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Abstract

We experiment with the block cipher proposed by Hoang, Morris, and Rogaway [3], even
though the cipher is insecure [8]. The cipher is based on swap-or-not shu�e, and we call it
the Shu�e Block Cipher. We show how the cipher can be translated into SMT-LIB v2 format,
suitable for automated solving by SMT solvers. We compare performance of various SMT
solvers on the encryption and known plaintext attack problems.
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1 Introduction

The swap-or-not shu�e [3] is a method of converting a pseudorandom function into a pseudoran-
dom permutation. The shu�e can be used for small-domain and format-preserving encryptions
[3, 5]. A construction of “standard” block cipher using this method was also proposed in [3].
We call this block cipher the Shu�e Block Cipher. Probably the most interesting feature of the
cipher is its simplicity. The cipher iterates a large number of rounds, each consisting of single
swap-or-not operation. However, the instantiation of the round functions proposed by the authors
of the Shu�e Block Cipher in [3] is insecure, as pointed out by Vaudenay in CRYPTO 2012
Rump Session [8] (and independently by Gilbert). Nevertheless, we experiment with automated
cryptanalysis of the Shu�e Block Cipher in this paper, using SMT solvers.

Our contribution can be summarized as follows:

– We show how the Shu�e Block Cipher can be translated into SMT-LIB v2 format, suitable
for automated solving by SMT solvers.

– We use two problems – simple encryption of a plaintext and known plaintext attack – for
comparison of four SMT solvers’ performance (MathSAT5, Sonolar, Yices, and Z3). The
best (performance-wise) SMT solver for these problems is Sonolar.

– We experiment with automated solving of KPA (known plaintext attack) problems with
Sonolar. We try various combination of the parameters such as block length, round count,
and the number of plaintext-ciphertext pairs. Most combinations are arti�cially small.
Solving instances with larger values of the parameters with moderately large number of
plaintext-ciphertext pairs seems unsolvable e�ciently by the SMT solver.

We introduce the Shu�e Block Cipher and SMT solvers in Section 2. The translation of the
cipher into SMT-LIB v2 format is presented in Section 3. We show the performance comparison
of four SMT solvers on encryption and known plaintext attack problems in Section 4. Finally,
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Section 5 describes the results of simple cryptanalysis for various combination of parameters.
Certainly, cryptanalysis from [8] is the easiest way of attacking the Shu�e Block Cipher.

2 Preliminaries

2.1 The Shu�le Block Cipher

The Shu�e Block Cipher (further denoted as the SBC) is a block cipher with variable number
of rounds and variable block length. We use the original notation from [3] in the description of
the SBC. Let n be the block length and r be the number of rounds (both parameters are positive
integers). The SBC uses a key KL that speci�es 2r subkeys K1, . . . ,Kr ,L1, . . . ,Lr ∈ {0,1}n . We
assume that these subkeys are randomly and uniformly chosen. Let X ∈ {0,1}n be an input block.
Let ⊕ be a bitwise xor operator. An inner product of two n-bit vectors is denoted by � symbol,
i.e. X � Y = X1Y1 ⊕ . . . ⊕ XnYn for X = (X1, . . . ,Xn ) and Y = (Y1, . . . ,Yn ). The SBC encryption is
shown on Figure 1. The decryption takes the subkeys in reverse order.

EKL (X ):
for i ← 1 to r do
X ′ ← Ki ⊕ X

X̂ ← max(X ,X ′)

if Li � X̂ = 1 then X ← X ′

return X

Figure 1: The SBC encryption algorithm

Remark. The inner product Li � X̂ was proposed in [3] as an instantiation of a random round
function Fi : {0,1}n → {0,1}. In this instantiation the function is speci�ed by vector Li , i.e.
Fi (X̂ ) = Li � X̂ .

The SBC uses a swap-or-not technique to construct pseudo-random permutation. Theoretical
analysis shows that for general swap-or-not network, approximately r = 6n rounds are necessary
for a good bound on CCA-security. However, the authors state [3]:

It is incorrect to think that the theoretical analysis suggests a value like r = 6n; for
one thing, there is an enormous gap between computing a random round function
Fi (X̂ ) and an inner product Li � X̂ .

The authors did not provide an explicit suggestion on r values. On the other hand, the
SBC was proved to be insecure very soon – Vaudenay in CRYPTO 2012 Rump Session [8] (and
independently Gilbert) pointed out that the round function is linear.

2.2 SMT Solvers

Satis�ability Modulo Theories (SMT) problems can be viewed as a generalization of SAT problems.
Besides boolean variables, also non-binary variables, interpreted and uninterpreted functions and
predicates are allowed. The types of variables and predicates depend on supported theories. There
are various theories that can be supported by particular SMT solver, such as theory of bit-vectors,
linear integer/real arithmetics, arrays, tuples etc. SMT solvers try to solve SMT problems – in
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some cases by translating them to SAT problems and subsequently using a SAT solver, in other
cases by employing specialized solvers for particular theory. SMT solvers are used in practice for
software and hardware veri�cation, type inference, static program analysis, test-case generation,
scheduling and other applications [2]. Applications of SMT solvers for software security can be
found in [7]. Even though there are some applications of SMT solvers for cryptanalysis, e.g. see
[4], a direct use of SAT solvers is much more frequent.

The theory of bit-vectors is suitable for modeling the SBC. The theory consists of �xed-sized
bit vector variables, functions for extracting individual bits from a vector, functions for addition,
rotation, bitwise logical operators, comparison etc.

SMT-LIB version 2 is a standard format for specifying SMT problems [1]. Many SMT solvers
more or less support SMT-LIB v2 format – it allows to compare their performance in our experi-
ments. Therefore we use this format for modeling the SBC, instead of using the proprietary input
languages or bindings/APIs of particular SMT solvers.

Test environment. All experiments were performed on 64-bit Ubuntu 14.04.1 with i7-2600
(3.40 GHz) processor and 4 GB memory. The following SMT solvers were used (64-bit versions):
MathSAT5 5.2.12, Sonolar 2014-09-02, Yices 2.2.2, and Z3 4.3.2.

3 Modeling the Cipher

The encryption function of the SBC was modeled/encoded in SMT-LIB v2. Since the source code in
SMT-LIB v2 format grows linearly with the number of rounds r and for each plaintext-ciphertext
pair a separate encoding (with separate set of variables) must be produced, we generate the
SMT-LIB v2 model with a help of a Python script. The SBC is very simple and therefore the
translation into SMT-LIB v2 is straightforward. Let us go through all parts of the encoding.
In order to keep the presentation compact we use very small values n = 8 and r = 2 in this
description. The bit-vector theory in SMT-LIB v2 contains operations/predicates that come in
handy: bvxor (bitwise xor), bvand (bitwise and), bvult (unsigned less than), extract (extract bits
from a bitvector), bvshl (shift left).

3.1 Variables and Constants

We declare a variable for each subkey (as a bit-vector of length n):
(declare-fun k1 () (_ BitVec 8))
(declare-fun k2 () (_ BitVec 8))
(declare-fun l1 () (_ BitVec 8))
(declare-fun l2 () (_ BitVec 8))

Variables for encryption function are declared similarly. Variable x0 denotes a plaintext, and
variable y denotes a ciphertext. Variables xpi, xhi, xi denote the value of internal variables X ′,
X̂ in round i, and variable X at the end of round i of the encryption function, respectively. The
pre�x a1 (and possibly a2, a3 etc.) is used to distinguish a speci�c plaintext-ciphertext pair.

(declare-fun a1x0 () (_ BitVec 8))
(declare-fun a1x1 () (_ BitVec 8))
(declare-fun a1xp1 () (_ BitVec 8))
(declare-fun a1xh1 () (_ BitVec 8))
(declare-fun a1x2 () (_ BitVec 8))
(declare-fun a1xp2 () (_ BitVec 8))
(declare-fun a1xh2 () (_ BitVec 8))
(declare-fun a1y () (_ BitVec 8))
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Depending on a task we want to solve, the values of some variables are set. In case of single
encryption, all subkeys are set and the plaintext a1x0 is set as well. For example (the constants in
this example are written in hexadecimal):

(assert (= k1 #xee))
(assert (= k2 #x57))
(assert (= l1 #x67))
(assert (= l2 #xba))
(assert (= a1x0 #x25))

In case of known (or chosen) plaintext attacks we set just aix0 and aiy values for all known
plaintext-ciphertext pairs.

3.2 Inner Product

We use two di�erent methods for computing the inner product of two bit-vector. Both methods
start with bitwise AND of input bit-vectors and then they compute a “bitxor” operation on the
result, i.e. they XOR all its bits. The �rst method computes the bitxor by “fold-and-xor” approach.
For n = 8: bitxor(x ) = MSB(F1 (F2 (F4 (x )))) where Fi (x ) = x ⊕ (x << i ) and MSB returns the
most signi�cant bit of an argument. Using SMT-LIB v2 the bitxor operation looks like this:

(define-fun bitxor1 ((x (_ BitVec 8))) (_ BitVec 8)
(bvxor (bvshl x #x01) x))

(define-fun bitxor2 ((x (_ BitVec 8))) (_ BitVec 8)
(bvxor (bvshl x #x02) x))

(define-fun bitxor4 ((x (_ BitVec 8))) (_ BitVec 8)
(bvxor (bvshl x #x04) x))

(define-fun bitxor ((x (_ BitVec 8))) (_ BitVec 1)
((_ extract 7 7) (bitxor1 (bitxor2 (bitxor4 x)))))

The second method simply extracts all bits and xors them together:
(define-fun bitxor ((x (_ BitVec 8))) (_ BitVec 1)
(bvxor ((_ extract 7 7) x) (bvxor ((_ extract 6 6) x)
(bvxor ((_ extract 5 5) x) (bvxor ((_ extract 4 4) x)
(bvxor ((_ extract 3 3) x) (bvxor ((_ extract 2 2) x)
(bvxor ((_ extract 1 1) x) ((_ extract 0 0) x)))))))))

A direct translation to SAT by SMT solvers might theoretically use more Boolean variables
for the �rst method than for the second one. Later, we explore the impact of these two variants
on SMT solvers performance.

3.3 Encryption Function

The translation of encryption function is straightforward – we unroll the loop. We do not use the
linear representation of the round function from [8]. Another useful SMT-LIB v2 operation for
this translation is ite (if-then-else). Example of encryption function for r = 2:

(assert (= a1xp1 (bvxor k1 a1x0)))
(assert (= a1xh1 (ite (bvult a1x0 a1xp1) a1xp1 a1x0)))
(assert (= a1x1 (ite (= (bitxor (bvand l1 a1xh1)) #b1) a1xp1 a1x0)))
(assert (= a1xp2 (bvxor k2 a1x1)))
(assert (= a1xh2 (ite (bvult a1x1 a1xp2) a1xp2 a1x1)))
(assert (= a1x2 (ite (= (bitxor (bvand l2 a1xh2)) #b1) a1xp2 a1x1)))
(assert (= a1y a1x2))
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Even more compact representation of the encryption function is possible. Substituting some
expressions, e.g. aixhj variable into aix(j + 1), or using helper functions can reduce the number
of assert expressions or shorten them. However, such syntactical manipulations do not reduce
the complexity of the problem for SMT solvers.

3.4 Preamble and Goals

We are interested in values of variables, not just knowing that the problem is satis�able (we
already know that), hence we want to produce a model for our input. Additionally, we use the
bit-vector theory. These requirements are re�ected in the preamble:

(set-option :produce-models true)
(set-logic QF_BV)

According to the problem we want to solve, we set the goal for encryption (value of the ciphertext):

(check-sat)
(get-value (a1y))

and for cryptanalysis we are interested in subkeys values:
(check-sat)
(get-value (k1 k2 l1 l2))

4 Performance Comparison of SMT Solvers

SMT solvers compete, similarly to SAT solvers, in SMT-COMP competition [6] using benchmarks
in various logic divisions. We compare the performance of selected SMT solvers on problems
related to the SBC. The goals of this comparison are twofold – simple tests allow to validate the
correctness of the SBC model in SMT-LIB v2, and they allow to select the SMT solver with the
best performance for further experiments.

Counting variables. Certainly, solving an encryption problem is much easier than �nding
keys in the known plaintext attack. In both cases the complexity of a problem can be measured
(separately for each problem) by number of unknown n-bit variables. Simple calculation yields
the following formulas (p denotes the number of plaintext-ciphertext pairs for KPA):

number of n-bit variables
single encryption 3r + 1
KPA 2r + 3rp

4.1 Encryption

We use block length n = 128 and three di�erent versions of the SBC (for r ∈ {128,512,1024}) in
these tests. Each result presented in Table 1 is an average of 5 distinct instances of the encryption
problem.

All SMT solvers were able to encrypt a plaintext in reasonable time, even for realistic values
of n and r (the last column) that are supposedly secure for real-word application. Let us stress
that this is not by any means an evaluation of the SBC performance itself. The results for each
SMT solver scale expectedly with increasing number of rounds.

5



Average time [seconds]
SMT solver r = 128 r = 512 r = 1024

MathSAT5 0.04 0.13 0.25
Sonolar 0.05 0.20 0.42
Yices 0.04 0.14 0.29
Z3 0.38 1.83 3.88

Table 1: Performance of SMT solvers for single encryption

4.2 Known Plaintext Attack

The problem of �nding keys for known plaintext-ciphertext pairs is substantially harder than
simple encryption. It is unrealistic to expect a successful attack on the SBC with large number of
rounds, large block length, and large number of plaintext-ciphertext pairs. For the purpose of
SMT solver’s comparison, we use small values r ∈ {5,10,15} with the block length n = 128. The
attacks were instantiated with 10 plaintext-ciphertext pairs, where the plaintexts were generated
randomly. As noted in Section 3.2 there are two possible implementations of inner product
operation – fold-and-xor and extract methods. We test both variants. The results are shown in
Table 2 – again, each value is an average of solving 5 di�erent problems. Let us note that we focus
on a more detailed analysis in Section 5.

Average time [seconds]
SMT solver r = 5 r = 10 r = 15

fold extract fold extract fold extract

MathSAT5 1.99 1.59 40.20 23.98 52.64 54.32
Sonolar 0.77 0.76 3.21 3.57 6.52 6.18
Yices 0.21 0.25 9.48 8.65 17.76 19.92
Z3 1.55 1.43 4.11 3.93 20.75 12.53

Table 2: Performance of SMT solvers for KPA

Clearly, Sonolar achieves the best performance. Therefore we use Sonolar for further analyses
in Section 5. Let us note few observations from the tests:

– Di�erent problems of the same size can have vastly di�erent solving time for the same
SMT solver. For example, the odd-looking average value 40.20 seconds for MathSAT5 is
caused by an outlier 104.99 seconds (other values are smaller than the average). The least
variations in solving times for given parameters are exhibited by Sonolar.

– The results for fold-and-xor and extract methods are counter-intuitive. The extract method
should lead to smaller and simpler instances for underlying SAT solvers. It seems that
extract method is superior only in case of Z3 solver. However, the results are inconclusive
for other solvers.
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5 Simple Cryptanalysis

Few experiments and thoughts on the SBC security are presented in this section. All results are
obtained using Sonolar SMT solver, and the extract method for the inner product implementation.
First, let us show a dramatic increase of solving time when KPA deals with more plaintext-
ciphertext (or “PC” for short) pairs. Figure 2 shows situation for varying number of rounds,
n = 128 and 10 or 20 PC pairs (each value is obtained as an average of 10 runs).
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Figure 2: Comparing KPA with 10 and 20 PC pairs (n = 128)

Let us note that the problem is vastly under-de�ned for small number of PC pairs. The SBC
has key length 2rn bits, assuming independent subkeys. A single PC pair reduces the entropy of a
key by at most n bits. Moreover, a subkey Li contributes to any encryption function by a single
bit – the result of the inner product. There are many keys consistent with a reasonable set of PC
pairs, i.e. the keys that transform each plaintext from the set into the corresponding ciphertext.
The SMT solver simply �nds some solution from the set of “consitent” keys.

Remark. We can also �nd an example of equivalent keys for some parameters, e.g. forn = 8 and r =
2 the keys (K1,K2,L1,L2) = (0x6a,0xa5,0x62,0xad) and (K ′1,K

′
2,L
′
1,L
′
2) = (0xcf,0x6a,0xad,0x62),

expressed as hexadecimal values, de�ne the same permutation on {0,1}8.

Our next experiment varies the block length n. We set the number of rounds r = n and
use 10 known PC pairs. The results in Figure 3 show a moderate increase of time needed to
solve the KPA problem (the values are computed as an average of 10 instances). The situation
changes dramatically (again) for 20 PC pairs: average time measured for n = 4, 8, 12 is 0.02 s,
0.60 s, and 234.35 s, respectively. The reason is that additional PC pairs substantially reduce the
set of possible solutions for subkeys values, i.e. there is a small fraction of all subkeys that are
also a valid solution for particular KPA problem. Hence the SMT solver (i.e. an underlying SAT
solver) is forced to revise its guesses on unknown Boolean values more often.

In order to show the complexity of solving larger KPA problems, we choose r = 6n for our
last experiment. It is easy to �nd some solution when only a small number of PC pairs, e.g. 1
or 2, are given. However, further PC pairs increase the number of unknown variables and the
complexity of the KPA problem.
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Figure 3: KPA for di�erent block length with 10 PC pairs (r = n)
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Figure 4: Comparing KPA for varying number of PC pairs (r = 6n)

6 Conclusion

The paper describes few experiments with the SBC. We modeled the SBC in SMT-LIB v2 and we
used the SMT solver to solve small instances of the cipher in KPA scenarios. The results show
that the instances with larger n and r parameters cannot be solved by this cryptanalytic approach
in reasonable time. The cryptanalysis using linearity of the round function [8] is clearly superior
to our experiments. This illustrates the gap between a “blind” cryptanalysis (solving without any
insight into the problem) and cryptanalysis that uses an identi�ed weakness of the cipher.
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