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Abstract

In a functional encryption (FE) scheme, the owner of the secret key can generate restricted decryption
keys that allow users to learn specific functions of the encrypted messages and nothing else. In many
known constructions of FE schemes, such a notion of security is guaranteed only for messages that are
fixed ahead of time (i.e., before the adversary even interacts with the system). This is called selective
security, which is too restrictive for many realistic applications. Achieving adaptive security (also called
full security), where security is guaranteed even for messages that are adaptively chosen at any point
in time, seems significantly more challenging. The handful of known fully-secure schemes are based
on specifically tailored techniques that rely on strong assumptions (such as obfuscation assumptions or
multilinear maps assumptions).

In this paper we show that any sufficiently expressive selectively-secure FE scheme can be transformed
into a fully secure one without introducing any additional assumptions. We present a direct black-box
transformation, making novel use of hybrid encryption, a classical technique that was originally introduced
for improving the efficiency of encryption schemes, combined with a new technique we call the Trojan
Method. This method allows to embed a secret execution thread in the functional keys of the underlying
scheme, which will only be activated within the proof of security of the resulting scheme. As another
application of the Trojan Method, we show how to construct functional encryption schemes for arbitrary
circuits starting from ones for shallow circuits (NC1 or even TC0).
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1 Introduction

Traditional notions of public-key encryption provide all-or-nothing access to data: owners of the secret key
can recover the entire message from a ciphertext, whereas those who do not know the secret key learn nothing
at all. Functional encryption [SW05, KSW08, LOS+10, BSW11, O’N10] is a modern type of encryption
scheme where the owner of the (master) secret key can release function-specific secret keys skf , which enable
a user to compute f(x) from an encryption of x. Furthermore, using the key skf , one should not be able
to extract any information about x other than f(x). There are a number of ways to formalize this abstract
requirement. In this paper we will exclusively use an indistinguishability based definition, requiring that
given x0, x1 such that f(x0) = f(x1), it is computationally hard to distinguish between (Enc(x0), skf ) and
(Enc(x1), skf ). This definition extends to multiple messages and keys in a fairly straightforward manner.

While initial constructions of functional encryption [BF03, BCOP04, KSW08, LOS+10] were limited to
simple function classes such as point functions and inner products, recent developments have dramatically
improved the state of the art in this area. In particular, the works of Sahai and Seyalioglu [SS10] and
Gorbunov, Vaikuntanathan and Wee [GVW12] showed that if only a single function key is produced, then
functional encryption can be based on any semantically secure encryption. This result can be extended
to a case where the number of function keys is polynomial and known a-priori. Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich [GKP+13] constructed a scheme with succinct ciphertexts based on a specific
hardness assumption (Learning with Errors).

The first functional encryption scheme that supports a-priori unbounded number of function keys was
recently introduced by Garg, Gentry, Halevi, Raykova, Sahai and Waters [GGH+13], based on the existence
of secure indistinguishability obfuscation (to which a heuristic construction is presented in the same paper).
Garg et al. showed that given a secure indistinguishability obfuscator, their functional encryption scheme is
selectively secure.

At a high level, selective security guarantees that the scheme is secure so long as the messages being
encrypted are chosen independently of the parameters of the scheme. This is reflected in the formal definition
by requiring the adversary to specify the messages that he intends to encrypt before seeing any parameter
of the scheme, in particular before seeing any functional key. If the message to be encrypted depends on the
the parameters (e.g. on the public key or on function keys) then security cannot be guaranteed. Whereas the
independence assumption is justified in some cases, the ultimate sought-after notion of security is adaptive
security (often called full security). An adaptively secure scheme guarantees security regardless of how the
encrypted messages are chosen (granted that they can be produced in polynomial time, of course). This is
reflected in the formal definition by allowing the adversary to specify the messages x0, x1 at any point in its
execution, even after seeing function keys and encryptions of other ciphertexts.

Historically, the first functional encryption schemes have been selectively secure [BB04, GPSW06, KSW08,
GVW13, GKP+13]. The question of constructing adaptively secure functional encryption is considered to be
notoriously difficult and only few approaches are known. The basic observation is that if the input space is
bounded in size, e.g. {0, 1}n for a known n, then the x values can be guessed ahead of time with probability
2−n. Starting with a sub-exponential hardness assumption, and taking the security parameter to be polyno-
mial in n, allows to argue that the selectively secure scheme is in fact also adaptively secure. This method
is known as “complexity leveraging” and is not considered to be a satisfactory solution to the problem since
it requires relying on strong hardness assumptions. The powerful “dual system encryption” method, intro-
duced by Waters [Wat09], had been used to construct adaptively secure attribute based encryption (a weak
version of functional encryption) for formulas, as well as an adaptively secure functional encryption scheme
for linear functions [LOS+10]. However, this method is merely a general outline and each construction is
required to tailor the solution based on its specialized assumption. In some cases, such as attribute based
encryption for circuits, it is not known how to implement dual system encryption or any other method to
achieve adaptive security.

Starting with [GGH+13], there has been effort in the research community to construct an adaptively
secure functional encryption scheme for polynomial size circuits with a-priori unbounded many function
keys. Boyle, Chung and Pass [BCP14] constructed an adaptively secure FE scheme, under the assumption
that extractability obfuscators exist (these are stronger primitives than the indistinguishability obfuscators
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used by [GGH+13]). Waters [Wat14] showed how to do this assuming indistinguishability obfuscation,
thus matching the assumption of [GGH+13]. Garg, Gentry, Halevi and Zhandry [GGHZ14] showed how to
construct adaptively secure public-key FE from non-standard assumptions on multilinear maps. Each of
these constructions uses its own methods and techniques, and in general it was not known how to achieve
adaptivity in any non-ad-hoc method.

In this work, we use new techniques to show a generic construction of adaptively secure functional
encryption, starting from any selectively secure scheme.

1.1 Our Results: From Selective to Adaptive Security

We show that any selectively secure functional encryption scheme implies an adaptively secure scheme,
without relying on any additional assumptions. Our transformation applies equally to symmetric-key or
public-key functional encryption, where the resulting adaptive scheme inherits its symmetric-key or public-
key properties from the building block scheme. The following theorem summarizes our main contribution.

Theorem 1 (informal). Given any public-key (respectively symmetric-key) selectively-secure functional en-
cryption scheme, there exists an adaptively secure public-key (respectively symmetric-key) functional encryp-
tion scheme supporting the class of bounded polynomial size circuits.

We require that the selective scheme supports a sufficiently rich function class. In particular it will
be applied to functions with a-priori bounded polynomial size and a-priori bounded depth (essentially the
depth of computing a weak pseudorandom function, which is logarithmic under mild assumptions). The
resulting adaptively secure scheme, however, does not have a depth bound. Therefore a corollary of our
construction is that selectively secure functional encryption with depth bound implies adaptively secure
functional encryption without a depth bound.

We view the significance of our result in a number of dimensions. First of all, it answers the basic call of
cryptographic research to substantiate the existence of complicated primitives on that of simple primitives.
We feel that this is of special interest in the case of adaptive security where it seemed that ad-hoc methods
were required. Secondly, our construction, being of fairly low overhead, will allow to focus the attention of the
research community in studying selectively secure functional encryption, rather than investing unwarranted
efforts in the study of adaptive security. Lastly, we hope that our methods can be extended and employed
towards those variants for which adaptive security is yet unattained, such as attribute based encryption for
all polynomial size circuits.

1.2 Our Techniques: The Trojan Method and Hybrid Encryption

Our result is achieved by incorporating a number of techniques which will be explained in this section. We
start by presenting a technique that we call The Trojan Method, whose origins lie in the “trapdoor circuits”
idea presented in the work of De Caro et al. [CIJ+13], and in the work of Brakerski and Segev [BS14] in
the context of function-private private-key FE. We extend this method and show that it is in fact a very
powerful tool in the context of public-key FE, and as an example show that FE for “shallow” circuits (a
circuit family that allows to compute weak PRFs) can be extended to one that applies to all circuits. We
then explain the power of hybrid encryption in the context of functional encryption, and put it together with
the Trojan method to present our final construction. Finally, a short comparison with of our technique with
the aforementioned “dual system encryption” technique that had been used to achieve adaptively secure
attribute based encryption.

The Trojan Method. The Trojan Method is a way to embed a hidden functionality thread in an FE secret-
key that can only be invoked by special ciphertexts generated using special (secret) back-door information.
This thread remains completely unused in the normal operation of the scheme (and can be instantiated
with meaningless functionality). In the proof, however, the secret thread will be activated by the challenge
ciphertext in such a way that is indistinguishable to the user (= attacker). Namely, the user will not be able
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to tell that it is executing the secret thread and not the main thread. This will be extremely beneficial to
prove security. We wish to argue that in the view of the user, the execution of the main thread does not allow
to distinguish between the encryption of two messages x0, x1. The problem is that for functionality purposes,
the main thread has to know which input it is working on. This is where the hidden thread comes into the
play. We will design the hidden thread so that in the eyes of the user, it is computationally indistinguishable
from the main thread on the special messages x0, x1. However, in the hidden thread, the output can be
computed in a way that does not distinguish between x0 and x1 (either by a statistical or a computational
argument), which will allow us to conclude that encryptions of x0, x1 are indistinguishable.

Technically, the hidden thread is implemented using (standard) symmetric-key encryption, which in turn
can be constructed starting with any one-way function. In the functional secret-key generation process for
a function f , the secret-key generation process will produce a symmetric-key ciphertext c (which can just
be encryption of 0 or another fixed message, since it only needs to have meaningful content in the security
proof). It will then consider the function Gf,c that takes as input a pair (x, s), and first checks whether it
can decrypt c using s as a symmetric key. If it cannot, then it just runs f on x and returns the output. If
s actually decrypts c, we consider f∗ = Decs(c), and the output is the execution of f∗ on x. The value c
is therefore used as a Trojan Horse: Its contents are hidden from the users of the scheme, however given a
hidden command (in the form of the symmetric s) it can embed functionality that “takes over” the functional
secret-key.

We note that in order to support the Trojan method, our FE scheme must support a rich enough class
of circuits which allows branch operations, symmetric decryption and execution of the decrypted f∗.

This method can be seen as a weak form of function privacy in FE, but one that can be applied even
in the context of public-key FE. In essence, we cannot hide the main thread of the evaluated function (this
is unavoidable in public-key FE). However, we can hide the secret thread and thus allow the function to
operate in a designated way for specially generated ciphertexts.

For a fairly simple example on how the Trojan method is applied, see the outline for our shallow-to-deep
transformation below.

Example: Shallow-to-Deep FE. We use the Trojan method to show that FE that only supports secret-
keys for functions with shallow circuits (e.g. logarithmic depth) implies a scheme that works for circuits of
arbitrary depth (although with a size bound).

The idea is fairly natural: Instead of producing a secret-key for the function, we produce a key for a
shallow randomized encoding (RE) of the function (in particular, we use garbled circuits). A randomized
encoding [IK00] is a randomized process such that given f, x, RE(f, x) = RE(f, x; rand) is a randomized
function that can be computed by a shallow circuit (assuming weak PRFs can be computed by shallow
circuits). Furthermore, there is an efficient way to retrieve f(x) from RE(f, x), however nothing except f(x)
is revealed. The latter is guaranteed by the existence of a simulator such that Sim(f(x)) ∼= RE(f, x). We note
that a similar approach had been attempted to leverage the supported depth of obfuscators [App13], however
it appears to only work for strong notions of obfuscation such as virtual-black-box that are impossible to
achieve in general.

Using the Trojan method, we show how this can be achieved for FE. As mentioned above, whenever the
scheme asks for a secret-key for f , it will in fact receive a secret-key for a function G that given x, outputs
Gf,t(x, k) = RE(f, x;PRFk(t)). To encrypt a value x, we choose k at random and encrypt the pair (x, k).
The decryption process will include applying the functional secret key to obtain RE(f, x) and computing
f(x) from that value. For security we have to show that if x0, x1 are such that f(x0) = f(x1) then their
encryptions are indistinguishable. This is where the Trojan comes into the play. Consider, for starters, the
case where x0 had been encrypted (with some PRF seed k∗). We will insert a Trojan thread into Gf,t, that,
once activated, simply outputs RE(f, x0;PRFk∗(t)). Now, the hidden thread outputs exactly the same as
the main thread, and therefore switching to the hidden thread will go unnoticed by the user (note that the
hidden thread is only activated for the special encryption of (x0, k

∗)). Once the switch had been made, x0, k
∗

no longer need to appear in the ciphertext (since all the information about them had been embedded in the
hidden thread). The hidden thread is indistinguishable from just outputting RE(f, x0; rand), which is in turn
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indistinguishable from Sim(f(x0)), which is in turn identical to Sim(f(x1)). It follows that the user cannot
distinguish between the case where x0 had been encrypted and the case where x1 had been encrypted.

Hybrid Functional Encryption. The second technique, in addition to the Trojan method, that we
employ to achieve our main result is hybrid encryption. Hybrid encryption is a veteran technique in cryp-
tography which has been used in a variety of settings. We show that in the context of functional encryption
it is especially powerful.

The idea in functional encryption is to combine two encryption schemes: An “external” scheme (some-
times called KEM – Key Encapsulation Mechanism) one and in “internal” scheme (sometimes called DEM
– Data Encapsulation Mechanism). In order to encrypt a message in the hybrid scheme, a fresh key is
generated for the internal scheme, and is used to encrypt the message. Then the key itself is encrypted using
the external scheme. The final hybrid ciphertext contains the two ciphertexts: (Encext(k),Encint,k(m)) (all
external ciphertexts use the same key). To decrypt, one first decrypts the external ciphertext, retrieves k
and applies it to the internal ciphertext. Note that if, for example, the external scheme is public-key and
the internal is symmetric key, then the resulting scheme will also be public key. Hybrid encryption is often
used in cases where the external scheme is less efficient (e.g. in encrypting long messages) and thus there is
an advantage in using it to encrypt only a short key, and encrypt the long message using the more efficient
internal scheme. Lastly, note that the internal scheme only needs to be able to securely encrypt a single
message.

The intuition as to why hybrid encryption may be good for achieving adaptive security is that the external
scheme only encrypts keys for the internal scheme. Namely, it only encrypts messages from a predetermined
and known distribution, so selectively secure scheme should be enough for the external scheme. The hardness
of adaptive security is “pushed” to the internal scheme, but there the task is easier since the internal scheme
only needs to be able to encrypt a single message, and it can be private-key rather than public-key.

Let us see how to employ this idea in the case where both internal and external schemes are FE schemes.
To encrypt, we will generate a fresh master secret key for the internal scheme, and encrypt it under the
external scheme. To generate a key for the function f , the idea is to generate a key for the function
Gf (mskint) which takes a master key for the internal scheme, and outputs a secret key for function f under
the internal scheme, using mskint (randomness is handled using a PRF as in the shallow-to-deep example).
This will allow to decrypt in a two-step process as above. First apply the external secret-key for Gf to the
external ciphertext, this will give you an internal secret key for f , which is in turn applied to the internal
ciphertext to produce f(x).

For the external scheme, we will use a selectively secure FE scheme (for the sake of concreteness, let us
say public-key FE). As explained above, selective security is sufficient here since all the messages encrypted
using the external scheme can be generated ahead of time (i.e. they do not depend on the actual x’s that
the user wishes to encrypt).

For the internal scheme, we require an FE scheme that is adaptively secure, but only supports the
encryption of a single message. Fortunately, such a primitive can be derived from the works of [GVW12,
BS14]. In [GVW12], the authors present an adaptively secure one-time bounded FE scheme. This scheme
allows to only generate a key for one function, and to encrypt as many messages as the user wishes. This
construction is based on the existence of semantically secure encryption, so the public-key version needs
public-key encryption and the symmetric version needs symmetric encryption. While this primitive seems
dual to what we need for our purposes, [BS14] shows how to transform private-key FE schemes into function
private FE. In function-private FE, messages and functions enjoy the same level of privacy, in the sense that
a user that produces x0, x1, f0, f1 such that f0(x0) = f1(x1) cannot distinguish between (Enc(x0), skf0) and
(Enc(x1), skf1). Therefore, after applying the [BS14] transformation, we can switch the roles of the functions
and messages, and obtain a symmetric FE scheme which is adaptively secure for a single message and many
functions. (We note that the symmetric version of the [GVW12] scheme can be shown to be function private
even without the [BS14] transformation, however since this claim is not made explicitly in the paper we
choose not to rely on it.)

Putting the two components together produces our final scheme. In the proof, we will use the Trojan
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method to embed a hidden thread in which mskint is not used at all, but rather Gf produces a precomputed
internal skf . This will allow us to remove mskint from the challenge ciphertext and use the security properties
of the internal scheme to argue that a internal encryption of x0, x1 are identical so long as f(x0) = f(x1).

Relation to Dual-System Encryption. Our approach takes some resemblance to the “Dual-System
Encryption” method of Waters [Wat09] and followup works [LW10, LW12]. This method had been used
to prove adaptive security for Identity Based Encryption and Attribute Based Encryption, based on the
hardness of some problems on groups with bilinear-maps. In broad terms, in their proof the distribution
of the ciphertext is changed into “semi-functional” mode in a way that is indiscoverable by an observer.
A semi-functional ciphertext is still decryptable by normal secret keys. Then, the secret-keys are modified
into semi-functional form, which is useless in decrypting semi-functional ciphertexts. This is useful since
in IBE and ABE, the challenge ciphertext is not supposed to be decryptable by those keys given to the
adversary. Still, a host of algebraic techniques are used to justify the adversary’s inability to produce other
semi-functional ciphertexts in addition to the challenge, which would foil the reduction.

Our proof technique also requires changing the distributions of the keys and challenge ciphertext. How-
ever, there are also major differences. Our modified ciphertext is not allowed to interact with properly
generated secret keys, and therefore the distinction between “normal” and “semi-functional” does not fit
here. Furthermore, in Identity Based and Attribute Based Encryption, the attacker in the security game
is not allowed to receive keys that reveal any information on the message, which allows to generate semi-
functional ciphertexts that do not contain any information, whereas in our case, there is a structured and
well-defined output for any ciphertext and any key. This means that the information required for decryp-
tion (which can be a-priori unbounded) needs to be embedded in the keys. Lastly, our proof is completely
generic and does not rely on the algebraic structure of the underlying hardness assumption as in previous
implementations of this method.

2 Preliminaries

We let λ denote the security parameter. We say that a function µ(λ) is negligible if for any polynomial p(λ)
it holds that µ(λ) < 1/p(λ) for all sufficiently large λ ∈ N.

Pseudorandom functions. One of the tools that we use in our work are pseudorandom function families.
The security property of a pseudorandom function family states that any PPT adversary can distinguish
only with negligible probability a function sampled at random from this family from a random function.
More formally,

Definition 1. A function family F =
{
PRFK : {0, 1}n → {0, 1}m : K

$←− K
}

, is a pseudorandom function
family with K being the space of PRF keys1, if the following holds for every security parameter λ ∈ N, every
PPT adversary A:∣∣∣Pr[1← AO(0)(PRFK(·))(1λ) : K

$←− K
]
− Pr

[
1← AO(1)(·)(1λ)

]∣∣∣ ≤ negl(λ),

where the oracle O(b) takes as input x and outputs PRFK(x) if b = 0 else if b = 1 it outputs r, where r is
picked at random from {0, 1}m.

Pseudorandom functions can be constructed from one-way functions [GGM86, HILL99].
We say that the pseudorandom function family F , defined above, is implementable in NC1 if every

function in F can be implemented by a circuit of depth c · log(n), for some constant c. We also consider a
weakening of the above security notion where the oracle is queried at random points instead of the points
being adversarially chosen as defined above. This security notion is termed as weak pseudorandom functions.

1We abuse the notation and interchangeably denote the PRF keyspace to be a set as well as a sampling procedure that
produces PRF keys from this set.
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Symmetric encryption schemes with pseudorandom ciphertexts. Another tool that we use in our
transformation is a symmetric encryption scheme. A symmetric encryption scheme consists of a tuple of PPT
algorithms (Sym.Setup,Sym.Enc,Sym.Dec). The algorithm Sym.Setup, takes as input a security parameter
λ in unary and outputs a key KE . The encryption algorithm takes as input (KE ,m), where KE is the
symmetric key, m is the message to be encrypted and the output is a ciphertext CT. The decryption
algorithm takes as input (KE ,CT), where CT is the ciphertext and the output is the message m, contained
in the ciphertext.

For this work, we require a symmetric encryption scheme where ciphertexts produced by Sym.Enc are
pseudorandom strings. More formally, we design a game, parametrized by a PPT adversary that has access
to an encryption oracle, Ob

(
Sym.Enc(Sym.K, ·)

)
, parameterized by bit b. The oracle takes as input a message

m and outputs CT = Sym.Enc(Sym.K,m) if b = 0, else if b = 1 it returns a random string s ∈ {0, 1}`, where
` = |CT|. The adversary wins in this game if the output of adversary is b′ = b. The success probability of
the adversary is defined to be |Pr[b′ = b]− 1

2 |. We say that the scheme is secure if the success probability of
the adversary is negligible.

We note that such a symmetric encryption scheme can be constructed from one-way functions, e.g. using
weak pseudorandom functions by defining Sym.Enc(K,m; r) = (r,PRFK(r)⊕m), see [Gol09] for details.

2.1 Public-key Functional Encryption

We recall the definitions of a functional encryption (FE) scheme. As in a traditional encryption scheme,
there are two settings for a FE scheme – private-key setting and the public-key setting. In this subsection, we
only deal with the the definitions corresponding to a public-key FE scheme and we postpone the definition
of private-key FE to the next subsection.

A public-key functional encryption (FE) scheme ΠPub, defined for a class of functions F = {Fλ}λ∈N and
message space M = {Mλ}λ∈N, is represented by four PPT algorithms, namely (Pub.Setup, Pub.KeyGen,
Pub.Enc, Pub.Dec). The input length of any f ∈ Fλ is the same as the length of any m ∈ Mλ. The
description of these four algorithms is given below.

• Pub.Setup(1λ): It takes as input a security parameter λ in unary and outputs a public key-secret key
pair (MPK,MSK).

• Pub.KeyGen(MSK, f ∈ Fλ): It takes as input a secret key MSK, a function f ∈ Fλ and outputs a
functional key skf .

• Pub.Enc(MPK,m ∈ Mλ): It takes as input a public key MPK, a message m ∈ Mλ and outputs an
encryption of m.

• Pub.Dec(skf ,CT): It takes as input a functional key skf , a ciphertext CT and outputs m̂.

A public-key FE scheme is defined for a complexity class C if the public-key FE scheme is defined for F ,
which consists of all the functions that can be implemented by circuits in C.

The correctness notion of a FE scheme dictates that there exists a negligible function negl(λ) such
that for all sufficiently large λ ∈ N, for every message m ∈ Mλ, and for every function f ∈ Fλ it holds
that Pr [f(m)← Pub.Dec(Pub.KeyGen(MSK, f),Pub.Enc(MPK,m))] ≥ 1 − negl(λ), where (MPK,MSK) ←
Pub.Setup(1λ), and the probability is taken over the random choices of all algorithms.

There are different ways to model the security of a functional encryption scheme. The two important
notions are – simulation-based notion and the indistinguishability-based notion. In this work, we deal with
the indistinguishability-based notion. At a high level, indistinguishability-based notion of security, modeled
as a game between the challenger and a PPT adversary, states that the adversary cannot distinguish (with
probability significantly different from 1/2), the encryptions of two messages even after being given functional
keys which should correspond to the functions (of adversary’s choice) that evaluate to the same output on
both the messages – note that this condition is required to prevent the adversary from trivially distinguishing
the two ciphertexts.
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In the security game, if the adversary is supposed to declare the challenge messages even before it sees the
public parameters from the challenger then the FE scheme that satisfies this notion is said to be selectively-
secure. If the adversary can declare the challenge messages at any time during the game then the FE scheme
satisfying such a notion is said to be adaptively-secure. Clearly, adaptively-secure FE is at least as strong
as selectively-secure FE. We give the formal definitions of a selectively-secure public-key FE as well as an
adaptively-secure public-key FE.

Selective security. As remarked before, in the selective security game corresponding to the public-key
FE scheme, we place the constraint on the adversary that it has to declare the messages even before it sees
the public parameters. More formally,

Definition 2 (Selectively-secure public-key FE). A public-key functional encryption scheme Sel = (Sel.Setup,
Sel.KeyGen, Sel.Enc, Sel.Dec) over a function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is a
selectively-secure public-key functional encryption scheme if for any PPT adversary A there exists
a negligible function µ(λ) such that for all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvSelA =
∣∣∣Pr[ExptSelA (1λ, 0) = 1]− Pr[ExptSelA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptSelA (1λ, b), modeled as a game between the challenger
and the adversary A, is defined as follows:

1. The adversary submits the challenge message-pair (m0,m1) to the challenger.

2. The challenger executes Sel.Setup(1λ) to obtain (Sel.MPK,Sel.MSK). It then executes Sel.Enc(Sel.MPK,mb)
to obtain CT. The challenger sends (Sel.MPK,CT) to the adversary.

3. Query phase: For every function query f submitted by the adversary, the challenger generates Sel.skf ,
where Sel.skf is the output of Sel.KeyGen(Sel.MSK, f). The challenger sends Sel.skf only if f(m0) =
f(m1). Otherwise, it aborts.

4. The output of the experiment is b′, where b′ is the output of A.

Adaptive security. Unlike the selective security notion, in the case of adaptive security, the adversary
can submit the challenge message-pairs at any time during the game. We give the formal definition below.

Definition 3 (Adaptively-secure public-key FE). A public-key functional encryption scheme Ad = (Ad.Setup,
Ad.KeyGen, Ad.Enc, Ad.Dec) over a function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is an
adaptively-secure public-key functional encryption scheme if for any PPT adversary A there exists
a negligible function µ(λ) such that for all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvAdA =
∣∣∣Pr[ExptAdA (1λ, 0) = 1]− Pr[ExptAdA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptAdA (1λ, b), modeled as a game between the challenger
and the adversary A, is defined as follows:

1. The challenger first executes Ad.Setup(1λ) to obtain (Ad.MPK,Ad.MSK). It then sends Ad.MPK to the
adversary.

2. Query Phase I: The adversary submits a function query f to the challenger. The challenger sends
back Ad.skf to the adversary, where Ad.skf is the output of Ad.KeyGen(Ad.MSK, f).

3. Challenge Phase: The adversary submits a message-pair (m0,m1) to the challenger. The challenger
checks whether f(m0) = f(m1) for all function queries f made so far. If this is not the case, the
challenger aborts. Otherwise, the challenger sends back CT = Ad.Enc(Ad.MSK,mb).
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4. Query Phase II: The adversary submits a function query f to the challenger. The challenger gener-
ates Ad.skf , where Ad.skf is the output of Ad.KeyGen(Ad.MSK, f). It sends Ad.skf to the adversary
only if f(m0) = f(m1), otherwise it aborts.

5. The output of the experiment is b′, where b′ is the output of A.

Remark 1. Even though the definitions talk about single message challenge queries, it can be easily extended
to the case when the adversary can ask multiple message queries. In the public key setting, both the definitions
are equivalent by a standard hybrid argument.

2.2 Private-key Functional Encryption

The definitions for private-key FE are practically identical to the public-key setting, except encryption is
performed using the master secret key and not the master public key. The definitions become slightly more
complicated since the adversary cannot encrypt messages by himself and therefore requires access to an
encryption oracle. Even though both notions can be defined in a unified manner, we chose to explicitly
define each one separately to allow the reader to only focus on the simpler public-key setting at first.

A private-key functional encryption (FE) scheme Priv, defined for a class of functions F = {Fλ}λ∈N and
message space M = {Mλ}λ∈N, is represented by four PPT algorithms, namely (Priv.Setup, Priv.KeyGen,
Priv.Enc, Priv.Dec). The input length of any f ∈ Fλ is the same as the length of any m ∈Mλ.

We give the description of the four algorithms below.

• Priv.Setup(1λ): It takes as input a security parameter λ in unary and outputs a secret key Priv.MSK.

• Priv.KeyGen(Priv.MSK, f ∈ Fλ): It takes as input a secret key Priv.MSK, a function f ∈ Fλ and outputs
a functional key Priv.skf .

• Priv.Enc(Priv.MSK,m ∈Mλ): It takes as input a secret key Priv.MSK, a message m ∈Mλ and outputs
an encryption of m.

• Priv.Dec(Priv.skf ,CT): It takes as input a functional key Priv.skf , a ciphertext CT and outputs m̂.

A private-key FE scheme is defined for a complexity class C if the private-key FE scheme is defined for
F , which consists of all the functions that can be implemented by circuits in C.

The correctness notion of a FE scheme dictates that there exists a negligible function negl(λ) such that
for all sufficiently large λ ∈ N, for every message m ∈ Mλ, and for every function f ∈ Fλ it holds that
Pr [f(m)← Priv.Dec(Priv.KeyGen(Priv.MSK, f),Priv.Enc(Priv.MSK,m))] ≥ 1 − negl(λ), where Priv.MSK ←
Priv.Setup(1λ), and the probability is taken over the random choices of all algorithms.
We define the two security notions, i.e., selective2 and adaptive, for a private-key FE analogous to the public-
key setting. The definitions we state next are taken from Brakerski-Segev [BS14]. We first give the definition
of a selectively-secure public-key FE and then we give the definition of an adaptively-secure public-key FE.

Definition 4 (Selectively-secure private-key FE). A private-key functional encryption scheme Sel = (Sel.Setup,
Sel.KeyGen, Sel.Enc, Sel.Dec) over a function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is a
selectively-secure private-key functional encryption scheme if for any PPT adversary A there exists
a negligible function µ(λ) such that for all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvSelA =
∣∣∣Pr[ExptSelA (1λ, 0) = 1]− Pr[ExptSelA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptSelA (1λ, b), modeled as a game between the challenger
and the adversary A, is defined as follows:

2In the language of Brakerski-Segev, by selective security we mean the property of selective-message message-privacy. They
also propose one more notion that is termed as selective-function message-privacy. An equivalence between these two notions
have been shown in the same work (under some restrictions).
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1. The challenger first executes Sel.Setup(1λ) to obtain Sel.MSK.

2. Message queries: The adversary submits the message-pairs ((m
(0)
1 , . . . ,m

(0)
p ), (m

(1)
1 , . . . ,m

(1)
p )) to

the challenger, where p is the number of the message queries (which is a polynomial in the security
parameter λ) made by the adversary. The challenger then sends (c∗1, . . . , c

∗
p) to A, where c∗i is the

output of Sel.Enc(Sel.MSK,m
(b)
i ).

3. Function queries: The adversary then can make any number of functional key queries. For ev-
ery function query f , the challenger generates Sel.skf , where Sel.skf is the output of Sel.KeyGen(

Sel.MSK, f). If f(m
(0)
i ) = f(m

(1)
i ), for all i ∈ [p], the challenger sends Sel.skf to the adversary.

Otherwise, the challenger aborts.

4. The output of the experiment is b′, where b′ is the output of A.

Definition 5 (Adaptively-secure private-key FE). A private-key functional encryption scheme FE = (Ad.Setup,
Ad.KeyGen, Ad.Enc, Ad.Dec) over a function space F = {Fλ}λ∈N and a message space M = {Mλ}λ∈N is
an adaptively-secure private-key functional encryption scheme if for any PPT adversary A there
exists a negligible function µ(λ) such that for all sufficiently large λ ∈ N, the advantage of A is defined to be

AdvAdA =
∣∣∣Pr[ExptAdA (1λ, 0) = 1]− Pr[ExptAdA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptAdA (1λ, b), modeled as a game between the challenger
and the adversary A, is defined as follows:

1. The challenger first executes Ad.Setup(1λ) to obtain Ad.MSK. The adversary makes the following
message queries and function queries in no arbitrary order.

• Message queries: The adversary submits a message-pair (m0,m1) to the challenger. The chal-
lenger generates CT = Ad.Enc(Ad.MSK,mb). If f(m0) = f(m1) for all function queries f made
so far, the challenger sends CT to the adversary. Otherwise, it aborts.

• Function queries: The adversary submits a function query f to the challenger. The challenger
generates Ad.skf , where Ad.skf is the output of Ad.KeyGen(Ad.MSK, f). If f(m0) = f(m1), for
all message-pair queries (m0,m1) made so far, the challenger sends Ad.skf to the adversary.
Otherwise, it aborts.

2. The output of the experiment is b′, where b′ is the output of A.

In a traditional functional encryption scheme, the functional keys need not “hide” anything about the
function it is computing. However, there are useful scenarios where functional keys need to “hide” the
function it is computing – defining what “hide” refers to is tricky and this is especially true if we are in
the public-key setting. There have been a few works [SSW09, BRS13a, BRS13b, AAB+13, BS14] which
deal with the issue of function-privacy in functional encryption schemes. Of particular interest is the work
of Brakerski-Segev [BS14] who formalized the notion of function-privacy in private-key FE schemes. The
definitions we give next are taken from their work.

Function privacy. The notion of function privacy is modeled as a game. In the game, a function query
made by the adversary is a pair of functions and in response it receives a functional key corresponding to
either of the two functions. As long as both the functions are such that they do not split the challenge
message-pairs, the adversary should not be able to tell which function was used to generate the functional
key. That is, the output of the left function on the left message should be the same as the output of the
right function on the right message.

We incorporate the notion of function privacy in the selectively-secure FE and adaptively-secure FE
definitions given earlier. First, we define the notion of function-private selective security.
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Definition 6 (Function-private selectively-secure FE). A private-key functional encryption scheme Sel =
(Sel.Setup, Sel.KeyGen, Sel.Enc, Sel.Dec) over a function space F = {Fλ}λ∈N and a message space M =
{Mλ}λ∈N is a function-private selectively-secure private-key FE scheme if for any PPT adversary
A there exists a negligible function µ(λ) such that for all sufficiently large λ ∈ N, the advantage of A is
defined to be

AdvSelA =
∣∣∣Pr[ExptSelA (1λ, 0) = 1]− Pr[ExptSelA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptSelA (λ, b), modeled as a game between the challenger
and the adversary A, is defined as follows:

1. The challenger first executes Sel.Setup(1λ) to obtain Sel.MSK.

2. Message queries: The adversary submits the message-pairs ((m
(0)
1 , . . . ,m

(0)
p ), (m

(1)
1 , . . . ,m

(1)
p )) to

the challenger, where p is the number of the message queries (which is a polynomial in the security
parameter λ) made by the adversary. The challenger then sends (c∗1, . . . , c

∗
p) to A, where c∗i is the

output of Sel.Enc(Sel.MSK,m
(b)
i ).

3. Function queries: The adversary then makes functional key queries. For every function-pair query
(f0, f1), the challenger sends Sel.skfb to the adversary, where Ad.skfb is the output of Sel.KeyGen

(Sel.MSK, fb), only if f0(m
(0)
i ) = f1(m

(1)
i ), for all i ∈ [p]. Otherwise, it aborts.

4. The output of the experiment is b′, where b′ is the output of A.

We now state the definition of function-private adaptively-secure FE scheme.

Definition 7 (Function-private adaptively-secure FE). A private-key functional encryption scheme FE =
(Ad.Setup, Ad.KeyGen, Ad.Enc, Ad.Dec) over a function space F = {Fλ}λ∈N and a message space M =
{Mλ}λ∈N is a function-private adaptively-secure private-key FE scheme if for any PPT adversary
A there exists a negligible function µ(λ) such that for all sufficiently large λ ∈ N, the advantage of A is
defined to be

AdvAdA =
∣∣∣Pr[ExptAdA (1λ, 0) = 1]− Pr[ExptAdA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ),

where for each b ∈ {0, 1} and λ ∈ N the experiment ExptAdA (1λ, b), modeled as a game between the challenger
and the adversary A, is defined as follows:

1. The challenger first executes Ad.MSK ← Ad.Setup(1λ). The adversary then makes the following mes-
sage queries and function queries in no particular order.

• Message queries: The adversary submits a message-pair (m0,m1) to the challenger. In return,
the challenger sends back CT = Ad.Enc(Ad.MSK,mb).

• Function queries: The adversary then makes functional key queries. For every function-pair
query (f0, f1), the challenger sends Ad.skfb to the adversary, where Ad.skfb is the output of
Ad.KeyGen(Ad.MSK, fb) only if f0(m0) = f1(m1), for all message-pair queries (m0,m1). Other-
wise, it aborts.

2. The output of the experiment is b′, where b′ is the output of A.

Single-key (unbounded-ciphertext) private-key functional encryption scheme. A single-key priv-
ate-key functional encryption scheme is a functional encryption scheme, where the adversary in the security
game (either selective or adaptive) is allowed to query for only one function. Using a single-key private-
key functional encryption scheme, we can obtain a bounded-key functional encryption scheme where the
adversary can make a bounded number of queries and the bound needs to be specified at the start of the
game by the adversary – the parameters in the scheme would grow proportional to this bound. In this work
we are interested in an adaptively-secure single-key functional encryption scheme in the private key setting.
There are several known constructions [SS10, GKP+12] and we will consider the construction that can be
based on one-way functions [GVW12].
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3 From Selective FE to Adaptive FE

This section contains our main transformation. We start by introducing our main building block: An FE
scheme which is adaptively secure for a single message query and many ciphertext queries (see Definition 8
below). We show that based on the works of [GVW12, BS14], this primitive can be based on any one-way
function (see Corollary 1 below). We then present our selective to adaptive transformation. Even though
the transformation is identical in the private-key and public-key settings, we present the public-key case first
in Section 3.1 since the proof is slightly simpler. The private-key case is then described in Section 3.2.

Definition 8. A private-key FE scheme OneCT is an adaptively-secure single-ciphertext private-key
functional encryption scheme if it satisfies Definition 5 with respect to adversaries that are only allowed
to make a single message query.

This definition can be satisfied based solely on the existence of one-way functions, as shown in the next
corollary.

Corollary 1 ([GVW12, BS14]). An adaptively-secure single-ciphertext private-key FE scheme as per Defi-
nition 8 can be based on any one-way function.

Proof. It is shown in [GVW12] how to construct a public-key adaptively-secure single-function FE scheme,
based on any public-key encryption scheme. This is in a sense the dual to what we need here. Our first
observation is that if we only require a private-key FE with the same properties, then the public-key encryp-
tion scheme can be replaced with a private-key encryption scheme which in turn can be constructed from
any one-way function.

In order to “invert” the roles of the message and ciphertext and obtain a scheme as per Definition 8, we
first make the scheme function private using the reduction of [BS14], which adds no additional assumptions.

Finally, we use the observation (that had been made before, e.g. in [AAB+13, BS14]) that in a function-
private FE scheme, the roles of the functions and messages can be inverted (using a universal circuit to
encode messages as functions). This completes the proof.

3.1 Our Transformation in the Public-Key Setting

We show how to construct an adaptively-secure public-key FE starting from selectively-secure public-key FE
and single-ciphertext FE. We use the following ingredients:

1. Selectively-secure public-key FE scheme, Sel = (Sel.Setup, Sel.KeyGen, Sel.Enc, Sel.Dec).

2. Single-ciphertext FE scheme, OneCT = (OneCT.Setup, OneCT.KeyGen, OneCT.Enc, OneCT.Dec).

3. Symmetric encryption scheme with pseudorandom ciphertexts, SYM = (Sym.Setup, Sym.Enc, Sym.Dec).

4. Pseudorandom function family denoted by F and the space of PRF keys is represented by K.

The construction of adaptively-secure public-key FE, denoted by Ad, is as follows.

Ad.Setup(1λ): Execute Sel.Setup(1λ) to obtain (Sel.MPK,Sel.MSK). Output (Ad.MPK = Sel.MPK,Ad.MSK =
Sel.MSK).

Ad.KeyGen(Ad.MSK = Sel.MSK, f):

• Pick a uniformly random string CE ← {0, 1}`1(λ) and a uniformly random tag τ ← {0, 1}`2(λ).

• Define the circuit

Gf,CE ,τ (OneCT.SK,K,Sym.K, β) =

{
OneCT.skf ← OneCT.KeyGen(OneCT.SK, f ;PRFK(τ)) if β = 0
Sym.Dec(Sym.K, CE) if β = 1

where CE ∈ {0, 1}`1(λ) and τ ∈ {0, 1}`2(λ) are as above. Furthermore, K,Sym.K ∈ {0, 1}λ, and
β ∈ {0, 1}.
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• Run Sel.skG ← Sel.KeyGen(Sel.MSK, Gf,CE ,τ ) and output Ad.skf = Sel.skG.

Ad.Enc(Ad.MPK = Sel.MPK,m):

• Execute OneCT.Setup(1λ) to obtain OneCT.SK.

• Sample K from the appropriate PRF key space.

• Execute OneCT.Enc(OneCT.SK,m) to obtain CT0. Execute Sel.Enc(Sel.MPK,M = (OneCT.SK,K, 0λ, 0))
to obtain CT1.

• Output CT = (CT0,CT1).

Ad.Dec(Ad.skf = Sel.skG,CT = (CT0,CT1)): Execute Sel.Dec(Sel.skG,CT1) to obtain OneCT.skf . Execute

OneCT.Dec(OneCT.skf ,CT0) to obtain m̂.

We now show that the above scheme satisfies both the correctness and the security properties.

Correctness. Suppose CT = (CT0,CT1) is a valid3 encryption of m and Ad.skf = Sel.skG is a valid
functional key of f , then we claim that the output of Ad.Dec(Ad.skf ,CT) is f(m). If CT is a valid encryption
of m then, CT0 is a valid adaptively-secure single-ciphertext FE encryption of m and CT1 is a valid selectively-
secure FE encryption of (OneCT.SK,K, 0λ, 0), where OneCT.SK and K are picked as in the description of
Ad.Enc. Further, if Ad.skf is a valid functional key of f then Sel.skG is a valid selectively-secure FE
functional key of G. Hence, by the correctness of the selectively-secure FE scheme, we have the output of
Sel.Dec(Sel.skG,CT1) to be G(OneCT.SK,K, 0λ, 0). By the description of G, this in turn is a valid single-
ciphertext FE functional key of f , denoted by OneCT.skf . Now, the output of OneCT.Dec(OneCT.skf ,CT0)
yields f(m) from the correctness of single-ciphertext FE scheme. Since, the output of OneCT.Dec is the
output of Ad.Dec, the correctness follows.

Security. We show that any PPT adversary A succeeds in the adaptive security game of Ad with only
negligible probability. We will show this in a sequence of hybrids. We denote the advantage of the adversary
in Hybridi.b to be the probability that the adversary outputs 1 in this hybrid and this quantity is denoted by
AdvAi.b. For b ∈ {0, 1}, we define the following hybrids.

Hybrid1.b: This corresponds to the real experiment when the challenger encrypts the bth message in the mes-
sage pair submitted by the adversary. More precisely, if the adversary submits the message pair (m0,m1) to
the challenger, the challenger then sends the challenge ciphertext CT∗ back to the adversary, where CT∗ is
the encryption of message mb. The output of this hybrid is the same as the output of the adversary.

Hybrid2.b: The challenger replaces CE in every functional key (each key has a different CE), corresponding
to the query f made by the adversary, with a symmetric key encryption of OneCT.skf . Here, OneCT.skf
is the output of OneCT.KeyGen(OneCT.SK∗, f ;PRFK∗(τ)) and K∗ is a PRF key drawn from the keyspace
K. Further, the symmetric encryption is computed with respect to Sym.K∗, where Sym.K∗ is the output of
Sym.Setup(1λ) and τ is the tag associated to the functional key of f . We emphasize that the same Sym.K∗

and K∗ are used while generating all the functional keys. Further, the challenger generates the challenge
ciphertext CT∗ to be (CT∗0,CT

∗
1), where CT∗0 is the output of OneCT.Enc(OneCT.SK∗,mb) and CT∗1 is the

output of Sel.Enc(Sel.MSK, (OneCT.SK∗,K∗, 0λ, 0)). The rest of the hybrid is the same as the previous hybrid,
Hybrid1.b.

Claim 1. Assuming the pseudorandom ciphertexts property of SYM, for every PPT adversary A, for b ∈
{0, 1}, we have |AdvA1.b − AdvA2.b| ≤ negl(λ).

3 We say that a ciphertext (resp., a functional key) is valid if it is produced as an output of the encryption (resp., key
generation) algorithm on some randomness.
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Proof. Suppose there exists an adversary such that the difference in the advantages is non-negligible, then
we construct a reduction that can break the security of SYM. The reduction internally executes the ad-
versary by simulating the role of the challenger in the adaptive public-key FE game. It answers both
the message and the functional queries made by the adversary as follows. The reduction first executes
OneCT.Setup(1λ) to obtain OneCT.SK∗. It then samples K∗ from K. Further, the reduction generates
Sel.MSK, which is the output of Sel.Setup(1λ) and Sym.K∗, which is the output of Sym.Setup(1λ). When
the adversary submits a functional query f , the reduction first picks τ at random. The reduction executes
OneCT.KeyGen(OneCT.SK∗, f ;PRF(K∗(τ))) to obtain OneCT.skf . It then sends OneCT.skf to the chal-
lenger of the symmetric encryption scheme. The challenger returns back with CE , where CE is either a
uniformly random string or it is an encryption of OneCT.skf . The reduction then generates a selectively-
secure FE functional key of Gf,CE ,τ and denote the result by Sel.skG which is sent to the adversary. The
message queries made by the adversary are handled as in Hybrid1. That is, the adversary submits the
message-pair query (m0,m1) and the reduction sends CT∗ = (CT∗0,CT

∗
1) back to the adversary, where

CT∗0 = OneCT.Enc(OneCT.SK∗,mb) and CT∗1 = Sel.Enc(Sel.MSK, (0λ, 0λ,Sym.K∗, 1)).
If the challenger of the symmetric key encryption scheme sends a uniformly random string back to the

reduction every time the reduction makes a query to the challenger then we are in Hybrid1.b, otherwise we
are in Hybrid2.b. Since the adversary can distinguish both the hybrids with non-negligible probability, we
have that the reduction breaks the security of the symmetric key encryption scheme with non-negligible
probability. From our hypothesis, we have that the reduction breaks the security of the symmetric key
encryption scheme with non-negligible probability. This proves the claim.

Hybrid3.b: The challenger modifies the challenge ciphertext CT∗ = (CT∗0,CT
∗
1). It generates CT∗1 to be an

encryption of the message (0λ, 0λ,Sym.K∗, 1). The ciphertext component CT∗0 is generated the same way
as before. In more detail, the challenge ciphertext is now CT∗ = (CT∗0 = OneCT.Enc(OneCT.SK∗,mb),
CT∗1 = Sel.Enc(Sel.MPK, (0λ, 0λ,Sym.K∗, 1)). The rest of the hybrid is the same as the previous hybrid,
Hybrid2.b.

Claim 2. Assuming the selective security of Sel, for every PPT adversary A, for b ∈ {0, 1}, we have
|AdvA2.b − AdvA3.b| ≤ negl(λ).

Proof. Suppose the claim is not true for some adversary A, we construct a reduction that breaks the security
of Sel. Our reduction will internally execute A by simulating the role of the challenger of the adaptive FE
game.

Our reduction first executes OneCT.Setup(1λ) to obtain OneCT.SK∗. It then samples K∗ from K. It also
executes Sym.Setup(1λ) to obtain Sym.K∗. The reduction then sends the message pair

(
(OneCT.SK∗,K∗, 0λ, 0),

(0λ, 0λ,Sym.K∗, 1)
)

to the challenger of the selective game. The challenger replies back with the public key
Sel.MPK and the challenge ciphertext CT∗1. The reduction is now ready to interact with the adversary A.
If A makes a functional query f then the reduction constructs the circuit Gf,CE ,τ as in Hybrid2.b. It then
queries the challenger of the selective game with the function G and in return it gets the key Sel.skG. The
reduction then sets Ad.skf to be Sel.skG which it then sends back to A. If A submits a message pair
(m0,m1), the reduction executes OneCT.Enc(OneCT.SK∗,m0) to obtain CT∗0. It then sends the ciphertext
CT∗ = (CT∗0,CT

∗
1) to the adversary. The output of the reduction is the output of A.

We claim that the reduction is a legal adversary in the selective security game of Sel, i.e., for challenge
message query (M0 = (OneCT.SK∗,K∗, 0λ, 0), M1 = (0λ, 0λ,Sym.K∗, 1)) and every functional query of the
form Gf,CE ,τ made by the reduction, we have that Gf,CE ,τ (M0) = Gf,CE ,τ (M1): By definition, Gf,CE ,τ (M0)
is the functional key of f , with respect to key OneCT.SK∗ and randomness PRFK∗(τ). Further, Gf,CE ,τ (M1)
is the decryption of CE which is nothing but the functional key of f , with respect to key OneCT.SK∗ and
randomness PRFK∗(τ). This proves that the reduction is a legal adversary in the selective security game.

If the challenger of the selective game sends back an encryption of (OneCT.SK∗,K∗, 0λ, 0) then we are in
Hybrid2.b else if the challenger encrypts (0λ, 0λ,Sym.K∗, 1) then we are in Hybrid3.b. By our hypothesis, this
means the reduction breaks the security of the selective game with non-negligible probability that contradicts
the security of Sel. This completes the proof of the claim.
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Hybrid4.b: For every functional query f made by the adversary, the challenger generates CE by executing

Sym.Enc(Sym.K∗,OneCT.skf ), with OneCT.skf being the output of OneCT.KeyGen(OneCT.SK∗, f ;R), where
R is picked at random. The rest of the hybrid is the same as the previous hybrid.

Claim 3. Assuming the security of the pseudorandom function family F , for every PPT adversary A, for
b ∈ {0, 1}, we have |AdvA3.b − AdvA4.b| ≤ negl(λ).

Proof. Suppose the claim is false for some PPT adversaryA, we construct a reduction that internally executes
A and breaks the security of the pseudorandom function family F . The reduction simulates the role of the
challenger of the adaptive game when interacting with A. The reduction answers the functional queries,
made by the adversary as follows; the message queries are answered as in Hybrid3.b (or Hybrid4.b). For every
functional query f made by the adversary, the reduction picks τ at random which is then forwarded to the
challenger of the PRF security game. In response it receives R∗. The reduction then computes CE to be
Sym.Enc(Sym.K∗,OneCT.skf ), where OneCT.skf = OneCT.KeyGen(OneCT.SK∗, f ;R∗). The reduction then
proceeds as in the previous hybrids to compute the functional key Ad.skf which it then sends to A.

If the challenger of the PRF game sent R∗ = PRFK∗(τ) back to the reduction then we are in Hybrid3.b
else if R∗ is generated at random by the challenger then we are in Hybrid4.b. From our hypothesis this means
that the probability that the reduction distinguishes the pseudorandom value from random (at the point τ)
is non-negligible, contradicting the security of the pseudorandom function family F .

We now show that Hybrid4.0 is computationally indistinguishable from Hybrid4.1.

Claim 4. Assuming the adaptive security of OneCT, for every PPT adversary A we have |AdvA4.0−AdvA4.1| ≤
negl(λ).

Proof. Suppose there exists a PPT adversary A, such that the claim is false. We design a reduction B that
internally executes A to break the adaptive security of OneCT.

The reduction simulates the role of the challenger of the adaptive public-key FE game. It answers both
the functional as well as message queries made by the adversary as follows. If A makes a functional query f
then it forwards it to the challenger of the adaptively-secure single-ciphertext FE scheme. In return it receives
OneCT.skf . It then encrypts it using the symmetric encryption scheme, where the symmetric key is picked
by the reduction itself, and denote the resulting ciphertext to be CE . The reduction then constructs the
circuit Gf,CE ,τ , with τ being picked at random, as in the previous hybrids. Finally, the reduction computes
the selective public-key functional key of Gf,CE ,τ , where the reduction itself picks the master secret key of
selective public-key FE scheme. The resulting functional key is then sent to A. If A makes a message-pair
query (m0,m1), the reduction forwards this message pair to the challenger of the adaptive game. In response
it receives CT∗0. The reduction then generates CT∗1 on its own where CT∗1 is the selective FE encryption of
(0λ, 0λ,Sym.K∗, 1). The reduction then sends CT∗ = (CT∗0,CT

∗
1) to A. The output of the reduction is the

output of A.
We note that the reduction is a legal adversary in the adaptive game of OneCT, i.e., for every challenge

message query (m0,m1), functional query f , we have that f(m0) = f(m1): this follows from the fact that
(i) the functional queries (resp., challenge message query) made by the adversary (of Ad) is the same as the
functional queries (resp., challenge message query) made by the reduction, and (ii) the adversary (of Ad) is
a legal adversary. This proves that the reduction is a legal adversary in the adaptive game.

If the challenger sends an encryption of m0 then we are in Hybrid4.0 and if the challenger sends an
encryption of m1 then we are in Hybrid4.1. From our hypothesis, this means that the reduction breaks the
security of OneCT. This proves the claim.

The above claims implies that Hybrid1.0 is computationally indistinguishable from Hybrid1.1 which proves
the adaptive security of Ad. We thus have the following theorem.

Theorem 2. There exists an adaptively-secure public-key FE scheme assuming the existence of a sufficiently-
expressive selectively-secure public-key FE scheme, adaptively-secure single-ciphertext private-key FE scheme,
pseudorandom functions and a symmetric encryption scheme.
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As remarked earlier, single-ciphertext FE, pseudorandom functions and symmetric encryption schemes are
implied by one-way functions which in turn is implied by any public-key encryption scheme and in particular,
a selectively-secure public-key FE scheme. Thus, we have the following corollary.

Corollary 2. Assuming the existence of a sufficiently-expressive selectively-secure public-key FE, there exists
adaptively-secure public-key FE.

3.2 Our Transformation in the Private-Key Setting

The exact same transformation as above works in the private-key setting as well. Namely, given a private-key
selectively secure FE, we obtain a private-key adaptively secure FE. The transformation is identical with the
obvious exception that there is no public-key, and the master secret key is used for both encryption and key
generation. We denote the selectively-secure FE that we use by Sel = (Sel.Setup,Sel.KeyGen,Sel.Enc,Sel.Dec).
The adaptively-secure FE that we construct is denoted by Ad = (Ad.Setup,Ad.KeyGen,Ad.Enc,Ad.Dec).

Ad.Setup(1λ): Execute Sel.Setup(1λ) to obtain Sel.MSK. Output Ad.MSK = Sel.MSK.

Ad.KeyGen(Ad.MSK = Sel.MSK, f):

• Pick a uniformly random string CE ← {0, 1}`1(λ) and a uniformly random tag τ ← {0, 1}`2(λ).

• Define the circuit

Gf,CE ,τ (OneCT.SK,K,Sym.K, β) =

{
OneCT.skf ← OneCT.KeyGen(OneCT.SK, f ;PRFK(τ)) if β = 0
Sym.Dec(Sym.K, CE) if β = 1

where CE ∈ {0, 1}`1(λ) and τ ∈ {0, 1}`2(λ) are as above. Furthermore, K,Sym.K ∈ {0, 1}λ, and
β ∈ {0, 1}.

• Run Sel.skG ← Sel.KeyGen(Sel.MSK, Gf,CE ,τ ) and outputs Ad.skf = Ad.skG.

Ad.Enc(Ad.MSK = Sel.MSK,m):

• Execute OneCT.Setup(1λ) to obtain OneCT.SK.

• Sample K from the appropriate PRF key space.

• Execute OneCT.Enc(OneCT.SK,m) to obtain CT0. Execute Sel.Enc(Sel.MSK,M = (OneCT.SK,K, 0λ, 0))
to obtain CT1.

• Output CT = (CT0,CT1).

Ad.Dec(Ad.skf = Sel.skG,CT = (CT0,CT1)): Execute Sel.Dec(Sel.skG,CT1) to obtain OneCT.skf . Execute

OneCT.Dec(OneCT.skf ,CT0) to obtain m̂.

The correctness is straightforward. The proof of security in this case is slightly more complicated than its
public-key counterpart. Since in the symmetric setting, the adversary is allowed to make multiple message
queries, we have to employ a sequence of hybrids, handling each message query at a time. Each of these
hybrids is identical to our proof of Theorem 2 above.

15



Security. We show that any PPT adversary A succeeds in the adaptive security game of Ad with only
negligible probability. We will show this in a sequence of hybrids. We denote the advantage of the adversary
in Hybridji to be the probability that the adversary outputs 1 in that hybrid and this quantity is denoted by

AdvAi,j .
We define the hybrids in the following manner and we prove indistinguishability of every two consecutive

hybrids (two hybrids are consecutive if they are connected by an arrow). The text on top of the arrow
indicates the claim we use to prove the indistinguishability. The symbol “=” on top of the arrow indicates
that the consecutive hybrids are identical. We denote by p, the number of message queries made by A.

Hybrid0
=−→ Hybrid11.0

Claim 5−−−−−→ Hybrid12.0
Claim 6−−−−−→ Hybrid13.0

Claim 7−−−−−→ Hybrid14.0

· · ·Hybrid14.0
Claim 8−−−−−→ Hybrid14.1

Claim 7−−−−−→ Hybrid13.1
Claim 6−−−−−→ Hybrid12.1

Claim 5−−−−−→ Hybrid11.1

· · ·Hybrid11.1
=−→ Hybrid21.0 · · · · · · Hybrid

p
1.1

=−→ Hybrid5

Hybrid0: This corresponds to the real experiment when the challenger uses the encryption oracle, parame-
terized by bit 0, to generate the challenge ciphertexts. That is, for all message queries of the form (m0,m1),
the challenger sends an encryption of m0 to the adversary. The output of this hybrid is the same as the
output of the adversary.

Hybridj1.b for b ∈ {0, 1}, j ∈ [p]: This is the same as the hybrid Hybridj−11.b (if j = 1 then we refer to Hybrid0)

except that the challenger encrypts the bth message in the jth message pair query submitted by the adversary.
More precisely, the only change is the following: If the adversary submits the jth message pair (m0,m1) to
the challenger, the challenger then sends the challenge ciphertext CT∗ back to the adversary, where CT∗ is
the encryption of message mb.

We observe that the hybrid Hybrid11.0 is identical to Hybrid0 and also, Hybridj−11.1 is identical to Hybridj1.0,
for j ∈ [p] and j > 1.

Hybridj2.b for b ∈ {0, 1}, j ∈ [p]: This is identical to the previous hybrid, Hybridj1.b, except for the following
change. The challenger replaces CE in every functional key, corresponding to the query f made by the
adversary, with a symmetric encryption of OneCT.skf , where OneCT.skf is the output of OneCT.KeyGen(
OneCT.SK∗, f ;PRFK∗(τ)) and K∗ is a PRF key sampled from the keyspace K. Further the symmetric
encryption is computed with respect to Sym.K∗, where Sym.K∗ is the output of Sym.Setup(1λ) and τ is
the tag associated to the functional key of f . We emphasize that the same Sym.K∗ and K∗ is used while
generating all the functional keys.

Claim 5. Assuming the pseudorandom ciphertexts property of SYM, for every PPT adversary A, for b ∈
{0, 1}, j ∈ [p], we have |AdvA1.b,j − AdvA2.b,j | ≤ negl(λ).

Proof. Suppose there exists an adversary such that the difference in the advantages is non-negligible, then
we construct a reduction that can break the security of SYM. The reduction internally executes the ad-
versary by simulating the role of the challenger in the adaptive private-key FE game. It answers both
the message and the functional queries made by the adversary as follows. The reduction first executes
OneCT.Setup(1λ) to obtain OneCT.SK∗ It then samples K∗ from K. Further, the reduction generates
Sel.MSK, which is the output of Sel.Setup(1λ) and Sym.K∗, which is the output of Sym.Setup(1λ). When
the adversary submits a functional query f , the reduction first picks τ at random. The reduction executes
OneCT.KeyGen(OneCT.SK∗, f ;PRF(K∗(τ))) to obtain OneCT.skf . It then sends OneCT.skf to the challenger
of the symmetric encryption scheme. The challenger returns back with CE , where CE is either a uniformly
random string or it is an encryption of OneCT.skf . The reduction then generates a selectively-secure FE
functional key of Gf,CE ,τ and denote the result by Sel.skG which is sent to the adversary. The message

queries made by the adversary are handled as in Hybridj1.b. That is, the adversary submits the ith message-
pair query of the form (mi

0,m
i
1) and the reduction sends CT∗ = (CT∗0,CT

∗
1) back to the adversary, where

CT∗0 = OneCT.Enc(OneCT.SK∗,mbi) and CT∗1 = Sel.Enc(Sel.MSK, (0λ, 0λ,Sym.K∗, 1)); we define bi = 1 for
i < j, bj = b and for i > j, we have bi = 0.
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If the challenger of the symmetric key encryption scheme sends a uniformly random string back to the
reduction every time the reduction makes a query to the challenger then we are in Hybridj1.b, otherwise we

are in Hybridj2.b. Since the adversary can distinguish both the hybrids with non-negligible probability, we
have that the reduction breaks the security of the symmetric key encryption scheme with non-negligible
probability. This proves the claim.

Hybridj3.b for b ∈ {0, 1}, j ∈ [p]: The challenger modifies the jth challenge ciphertext CT∗ = (CT∗0,CT
∗
1). In

particular it generates CT∗1 using the message (0λ, 0λ,Sym.K∗, 1) instead of (OneCT.SK∗,K∗, 0λ, 0). The
ciphertext component CT∗0 is generated the same way as in the previous hybrid, Hybridj2.b.

More formally, the jth challenge ciphertext is now CT∗ = (CT∗0 = OneCT.Enc(OneCT.SK∗,mj
b), CT

∗
1 =

Sel.Enc(Sel.MSK, (0λ, 0λ,Sym.K∗, 1)). The rest of the hybrid is the same as the previous hybrid, Hybridj2.b.

Claim 6. Assuming the selective security of Sel, for every PPT adversary A, for b ∈ {0, 1}, j ∈ [p], we have
|AdvA2.b,j − AdvA3.b,j | ≤ negl(λ).

Proof. Suppose the claim is not true for some PPT adversary A, we construct a reduction that breaks
the security of Sel. Our reduction will internally execute A by simulating the role of the challenger of the
adaptive FE game.

For every i ∈ [p], the reduction does the following. It first executes OneCT.Setup(1λ) to obtain OneCT.SK∗i .
It then samples K∗i from K. It also executes Sym.Setup(1λ) to obtain Sym.K∗i . If i 6= j, the reduction then
sends the message pair

(
(OneCT.SK∗i , K

∗
i , 0λ, 0)), (OneCT.SK∗i ,K

∗
i , 0

λ, 0)
)

to the challenger of the selective

game and if i = j, the reduction instead sends the message pair
(
(OneCT.SK∗j ,K

∗
j , 0

λ, 0), (0λ, 0λ,Sym.K∗j , 1)
)
.

For the ith message query, the challenger responds back with the challenge ciphertext CT∗1,i.
The reduction is now ready to interact with the adversary A. If A makes a functional query f then the

reduction constructs the circuit Gf,CE ,τ as in Hybridj2.b. It then queries the challenger of the selective game
with the function G and in return it gets the key Sel.skG. The reduction then sets Ad.skf to be Sel.skG
which it then sends back to A. The message queries made by A are handled as follows. When A submits
the ith message pair (mi

0,m
i
1), the reduction executes OneCT.Enc(OneCT.SK∗i ,m

i
0) to obtain CT∗0,i. It then

sends the ciphertext CT∗ = (CT∗0,i,CT
∗
1,i) to the adversary. The output of the reduction is the output of A.

We claim that the reduction is a legal adversary in the selective security game of Sel. To argue this, note
that we only need to consider the jth message query since the left and the right messages in all other message
queries are the same. For the jth message query (M0 = (OneCT.SK∗j ,K

∗
j , 0

λ, 0), M1 = (0λ, 0λ,Sym.K∗j , 1)) and
every functional query of the form Gf,CE ,τ made by the reduction, we have that Gf,CE ,τ (M0) = Gf,CE ,τ (M1):
By definition, Gf,CE ,τ (M0) is the functional key of f , with respect to key OneCT.SK∗j and randomness
PRFK∗

j
(τ). Further, Gf,CE ,τ (M1) is the decryption of CE which is nothing but the functional key of f , with

respect to key OneCT.SK∗j and randomness PRFK∗
j
(τ). This proves that the reduction is a legal adversary in

the selective security game.
If the challenger of the selective game sends back an encryption of (OneCT.SK∗j ,K

∗
j , 0

λ, 0) then we are in

Hybridj2.b else if the challenger encrypts (0λ, 0λ,Sym.K∗j , 1) then we are in Hybridj3.b. By our hypothesis, this
means the reduction breaks the security of the selective game with non-negligible probability that contradicts
the security of Sel. This completes the proof of the claim.

Hybridj4.b for b ∈ {0, 1}, j ∈ [p]: For every functional query f made by the adversary, the challenger gener-

ates CE by executing Sym.Enc(Sym.K∗,OneCT.skf ), with OneCT.skf being the output of OneCT.KeyGen(
OneCT.SK∗, f ;R), where R is picked at random. The rest of the hybrid is the same as the previous hybrid.

Claim 7. Assuming the security of the pseudorandom function family F , for every PPT adversary A, for
b ∈ {0, 1}, j ∈ [p], we have |AdvA3.b,j − AdvA4.b,j | ≤ negl(λ).

Proof. Suppose the claim is false for some PPT adversaryA, we construct a reduction that internally executes
A and breaks the security of the pseudorandom function family F . The reduction simulates the role of the
challenger of the adaptive game when interacting with A. The reduction answers the functional queries,
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made by the adversary as follows; the message queries are answered as in Hybridj3.b (or Hybridj4.b). For every
functional query f made by the adversary, the reduction picks τ at random which is then forwarded to the
challenger of the PRF security game. In response it receives R∗. The reduction then computes CE to be
Sym.Enc(Sym.K∗,OneCT.skf ), where OneCT.skf = OneCT.KeyGen(OneCT.SK∗, f ;R∗). The reduction then
proceeds as in the previous hybrids to compute the functional key Ad.skf which it then sends to A.

If the challenger of the PRF game sent R∗ = PRFK∗(τ) back to the reduction then we are in Hybridj3.b
else if R∗ is generated at random, for every query τ , by the challenger then we are in Hybridj4.b. From our
hypothesis this means that the probability that the reduction distinguishes the pseudorandom values from
random values is non-negligible, contradicting the security of the pseudorandom function family F .

We now show that Hybridj4.0 is computationally indistinguishable from Hybridj4.1.

Claim 8. Assuming the adaptive security of OneCT, for j ∈ [p], for every PPT adversary A we have
|AdvA4.0,j − AdvA4.1,j | ≤ negl(λ).

Proof. Suppose there exists a PPT adversary A, such that the claim is false. We design a reduction that
internally executes A to break the adaptive security of OneCT.

The reduction simulates the role of the challenger of the adaptive private-key FE game. It answers both
the functional as well as message queries made by the adversary as follows. If A makes a functional query
f then it forwards it to the challenger of the adaptively-secure single-ciphertext FE scheme. In return it
receives OneCT.skf . It then encrypts it using the symmetric encryption scheme, where the symmetric key is
picked by the reduction itself, and denote the resulting ciphertext to be CE . The reduction then constructs
the circuit Gf,CE ,τ as in the previous hybrids. Finally, the reduction computes the selective private-key
functional key of Gf,CE ,τ , where the reduction itself picks the master secret key of selective private-key FE
scheme. The resulting functional key is then sent to A. The message queries are handled as follows. Suppose
the adversary A makes the ith message-pair query (mi

0,m
i
1). If i 6= j, then the reduction answers the query

himself. That is, B samples the single-ciphertext FE master key OneCT.SKi and PRF key Ki by himself. It
then computes a single-ciphertext FE encryption of mbi using OneCT.SKi and denote the result by CTi0: we
define bi = 1 if i < j and bi = 0 if i > j. Further, it computes a (selective) private-key FE encryption of
(OneCT.SKi,Ki, 0

λ, 0), which is represented by CTi1. The challenger sends the ciphertext CTi = (CTi0,CT
i
1)

to A. When i = j, the reduction forwards the message pair (mj
0,m

j
1) to the challenger of the adaptive game.

In response it receives CT∗0. The reduction then generates CT∗1 on its own where CT∗1 is the selective FE
encryption of (0λ, 0λ,Sym.K∗, 1). The reduction then sends CT∗ = (CT∗0,CT

∗
1) to A. The output of the

reduction is the output of A.
We note that the reduction is a legal adversary in the adaptive game of OneCT, i.e., for the message query

(mj
0,m

j
1), functional query f , we have that f(mj

0) = f(mj
1): this follows from the fact that (i) the functional

queries (resp., challenge message query) made by the adversary (of Ad) is the same as the functional queries
(resp., challenge message query) made by the reduction, and (ii) the adversary (of Ad) is a legal adversary.
This proves that the reduction is a legal adversary in the adaptive game.

If the challenger sends an encryption of m0 then we are in Hybridj4.0 and if the challenger sends an

encryption of m1 then we are in Hybridj4.1. From our hypothesis, this means that the reduction breaks the
security of OneCT. This proves the claim.

Hybrid5: This corresponds to the real experiment when the challenger uses the encryption oracle, parame-
terized by bit 1, to generate the challenge ciphertexts. That is, for all message queries of the form (m0,m1),
the challenger sends an encryption of m1 to the adversary. The output of this hybrid is the same as the
output of the adversary.

We note that this hybrid is identical to the hybrid Hybridp1.1.

The above claims imply that Hybrid0 is computationally indistinguishable from Hybrid5 which proves the
adaptive security of Ad. We thus have the following theorem.

Theorem 3. Assuming the existence of a sufficiently-expressive selectively-secure private-key functional
encryption scheme, there exists an adaptively-secure private-key functional encryption scheme.
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4 From FE for Shallow Circuits to FE for All Circuits

In this section we show that a functional encryption scheme that only supports key generation for functions
with shallow circuits can be transformed into one that supports functions with arbitrarily deep circuits. In
particular, the shallow class can be any class in which weak pseudorandom functions can be computed and
has some composition properties.4 For the sake of concreteness, we will consider the class NC1, which can
compute weak pseudorandom functions under standard cryptographic assumptions such as DDH or LWE.
(A lower complexity class such as TC0 is also sufficient under standard assumptions.)

While we present a direct reduction below, we notice that this property can be derived from the transfor-
mation in Section 3, by recalling some properties of the [GVW12] single-key functional encryption scheme.
One can verify that the setup algorithm of the [GVW12] scheme can be implemented in NC1 (under the
assumption that it can evaluate weak pseudorandom functions), regardless of the depth of the function being
implemented. This property carries through even after applying the [BS14] function privacy transformation.
Lastly, to implement the Trojan method we need a symmetric encryption scheme with decryption in NC1,
which again translates to the evaluation of a weak pseudorandom function.

However, as we mentioned, there is a more direct approach of using the Trojan method to achieve our goal
by using randomized encodings (we note that the [GVW12] FE scheme also uses randomized encodings, so
this building block is inherent in both methods). A sketch of the approach was provided in the introduction
(Section 1.2) and we now give a formal description of the construction.

Randomized encodings. This notion was introduced by Ishai and Kushilevitz [IK00]: A randomized
encoding scheme for a function class F consists of two PPT algorithms (RE.Encode,RE.Decode). The PPT
algorithm RE.Encode takes as input (1λ, F, x, r), where λ is the security parameter, F : {0, 1}λ → {0, 1}
is a function in F , instance x ∈ {0, 1}λ and randomness r. The output is denoted by F̂ (x; r). The PPT
algorithm RE.Decode takes as input (F̂ (x; r)) and outputs y = F (x).

The security property states that there exists a PPT algorithm Sim that takes as input (1λ, F (x)) and
outputs SimOutF (x) such that any PPT adversary cannot distinguish the distribution {F̂ (x; r)} from the
distribution {SimOutF (x)}.

The following corollary is derived from applying Yao’s garbled circuit technique using a weak PRF based
encryption algorithm.

Corollary 3. If there exists a family of secure weak pseudorandom functions which can be evaluated in
NC1, then there exists a randomized encoding scheme (RE.Encode,RE.Decode) for the class of polynomial
size circuits, such that RE.Encode is computable in NC1.

Our transformation. Let NCFE = (NCFE.Setup, NCFE.KeyGen, NCFE.Enc, NCFE.Dec) be a (private-
key) functional encryption scheme for the class NC1. We assume w.l.o.g that NCFE supports functions
with multi-bit output (otherwise it is always possible to produce a secret key for each bit separately).
We also use a pseudorandom function family denoted by F = {PRFK(·)} and a symmetric encryption
scheme (Sym.Setup,Sym.Enc,Sym.Dec). We construct a (private-key) functional encryption scheme PFE =
(PFE.Setup, PFE.KeyGen, PFE.Enc, PFE.Dec) as follows.

• PFE.Setup(1λ): Run MSK ← NCFE.Setup(1λ) and output MSK as the master secret key.

• PFE.KeyGen(MSK,F ): Given the master secret key MSK and a circuit F , do the following:

– Pick a uniformly random string CE ← {0, 1}`1(λ) and a uniformly random tag τ ← {0, 1}λ.

– Define the circuit

GF,CE ,τ (x,KP ,KE , β) =

{
F̂ (x;PRFKP

(τ)) = RE.Encode(F, x;PRFKP
(τ)) if β = 0

Sym.DecKE
(CE) if β = 1

4Similarly to the class WEAK defined in [App13].
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where CE ∈ {0, 1}`1(λ) and τ ∈ {0, 1}`2(λ) are as above. Furthermore, KP ,KE ∈ {0, 1}λ, and
β ∈ {0, 1}.

– Run SKG ← NCFE.KeyGen(MSK,GF,CE ,τ ) and outputs (SKG, F, CE , τ).

• PFE.Enc(MSK,x) gets as input the master secret key MSK and an input x and does the following.

– Choose a uniformly random string KP ← {0, 1}λ.

– Compute and output C ← NCFE.Enc(MSK; (x,KP , 0
λ, 0)).

• PFE.Dec(SKF , C), given the secret key SKF = (SKG, F, CE , τ) for a function F and a ciphertext C,

does the following. Run F̂ (x)← NCFE.Dec(SKG, (F,CE , τ), C). and output RE.Decode(F̂ (x)).

Theorem 4. Let PRF be a weak pseudorandom function family which can be evaluated in NC1, let SYM
be a symmetric encryption scheme whose decryption circuit is in NC1, and let (RE.Encode,RE.Decode) be a
randomized encoding scheme with encoding in NC1.

Then, if NCFE is a selectively secure symmetric key functional encryption scheme for NC1, then the
scheme PFE is a selectively secure symmetric key functional encryption for P .

Proof Sketch. The proof proceeds by a sequence of hybrids. For simplicity, we consider the case when the
adversary submits a single message pair (m0,m1) and the argument can be generalized to the case of multiple
messages.

Hybrid0: This corresponds to the real experiment where the challenger sends an encryption of m0 to the
adversary.

Hybrid1: For every functional query F , the challenger replaces CE with Sym.Enc(KE , F̂ (m0;PRFKP
(t)) in

the functional key for F .
By a sequence of intermediate hybrids (as many as the number of functional queries), Hybrid1 can be shown

to be computationally indistinguishable from Hybrid0 by invoking the semantic security of the symmetric
encryption scheme.

Hybrid2: The challenge ciphertext will consist of an encryption of the message (mb, 0,KE , 1) instead of the

message (m0,KP , 0
λ, 0).

This hybrid is computationally indistinguishable from Hybrid1 by the semantic security of the functional
encryption scheme.

Hybrid3: For every functional query F , the challenger replaces CE in all the functional keys with Sym.Enc(KE ,

F̂ (m0; r)) where r is uniformly random in the functional key for F .
By a sequence of intermediate hybrids (as many as the number of functional queries), Hybrid3 can be

shown to be computationally indistinguishable from Hybrid2 by invoking the security of PRF.

Hybrid4: Finally, for every functional query F , the challenger replaces F̂ (m0; r) in the ciphertext hardwired

in the functional key for F by the simulated randomized encoding Sim(1λ, F (m0)).
By a sequence of intermediate hybrids (as many as the number of functional queries), Hybrid4 can be

shown to be computationally indistinguishable from Hybrid3 by invoking the security of randomized encod-
ings.

Note that the final hybrid does not depend on whether m0 or m1 was encrypted since for all functions
F (m0) = F (m1), and this proves the security of PFE .
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