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Abstract

This paper describes techniques that enable vehicles to collect local information (such as road con-
ditions and traffic information) and report it via road-to-vehicle communications. To exclude malicious
data, the collected information is signed by each vehicle. In this communications system, the location
privacy of vehicles must be maintained. However, simultaneously linkable information (such as travel
routes) is also important. That is, no such linkable information can be collected when full anonymity
is guaranteed through the use of cryptographic tools such as group signatures. Similarly, continuous
linkability (via pseudonyms, for example) may also cause problem from the viewpoint of privacy.

In this paper, we propose a road-to-vehicle communication system with relaxed anonymity by con-
sidering time-dependent linking properties via group signatures with time-token dependent linking (GS-
TDL). These techniques are used to construct an anonymous time-dependent authentication system via
GS-TDL. Briefly, a vehicle is unlinkable unless it generates multiple signatures at the same time period.

In addition, we describe vulnerability in the anonymous authentication system proposed by Wu,
Domingo-Ferrer and González-Nicolás (IEEE T. Vehicular Technology 2010), where an unauthorized
individual can create a valid group signature without using signing key. Moreover, our GS-TDL scheme
supports verifier-local revocation (VLR), which maintains constant signing and verification costs by using
the linkable part of signatures. These appear to be related to independent interests.

Finally, we provide our experimental results (using the TEPLA library) and confirm that our system
is feasible in practice.

1 Introduction

Location privacy is widely recognized as an important issue, especially in the case of motor vehicles. For
example, Rouf et al. [57] mentioned that location privacy could be compromised via a tire pressure monitor-
ing system, and Xu et al. [70] proposed a secure communication protocol as a countermeasure against this
vulnerability. However, local information is important and useful, e.g., information about traffic and road
conditions is highly indispensable for maintaining urban operations. Therefore, collecting local information
without infringing privacy is an important issue that requires a resolution. For example, consider a situation
in which vehicles collect such local information and report it via road-to-vehicle communications. To exclude
malicious data, this collected information must be signed by each vehicle. In this case, it seems undesir-
able, from the viewpoint of privacy, to link location information (obtained from collected information and
signatures) to a particular person. To establish road-to-vehicle communication systems with effective pri-
vacy safeguards, vehicle ad-hoc network (VANET) systems with anonymity were proposed. These systems
enhance privacy using various cryptographic tools, such as applying group signatures [23] or ring signa-
tures [56]; other similar systems have been proposed in numerous studies [24, 36, 67, 55, 46, 61, 62, 69, 68].
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Figure 1: Brief Description of Our Road-to-Vehicle Communication System Based on GS-TDL

In particular, Wu, Domingo-Ferrer and González-Nicolás [67] proposed an anonymous threshold authenti-
cation scheme, in which messages are accepted when more than t vehicles send the same message (signed
by the vehicles). The core cryptographic technique in their system utilizes message-linkable group signature
(MLGS), where two group signatures become linkable if a signer generates a group signature for the same
message twice. Thus, double voting is protected even in an anonymous environment.

When defining secure road-to-vehicle systems, it should be decided whether full anonymity (or more
precisely, unlinkability) must be guaranteed or not when local information is collected, since simultaneously
linkable information (such as travel routes) is also important. That is, no such linkable information can be
collected when full anonymity is guaranteed through the use of cryptographic tools such as group signatures.
For example, even if linkable information (such as travel routes) would like to be collected, no such linkable
information can be collected when full anonymity, where it is not possible to distinguish whether the same
signer generated the two signatures or not, is guaranteed. Moreover, system efficiency may be drastically
improved if unlinkability is not required, because the theoretical gap between a group signature with unlinka-
bility and one without unlinkability is significantly large.1 For example, Baldimtsi and Lysyanskaya proposed
a lightweight version of anonymous credentials [11], where no pairing computation is required under a relaxed
anonymity definition. Conversely, continuous linkability (via pseudonyms, for example) is problematic from
the viewpoint of privacy. For example, a vehicle with continuous linkability is tracked from the time the
vehicle is acquired up until the time it is sold, and parking spaces, which may include the driver’s home and
work place, are revealed. Therefore, suitably defining “moderate” anonymity with practical efficiency in a
road-to-vehicle communications context is an important issue that must be resolved.

Our Contribution: In this paper, we propose a road-to-vehicle communication system with relaxed
anonymity by considering time-dependent linking properties. We assume that a Token Generation Unit
(TGU) generates and broadcasts a time-dependent token. In our system, a vehicle computes signatures
using its signing key and a time-dependent token generated by the TGU. As a result, our system guarantees

1Group signature without unlinkability can be constructed from one-way functions, whereas group signature with unlinka-
bility implies chosen-ciphertext secure public key encryption [53].
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that: A vehicle is unlinkable unless it generates multiple signatures at the same time period T . Our system’s
core cryptographic tools utilize group signatures with time-token dependent linking (GS-TDL), which we
propose in this paper. In GS-TDL, nobody can distinguish whether two signatures were generated by the
same signer or not if (ID, T ) ̸= (ID′, T ′) for identities ID and ID′ and time periods T and T ′. Moreover,
our GS-TDL supports verifier-local revocation (VLR) [44, 40, 52, 51, 20], where no signer is involved in the
revocation procedure. In particular, our GS-TDL achieves backward unlinkability [51, 52], which prevents
adversaries from breaking anonymity, even after the challenge users are revoked. Our time-dependent link-
ing properties enable us to achieve constant verification costs, whereas those of previous schemes are O(r),
where r is the number of revoked users. This appear to be related to independent interest. Briefly, TGU
generates a time-dependent token tT at a time T , and broadcasts tT (via GPS systems in the road-to-vehicle
communications context, for example). Each signer (vehicle), who uses a unique identity ID, to generate a
signature σ on a message M (local information)2 by using its own signing key sigkID and tT . A verifier (we
assume a Road Side Unit (RSU) in the road-to-vehicle communications context) checks whether σ is a valid
signature or not. We give a brief description of our system in Figure 1.

Next, we construct an anonymous time-dependent authentication system by using GS-TDL, in which
two group signatures become linkable if a signer simultaneously generates a group signature twice. Time-
dependent linking appears to be more suitable for our system than message-dependent linking [67] in which
the vehicle is always linkable if it generates group signatures on the same message, and this situation might
occur when a vehicle is used for work trips and uses the same road each day.3 We note that no formal security
definition for MLGS is provided in [67], and therefore the security proofs are informal. As a result, we can
show an attack against the MLGS scheme of Wu et al., where anyone can generate a valid-but-untraceable
group signature without using a secret key (See Section 6). In contrast, our GS-TDL scheme is provably
secure.

Our GS-TDL is secure in the Random Oracle Model4 (because we pursue a light-weight implementation
of the system) under the q-Strong Diffie-Hellman (q-SDH) assumption [18] and the Strong Diffie-Hellman
Inversion (SDHI) assumption [22, 29]. The group signature size in our system is shorter than that of previous
schemes owing to time-dependent linkability. Specifically, a signature contains only 6 group elements, whereas
that of the short group signature scheme [19] contains 9 group elements, that of the short controllable linkable
group signature scheme [37] contains 8 group elements, and that of the controllable linkable group signature
scheme (for dynamic group setting) [38] contains 12 group elements.5 Moreover, our linking algorithm does
not require cryptographic computations (i.e., comparisons to determine two elements are the same).

Finally, we provide the experimental results of our road-to-vehicle communication system, and show that
our system is feasible in practice. To implement GS-TDL, we use the TEPLA library [5]. We note that we
employ asymmetric pairing settings ((type III) Barreto-Naehrig (BN) curves [13]) with 254-bit order due to
the recent novel works for solving the discrete logarithm problem over certain elliptic curves with symmetric
pairing settings [33, 12].

Related Work: Since car security has been recognized as a real threat, several organizations have been
launched, e.g., Preserve (EU) [4], ITS Info-communications Forum (Japan) [2], IntelliDrive (USA) [1], etc.,
and car security is researched in several papers. To name a few, Wetzels [66] reported security and privacy
concerns regarding RFID-based car key applications. Busold et al. [21] proposed a security framework for
secure smartphone-based immobilizers. Tillich and Wójcik [64] analyzed an open car immobilizer protocol
stack and shows several attacks. Meiklejohn et al. [48] pointed out driving payment systems proposed

2Here, we need to assume that no personal information is revealed from a content M (or even its statistical values). Though
we may apply privacy preserving techniques for modifying contents or its statistical values, e.g., [63, 45, 41, 65, 32, 26], we leave
it as a future work of this paper.

3Even if a random nonce is included as a part of signed message, no linking algorithm works and this leads to a wag-the-dog
situation. Even if a time T is included, e.g., sign M ||T by using a MLGS scheme, anyone can manipulate T and such a signer-
driven anonymous system must be avoided because vehicles have incentive to hide identity. On the contrary, in GS-TDL, time
T is authorized by TGU and no vehicle can manipulate T .

4We also give a GS-TDL scheme secure in the standard model in Appendix.
5We remark that these schemes [19, 37, 38] also achieve only CPA-anonymity (i.e., no opening oracle access is allowed in

anonymity game) as in ours.
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in [10, 54] reveal to drivers the locations of spot-checking road side cameras, and showed that colluding
drivers can select roads for avoiding payment. Then, Meiklejohn et al. proposed a new system which they
call Milo.

Bellare, Shi, and Zhang (BSZ) [16] show an extension of the Bellare-Micciancio-Warinschi (BMW) model
(for dynamic group setting), and Sakai et al. [58] further extended the BSZ model to prevent signature
hijacking attack. Nakanishi et al. proposed linkable group signature [50], where anyone can determine
whether two signatures were made by the same signer or not. As a difference from GS-TDL, no time-
dependent token is required for linking. That is, two group signatures made by the same signer are always
linkable. A group signature with a relaxed anonymity for VANET has been considered in [46, 47]. But the
link algorithm is not publicly executable, and an authority called Link Manager is introduced. That is, two
group signatures made by the same signer are always linkable from the viewpoint of Link Manager. Moreover,
pairing computations are required for linking. Abe et al. [6] proposed double-trapdoor anonymous tags which
can generally construct traceable signatures [39]. Since a signer is always linkable after the corresponding
token is broadcasted, we cannot use traceable signatures instead of GS-TDL. As a special case of traceable
signatures, group signatures with controllable linkability has been proposed [38, 37], where a link key is
defined for the linking procedure. However, pairing computations are required for linking, which lead to
inefficiency.

We note that MLGS [67] is essentially the same as unique group signature proposed by Franklin and
Zhang [29], and formal security definitions are given in [29]. That is, we may be able to apply unique group
signature to construct an anonymous threshold authentication. However, our time-dependent linking seems
suitable for the system rather than message-dependent linking as explained before. Moreover, the Franklin-
Zhang model supports the open algorithm and therefore it considers CCA anonymity. Since we customize
the syntax to be suitable for light-weight realization and exclude the open algorithm, in this paper we do
not directly apply the Franklin-Zhang unique group signature scheme to our system.

2 Preliminaries

In this section, we give the definitions of bilinear groups, complexity assumptions, and digital signature as
follows.

Complexity Assumptions: Let G be a probabilistic polynomial-time algorithm that takes a security
parameter λ as input and generates a parameter (p,G1,G2,GT , e, g1, g2) of bilinear groups, where p is a
λ-bit prime, G1,G2 and GT are groups of order p, e is a bilinear map from G1 × G2 to GT , and g1 and g2
are generators of G1 and G2, respectively. Here we use the asymmetric setting, i.e., G1 ̸= G2.

Definition 2.1 (SDDHI assumption [22]). We say that the SDDHI (Strong Decisional Diffie-Hellman In-

version) assumption holds if for all PPT adversaries A, |Pr[x
$

(p,G1,G2,GT , e, g1, g2)
$← G(1λ); ← Zp;

(T, st)← AOx(p,G1,G2,GT , e, g1, g2, g
x
1 ); τ0 = g

1
x+T

1 ; τ1
$← G1; b

$← {0, 1}; b′ ← AOx(yb, st) : b = b′]− 1
2 |

is negligible, where Ox is an oracle which takes as input z ∈ Z∗
p \ {T}, outputs g

1
x+z

1 .

We remark that the underlying bilinear group must not be symmetric.

Definition 2.2 (q-SDH assumption [18]). We say that the q-SDH (q-Strong Diffie-Hellman) assumption

holds if for all PPT adversaries A, Pr[(p,G1,G2,GT , e, g1, g2)
$← G(1λ); γ $← Zp; (x, g

1
x+γ

1 )← A(p,G1,G2,GT ,

e, g1, g
γ
1 , . . . , g

γq

1 , g2, g
γ
2 ); x ∈ Z∗

p \ {−γ}] is negligible.

Digital Signature: Let (Gen, Sign,Verify) be a digital signature scheme. The key generation algorithm
Gen takes as input a security parameter λ, and outputs a pair of verification/signing key (vk, sigk). The
signing algorithm Sign takes as input sigk and a message to be signed M ∈ M, where M is a message
space, and outputs a signature Σ. The verification algorithm Verify takes as input vk, Σ and M , and
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outputs 0/1. We require the following correctness property: for all (vk, sigk) ← Gen(1λ) and M ∈ M,
Pr[Verify(vk, Sign(sigk,M),M) = 1] = 1 holds. Next, we define existential unforgeability against chosen
message attack (EUF-CMA) as follows. Let C be the challenger, and A be an adversary. C runs (vk, sigk)←
Gen(1λ) and gives vk to A. A is allowed to issue signing queries M . C runs Σ← Sign(sigk,M) and returns Σ
to A. Finally, A outputs (Σ∗,M∗). We say that a digital signature scheme (Gen,Sign,Verify) is EUF-CMA
if the probability, that Verify(vk,Σ∗,M∗) = 1 and A did not send M∗ as a signing query, is negligible.

3 Definitions of GS-TDL

In this section, we give the syntax and security definitions of GS-TDL by adding the above time-dependent
linkability to the Bellare-Micciancio-Warinschi (BMW) model [15] (which is recognized as a de-facto standard
for group signature).

Design Principle: We note that our overall goal is to apply GS-TDL to road-to-vehicle communications.
Therefore, in addition to security, we attach great importance to the efficiency of the system. Because we
pursued a lightweight implementation of the system, there is room for discussion about whether the open
functionality should be utilized. In the open functionality, an authority (called an opener) can determine
the identity of the actual signer by using a secret opening key. For example, the open functionality is
implemented by using public key encryption (PKE) or non-interactive zero-knowledge proof of knowledge,
and could be an efficiency bottleneck. It has been reported that the signature size of the Furukawa-Imai
group signature scheme [30] can be reduced by 50% if the open functionality is removed in [27]; it has also
been reported that implementing the open functionality without using PKE leads to a short group signature
scheme at the expense of the signature opening costs [17]. Given the above facts, we do not consider the
open functionality (we only consider the linking functionality). Moreover, we assume that the signing key
of a vehicle is embedded in a device during the setup phase, and therefore we also removed an interactive
join algorithm from our syntax. Finally, we considered the revocation functionality, especially verifier-local
revocation (VLR) where no signer is involved in revocation procedures.

Definition 3.1 (Syntax of GS-TDL). A group signature scheme with time-token dependent linking GS-T DL
consists of the algorithms (Setup,GKeyGen,TKeyGen, Join,TokenGen,GSign,Revoke,GVerify, Link) as follows:

Setup: The setup algorithm takes as input a security parameter λ, and outputs a public parameter params.

GKeyGen: The group key generation algorithm takes as input params, and outputs a group public key gpk,
a group master key gsk, an initial revocation storage grs := ∅ and an initial revocation list RL0 := ∅.

TKeyGen: The token key generation algorithm takes as input params, and outputs a public key tpk and a
secret key tsk.

Join: The join algorithm takes as input gsk, grs and a unique identity ID, and outputs a signing key sigkID
and updated revocation storage. We remark that this algorithm is not required to be interactive.

TokenGen: The token generation algorithm takes as input tsk and a time T ∈ T , and outputs a token tT ,
where T := poly(λ) is the time space.

GSign: The signing algorithm takes as input gpk, tpk, tT , sigkID, and a message M , and outputs a signature
σ.

Revoke: The revocation algorithm takes as input gpk, grs, and a set of revoked users at a time T {IDT,1, . . . ,
IDT,nT

}, and outputs RLT . Here, nT is the number of users that are additionally revoked on T .

GVerify: The verification algorithm takes as input gpk, tpk, RLT , σ, and M , and outputs 0 (invalid) or 1
(valid).
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Link: The linking algorithm takes as input gpk, tpk, and RLT , and two signatures and messages (σ0,M0, T0)
and (σ1,M1, T1), and outputs 1 if two signatures are made by the same signer, and 0 otherwise. We
remark that the Link algorithm outputs 0 does not guarantee two signatures are made by the different
signers. For example, if a signature is invalid, then the algorithm outputs 0.

We require the following correctness, where any honestly generated signatures are valid, and the Link
algorithm correctly links two signatures if these are generated by the same signing key with the same token,
unless the corresponding signer is not revoked. Moreover, we require that a signature is invalid if the
corresponding signer is revoked.6

Definition 3.2 (Correctness). For any probabilistic polynomial time (PPT) adversary A and the security
parameter λ ∈ N, we define the experiment ExpcorrGS-TDL,A(λ) as follows.

ExpcorrGS-TDL,A(λ) :

params← Setup(1λ); (gpk, gsk, grs,RL0)← GKeyGen(params)

(tpk, tsk)← TKeyGen(params); GU := ∅
(ID∗, T ∗,M0,M1)← AAddU(·),Revoke(grs,·)(gpk, tpk)

ID∗ ∈ GU; tT∗ ← TokenGen(tsk, T ∗)

σ0 ← GSign(gpk, tpk, tT∗ , sigkID∗ ,M0); σ1 ← GSign(gpk, tpk, tT∗ , sigkID∗ ,M1)

Return 1 if the following holds :[
ID∗ ̸∈ RLT∗ ∧

(
(GVerify(gpk, tpk,RLT∗ ,M0, σ0) = 0

∨ GVerify(gpk, tpk,RLT∗ ,M1, σ1) = 0)

∨ Link(gpk, tpk,RLT∗ , (M0, σ0, T
∗), (M1, σ1, T

∗)) = 0
)]

∨
[
ID∗ ∈ RLT∗ ∧

(
(GVerify(gpk, tpk,RLT∗ ,M0, σ0) = 1

∨ GVerify(gpk, tpk,RLT∗ ,M1, σ1) = 1)
]

Otherwise return 0

AddU: The add user oracle allows an adversary A to add honest users to the group. On input an identity
ID, this oracle runs sigkID ← Join(, gsk, grs, ID). ID is added to GU.

Revoke: Let T − 1 be the time that the oracle is called. The revocation oracle allows an adversary A to
revoke honest users. On input identities {IDT,1, . . . , IDT,nT

}, this oracle runs RLT ← Revoke(gpk, grs,
{IDT,1, . . . , IDT,nT

}). We remark that T ∗ is the challenge time that A outputs (ID∗,M0,M1).

GS-T DL is said to be satisfying correctness if the advantage AdvcorrGS,A(λ) := Pr[ExpcorrGS-TDL,A(λ) = 1] is
negligible for any PPT adversary A.

Next, we give our anonymity definition which guarantees that no adversary who has tsk can distinguish
whether two signatures are generated by the same signer or not, if the corresponding linkable signatures are
not generated. In contrast to the BMW model, A is not allowed to obtain signing keys of challenge users
(selfless anonymity). This is a reasonable setting since A can trivially break anonymity if A obtains such
signing keys. For example, let A have sigkIDi0

. Then, A can make a signature σ on T0 using sigkIDi0
(with

arbitrary message M), and can check whether Link(gpk, tpk,RLT0 , (M0, σ
∗, T0), (M,σ, T0)) = 1 or not, where

σ∗ is the challenge signature. Instead, A is allowed to access the GSign oracle in our definition. Moreover, we
consider backward unlinkability, where no adversary can break anonymity even after the challenge signers
are revoked.

6As a remark, the case that an adversary generates a valid signature using a revoked user’s signing key cannot be captured
by unforgeability since the open algorithm is not defined. Instead, we consider the case that a signature is invalid when the
corresponding signer is revoked in correctness, though it might be additionally defined such as revocation soundness.
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Definition 3.3 (Anonymity). For any PPT adversary A and a security parameter λ ∈ N, we define the

experiment Expanon-tg-bGS-TDL,A(λ) as follows.

Expanon-tg-bGS-TDL,A(λ) :

params← Setup(1λ)

(gpk, gsk, grs,RL0)← GKeyGen(params);

(tpk, tsk)← TKeyGen(params); GU := ∅; STSet := ∅
d← AAddU(·),Revoke(grs,·),GSign(·,·,·),Ch(b,·,·,·,·,·)(gpk, tpk, tsk)

Return d

AddU: The same as before.

Revoke: The same as before. We remark that if T0 ̸= T1 and assume that T0 < T1, then IDi0 and/or IDi1

can be revoked after T1. If T0 = T1, then IDi0 and/or IDi1 can be revoked after T0.

GSign: The signing oracle takes as input ID, tT , and a message M . We assume that tT is a valid token
which means that the GVerify algorithm outputs 1 for all honestly generated signatures with tT , even
though this is made by A. If ID ̸∈ GU, then the oracle runs AddU(ID). The oracle returns σ ←
GSign(gpk, tpk, tT , sigkID,M) and stores (ID, T ) in STSet.

Ch: The challenge oracle takes as input IDi0 , IDi1 , tT0 , tT1 , M
∗
0 , and M∗

1 where IDi0 ̸= IDi1 and IDi0 , IDi1 ∈
GU. Return signature(s) according to the following cases:

T0 = T1: If (IDi0 , T0), (IDi1 , T1) ̸∈ STSet, then compute σ∗ ← GSign(gpk, tpk, tTb
, sigkIDib

,M∗), and

return σ∗. Without loss of generality, we set M∗ = M∗
0 = M∗

1 .

T0 ̸= T1: If (IDi0 , T0), (IDi1 , T1), (IDi0 , T1) ̸∈ STSet, then compute σ∗
0 ← GSign(gpk, tpk, tT0 , sigkIDi0

,M∗
0 )

and σ∗
1 ← GSign(gpk, tpk, tT1 , sigkIDib

,M∗
1 ), and return σ∗

0 and σ∗
1 .

Moreover, we assume that tT0 and tT1 are valid tokens even though these are made by A, which means
that the GVerify algorithm outputs 1 for all honestly generated signatures with tT0 or tT1 .

7

GS-T DL is said to be satisfying anonymity if the advantage Advanon-tgGS-TDL,A(λ) := |Pr[Exp
anon-tg-1
GS-TDL,A(λ) = 1] −

Pr[Expanon-tg-0GS,A (λ) = 1]| is negligible for any PPT adversary A.

When T0 = T1, our definition guarantees that two different vehicles are unlinkable even if they generate
signatures at the same time period. We note that if A obtains two signatures even though T0 = T1, then A
can break anonymity by using the Link algorithm. Therefore, A is allowed to obtain one challenge signature
σ∗ only. When T0 ̸= T1, our definition guarantees that a vehicle is still unlinkable if the vehicle respectively
generates two signatures on different time periods. That is, when A obtains σ∗

0 , which is generated by IDi0

at a time T0, and σ∗
1 , which is generated by IDib at a time T1 ̸= T0, no A can distinguish whether two

signatures are respectively made by the same user IDi0 or different users IDi0 and IDi1 . In order to prevent
a trivial linking attack, A is not allowed to obtain a signature for (IDi0 , T1) in this case.

We note that we do not have to consider the case IDi0 = IDi1 and T0 ̸= T1, since time T is an input
of the verification algorithm. That is, A can easily break anonymity in this case: A just obtains σ∗ ←
GSign(gpk, tpk, tTb

, sigkIDi0
,M∗) and checks whether GVerify(gpk, tpk,RLT0 ,M

∗, σ∗) = 1 or not.
As a remark, the above definition is anonymity against Token Generator, and the other definition, where

anonymity against Key Issuer, can also be defined as follows: An adversary (who has gsk) is allowed to issue
token queries, except for the challenge time. However, we need to restrict that the adversary is not allowed
to obtain tokens for the challenge time (if not, the adversary can easily break anonymity since the adversary
can generate signing keys for all identities, and the Link algorithm is publicly executable), and this setting is

7This condition must be required to exclude the trivially-broken case, e.g., A honestly generates tT0 and sets tT1 as arbitrary
value. Then, A can check whether σ∗ is valid or not. If yes, then b = 0 and b = 1 otherwise.
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far from the real situation we considered (i.e., tokens are “broadcasted” by Token Generator). If we assume
an interactive join process, and a secret value known by a vehicle only is prepared, then such a definition
might make sense since Key Issuer cannot generate a group signature. However, any interactive join process
is hard to be considered in the vehicle context. So, we do not consider the anonymity against Key Issuer
case, and leave it as a future work of this paper since it might be interesting in other settings.

Next, we define unforgeability which guarantees that nobody who does not have a signing key or does
not have a token can generate a valid signature.

Definition 3.4 (Unforgeability). For any PPT adversary A and security parameter λ ∈ N, we define the ex-

periment ExpunfGS-TDL,A(λ) as follows, where O := (AddU(·),Revoke(grs, ·),TokenGen(tsk, ·), SetToken(·),GSign(·, ·, ·),
USK(·),TSK(·)).

ExpunfGS-TDL,A(λ) :

params← Setup(1λ)

(gpk, gsk, grs,RL0)← GKeyGen(params); (tpk, tsk)← TKeyGen(params)

GU := ∅; TSet := ∅; SSet := ∅
(M,σ)← AO(gpk, tpk)

Return 1 if (1) ∧ (2) ∧ ((3) ∨ (4)) hold :

(1) GVerify(gpk, tpk,RLT∗ ,M, σ) = 1

(2) (T ∗,M, σ) ̸∈ SSet

(3) T ̸∈ TSet ∧ TSK(·) has not been called

(4) TSK(·) has been called with non-⊥ output

Otherwise return 0

AddU: The same as before.

Revoke: The same as before. We note that T ∗ is the challenge time that A outputs (M,σ).

TokenGen: The token generation oracle takes as input a time T . This oracle runs tT ← TokenGen(tsk, T ),
stores T in TSet, and returns tT .

SetToken: The token setting oracle takes as input tT , and sets tT as the token at a time T . Without loss
of generality, we assume that if the TokenGen oracle is called, the SetToken oracle is also called right
after calling the TokenGen oracle. We remark that A can set arbitrary value as tT via this oracle.

GSign: The signing oracle takes as input ID, T , and a message M . If ID ̸∈ GU, then the oracle runs
AddU(ID). If tT is not generated via the TokenGen oracle, then call the oracle TokenGen(tsk, T ) and the
SetToken oracle. The oracle returns σ ← GSign(gpk, tpk, tT , sigkID,M) and stores (T,M, σ) in SSet.

USK: The user key reveal oracle takes as input ID. If the TSK oracle was called before, then return ⊥. If
ID ̸∈ GU, then the oracle runs AddU(ID). Return sigkID.

TSK: The token key reveal oracle returns ⊥ if the USK oracle was called before and at least one identity is
not revoked.8 Otherwise, return tsk.

GS-T DL is said to be unforgeable if the advantage AdvunfGS-TDL,A(λ) := Pr[ExpunfGS-TDL,A(λ) = 1] is negligible
for any PPT adversary A.

Finally, we define linking soundness which guarantees that the Link algorithm does not return 1 when
two valid signatures are made by either different signers or different time tokens.

8That is, the TSK oracle returns tsk if all identities input in the USK oracle were revoked.
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Definition 3.5 (Linking Soundness). For any PPT adversary A and security parameter λ ∈ N, we define
the experiment ExpsndGS-TDL,A(λ) as follows.

ExpsndGS-TDL,A(λ) :

params← Setup(1λ)

(gpk, gsk, grs,RL0)← GKeyGen(params)

(tpk, tsk)← TKeyGen(params); (ID0, ID1, T0, T1,M, st)← A(gpk, tpk)
(ID0, T0) ̸= (ID1, T1); sigkID0

← Join(gsk, grs, ID0); sigkID1
← Join(gsk, grs, ID1)

tT0 ← TokenGen(tsk, T0); tT1 ← TokenGen(tsk, T1)

σ0 ← GSign(gpk, tpk, tT0 , sigkID0
,M)

(M∗, σ∗)← ARevoke(grs,·)(st, sigkID1
, tT1

, σ0)

Return 1 if Link(gpk, tpk,RLT1 , (M,σ0, T0), (M
∗, σ∗, T1)) = 1

Otherwise return 0

Revoke: The same as before.

A GS-TDL scheme is said to be satisfying linking soundness if the advantage AdvsndGS-TDL,A(λ) := Pr[ExpsndGS-TDL,A(λ) =
1] is negligible for any PPT adversary A.

4 Proposed GS-TDL Scheme

In this section, we give our GS-TDL scheme. Since we mainly pursue a light-weight realization of the system,
here we do not employ structure preserving signatures [7, 8] and Groth-Sahai proofs [35] which are typically
used for constructing group signature schemes secure in the standard model, e.g., [34, 9, 42, 43] (we will
give a GS-TDL scheme secure in the standard model in Appendix). Instead, we employ the Fiat-Shamir
transformation [28] which converts a 3-move Σ protocol to non-interactive zero-knowledge (NIZK) proof, as
in group signature schemes secure in the random oracle model, e.g., [30, 19, 25, 17].

The Basic Idea: Our GS-TDL scheme is based on the Furukawa-Imai group signature scheme [30] which
is recognized as one of the most efficient group signature schemes. First, we exclude the open functionality
from the Furukawa-Imai group signature scheme as in [27]. Next, for the linking property, we apply the
Franklin-Zhang technique [29], where a group signature contains Belenkiy et al.’s verifiable random function

(VRF) [14]. Concretely, the value τ = g
1

x+T is contained in a signature at a time T , where x is a (part of)
signing key. Then, if a signer computes two or more group signatures at a time T , then the value τ is the
same, and can be linked without any cryptographic operation. Whereas, τ itself can be seen as a random
value (under the SDDHI assumption), and therefore a signer is still anonymous unless the signer computes
two or more group signatures at the same time. For (verifier-local) revocation, we also apply τ such that τ is
added in a revocation list. Note that the verification cost of VLR-type group signatures schemes [20, 44, 52]
is O(|RLT |), especially, |RLT |-times pairing computations are required. In order to avoid such an inefficiency,
we use the linkable part τ for revocation and this setting requires no cryptographic operation.

Construction 1 (Proposed GS-TDL scheme).

Setup(1λ): Let (G1,G2,GT ) be a bilinear group with prime order p, where ⟨g1⟩ = G1, ⟨g2⟩ = G2, and
e : G1 ×G2 → GT be a bilinear map. Output params = (G1,G2,GT , e, g1, g2).

GKeyGen(params): Choose γ
$← Zp, and h

$← G1, and compute W = gγ2 . Output gpk = (params, h,W, e(g1, g2),
e(h,W ), e(h, g2),H), gsk = γ, where H : {0, 1}∗ → Zp is a hash function modeled as a random oracle,
grs := ∅ and RL0 := ∅.

9



TKeyGen(params): Let (Gen, Sign,Verify) be a digital signature scheme. Run (vk, sigk) ← Gen(1λ), and
output tpk := vk and tsk := sigk.

Join(gsk, grs, ID): Choose x, y
$← Zp, compute A = (g1h

−y)
1

γ+x , output sigkID = (x, y,A), and update grs :=
grs ∪ {(ID, x)}.

TokenGen(tsk, T ): Assume that T ∈ Zp. Compute WT = gT2 and Σ ← Sign(sigk,WT ), and output tT =
(T,WT ,Σ).

GSign(gpk, tpk, tT , sigkID,M): Let sigkID = (x, y,A) and tT = (T,WT ,Σ). If Verify(vk,WT ,Σ) = 0, then

output ⊥. Otherwise, choose β
$← Zp, set δ = βx − y, and compute C = Ahβ and τ = g

1
x+T

1 . Choose

rx, rδ, rβ
$← Zp, and compute

R1 =
e(h, g2)

rδe(h,W )rβ

e(C, g2)rx
, R2 = e(τ, g2)

rx

c = H(gpk, tpk, C, τ, R1, R2,M)

sx = rx + cx, sδ = rδ + cδ, and sβ = rβ + cβ,

and output σ = (C, τ, c, sx, sδ, sβ). This proves that (1) (x, y,A) is a valid Boneh-Boyen signature
under gpk (i.e., sigkID is issued by Key Issuer) and (2) τ is computed by the same x.

Pairing-free Variant: We remark that e(h, g2) and e(h,W ) are pre-computable and can be contained

in gpk. Moreover e(C, g2)
rx and e(τ, g2)

rx can be represented as e(A, g2)
rxe(h, g2)

βrx and e(g1, g2)
rx

x+T ,
respectively. Then,

R1 =
e(h, g2)

rδ−βrxe(h,W )rβ

e(A, g2)rx
and R2 = e(g1, g2)

rx
x+T .

So, by assuming that e(A, g2) is pre-computable (we can simply assume that e(A, g2) is contained in
sigkID), we can remove any pairing computation from the signing algorithm, instead of adding two
exponentiations over GT .

Revoke(gpk, grs, {IDT,1, . . . , IDT,nT }): If there exists ID ∈ {IDT,1, . . . , IDT,nT } that is not joined to the system
via the Join algorithm, then output ⊥. Otherwise, extract (IDT,1, xT,1), . . . , (IDT,nT

, xnT
) from grs.

Output RLT := {(IDT,1, g
1

xT,1+T

1 ), . . . (IDT,nT
, g

1
xT,nT

+T

1 )}.

GVerify(gpk, tpk,RLT ,M, σ): Assume that Verify(vk,WT ,Σ) = 1 (if not, output ⊥). Parse σ = (C, τ, c, sx, sδ, sβ).
If τ is contained in RLT such that (ID, τ) ∈ RLT for some ID, then output 0. Otherwise, compute

R′
1 =

e(h, g2)
sδe(h,W )sβ

e(C, g2)sx

(e(C,W )

e(g1, g2)

)−c
and R′

2 = e(τ, g2)
sx
( e(g1, g2)
e(τ,WT )

)−c
,

and output 1 if c = H(gpk, tpk, C, τ, R′
1, R

′
2,M) holds, and 0 otherwise. We remark that e(h, g2),

e(h,W ) and e(g1, g2) are pre-computable and contained in gpk.

Link(gpk, tpk,RLT , (M0, σ0, T0), (M1, σ1, T1)): Parse σ0 = (C0, τ0, c0, sx,0, sδ,0, sβ,0) and σ1 = (C1, τ1, c1, sx,1,
sδ,1, sβ,1). If either T ̸= T0 or T ̸= T1, then output 0. Else if either GVerify(gpk, tpk,RLT0 ,M0, σ0) = 0
or GVerify(gpk, tpk,RLT0 ,M1, σ1) = 0, then output 0. Otherwise, output 1 if τ0 = τ1, and 0 otherwise.

Since τ just depends on T and x, and does not contain any randomness, we can directly use τ for revocation.
Since we do not have to run any cryptographic operation, we can achieve the (almost) constant verification
cost by using hash tables which are made in the Revoke algorithm.

As a remark, the open algorithm, where an authority can identify the actual signer, also can be im-
plemented (though we do not use it) as follows: let (ID, gx2 ) be preserved in the join phase, and the open
algorithm checks whether e(τ, gx2g

T
2 ) = e(g1, g2) or not. If the equation holds, then ID is the identity of the

corresponding signer. This open algorithm is essentially the same as that of the Bichsel et al. scheme [17].
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5 Security Analysis

In this section, we give security proofs of our scheme.

Theorem 5.1. The proposed GS-TDL scheme has anonymity in the random oracle model under the SDDHI
assumption, where H is modeled as a random oracle.

Proof. We define the following two games: Game 0 is the same as Expanon-tg-bGS-TDL,A(λ). Game 1 is the same as
Game 0, except τ∗ contained in σ∗ is randomly chosen, and σ∗ is generated by the simulation of NIZK. Here,
we show that there exist an algorithm B that breaks the SDDHI problem by using A as follows.

Let (p,G1,G2,GT , e, g1, g2) be a bilinear group, and (g1, g2, g
x
1 ) is an instance of the SDDHI problem. Let

q be the number of AddU queries. B chooses i∗ ∈ [1, q] and set x is a part of signing key of the user. B chooses

γ
$← Zp, and h

$← G1, computes W = gγ2 , and sets gpk = (params, h,W, e(g1, g2), e(h,W ), e(h, g2),H), where
H : {0, 1}∗ → Zp is a hash function modeled as a random oracle. B also runs (vk, sigk)← Gen(1λ), and sets
tpk := vk and tsk := sigk. B sends gpk, tpk, and tsk to A.

In the i-th AddU query (with input ID), where i ̸= i∗, B chooses x, y
$← Zp, computes A = (g1h

−y)
1

γ+x ,
sets sigkID = (x, y,A), and adds ID to GU. In the i∗-th AddU query (with input ID∗), B adds ID∗ to GU.

For a GSign query with input (ID, tT ,M), if ID ̸∈ GU, then B runs the simulation of the AddU oracle. If
ID ̸= ID∗, then B computes a group signature σ as in the actual GSign algorithm, returns σ to A, and adds

(ID, T ) to STSet. Let ID = ID∗. B sends T to Ox, and obtains τ = g
1

x+T

1 . B chooses sx, sδ, sβ , c
$← Zp and

C
$← G1, computes

R1 =
e(h, g2)

sδe(h,W )sβ

e(C, g2)sx

(e(C,W )

e(g1, g2)

)−c

and

R2 = e(τ, g2)
sx
( e(g1, g2)
e(τ,WT )

)−c
,

and patches H such that c := H(gpk, tpk, C, τ, R1, R2,M). B returns σ = (C, τ, c, sx, sδ, sβ) to A.
In the challenge phase, A sends (IDi0 , IDi1 , tT0 , tT1 ,M

∗
0 ,M

∗
1 ) to B. B chooses b

$← {0, 1}. If IDib ̸= ID∗,
then B aborts. Let IDib = ID∗ (this holds with the probability at least 1/q). Next, we consider the following
two cases:

T0 = T1: Let (T,WT ) be contained in both tT0 and tT1 . B sends T := T0 = T1 to the challenger of the

SDDHI problem, and obtains τ∗. We remark that T was not sent to Ox. B chooses s∗x, s
∗
δ , s

∗
β , c

∗ $← Zp

and C∗ $← G1, computes

R∗
1 =

e(h, g2)
s∗δ e(h,W )s

∗
β

e(C, g2)s
∗
x

(e(C,W )

e(g1, g2)

)−c∗

and

R2 = e(τ∗, g2)
s∗x
( e(g1, g2)

e(τ∗,WT )

)−c∗

,

and patches H such that c∗ := H(gpk, tpk, C∗, τ∗, R∗
1, R

∗
2,M

∗). B returns σ∗ = (C∗, τ∗, c∗, s∗x, s
∗
δ , s

∗
β)

to A.

T0 ̸= T1: Let (T0,WT0) and (T1,WT1) be contained in tT0 and tT1 , respectively. B sends T0 to Ox, and

obtains τ∗0 = g
1

x+T0
1 . B chooses s∗x,0, s

∗
δ,0, s

∗
β,0, c

∗
0

$← Zp and C∗
0

$← G1, computes

R∗
1,0 =

e(h, g2)
s∗δ,0e(h,W )s

∗
β,0

e(C∗
0 , g2)

s∗x,0

(e(C∗
0 ,W )

e(g1, g2)

)−c∗0

and

R∗
2,0 = e(τ∗0 , g2)

s∗x,0
( e(g1, g2)

e(τ∗0 ,WT0)

)−c∗0 ,
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and patches H such that c∗0 := H(gpk, tpk, C∗
0 , τ

∗
0 , R

∗
1,0, R

∗
2,0,M

∗
0 ). Moreover, B sends T1 to the chal-

lenger of the SDDHI problem, and obtains τ∗1 . We remark that T1 was not sent to Ox. B chooses

s∗x,1, s
∗
δ,1, s

∗
β,1, c

∗
1

$← Zp and C∗
1

$← G1, computes

R∗
1,1 =

e(h, g2)
s∗δ,1e(h,W )s

∗
β,1

e(C∗
1 , g2)

s∗x,1

(e(C∗
1 ,W )

e(g1, g2)

)−c∗1

and

R∗
2,1 = e(τ∗1 , g2)

s∗x,1
( e(g1, g2)

e(τ∗1 ,WT1)

)−c∗1 ,

and patchesH such that c∗1 := H(gpk, tpk, C∗
1 , τ

∗
1 , R

∗
1,1, R

∗
2,1,M

∗
1 ). B returns σ∗

0 = (C∗
0 , τ

∗
0 , c

∗
0, s

∗
x,0, s

∗
δ,0, s

∗
β,0)

and σ∗
1 = (C∗

1 , τ
∗
1 , c

∗
1, s

∗
x,1, s

∗
δ,1, s

∗
β,1) to A.

Finally, A outputs b′. If τ∗ = g
1

x+T (or τ∗1 = g
1

x+T1 ), then B simulates Game 0, and if τ∗ (or τ∗1 ) is
a random value, then B simulates Game 1. In Game 1, no information of the challenge bit b is revealed
from σ∗, σ∗

0 , and σ∗
1 . So, B desides the challenge is a random value if b′ ̸= b, and it is not a random value,

otherwise, and solves the SDDHI problem. We remark that B can revoke ID∗ at a time T ′ > T (or T ′ > T1)
using the Ox oracle. This concludes the proof.

Theorem 5.2. The proposed GS-TDL scheme has unforgeability in the random oracle model if the q-SDH
assumption holds and (Gen,Sign,Verify) is EUF-CMA, where q is the number of signers and H is modeled
as a random oracle.

Proof. We consider the following two cases. The first one is A produces a valid signature although A does
not have tT ((1) ∧ (2) ∧ (3) in the definition), and the second one is A produces a valid signature although
A does not have a signing key ((1) ∧ (2) ∧ (4) in the definition).

First Case: We construct an algorithm B that breaks EUF-CMA security of the underlying signature
scheme (Gen, Sign,Verify). The challenger of the signature scheme runs (vk, sigk)← Gen(1λ), and sends
vk to B. B sets tpk := vk, runs params ← Setup(1λ) and (gpk, gsk) ← GKeyGen(params), and sends
(gpk, tpk) to A. For a TokenGen query T , B computes WT = gT2 , sends WT to the challenger as a
signing query, and obtains Σ. B sets tT = (T,WT ,Σ), and sends tT to A. Since B has gsk, B can
respond all AddU, GSign, and USK queries. We remark that A does not access the TSK oracle. Finally,
A outputs (T,M, σ). Since σ is a valid group signature, there exist (Σ,WT ) such that WT is used in
the verification algorithm, and Σ is a valid signature under vk. That is, A produces tT = (T,WT ,Σ),
and sets it via the SetToken oracle. Since WT is not sent to B as a TokenGen query, B outputs (Σ,WT )
as a forgery of the signature scheme.

Second Case: We construct an algorithm B that breaks the q-SDH problem as follows. Let (g1, g
γ
1 , . . . , g

γq

1 ,
g2, g

γ
2 ) be an SDH instance. Here, q be the number of AddU queries. B runs (vk, sigk)← Gen(1λ), and

sets tpk := vk. B chooses x1, . . . , xq, y1, . . . , yq
$← Zp and α, θ

$← Z∗
p. Let define

f(X) =

q∏
i=1

(X + xq) :=

q∑
i=0

αiX
i

and

fi(X) := f(X)/(X − xi) =

q∏
j=1,j ̸=i

(X + xi) :=

q−1∑
i=1

βiX
i,

and set g′1 = (
∏q

i=0(g
γi

1 )αi )
θ = g

θf(γ)
1 . Then, for each i ∈ [1, q] (

∏q−1
j=0(g

γi

1 )βi)θ = g
θfi(γ)
1 = g′1

1
γ+xi hold.

Set h := g′1
α
. For each i ∈ [1, q], B computes Ai := (g′1

1
γ+xi )1−yiα = (g′1h

−y)
1

γ+xi . B sets W := gγ2 ,
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params = (G1,G2,GT , e, g
′
1, g2), and gpk = (params, h,W, e(g′1, g2), e(h,W ), e(h, g2),H), and gives

(gpk, tpk) to A.
For an AddU query, B chooses unselected x ∈ {x1, . . . , xq} and sets the corresponding (x, y,A) as the
signing key. Since B has tsk, B can respond TokenGen and TSK queries. Moreover, B can respond
GSign and Revoke queries since B has all signing keys (xi, yi, Ai) for each i ∈ [1, q].

Finally, A outputs a forge group signature σ = (C, τ, c, sx, sδ, sβ). B rewinds A and obtains σ′ =
(C, τ, c′, s′x, s

′
δ, s

′
β) where c ̸= c′ with non-negligible probability (due to the forking lemma). Set

x̃ :=
sx − s′x
c− c′

, ỹ :=
(sx − s′x)(sβ − s′β)− (sδ − s′δ)(c− c′)

(c− c′)2
, and β̃ :=

sβ − s′β
c− c′

.

Then,

e(C,W )

e(g′1, g2)
=

e(h, g2)
β̃x̃−ỹe(h,W )β̃

e(C, g2)x̃

and

e(τ, g2)
x̃ =

e(g′1, g2)

e(τ,WT )

hold. That is, (x̃, ỹ, Ã) can be extracted. If 1− ỹα = 0, then B aborts. Moreover, if x̃ ∈ {x1, . . . , xq},
then B aborts. Since α and all x are randomly chosen, the aborting probability is at most q/p, and is
negligible. From now on, we assume that 1− ỹα ̸= 0 and x̃ ̸∈ {x1, . . . , xq}. Since Ã can be represented

as Ã = (g′1h
−ỹ)

1
γ+x̃ , B can compute Ã

1
1−ỹα = g′1

1
γ+x̃ = (g

θf(γ)
1 )

1
γ+x̃ . Next, B computes F (X) and

γ∗ ∈ Z∗
p which satisfy f(X) = (X + x̃)F (X) + γ∗. Finally, B computes

((
(g

θf(γ)
1 )

1
γ+x̃

) 1
θ

q−1∏
i=0

(gx
i

1 )−Fi

) 1
γ∗

= g
1

γ+x̃

1 ,

where F (X) :=
∑q−1

i=0 FiX
i, and outputs (x̃, g

1
γ+x̃

1 ) as a solution of the SDH problem.

Theorem 5.3. The proposed GS-TDL scheme has linking soundness.

Proof. Let (ID0, ID1, T0, T1,M) and (M∗, σ∗) be the output of A, where (ID0, T0) ̸= (ID1, T1). Let x0 be con-
tained in sigkID0

and x1 be contained in sigkID1
, respectively. If Link(gpk, tpk,RLT , (M,σ0, T0), (M

∗, σ∗, T1)) =

1, then g
1

x0+T0
1 = g

1
x1+T1
1 and T = T0 = T1 holds. Then, x0 = x1 holds. Since x0 and x1 are randomly chosen,

this equation holds with probability at most 1/p. This concludes the proof.

6 The WDG Construction and its Vulnerability

Wu, Domingo-Ferrer and González-Nicolás (WDG) [67] proposed message-linkable group signature (MLGS),
where if a signer generates a group signature for the same message twice, then two group signatures become
linkable. From MLGS, they constructed an anonymous threshold authentication for Vehicle-to-Vehicle com-
munications, where if more than t vehicles send the same message (signed by vehicles) then this information
is accepted. In their system, four entities are defined: a vehicle V, the vehicle manufacturer VM, the regis-
tration manager RM, and the group tracing manager TM. In this section, we give an attack against their
MLGS scheme denoted by the WDG scheme. Briefly, we show that anyone can make a valid group signature
without knowing a signing key.

The WDG scheme is described as follows: Let (p,G1,G2,GT , e, g1, g2, h1, h2, U1, U2,H1, H2) be public
parameters, where H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → Zp are hash functions, and for a computable
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isomorphism ϕ : G2 → G1, g1 = ϕ(g2), h1 = ϕ(h2), and U1 = ϕ(U2) hold. A vehicle V has a secret key y ∈ Zp

and a public key Y = Uy
1 . In the vehicle registration phase, V computes T = gy2 and sends (T, Y ) to the group

tracing manager TM. TM checks the signature of Y and whether e(Y, g2) = e(U1, T ) holds or not. Then,
TM saves (T, Y ) into a local database. Moreover, V sends Y (and its signature) to the registration manager
RM, and runs a zero-knowledge protocol for y = logU1

Y . Then, RM chooses k ← Zp and computes
K1 = gk1 and K2 = Z(h1Y )−k, where Z (and A = e(Z, g2)) is a public key of RM. V obtains Kv = (K1,K2)
as a secret signing key. In a signing phase for a message m, V selects s, ry ← Zp and computes σ1 = K1g

s
1,

σ2 = K2(h1Y )−s, σ3 = σy
1 , σ4 = H1(m)y, σ5 = H2(m||σ1||σ2||σ3||σ4||H1(m)ry ||σry

1 ), and σ6 = ry − σ5y, and
outputs a group signature σ = (σ1, . . . , σ6). That is, this proves that the discrete logarithm of σ3 and that of
σ4 (i.e., y) are the same. In the verification phase, check e(σ2, g2)e(σ1, h2)e(σ3, U2) = A and σ5 = H2(m||σ1||
σ2||σ3||σ4||H1(m)σ6σσ5

4 ||σ
σ6
1 σσ5

3 ).
The problem of this construction is the thing that no RM’s verification key is involved in the signing

and verification phases. Before showing our attack, we explain a typical methodology for constructing group
signature introduced in [15, 16] as follows: A key issuer (RM in the MLGS context) has a verification/signing
key pair (vk, sk) of a signature scheme, and an opener (TM in the MLGS context) has a public/secret key
pair (pk, dk) of an encryption scheme. Then, the key issuer generates a signature for a user (V in the MLGS
context) as a signing key (say cert). In the signing phase, a user encrypts cert by using pk, and computes a
non-interactive zero-knowledge proof that proves “encrypted cert is a valid signature under vk”. Since the
WDG scheme lacks to involve vk, anyone can make a valid group signature.

The concrete attack is described as follows: let A be an adversary. A chooses y, k, s, ry ← Zp and
computes Y = Uy

1 , σ1 = gk1g
s
1, σ2 = Z(h1Y )−k(h1Y )−s, σ3 = σy

1 , σ4 = H1(m)y, σ5 = H2(m||σ1||
σ2||σ3||σ4||H1(m)ry ||σry

1 ), and σ6 = ry − σ5y, and outputs a group signature σforge = (σ1, . . . , σ6). Then,
σforge is a valid group signature though A does not have a signing key. Moreover, since A does not register
Y , no TM can trace the signer of σ. This breaks traceability.

7 Anonymous Time-dependent Authentication and its Experimen-
tal Results

In this section, we construct an anonymous time-dependent authentication system via GS-TDL, and provide
its experimental results.

7.1 System Architecture

In the setting described by Wu et al., [67], a threshold value t is defined and “When t vehicles wish to
endorse some message, they can independently generate an message-linkable group signature (MLGS) on
that message. A verifying vehicle trusts the message after validating t MLGSs on it”. However, it seems
difficult to assume that t vehicles generates signatures on the same message when local information is
measured. Therefore, in our system we consider a situation in which each vehicle can send a message M
(with its signature σ) once at a time T , and messages may be different from each other. Later, statistics
of messages can be computed. Then, if a vehicle attempts to maliciously include multiple messages (for
manipulating statistical information, for example), these messages would not be included in the statistics.

We define five entities as follows: a vehicle V, the vehicle manufacturer VM, the Road Side Unit RSU ,
the Token Generation Unit T GU , and a Data Collector DC. We can consider multiple RSUs but we
assume only one T GU in this paper. We assume that params ← Setup(1λ) has been honestly run, and all
entities share params. First, VM runs (gpk, gsk, grs,RL0)← GKeyGen(params) and T GU runs (tpk, tsk)←
TKeyGen(params). When a vehicle V is sold, VM runs sigkID ← Join(gsk, grs, ID), and V preserves sigkID.
In each time period T , T GU runs tT ← TokenGen(tsk, T ) and broadcasts tT . Moreover, VM updates the
revocation list, and sends RLT to all RSU . A vehicle V generates a group signature on local information
M such that σ ← GSign(gpk, tpk, tT , sigkID,M). We assume that V generates σ and sends (M,σ, T ) to
an RSU when V enters a certain range of the RSU . Let ST := {(M1, σ1), . . . , (Mℓ, σℓ)} be the storage
at a time T managed by an RSU where ℓ ≥ 0. If (M,σ, T ) where (M,σ) ∈ ST is not a valid signature
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Table 1: The number of operations for each algorithms.

Algorithm Operations

GSign 2 Mul (G1) + 1 Mul (G2) + 2 Exp (GT ) + 2 Pairing + Verify
GSign (Pairing free) 2 Mul (G1) + 4 Exp (GT ) + Verify
TokenGen 1 Mul (G2) + Sign
GVerify 6 Exp (GT ) + 4 Pairing + Verify
Revoke |RLT | Mul (G1)

on T , then the RSU excludes it from ST . After T has passed, the RSU sends ST to DC. DC runs the
Link(gpk, tpk,RLT , (M,σ, T ), (Mi, σi, T )) for each i ∈ [1, ℓ], and runs statistical calculations over collected
M .9

7.2 Experimental Results

Here, we show experimental results of our prototype implementations and the practicality of our GS-TDL
scheme. Our implementation uses TEPLA library [5] for elliptic curve operations and the pairing operation,
OpenSSL10 for standard signing and verifying, and GLib11 for the hash table for (almost) constant-time
searching.

We give the number of operations for each algorithms in Table 1. In the table, Mul (G1), Mul (G2)
and Exp (GT ) denote a scalar multiplication on G1, a scalar multiplication on G2 and an exponentiation
on GT , respectively. Verify and Sign denote standard verifying and signing. We use RSA signing algorithm
for them because of its efficiency in the verification. We remark that costs of all algorithms do not depend
on the number of vehicles, therefore our GS-TDL scheme has good scalability. We also remark that the
Revoke algorithm depends on the number of revoked vehicles |RLT |. However, since the Revoke algorithm is
computed by the vehicle manufacturer VM periodically, like per day, the dependence does not reduce the
practicality of our scheme.

Next, we give running time of basic operations of TEPLA library in Table 2. Even on Raspberry Pi, a
cheap and constrained computational power device, the operations can be performed in practical running
time.

Table 2: Basic Operations on BN curves [13] of 254-bit order. Operations are run over PC (Core i7-4770 with
TurboBoost) and Raspberry Pi (ARM1176JZF-S) respectively.

Operation PC (msec) Raspberry Pi (msec)

Mul (G1) 0.330 9.030
Mul (G2) 0.540 16.620
Exp (GT ) 2.840 78.580
Pairing 2.690 77.330

Finally, we give our experimental results of our GS-TDL scheme in Table 3. We evaluate these results as
follows:

(Almost) Constant-Time Verification: First of all, we should highlight that cryptographic operations
in the GVerify algorithm do not depend on the number of revoked vehicles (i.e., scalable) due to our
time-dependent linkability, i.e., τ is deterministic, though we employ VLR-type revocation. In our
implementation, a table preserves (ID, x) in the Join algorithm is regarded as grs, and ID is set as a

9We remark that a vehicle may send two signatures to two RSUs at the same T . DC can exclude /include such signatures
according to the statistical calculations.

10https://www.openssl.org
11https://wiki.gnome.org/Projects/GLib
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Table 3: Benchmarks: The signing algorithms (3072-bit RSA sign, 3072-bit DSA sign, 256-bit ECDSA (prime256v1
curve) sign, and GSign) are run over Raspberry Pi (CPU: ARM1176JZF-S), and other algorithms are run over PC
(Core i7-4770 CPU with TurboBoost) respectively. We use OpenSSL for RSA, DSA, and ECDSA. Operations are
run over PC (Core i7-4770 with TurboBoost) and Raspberry Pi (ARM1176JZF-S). RSA sign/verify, DSA sign/verify
and ECDSA sign/verify are performed with 3072-bit, 3072-bit and 256-bit on prime256v1 curve, respectively. The
total number of vehicles is 10,000,000, and the number of revoked vehicles is specified in parentheses () in the GVerify
algorithm and the Revoke algorithm. We employ BN curves [13] with 254-bit order for efficient pairings, and the
hash table for (almost) constant-time searching. We also employ 3072-bit RSA as (TokenGen,Sign,Verify) used in
our GS-TDL scheme since the verification cost (which is run by vehicles in the GSign algorithm) is faster than that
of DSA and ECDSA. We remark that the Link algorithm does not require any cryptographic operation, and RSA,
DSA, and ECDSA does not support anonymity.

Algorithm PC (msec) Raspberry Pi (msec) Entity

GSign (12.573) 408.943 Vehicle
GSign (Pairing free) (12.105) 400.302 Vehicle
RSA sign (3.427) 233.511 Vehicle
DSA sign (1.082) 75.135 Vehicle
ECDSA sign (0.335) 11.702 Vehicle
TokenGen 3.763 - Token Generation Unit
GVerify(1,000) 17.990 - Road Side Unit
GVerify(10,000) 17.997 - Road Side Unit
GVerify(100,000) 17.953 - Road Side Unit
GVerify(1,000,000) 18.049 - Road Side Unit
RSA verify 0.072 5.043 Road Side Unit
DSA verify 1.283 87.913 Road Side Unit
ECDSA verify 0.382 13.719 Road Side Unit
Revoke(1,000) 299.829 - Vehicle Manufacturer
Revoke(10,000) 3023.363 - Vehicle Manufacturer
Revoke(100,000) 30270.951 - Vehicle Manufacturer
Revoke(1,000,000) 301716.554 - Vehicle Manufacturer

searching key (i.e., the table as takes as input ID, and outputs the corresponding x). In the Revoke
algorithm, an array (ID, x, τ) is made, and τ contained in all arrays are updated on T such that

RLT := {(IDT,1, g
1

xT,1+T

1 ), . . . (IDT,nT
, g

1
xT,nT

+T

1 )}, and the corresponding hash table is generated for
(almost) constant-time searching. Therefore, the cost of the Revoke algorithm depends on the number
of revoked vehicles (but we emphasize that this procedure is run by the vehicle manufacturer VM and
is not related to vehicles). In the GVerify algorithm, the Road Side Unit RSU can easily check whether
τ is contained in RLT or not by using the hash tables without any cryptographic operation.

Practically Efficient Signing: In a usual situation, a vehicle V has a constrained computational power,
and moreover V needs to generate signatures in several times. In our implementation result, the signing
cost is still handled millisecond order and just twice as that of the 3072-bit RSA signing algorithm,
though our system additionally supports anonymity. If V has a standard computational power (as in
the PC), then the GSign algorithm can be run at 12.573 msec (and 12.105 msec for its pairing free
version). This result shows that our system is feasible in practice.

For constructing an actual system, we need to find a suitable time period interval (e.g., 1 sec, 1 hour, 1
day, etc.). Moreover, we need to decide when vehicles generate signatures and send them to RSUs (e.g., a
vehicle does when it comes within a range of a RSU, a vehicle broadcasts local info with a signature at fixed
intervals, etc.). We need to investigate these values by simulation, e.g., using ns-3 [3], and by considering
de-anonymization techniques, e.g., [49, 60, 31, 59]. We leave these as future works of this paper.
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[67] Q. Wu, J. Domingo-Ferrer, and Ú. González-Nicolás. Balanced trustworthiness, safety, and privacy in
vehicle-to-vehicle communications. IEEE T. Vehicular Technology, 59(2):559–573, 2010.

[68] Y. Xi, K. Sha, W. Shi, L. Schwiebert, and T. Zhang. Probabilistic adaptive anonymous authentication
in vehicular networks. J. Comput. Sci. Technol., 23(6):916–928, 2008.

[69] Y. Xi, W. Shi, and L. Schwiebert. Mobile anonymity of dynamic groups in vehicular networks. Security
and Communication Networks, 1(3):219–231, 2008.

[70] M. Xu, W. Xu, J. Walker, and B. Moore. Lightweight secure communication protocols for in-vehicle
sensor networks. In CyCAR, pages 19–30, 2013.

Appendix: A GS-TDL Scheme Secure in the Standard Model

In this section, we briefly introduce a GS-TDL scheme secure in the standard model. We apply the Abe-
Haralambiev-Ohkubo (AHO) signature [7, 8] and Groth-Sahai proofs [35] as in group signature schemes
secure in the standard model, e.g., [34, 9, 42, 43].

First, we introduce the AHO signature scheme [8]. Let pp = ((G,GT ), g) and n ∈ N be an upper bound
on the number of group elements that can be signed altogether. In our group signature, we set n = 1.

KeyGen(pp, n) : Choose Gr,Hr
$← G, γz, δz

$← Zp, and γi, δi
$← Zp for i = 1, . . . , n. Compute Gz = Gγz

r ,

Hz = Hδz
r , Gi = Gγi

r , and Hi = Hδi
r for i = 1, . . . , n, and compute αa, αb

$← Zp, A = e(Gr, g
αa),

and B = e(Hr, g
αb). Output pk = (Gr,Hr, Gz,Hz, {Gi,Hi}ni=1, A,B) ∈ G2n+4 × G2

T and sk =
(αa, αb, γz, δz, {γi, δi}ni=1).

Sign(sk, (M1, . . . ,Mn)) : Choose ζ, ρ, τ, ν, ω
$← Zp, and output a signature θ = (θ1, . . . , θ7) where

(
θ1 =

gζ , θ2 = gρ−γzξ ·
n∏

i=1

M−γi

i , θ3 = Gτ
r , θ4 = g(αa−ρ)/τ , θ5 = gν−δzξ ·

n∏
i=1

M−δi
i , θ6 = Hω

r , θ7 = g(αb−ν)/ω
)
.
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Verify(pk, θ, (M1, . . . ,Mn)) : Check the equations A = e(Gz, θ1)e(Gr, θ2)e(θ3, θ4)
∏n

i=1 e(Gi,Mi) and B =
e(Hz, θ1)e(Hr, θ5)e(θ6, θ7)

∏n
i=1 e(Hi,Mi). If both equations hold, then output 1, and 0 otherwise.

The AHO signature scheme is existential unforgeable under the q-SFP (Simultaneous Flexible Pairing)
assumption. We remark that the AHO signature scheme supports a re-randomization algorithm ReRand,
where for an AHO signature θ, let {θ′i}7i=1 ← ReRand(pkAHO, θ) be a result of re-randomization. Then,
{θ′i}i∈{3,4,6,7} are independent of the corresponding signed message, and therefore {θ′i}i∈{3,4,6,7} can be
directly included into a part of a group signature.

Next, we introduce Groth-Sahai proof systems [35] as follows. Let A,B be equal-dimension vectors or

matrices containing group elements. Then A ⊙ B denotes their entry-wise product. Let f := (f⃗1, f⃗2, f⃗3) ∈
G3×G3×G3 be a common reference string (CRS) s.t. β1, β2, ξ1, ξ2

$← Z∗
p, f1 = gβ1 , f2 = gβ2 , f⃗1 = (f1, 1, g)

and f⃗2 = (1, f2, g). In the perfectly sound proof setting, f⃗3 = f⃗1
ξ1 ⊙ f⃗2

ξ2
where ξ1, ξ2 ∈ Z∗

p. To commit

a group element X ∈ G, compute commitments C⃗ = (1, 1, X) ⊙ f⃗1
r
⊙ f⃗2

s
⊙ f⃗3

t
with r, s, t

$← Z∗
p, which

is a ciphertext of the Boneh-Boyen-Shacham linear encryption scheme. In the witness indistinguishability
(WI) setting, f⃗1, f⃗2, f⃗3 are linearly independent. Then, C⃗ is a perfectly hiding commitment. To commit

a scalar x ∈ Zp, compute C⃗ = φ⃗x ⊙ f⃗1
r
⊙ f⃗2

s
with r, s

$← Z∗
p. In the perfectly sound proof setting,

φ⃗ = f⃗3 ⊙ (1, 1, g) where f⃗3 = f⃗1
ξ1 ⊙ f⃗2

ξ2
for ξ1, ξ2 ∈ Z∗

p. Then φ⃗, f⃗1, f⃗2 are linearly independent. In the WI

setting, φ⃗ = f⃗1
ξ1 ⊙ f⃗2

ξ2
for ξ1, ξ2 ∈ Z∗

p.
Groth-Sahai proofs prove that the committed values satisfy pairing-product equations

∏n
i=1 e(Ai,Xi) ·∏n

i=1 ·
∏n

j=1 e(Xi,Xj)
ai,j = tT for variables X1, . . . ,Xn ∈ G, constants tT ∈ GT , A1, . . . ,An ∈ G, ai,j ∈ Zp

for i, j ∈ {1, . . . , n}. Groth-Sahai proofs also follow multi-exponentiation equations
∏m

i=1A
yi

i ·
∏n

i=1 X
bj
j ·∏m

i=1 ·
∏n

i=1 X
yiγij

j = T for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp, and constants T,A1, . . . ,Am ∈ G,
b1, . . . , bn ∈ Zp and γij for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Proofs for quadratic equations require 9 group
elements, proofs for linear equations require 3 group elements, and proofs for linear multi-exponentiation
equations require 2 group elements.

Next, we give our GS-TDL scheme secure in the standard model as follows. This scheme is secure under
the q-SFP, decision linear (DLIN), q-SDH, and SDDHI assumptions. Briefly, a signature contains Groth-
Sahai commitments and proofs, and a part of AHO signature (which is independent of a user-related value),

and τ = g
1

x+T which can be seen as a random value under the SDDHI assumption. Moreover, as in the proof
of Theorem 5.2, unforgeability holds if the underlying signature scheme (Gen, Sign,Verify) and the AHO
signature scheme are unforgeable. Linking soundness clearly holds. The security proofs will be available in
the full version of this paper.

Construction 2 (Our GS-TDL Scheme Secure in the Standard Model).

Setup(1λ): Run (p,G,GT , g, e)← G(1λ). Output params = (G,GT , e, g).

GKeyGen(params): Generate a key pair (skAHO, pkAHO) for the AHO signature in order to sign one group
element, where pkAHO = (Gr,Hr, Gz,Hz, G1,H1, A,B) and skAHO = (αa, αb, γz, δz, γ1, δ1). Select a

CRS for non-interactive witness indistiguishable (NIWI) proof system: f := (f⃗1, f⃗2, f⃗3) ∈ G3×G3×G3

s.t. β1, β2, ξ1, ξ2
$← Z∗

p, f1 = gβ1 , f2 = gβ2 , f⃗1 = (f1, 1, g), f⃗2 = (1, f2, g), and f⃗3 = f⃗1
ξ1 ⊙ f⃗2

ξ2
.

φ⃗ = f⃗3 ⊙ (1, 1, g) is also defined. Output gpk = (params, pkAHO, f , φ⃗), gsk = skAHO, grs := ∅ and
RL0 := ∅.

TKeyGen(params): Let (Gen, Sign,Verify) be a digital signature scheme. Run (vk, sigk) ← Gen(1λ), and
output tpk := vk and tsk := sigk.

Join(gsk, grs, ID): Choose x
$← Zp, compute X = gx, and generate an AHO signature θ = (θ1, . . . , θ7) on X

by using skAHO. Output sigkID = (x, θ), and update grs := grs ∪ {(ID, x)}.
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TokenGen(tsk, T ): Assume that T ∈ Zp. Compute WT = gT and Σ ← Sign(sigk,WT ), and output tT =
(T,WT ,Σ).

GSign(gpk, tpk, tT , sigkID,M): Let sigkID = (x, θ) and tT = (T,WT ,Σ). If Verify(vk,WT ,Σ) = 0, then output
⊥. Otherwise, compute {θ′i}7i=1 ← ReRand(pkAHO, θ). Compute Groth-Sahai commitments comX and
{comθ′

i
}i∈{1,2,5}, and compute a NIWI proof πθ which provides evidence that A=e(Gz, θ

′
1)e(Gr, θ

′
2)e(θ

′
3,

θ′4)e(G1, X) and B=e(Hz, θ
′
1)e(Hr, θ

′
5)e(θ

′
6, θ

′
7)e(H1, X). Since {θ′i}i∈{3,4,6,7} are constants, the above

equations are both linear and require 3 elements each. That is, πθ contains 6 group elements. Next, com-

pute τ = g
1

x+T , and compute a NIZK proof πX which provides evidence that e(τ,XWT )=e(g, g). Since
this equation is quadratic, πX requires 9 group elements. Output σ = (τ, comX , {comθ′

i
}i∈{1,2,5}, πθ, πX)

which contains 28 group elemets.

Revoke(gpk, grs, {IDT,1, . . . , IDT,nT
}): If there exists ID ∈ {IDT,1, . . . , IDT,nT

} that is not joined to the system
via the Join algorithm, then output ⊥. Otherwise, extract (IDT,1, xT,1), . . . , (IDT,nT , xnT ) from grs.

Output RLT := {(IDT,1, g
1

xT,1+T ), . . . (IDT,nT
, g

1
xT,nT

+T )}.

GVerify(gpk, tpk,RLT ,M, σ): Assume that Verify(vk,WT ,Σ) = 1 (if not, output ⊥). Parse σ = (τ, comX ,
{comθ′

i
}i∈{1,2,5}, πθ, πX). If τ is contained in RLT such that (ID, τ) ∈ RLT for some ID, then output 0.

Otherwise, return 1 if all proofs properly verify. Otherwise, return 0.

Link(gpk, tpk,RLT , (M0, σ0, T0), (M1, σ1, T1)): Parse σ0 = (τ0, comX,0, {comθ′
i,0
}i∈{1,2,5}, πθ,0, πX,0) and σ1 =

(τ1, comX,1, {comθ′
i,1
}i∈{1,2,5}, πθ,1, πX,1). If either T ̸= T0 or T ̸= T1, then output 0. Else if either

GVerify(gpk, tpk,RLT0 ,M0, σ0) = 0 or GVerify(gpk, tpk,RLT0 ,M1, σ1) = 0, then output 0. Otherwise,
output 1 if τ0 = τ1, and 0 otherwise.
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