6= 0 mod p

and

det

(
a3 + ρxx2 a4 − ρxx1

a3 a4

)
= det

(
a3 + kρa1 a4 + kρa2

a3 a4

)
= kρdet

(
a1 a2
a3 a4

)
6= 0 mod p.

If (xx2P,−xx1P ) is equivalent to (a3P, a4P ), the proof is similar as above.

ii. Case l ≥ 3

Similarly, we give our non-adaptive chosen message attack as follows:

1. A runs FindKernel to get (xx2P,−xx1P,0, · · · ,0) ∈ (G∗1)`
⋂

ker(ϕ) and
the signature (Z1, V1, Y1, Y

′
1) for (P, P, P, · · · , P ).

2. A finds ρ ∈ {1, 2, 3} such that P + ρxx2P 6= 0 and P − ρxx1P 6= 0.
3. A outputs M = (P + ρxx2P, P − ρxx1P, P, · · · , P ) and the corresponding

signature σ = (Z1, V1, Y1, Y
′
1).

It is easy to check that the attack can be completed in polynomial time, M ∈
(G∗2)` and σ is indeed a valid signature on M . It remains to show [M ]R has not
been queried, which can be concluded from the fact that

– (P +ρxx2P, P −ρxx1P, P, · · · , P ) is not equivalent to (P, P, P, · · · , P ), since
ρxx1 and ρxx2 are not 0;

– (P+ρxx2P, P−ρxx1P, P, · · · , P ) is not equivalent to (2P, P, P, · · · , P ), since
−ρxx1 is not 0;

– (P+ρxx2P, P−ρxx1P, P, · · · , P ) is not equivalent to (P, 2P, P, · · · , P ), since
ρxx2 is not 0.

4.4 The Universal Forgery Attack against the Scheme

To commit a universal forgery attack, a natural idea is as follows. The adversary
A runs FindKernel first to find a nontrivial K in ker(ϕ) and then runs the
following Forge procedure to forge the valid signature on any given message M .

1. A first finds ρ ∈ {1, 2, 3} such that M − ρK ∈ (G∗1)`.
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2. A then makes a signing query with M − ρK and gets the signature σ =
(Z, V, Y, Y ′).

3. A outputs σ as the signature on M .

However, to avoid that the equivalence class of M has been queried, a little more
attention should be paid. First notice that

Lemma 5. If M 6∈ ker(ϕ), then M can not be equivalent to M + K for any
nontrivial K ∈ ker(ϕ).

Proof. For contradiction, if M is equivalent to M +K for some nontrivial K ∈
ker(ϕ), then it can be easily concluded that M ∈ ker(ϕ).

Then we can show that

Theorem 2. The Hanser-Slamanig SPS-EQ scheme is universally forgeable un-
der the adaptive chosen message attack. Moreover,

– If ` = 2, three chosen message queries is needed;
– If ` ≥ 3, four chosen message queries is needed.

Proof. We prove the theorem for two cases respectively.

i. Case ` = 2

We give our universal forgery attack as follows:

1. A receives pk and has access to a signing oracle.
2. Given M , if σ = (0,0, P, P ′) is a valid signature on M , then A outputs σ as

the signature on M .
3. Otherwise,M 6∈ ker(ϕ). IfM is equivalent to (P, P ) or (P, 2P ), thenA choos-

es the invertible matrix

(
a1 a2
a3 a4

)
to be

(
1 −1
−1 2

)
, otherwise, A chooses the

invertible matrix

(
a1 a2
a3 a4

)
to be

(
1 1
1 2

)
.

4. A runs FindKernel to get a nontrivial K ∈ ker(ϕ).
5. A runs the Forge procedure to find a valid signature on M .

Notice that if M is equivalent to (P, P ) or (P, 2P ), then M must be equivalent to
neither (P,−P ) nor (−P, 2P ) since the order p of G1 is greater than 3. Together
with Lemma 5, it can shown that [M ]R has not been queried.

ii. Case ` ≥ 3

We give our universal forgery attack as follows:

1. A receives pk and has access to a signing oracle.
2. Given M , if σ = (0,0, P, P ′) is a valid signature on M , then A outputs σ as

the signature on M .
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3. Otherwise, we know that M 6∈ ker(ϕ). If M is equivalent to (P, P, P, · · · , P ),
or (2P, P, P, · · · , P ), or (P, 2P, P, · · · , P ), A runs the FindKernel algo-
rithm with querying messages (P,−P, P, · · · , P ), (2P,−P, P, · · · , P ), and
(P,−2P, P, · · · , P ) to get K = (Z1 − Z3, Z1 − Z2,0, · · · ,0) ∈ ker(ϕ).

4. Otherwise, A runs FindKernel as before to get K ∈ ker(ϕ).
5. A runs the Forge procedure to find a valid signature.

Note that if the message M is equivalent to (P, P, P, · · · , P ), or (2P, P, P, · · · , P ),
or (P, 2P, P, · · · , P ), it must be equivalent to neither (P,−P, P, · · · , P ), nor
(2P,−P, P, · · · , P ), nor (P,−2P, P, · · · , P ). Together with Lemma 5, it can shown
that [M ]R has not been queried.

For both of the two attacks, it is easy to check the correctness, the complexity.

4.5 Interesting Observations

By Lemma 1, we know that the signature is not only valid for the original
message M , but also valid for any other message in another equivalent class
M + ker(ϕ) ∈ G`1/ ker(ϕ). Interestingly, we can conclude that

Proposition 1. For any M 6∈ ker(ϕ),

.⋃
ρ∈Zp

(ρM + ker(ϕ)) = G`1.

Proof. Recall that
ϕ : (G1)` → G1

(Mi)
`
i=1 7→

∑̀
i=1

xiMi.

Assume that Mi = αiP where αi ∈ Zp, we know that
∑`
i=1 xiMi = 0 if and

only if
∑`
i=1 xiαi = 0 mod p. Hence | ker(ϕ)| = p`−1. Notice that ϕ is a group

homomorphism, so we have

|G`1/ ker(ϕ)| = p.

On the other hand, since M 6∈ ker(ϕ), then for any i, j ∈ Zp, i 6= j, iM and jM
fall into different classes in G`1/ ker(ϕ). Therefore, iM + ker(ϕ)’s (i ∈ Zp) are
exactly the p different classes in G`1/ ker(ϕ), which yields the proposition.

By the proposition, given any message-signature pair (M,σ) where M 6∈ ker(ϕ),
we can forge the signature on any message M ′, if we could find the unique ρ
such that M ′ ∈ ρM + ker(ϕ). What we need do is computing the signature on
ρM with the algorithm ChgRepR(M,σ, ρ,pk), and then outputting it.

Another discussion is about the leakage of the private keys. Although the
private keys consist of x1, x2, · · · , x`, the scheme will be insecure when just xi
and xj are leaked since from any two of x1, x2, · · · , x` we can get a nontrivial
element in ker(ϕ).
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5 Conclusion

In this paper, we show that the Hanser-Slamanig SPS-EQ scheme is existen-
tially forgeable under a non-adaptive chosen message attack and is universally
forgeable under an adaptive chosen message attack. More precisely, we can pro-
duce a valid existential forgery with just 2 (resp. 3) non-adaptive chosen-message
queries for l = 2 (resp. l ≥ 3). Under the adaptive chosen message attack, we
can forge the valid signature for any given message with just 3 (resp. 4) chosen-
message queries for l = 2 (resp. l ≥ 3). Both of the attacks need fewer queries,
which give a better description of the scheme’s security.

Acknowledgments. We very thank the anonymous referees for their valuable
suggestions on how to improve the presentation of this paper.
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