
Road-to-Vehicle Communications with Time-Dependent Anonymity:

A Light Weight Construction and its Experimental Results∗

Keita Emura† Takuya Hayashi∗

July 6, 2016

Abstract

This paper describes techniques that enable vehicles to collect local information (such as road
conditions and traffic information) and report it via road-to-vehicle communications. To exclude
malicious data, the collected information is signed by each vehicle. In this communications system,
the location privacy of vehicles must be maintained. However, simultaneously linkable information
(such as travel routes) is also important. That is, no such linkable information can be collected
when full anonymity is guaranteed through the use of cryptographic tools such as group signatures.
Similarly, continuous linkability (via pseudonyms, for example) may also cause problem from the
viewpoint of privacy.

In this paper, we propose a road-to-vehicle communication system with relaxed anonymity via
group signatures with time-token dependent linking (GS-TDL). Briefly, a vehicle is unlinkable unless it
generates multiple signatures at the same time period. We provide our experimental results (using the
RELIC library on a cheap and constrained computational power device, Raspberry Pi), and simulate
our system by using a traffic simulator (PTV), a radio wave propagation analysis tool (RapLab), and
a network simulator (QualNet). Though a similar functionality of time-token dependent linking was
proposed by Wu, Domingo-Ferrer and González-Nicolás (IEEE T. Vehicular Technology 2010), we
can show an attack against the scheme where anyone can forge a valid group signature without using
a secret key. In contrast, our GS-TDL scheme is provably secure.

In addition to time-dependent linking property, our GS-TDL scheme supports verifier-local revo-
cation (VLR), where a signer (vehicle) is not involved in the revocation procedure. It is particularly
worth noting that no secret key or certificate of a signer (vehicle) needs to be updated whereas
Security Credential Management System (SCMS) needs to update certificates frequently for vehi-
cle privacy. Moreover, our technique maintains constant signing and verification costs by using the
linkable part of signatures. These appear to be related to independent interests.

1 Introduction

Location privacy is widely recognized as an important issue, especially in the case of motor vehicles.
For example, Rouf et al. [61] mentioned that location privacy could be compromised via a tire pressure
monitoring system, and Xu et al. [72] proposed a secure communication protocol as a countermeasure
against this vulnerability. However, simultaneously local information is important and useful, e.g.,
information about traffic and road conditions is highly indispensable for maintaining urban operations.
Therefore, collecting local information without infringing privacy is an important issue that requires a
resolution.

Let consider a situation in which vehicles collect such local information and report it via road-to-
vehicle communications. To exclude malicious data, this collected information must be signed by each

∗An extended abstract appears in the 4th International Workshop on Lightweight Cryptography for Security and Privacy
(LightSec 2015) [27]. This is the full version. In the conference version, we provided the GS-TDL part, and used the TEPLA
library [4] for estimating the efficiency of our GD-TDL scheme. In this submitted version, we use the RELIC library and
reconsider the pairing equations in our algorithm. Moreover, we simulate our system using PTV, RapLab, and QualNet.

†National Institute of Information and Communications Technology (NICT), 4-2-1, Nukui-kitamachi, Koganei, Tokyo,
184-8795, Japan. {k-emura,takuya.hayashi}@nict.go.jp

1

Key Issuer

Vehicle

Token Genera-
tion Unit (TGU)

Road Side
Unit (RSU)

Database

Broadcast time
token periodically

In this system, we can: (1) collect linkable infor-
mation during T or exclude M if the same vehi-
cle make signatures twice at T , and (2) exclude
revoked vehicles (e.g., discarded cars).

Signing key
(secretly issue)

Revocation list at time T

Group signature on M at T

M : Road condition/Traffic information

Store M if the
signature is valid

Figure 1: Brief Description of Our Road-to-Vehicle Communication System Based on GS-TDL

vehicle. In this case, it seems undesirable, from the viewpoint of privacy, to link location information
(obtained from collected information and signatures) to a particular person. As a countermeasure,
Whyte et al. provided Security Credential Management System (SCMS) [68], where pseudonym cer-
tificate authority issues certificates to vehicles frequently to prevent linking vehicles. However, since
vehicles are required to update their certificates frequently, it is hard to manage securely in practice.
Applying group signatures [22] could be a solution where a verifier can anonymously verify a signer
(vehicle), and there have been numerous studies, e.g., [23, 36, 69, 60, 52, 62, 63, 71, 70]. In particu-
lar, Wu, Domingo-Ferrer and González-Nicolás [69] proposed an anonymous threshold authentication
scheme, in which messages are accepted when more than t vehicles send the same message (signed by the
vehicles). The core cryptographic technique in their system utilizes message-linkable group signature
(MLGS), where two group signatures become linkable if a signer generates a group signature for the
same message twice. Thus, double voting is protected even in an anonymous environment.

Our Target: When defining secure road-to-vehicle systems, it should be decided whether full anonymity
(or more precisely, unlinkability) must be guaranteed or not when local information is collected, since
simultaneously linkable information (such as travel routes) is also important. That is, no such linkable
information can be collected when full anonymity is guaranteed through the use of cryptographic tools
such as group signatures. For example, even if linkable information would like to be collected, no such
linkable information can be collected when full anonymity, where it is not possible to distinguish whether
the same signer generated the two signatures or not, is guaranteed. Conversely, continuous linkability
(via pseudonyms, for example) is problematic from the viewpoint of privacy. For example, a vehicle with
continuous linkability is tracked from the time the vehicle is acquired up until the time it is sold, and
parking spaces, which may include the driver’s home and work place, are revealed. Therefore, suitably
defining “moderate” anonymity with practical efficiency in a road-to-vehicle communications context is
an important issue that must be resolved.

One may think that the Wu et al. MLGS scheme [69] could be applicable for constructing a privacy-
preserving system, however, we note that no formal security definition for MLGS is provided in [69] and

2

the security proofs are informal. As a result, we can show an attack against the MLGS scheme of Wu et
al., where anyone can forge a valid group signature without using a secret key (See Section 3). Moreover,
we need to consider revocation in order to exclude discarded cars, cars with malicious behaviors, and
so on.

Our Contribution: In this paper, we propose a road-to-vehicle communication system with relaxed
anonymity by considering time-dependent linking properties, where a vehicle is unlinkable unless it
generates multiple signatures at the same time period T . We assume that a Token Generation Unit
(TGU) generates a time-dependent token tT at a time T , and broadcasts tT . Each signer (vehicle),
who has a unique identity ID, generates a signature σ on a message M (local information) by using its
own signing key sigkID and tT . A verifier (we assume a Road Side Unit (RSU) in the road-to-vehicle
communications context) checks whether σ is a valid signature or not. As a remark, no secure channel
is required for issuing a token tT , e.g., via GPS systems or more simply via RSU in the road-to-vehicle
communications context. We give a brief description of our system in Fig 1. Time-dependent linking
appears to be more suitable for our system than message-dependent linking [69] where a vehicle is always
linkable if it generates group signatures on the same message twice, and this situation might occur when
a vehicle is used for work trips and uses the same road each day.1

Our system’s core cryptographic tools utilize group signatures with time-token dependent linking
(GS-TDL), which we propose in this paper. In GS-TDL, a signer is unlinkable unless it generates
multiple signatures at the same time period T . If T is set as short as possible, then GS-TDL comes
close to usual group signatures, i.e., a signer is always unlinkable, whereas if T is set as long as possible,
then GS-TDL comes close to usual digital signatures, i.e., a signer is always linkable. That is, GS-TDL
can controll how long linkable information can be corrected by setting T (in our network simulation
(Section 5.2) we set T as 10 minutes). Our GS-TDL supports verifier-local revocation (VLR) [48, 43,
57, 56, 18], where no signer is involved in the revocation procedure. In particular, our GS-TDL achieves
backward unlinkability [56, 57], which prevents adversaries from breaking anonymity, even after vehicles
are revoked. It is particularly worth noting that no secret key or certificate of a signer (vehicle) needs
to be updated whereas SCMS [68] needs to update certificates frequently for vehicle privacy. Moreover,
our time-dependent linking properties enable us to achieve constant verification costs, whereas those
of previous schemes are O(r), where r is the number of revoked users. This appear to be related to
independent interest.

We also provide the experimental results of our road-to-vehicle communication system, and show
that our system is feasible in practice. To implement GS-TDL, we use the RELIC library [7] 2. We
also simulate our system by using a traffic simulator (PTV) 3, a radio wave propagation analysis tool
(RapLab) 4, and a network simulator (QualNet) 5.

Our GS-TDL is secure in the random oracle model, because we pursue a light-weight implementation
of the system, under the q-strong Diffie-Hellman (q-SDH) assumption [16] and the strong decisional
Diffie-Hellman inversion (SDDHI) assumption [21, 30]. The group signature size in our scheme is
shorter than that of previous schemes owing to time-dependent linkability. Specifically, a signature
contains only 6 group elements, whereas that of the short group signature scheme [17] contains 9 group
elements, that of the short controllable linkable group signature scheme [38] contains 8 group elements,
and that of the controllable linkable group signature scheme (for dynamic group setting) [39] contains
12 group elements. Recently, though a short dynamic controllable linkable group signature scheme is
proposed [37], a signature contains 8 group elements.6 In addition to the signature size, our linking

1Even if a random nonce is included as a part of signed message, no linking algorithm works and this leads to a wag-
the-dog situation. Even if a time T is included, e.g., sign M ||T by using a MLGS scheme, anyone can manipulate T and
such a signer-driven anonymous system must be avoided because vehicles have incentive to hide identity. On the contrary,
in GS-TDL, time T is authorized by TGU and no vehicle can manipulate T .

2We used the TEPLA library [4] in the previous paper [27]. We reconsider the pairing equations in our algorithm
according to the RELIC library.

3http://vision-traffic.ptvgroup.com/
4http://www.kke.co.jp/en/solution/theme/raplab.html
5http://web.scalable-networks.com/content/qualnet
6We remark that these schemes [17, 37, 38, 39] also achieve only CPA-anonymity (i.e., no opening oracle access is

3

algorithm does not require cryptographic computations (i.e., comparisons to determine two elements
are the same).

Related Work: Since car security has been recognized as a real threat, several organizations have been
launched, e.g., Preserve (EU) [3], ITS Info-communications Forum (Japan) [2], IntelliDrive (USA) [1],
etc., and car security is researched in several papers. To name a few, Wetzels [67] reported security
and privacy concerns regarding RFID-based car key applications. Busold et al. [20] proposed a security
framework for secure smartphone-based immobilizers. Tillich and Wójcik [65] analyzed an open car
immobilizer protocol stack and shows several attacks. Meiklejohn et al. [54] pointed out driving payment
systems proposed in [9, 59] reveal to drivers the locations of spot-checking road side cameras, and showed
that colluding drivers can select roads for avoiding payment. Then, Meiklejohn et al. proposed a new
system which they call Milo.

Nakanishi et al. proposed linkable group signature [55], where anyone can determine whether two
signatures were made by the same signer or not. As a difference from GS-TDL, no time-dependent
token is required for linking. That is, two group signatures made by the same signer are always linkable.
A group signature with a relaxed anonymity for VANET has been considered in [52, 53]. But the
link algorithm is not publicly executable, and an authority called Link Manager is introduced. That
is, two group signatures made by the same signer are always linkable from the viewpoint of Link
Manager. Moreover, pairing computations are required for linking. Abe et al. [5] proposed double-
trapdoor anonymous tags which can generally construct traceable signatures [41]. Since a signer is
always linkable after the corresponding token is broadcasted, we cannot use traceable signatures instead
of GS-TDL. As a special case of traceable signatures, group signatures with controllable linkability
has been proposed [39, 38], where a link key is defined for the linking procedure. However, pairing
computations are required for linking, which lead to inefficiency.

Kumar et al. propose a group signature scheme with probabilistic revocation [42]. In this scheme, a
token (which they call alias token) is contained in a group signature, and the same token is used when
group signatures are generated in the same time period, i.e., these are linkable as in our GS-TDL. Though
their scheme could be a candidate for constructing an anonymous time-dependent authentication system,
there are many problems as follows. First of all, their security model does not consider revocation. That
is, there is a possibility that, for example, anonymity might be broken if some other users are revoked.
Moreover, their security model also does not consider time-dependent linking. Whereas we consider
both revocation and time-dependent linking in our security model. Even if we turn blind eye to the
problem since we cannot find any attack of this scheme, the next problem is efficiency. That is, a group
signature of the Kumar et al. scheme contains 9 group elements, whereas that of our scheme is 6 group
elements.

As an independent work, Liu et al. [49] propose an anonymous authentication roaming protocol
supporting time-bound credentials, where a user secret key is bounded to an expiry time. Though this
time-bound property might be applicable to time-dependent linking, their protocol has a disadvantage
where the size of the common group public key, which is necessary for generating signatures, depends
on the bit-length for representing a time period. In the road-to-vehicle communication context, each
vehicle is required to have such a long-size pubic key. Whereas, the size of group pubic key of our
scheme is constant. Malina, Hajny, and Zeman [51] also consider group signatures with time-bound
membership. One drawback of their scheme is that a target group element (i.e., an element of GT)
is contained in a group signature. Due to the embedded degree of elliptic curves, the size of such an
element is much larger than that of a base group element (i.e., an element of G1 or G2). Whereas, in
our scheme, a group signature contains base group elements or Zp elements only.

Remark: Since we mainly focus on how to control anonymity in the group signature context, we do
not discuss how to provide location privacy of messages to be signed. For example, anonymity is never
guaranteed if a message M to be signed contains the identifier of a vehicle itself. Even if we avoid such
an extreme case, some personal information might be infrenged from M even we guarantee that the
corresponding group signature does not leak any personal information. Here, we need to assume that no

allowed in anonymity game) as in ours.

4

personal information is revealed from a content M (or even its statistical values). Though we may apply
privacy preserving techniques for modifying contents or its statistical values, e.g., [64, 50, 44, 66, 32, 26],
we regard it as an outscope of this paper.

2 Preliminaries: Cryptographic Definitions

In this section, we give the definitions of bilinear groups, complexity assumptions, and digital signature
as follows.

Complexity Assumptions: Let G be a probabilistic polynomial-time algorithm that takes a security
parameter λ as input and generates a parameter (p,G1,G2,GT , e, g1, g2) of bilinear groups, where p is a
λ-bit prime, G1,G2 and GT are groups of order p, e is a bilinear map from G1 ×G2 to GT , and g1 and
g2 are generators of G1 and G2, respectively. Here, for any a, b ∈ Zp, e(g

a
1 , g

b
2) = e(g1, g2)

ab holds. We
use the asymmetric setting, i.e., G1 ̸= G2.

Definition 2.1 (SDDHI Assumption [21]). We say that the SDDHI (Strong Decisional Diffie-Hellman

Inversion) assumption holds if for all PPT adversaries A, |Pr[(p,G1,G2,GT , e, g1, g2)
$← G(1λ); x

$←
Zp; (T, st)← AOx(p,G1,G2,GT , e, g1, g2, g

x
1); τ0 = g

1
x+T

1 ; τ1
$← G1; b

$← {0, 1}; b′ ← AOx(τb, st) : b =

b′]− 1
2 | is negligible, where Ox is an oracle which takes as input z ∈ Z∗

p \ {T}, outputs g
1

x+z

1 .

We remark that the underlying bilinear group must not be symmetric.

Definition 2.2 (q-SDH Assumption [16]). We say that the q-SDH (q-Strong Diffie-Hellman) assump-

tion holds if for all PPT adversaries A, Pr[(p,G1,G2,GT , e, g1, g2)
$← G(1λ); γ

$← Zp; (x, g
1

x+γ

1) ←
A(p,G1,G2,GT , e, g1, g

γ
1 , . . . , g

γq

1 , g2, g
γ
2); x ∈ Z∗

p \ {−γ}] is negligible.

Digital Signature: Let (Gen, Sign,Verify) be a digital signature scheme. The key generation algorithm
Gen takes as input a security parameter λ, and outputs a pair of verification/signing key (vk, sigk). The
signing algorithm Sign takes as input sigk and a message to be signed M , and outputs a signature Σ.
The verification algorithm Verify takes as input vk, Σ and M , and outputs 0/1. We require the following
correctness property: for all (vk, sigk)← Gen(1λ) and M , Pr[Verify(vk, Sign(sigk,M),M) = 1] = 1 holds.
Next, we define existential unforgeability against chosen message attack (EUF-CMA) as follows. Let
C be the challenger, and A be an adversary. C runs (vk, sigk) ← Gen(1λ) and gives vk to A. A is
allowed to issue signing queries M . C runs Σ ← Sign(sigk,M) and returns Σ to A. Finally, A outputs
(Σ∗,M∗). We say that a digital signature scheme (Gen, Sign,Verify) is EUF-CMA if the probability, that
Verify(vk,Σ∗,M∗) = 1 and A did not send M∗ as a signing query, is negligible.

3 The WDG Construction and its Vulnerability

In IEEE T. Vehicular Technology 2010, Wu, Domingo-Ferrer and González-Nicolás (WDG) [69] proposed
message-linkable group signature (MLGS), where if a signer generates a group signature for the same
message twice, then two group signatures become linkable. FromMLGS, they constructed an anonymous
threshold authentication for vehicle-to-vehicle communications, where if more than t vehicles send the
same message (signed by vehicles) then this information is accepted. In their system, four entities
are defined: a vehicle V, the vehicle manufacturer VM, the registration manager RM, and the group
tracing manager TM. In this section, we give an attack against their MLGS scheme denoted by the
WDG scheme. Briefly, we show that anyone can forge a valid group signature without knowing a signing
key.

The WDG scheme is described as follows: Let (p,G1,G2,GT , e, g1, g2, h1, h2, U1, U2,H1, H2) be public
parameters, where H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → Zp are hash functions, and for a computable
isomorphism ϕ : G2 → G1, g1 = ϕ(g2), h1 = ϕ(h2), and U1 = ϕ(U2) hold. A vehicle V has a secret
key y ∈ Zp and a public key Y = Uy

1 , and Y is signed by the vehicle manufacturer VM. In the vehicle

5

registration phase, V computes T = gy2 and sends (T, Y) to the group tracing manager TM. TM
checks the signature of Y and whether e(Y, g2) = e(U1, T) holds or not. Then, TM saves (T, Y) into
a local database. Moreover, V sends Y (and its signature) to the registration manager RM, and runs
a zero-knowledge protocol for y = logU1

Y . Then, RM chooses k ← Zp and computes K1 = gk1 and
K2 = Z(h1Y)−k, where Z (and A = e(Z, g2)) is a public key of RM. V obtains Kv = (K1,K2) as a
secret signing key. In a signing phase for a message M , V selects s, ry ← Zp and computes σ1 = K1g

s
1,

σ2 = K2(h1Y)−s, σ3 = σy
1 , σ4 = H1(M)y, σ5 = H2(M ||σ1||σ2||σ3||σ4||H1(M)ry ||σry

1), and σ6 = ry−σ5y,
and outputs a group signature σ = (σ1, . . . , σ6). That is, this proves that the discrete logarithm of σ3
and that of σ4 (i.e., y) are the same. In the verification phase, check e(σ2, g2)e(σ1, h2)e(σ3, U2) = A and
σ5 = H2(M ||σ1||σ2||σ3||σ4||H1(m)σ6σσ5

4 ||σ
σ6
1 σσ5

3).
The problem of this construction is the thing that no RM’s verification key is involved in the signing

and verification phases. Before showing our attack, we explain a typical methodology for constructing
group signature introduced in [13, 14] as follows: A key issuer (RM in the MLGS context) has a
verification/signing key pair (vk, sk) of a signature scheme, and an opener (TM in the MLGS context)
has a public/secret key pair of an encryption scheme. Then, the key issuer generates a signature for a
user (V in the MLGS context) as a signing key (say cert). In the signing phase, a user encrypts cert
by using a public key of the opener, and computes a non-interactive zero-knowledge (NIZK) proof that
proves “encrypted cert is a valid signature under vk”.

Since the WDG scheme lacks to involve vk, anyone can forge a valid group signature. The concrete
attack is described as follows: let A be an adversary. A chooses y, k, s, ry ← Zp and computes Y = Uy

1 ,
σ1 = gk1g

s
1, σ2 = Z(h1Y)−k(h1Y)−s, σ3 = σy

1 , σ4 = H1(M)y, σ5 = H2(M ||σ1||σ2||σ3||σ4||H1(M)ry ||σry
1),

and σ6 = ry − σ5y, and outputs a group signature σforge = (σ1, . . . , σ6). Then, σforge is a valid group
signature though A does not have a signing key. Moreover, since A does not register Y , no TM can
trace the signer of σ. This breaks traceability.

4 GS-TDL: Definitions and Our Construction

In this section, we give the syntax, security definitions, and construction of GS-TDL.

4.1 Definitions of GS-TDL

Design Principle: Because we pursued a light-weight implementation of the system7, there is a room
for discussion about whether the open functionality should be utilized or not. In the open functionality,
an authority (called an opener) can determine the identity of the actual signer by using a secret opening
key. For example, the open functionality is implemented by using public key encryption (PKE) or
non-interactive zero-knowledge proof of knowledge, and could be an efficiency bottleneck. It has been
reported that the signature size of the Furukawa-Imai group signature scheme [31] can be reduced by
50% if the open functionality is removed [28]. It also has been reported that implementing the open
functionality without using PKE leads to a short group signature scheme at the expense of the signature
opening costs [15]. Given the above facts, we do not consider the open functionality (we only consider
the linking functionality). Moreover, we assume that the signing key of a signer is embedded in a device
during the setup phase, and therefore we remove an interactive join algorithm from our syntax. Finally,
we consider the revocation functionality, especially verifier-local revocation (VLR) where no signer is
involved in revocation procedures.

7We note that MLGS [69] is essentially the same as unique group signature proposed by Franklin and Zhang [30], and
formal security definitions are given in [30]. That is, we may be able to apply unique group signature to construct a
road-to-vehicle communication system. However, our time-dependent linking seems suitable for the system rather than
message-dependent linking as explained before. Moreover, the Franklin-Zhang model supports the open algorithm and
considers more stronger anonymity (so called CCA anonymity). Since we customize the syntax to be suitable for light-
weight realization and exclude the open algorithm, in this paper we do not directly apply the Franklin-Zhang unique group
signature scheme to our system.

6

Definition 4.1 (Syntax of GS-TDL). A group signature scheme with time-token dependent linking
GS-T DL consists of the algorithms (Setup,GKeyGen,TKeyGen, Join,TokenGen,GSign,Revoke,GVerify,
Link) as follows:

• Setup: The setup algorithm takes as input a security parameter λ, and outputs a public parameter
params.

• GKeyGen: The group key generation algorithm takes as input params, and outputs a group public
key gpk, a group master key gsk, an initial revocation storage grs := ∅ and an initial revocation
list RL0 := ∅.

• TKeyGen: The token key generation algorithm takes as input params, and outputs a public key
tpk and a secret key tsk.

• Join: The join algorithm takes as input gsk, grs and a unique identity ID, and outputs a signing
key sigkID and updated revocation storage. We remark that this algorithm is not required to be
interactive.

• TokenGen: The token generation algorithm takes as inputs tsk and a time T , and outputs a token
tT .

• GSign: The signing algorithm takes as inputs gpk, tpk, tT , sigkID, and a message M to be signed,
and outputs a group signature σ.

• Revoke: The revocation algorithm takes as inputs gpk, grs, and a set of revoked users at a time T
{IDT,1, . . . , IDT,nT

}, and outputs RLT . Here, nT is the number of revoked users on T .

• GVerify: The verification algorithm takes as inputs gpk, tpk, RLT , σ, and M , and outputs 0
(invalid) or 1 (valid).

• Link: The linking algorithm takes as inputs gpk, tpk, and RLT , and two signatures and messages
(σ0,M0, T0) and (σ1,M1, T1), and outputs 1 if two signatures are made by the same signer, and
0 otherwise. We remark that the Link algorithm outputs 0 does not guarantee two signatures are
made by the different signers. For example, if a signature is invalid, then the algorithm outputs 0.

We require correctness, anonymity, unforgeability, and linking soundness. Briefly, correctness re-
quires that any honestly generated signatures are valid, and the Link algorithm correctly links two
signatures if these are generated by the same signing key with the same token, unless the corresponding
signer is not revoked. Anonymity guarantees that no adversary who has tsk can distinguish whether
two signatures are generated by the same signer or not, if the corresponding linkable signatures are not
generated. Unforgeability guarantees that nobody who does not have a signing key or does not have a
token can generate a valid signature. Linking soundness guarantees that the Link algorithm does not
return 1 when two valid signatures are made by either different signers or different time tokens.

Next, we give security definitions of GS-TDL by adding the above time-dependent linkability to the
Bellare-Micciancio-Warinschi (BMW) model [13] (which is recognized as a de-facto standard for group
signature).8 We require the following correctness, where any honestly generated signatures are valid,
and the Link algorithm correctly links two signatures if these are generated by the same signing key with
the same token, unless the corresponding signer is not revoked. Moreover, we require that a signature
is invalid if the corresponding signer is revoked.9

8Recently, Bootle et al. [19] consider fully dynamic group signatures where users can join and leave at any time. They
point out that previous definitions are weak in the sense that these definitions allow members who joined at recent time
periods to sign messages w.r.t earlier time periods during which they were not members of the group. Though this
situation may be a problem in some applications (e.g., sign a document), however, in our usage, it seems easy to ignore
such signatures by a verifier (Road Side Unit) if signatures sent from vehicles are generated in a past time period.

9As a remark, the case that an adversary generates a valid signature using a revoked user’s signing key cannot be
captured by unforgeability since the open algorithm is not defined. Instead, we consider the case that a signature is
invalid when the corresponding signer is revoked in correctness, though it might be additionally defined such as revocation
soundness.

7

Definition 4.2 (Correctness). For any probabilistic polynomial time (PPT) adversary A and the secu-
rity parameter λ ∈ N, we define the experiment ExpcorrGS-TDL,A(λ) as follows.

ExpcorrGS-TDL,A(λ) :

params← Setup(1λ)

(gpk, gsk, grs,RL0)← GKeyGen(params)

(tpk, tsk)← TKeyGen(params); GU := ∅
(ID∗, T ∗,M0,M1)← AAddU(·),Revoke(grs,·)(gpk, tpk)

ID∗ ∈ GU; tT ∗ ← TokenGen(tsk, T ∗)

σ0 ← GSign(gpk, tpk, tT ∗ , sigkID∗ ,M0)

σ1 ← GSign(gpk, tpk, tT ∗ , sigkID∗ ,M1)

Return 1 if the following holds :[
ID∗ ̸∈ RLT ∗ ∧

(
(GVerify(gpk, tpk,RLT ∗ ,M0, σ0) = 0

∨ GVerify(gpk, tpk,RLT ∗ ,M1, σ1) = 0)

∨ Link(gpk, tpk,RLT ∗ , (M0, σ0, T
∗), (M1, σ1, T

∗)) = 0
)]

∨
[
ID∗ ∈ RLT ∗ ∧

(
(GVerify(gpk, tpk,RLT ∗ ,M0, σ0) = 1

∨ GVerify(gpk, tpk,RLT ∗ ,M1, σ1) = 1
)]

Otherwise return 0

• AddU: The add user oracle allows an adversary A to add honest users to the group. On input an
identity ID, this oracle runs sigkID ← Join(, gsk, grs, ID). ID is added to GU.

• Revoke: Let T − 1 be the time that the oracle is called. The revocation oracle allows an adver-
sary A to revoke honest users. On input identities {IDT,1, . . . , IDT,nT

}, this oracle runs RLT ←
Revoke(gpk, grs, {IDT,1, . . . , IDT,nT

}). We remark that T ∗ is the challenge time that A outputs
(ID∗,M0,M1).

GS-T DL is said to be satisfying correctness if the advantage AdvcorrGS,A(λ) := Pr[ExpcorrGS-TDL,A(λ) = 1] is
negligible for any PPT adversary A.

Next, we give our anonymity definition which guarantees that no adversary who has tsk can distin-
guish whether two signatures are generated by the same signer or not, if the corresponding linkable signa-
tures are not generated. In contrast to the BMW model, A is not allowed to obtain signing keys of chal-
lenge users (selfless anonymity). This is a reasonable setting since A can trivially break anonymity if A
obtains such signing keys. For example, let A have sigkIDi0

. Then, A can make a signature σ on T0 using

sigkIDi0
(with arbitrary messageM), and can check whether Link(gpk, tpk,RLT0 , (M0, σ

∗, T0), (M,σ, T0)) =
1 or not, where σ∗ is the challenge signature. Instead, A is allowed to access the GSign oracle in our
definition. Moreover, we consider backward unlinkability, where no adversary can break anonymity even
after the challenge signers are revoked.

Definition 4.3 (Anonymity). For any PPT adversary A and a security parameter λ ∈ N, we define

the experiment Expanon-tg-bGS-TDL,A(λ) as follows.

Expanon-tg-bGS-TDL,A(λ) :

params← Setup(1λ)

(gpk, gsk, grs,RL0)← GKeyGen(params);

(tpk, tsk)← TKeyGen(params); GU := ∅; STSet := ∅
d← AAddU(·),Revoke(grs,·),GSign(·,·,·),Ch(b,·,·,·,·,·)(gpk, tpk, tsk)

Return d

8

• AddU: The same as before.

• Revoke: The same as before. We remark that if T0 ̸= T1 and assume that T0 < T1, then IDi0

and/or IDi1 can be revoked after T1. If T0 = T1, then IDi0 and/or IDi1 can be revoked after T0.

• GSign: The signing oracle takes as input ID, tT , and a message M . We assume that tT is a valid
token which means that the GVerify algorithm outputs 1 for all honestly generated signatures with
tT , even though this is made by A. If ID ̸∈ GU, then the oracle runs AddU(ID). The oracle returns
σ ← GSign(gpk, tpk, tT , sigkID,M) and stores (ID, T) in STSet.

• Ch: The challenge oracle takes as input IDi0, IDi1, tT0, tT1, M
∗
0 , and M∗

1 where IDi0 ̸= IDi1 and
IDi0 , IDi1 ∈ GU. Return signature(s) according to the following cases:

– T0 = T1: If (IDi0 , T0), (IDi1 , T1) ̸∈ STSet, then compute σ∗ ← GSign(gpk, tpk, tTb
, sigkIDib

,M∗),

and return σ∗. Without loss of generality, we set M∗ = M∗
0 = M∗

1 .

– T0 ̸= T1: If (IDi0 , T0), (IDi1 , T1), (IDi0 , T1) ̸∈ STSet, then compute σ∗
0 ← GSign(gpk, tpk, tT0 , sigkIDi0

,

M∗
0) and σ∗

1 ← GSign(gpk, tpk, tT1 , sigkIDib
,M∗

1), and return σ∗
0 and σ∗

1.

Moreover, we assume that tT0 and tT1 are valid tokens even though these are made by A, which
means that the GVerify algorithm outputs 1 for all honestly generated signatures with tT0 or tT1.

10

GS-T DL is said to be satisfying anonymity if the advantage Advanon-tgGS-TDL,A(λ) := |Pr[Exp
anon-tg-1
GS-TDL,A(λ) =

1]− Pr[Expanon-tg-0GS,A (λ) = 1]| is negligible for any PPT adversary A.

When T0 = T1, our definition guarantees that two different signers are unlinkable even if they generate
signatures at the same time period. We note that if A obtains two signatures even though T0 = T1, then
A can break anonymity by using the Link algorithm. Therefore, A is allowed to obtain one challenge
signature σ∗ only. When T0 ̸= T1, our definition guarantees that a signer is still unlinkable if the signer
respectively generates two signatures on different time periods. That is, when A obtains σ∗

0, which
is generated by IDi0 at a time T0, and σ∗

1, which is generated by IDib at a time T1 ̸= T0, no A can
distinguish whether two signatures are respectively made by the same user IDi0 or different users IDi0

and IDi1 . In order to prevent a trivial linking attack, A is not allowed to obtain a signature for (IDi0 , T1)
in this case.

We note that we do not have to consider the case IDi0 = IDi1 and T0 ̸= T1, since time T is an
input of the verification algorithm. That is, A can easily break anonymity in this case: A just obtains
σ∗ ← GSign(gpk, tpk, tTb

, sigkIDi0
,M∗) and checks whether GVerify(gpk, tpk,RLT0 ,M

∗, σ∗) = 1 or not.
Next, we define unforgeability which guarantees that nobody who does not have a signing key or

does not have a token can generate a valid signature.

Definition 4.4 (Unforgeability). For any PPT adversary A and security parameter λ ∈ N, we define the
experiment ExpunfGS-TDL,A(λ) as follows, where O := (AddU(·),Revoke(grs, ·),TokenGen(tsk, ·),SetToken(·),
GSign(·, ·, ·),USK(·),TSK(·)).

ExpunfGS-TDL,A(λ) :

params← Setup(1λ)

(gpk, gsk, grs,RL0)← GKeyGen(params)

(tpk, tsk)← TKeyGen(params)

GU := ∅; TSet := ∅; SSet := ∅
(M,σ)← AO(gpk, tpk)

10This condition must be required to exclude the trivially-broken case, e.g., A honestly generates tT0 and sets tT1 as
arbitrary value. Then, A can check whether σ∗ is valid or not. If yes, then b = 0 and b = 1 otherwise.

9

Return 1 if (1) ∧ (2) ∧ ((3) ∨ (4)) hold :

(1) GVerify(gpk, tpk,RLT ∗ ,M, σ) = 1

(2) (T ∗,M, σ) ̸∈ SSet

(3) T ̸∈ TSet ∧ TSK(·) has not been called

(4) TSK(·) has been called with non-⊥ output

Otherwise return 0

• AddU: The same as before.

• Revoke: The same as before. We note that T ∗ is the challenge time that A outputs (M,σ).

• TokenGen: The token generation oracle takes as input a time T . This oracle runs tT ← TokenGen(tsk, T),
stores T in TSet, and returns tT .

• SetToken: The token setting oracle takes as input tT , and sets tT as the token at a time T . Without
loss of generality, we assume that if the TokenGen oracle is called, the SetToken oracle is also called
right after calling the TokenGen oracle. We remark that A can set arbitrary value as tT via this
oracle.

• GSign: The signing oracle takes as input ID, T , and a message M . If ID ̸∈ GU, then the oracle runs
AddU(ID). If tT is not generated via the TokenGen oracle, then call the oracle TokenGen(tsk, T) and
the SetToken oracle. The oracle returns σ ← GSign(gpk, tpk, tT , sigkID,M) and stores (T,M, σ) in
SSet.

• USK: The user key reveal oracle takes as input ID. If the TSK oracle was called before, then return
⊥. If ID ̸∈ GU, then the oracle runs AddU(ID). Return sigkID.

• TSK: The token key reveal oracle returns ⊥ if the USK oracle was called before and at least one
identity is not revoked.11 Otherwise, return tsk.

GS-T DL is said to be unforgeable if the advantage AdvunfGS-TDL,A(λ) := Pr[ExpunfGS-TDL,A(λ) = 1] is negli-
gible for any PPT adversary A.

Finally, we define linking soundness which guarantees that the Link algorithm does not return 1
when two valid signatures are made by either different signers or different time tokens.

Definition 4.5 (Linking Soundness). For any PPT adversary A and security parameter λ ∈ N, we
define the experiment ExpsndGS-TDL,A(λ) as follows.

ExpsndGS-TDL,A(λ) :

params← Setup(1λ)

(gpk, gsk, grs,RL0)← GKeyGen(params)

(tpk, tsk)← TKeyGen(params)

(ID0, ID1, T0, T1,M, st)← A(gpk, tpk)
(ID0, T0) ̸= (ID1, T1)

sigkID0
← Join(gsk, grs, ID0); sigkID1

← Join(gsk, grs, ID1)

tT0 ← TokenGen(tsk, T0); tT1 ← TokenGen(tsk, T1)

σ0 ← GSign(gpk, tpk, tT0 , sigkID0
,M)

(M∗, σ∗)← ARevoke(grs,·)(st, sigkID1
, tT1 , σ0)

Return 1 if

Link(gpk, tpk,RLT1 , (M,σ0, T0), (M
∗, σ∗, T1)) = 1

Otherwise return 0

11That is, the TSK oracle returns tsk if all identities input in the USK oracle were revoked.

10

• Revoke:The same as before.

A GS-TDL scheme is said to be satisfying linking soundness if the advantage AdvsndGS-TDL,A(λ) :=

Pr[ExpsndGS-TDL,A(λ) = 1] is negligible for any PPT adversary A.

4.2 Proposed GS-TDL Scheme

In this section, we give our GS-TDL scheme. Since we mainly pursue a light-weight realization of the
system, here we do not employ structure preserving signatures (e.g., [6]) and Groth-Sahai proofs [35]
which are typically used for constructing group signature schemes secure in the standard model, e.g., [34,
8, 45, 46, 47]. We employ the Fiat-Shamir transformation [29] which converts a three-move Σ protocol
to non-interactive zero-knowledge (NIZK) proof as in group signature schemes secure in the random
oracle model, e.g., [31, 17, 24, 15, 58, 25].

The Basic Idea: Our GS-TDL scheme is based on the Furukawa-Imai group signature scheme [31]
which is recognized as one of the most efficient group signature schemes. First, we exclude the open
functionality from the Furukawa-Imai group signature scheme as in [28]. Next, for the linking property,
we apply the Franklin-Zhang technique [30], where a group signature contains Belenkiy et al.’s verifiable

random function (VRF) [12]. Concretely, the value τ = g
1

x+T is contained in a signature at a time T ,
where x is a (part of) signing key. Then, if a signer computes two or more group signatures at a time
T , then the value τ is the same, and can be linked without any cryptographic operation. Whereas,
τ itself can be seen as a random value (under the SDDHI assumption), and therefore a signer is still
anonymous unless the signer computes two or more group signatures at the same time. For (verifier-local)
revocation, we also apply τ such that τ is added in a revocation list. Note that the verification cost of
VLR-type group signatures schemes [18, 48, 57] is O(|RLT |), especially, |RLT |-times pairing computations
are required. In order to avoid such an inefficiency, we use the linkable part τ for revocation and this
setting requires no cryptographic operation.

Construction 1 (Proposed GS-TDL scheme).

• Setup(1λ): Let (G1,G2,GT) be a bilinear group with prime order p, where ⟨g1⟩ = G1, ⟨g2⟩ = G2,
and e : G1 ×G2 → GT be a bilinear map. Output params = (G1,G2,GT , e, g1, g2).

• GKeyGen(params): Choose γ
$← Zp, and h

$← G1, and compute W = gγ2 . Output gpk =
(params, h,W, e(g1, g2), e(h,W), e(h, g2),H), gsk = γ, where H : {0, 1}∗ → Zp is a hash func-
tion modeled as a random oracle, grs := ∅ and RL0 := ∅.

• TKeyGen(params): Let (Gen, Sign,Verify) be a digital signature scheme. Run (vk, sigk)← Gen(1λ),
and output tpk := vk and tsk := sigk.

• Join(gsk, grs, ID): Choose x, y
$← Zp, compute A = (g1h

−y)
1

γ+x , output sigkID = (x, y,A), and
update grs := grs ∪ {(ID, x)}.

• TokenGen(tsk, T): Assume that T ∈ Zp. Compute WT = gT2 and Σ ← Sign(sigk,WT), and output
tT = (T,WT ,Σ).

• GSign(gpk, tpk, tT , sigkID,M): Let sigkID = (x, y,A) and tT = (T,WT ,Σ). If Verify(vk,WT ,Σ) = 0,

then output ⊥. Otherwise, choose β
$← Zp, set δ = βx− y, and compute C = Ahβ and τ = g

1
x+T

1 .

Choose rx, rδ, rβ
$← Zp, and compute

R1 =
e(h, g2)

rδe(h,W)rβ

e(C, g2)rx
, R2 = e(τ, g2)

rx

c = H(gpk, tpk, C, τ, R1, R2,M)

sx = rx + cx, sδ = rδ + cδ, and sβ = rβ + cβ,

11

and output σ = (C, τ, c, sx, sδ, sβ). This proves that (1) (x, y,A) is a valid Boneh-Boyen signature
under gpk (i.e., sigkID is issued by Key Issuer) and (2) τ is computed by the same x.

Pairing-free Variant: We remark that e(h, g2) and e(h,W) are pre-computable and can be
contained in gpk. Moreover e(C, g2)

rx and e(τ, g2)
rx can be represented as e(A, g2)

rxe(h, g2)
βrx

and e(g1, g2)
rx

x+T , respectively. Then,

R1 =
e(h, g2)

rδ−βrxe(h,W)rβ

e(A, g2)rx
and R2 = e(g1, g2)

rx
x+T .

So, by assuming that e(A, g2) is pre-computable (we can simply assume that e(A, g2) is contained
in sigkID), we can remove any pairing computation from the signing algorithm, instead of adding
two exponentiations over GT .

• Revoke(gpk, grs, {IDT,1, . . . , IDT,nT
}): If there exists ID ∈ {IDT,1, . . . , IDT,nT

} that is not joined to
the system via the Join algorithm, then output ⊥. Otherwise, extract (IDT,1, xT,1), . . . , (IDT,nT

, xT,nT
)

from grs. Output RLT := {(IDT,1, g
1

xT,1+T

1), . . . (IDT,nT
, g

1
xT,nT

+T

1)}.

• GVerify(gpk, tpk,RLT ,M, σ): Assume that Verify(vk,WT ,Σ) = 1 (if not, output ⊥). Parse σ =
(C, τ, c, sx, sδ, sβ). If τ is contained in RLT such that (ID, τ) ∈ RLT for some ID, then output 0.
Otherwise, compute

R′
1 =

e(h, g2)
sδe(h,W)sβ

e(C, g2)sx

(e(C,W)

e(g1, g2)

)−c
and

R′
2 = e(τ, g2)

sx
(e(g1, g2)
e(τ,WT)

)−c
,

and output 1 if c = H(gpk, tpk, C, τ, R′
1, R

′
2,M) holds, and 0 otherwise. We remark that e(h, g2),

e(h,W) and e(g1, g2) are pre-computable and contained in gpk.

• Link(gpk, tpk,RLT , (M0, σ0, T0), (M1, σ1, T1)): Parse σ0 = (C0, τ0, c0, sx,0, sδ,0, sβ,0) and σ1 = (C1,
τ1, c1, sx,1, sδ,1, sβ,1). If either T ̸= T0 or T ̸= T1, then output 0. Else if either GVerify(gpk, tpk,
RLT0 ,M0, σ0) = 0 or GVerify(gpk, tpk,RLT0 ,M1, σ1) = 0, then output 0. Otherwise, output 1 if
τ0 = τ1, and 0 otherwise.

Since τ just depends on T and x, and does not contain any randomness, we can directly use τ for
revocation. Since we do not have to run any cryptographic operation, we can achieve the (almost)
constant verification cost by using hash tables which are made in the Revoke algorithm.

As a remark, the open algorithm, where an authority can identify the actual signer, also can be
implemented (though we do not use it) as follows: let (ID, gx2) be preserved in the join phase, and
the open algorithm checks whether e(τ, gx2g

T
2) = e(g1, g2) or not. If the equation holds, then ID is the

identity of the corresponding signer. This open algorithm is essentially the same as that of the Bichsel
et al. scheme [15].

We give the security proofs of the following theorems in Appendix.A.

Theorem 4.1. The proposed GS-TDL scheme has anonymity in the random oracle model under the
SDDHI assumption, where H is modeled as a random oracle.

Theorem 4.2. The proposed GS-TDL scheme has unforgeability in the random oracle model if the
q-SDH assumption holds and (Gen, Sign,Verify) is EUF-CMA, where q is the number of signers and H
is modeled as a random oracle.

Theorem 4.3. The proposed GS-TDL scheme has linking soundness.

12

5 Anonymous Time-dependent Authentication and its Experimental
Results

In this section, we construct an anonymous time-dependent authentication system via GS-TDL, and
provide its experimental results.

5.1 Experimental Results of Our GS-TDL

Here, we explain experimental results of our GS-TDL scheme which shows the practicality of the scheme.
Our implementation uses the RELIC library (ver.0.4.1) [7] for elliptic curve operations and the pairing
operation, OpenSSL12 (ver.1.0.2d) for standard signing and verifying, and GLib13 (ver.2.47.1) for the
hash table for (almost) constant-time searching. We note that we employ asymmetric pairing settings
((type III) Barreto-Naehrig (BN) curves [11]) with 254-bit order due to the recent novel works for
solving the discrete logarithm problem over certain elliptic curves with symmetric pairing settings [33,
10]. We use the parameter of “Nogami-Aranha” given in an IETF Internet-Draft [40]. Table 1 shows
specifications of our machines we employed for experiments.

Table 1: Machine specification

Machine x86 64 Server Raspberry Pi (Model B)

CPU
Xeon E5-2660 v3 ARM1176JZF-S

(2.60 GHz) (700 MHz)
RAM 128GB 512 MB

Table 2 shows the running time of group operations. Here, Mul(G1,Type), Mul(G2,Type), and Exp(GT ,Type)
are scalar multiplication on G1 and G2, and exponentiation on GT , respectively. If a base point is previ-
ously known, then Type is set as K, and U otherwise. We note that we always use Type U for operations
on GT since the RELIC library does not support Type K operation on GT .

Table 2: Group operations over 254-bit BN curves (µsec)

Operations x86 64 Server Raspberry Pi

Mul(G1,U) 160 6,814
Mul(G1,K) 51 2,081
Mul(G2,U) 310 28,011
Mul(G2,K) 67 5,388
Exp(GT ,U) 467 36,653

Pairing
Miller loop 466 35,477
Final exp. 208 14,663

Table 3 shows the running time of singing and verification algorithms of OpenSSL 3072-bit RSA, 3072-bit
DSA, and prime 256v1 ECDSA on our environment.

Optimization of GSign/GVerify: Originally, our GSign algorithm requires 2 Mul(G1,K) + 4 Exp(GT ,U)
+ 2 Pairing (+Verify) and our GVerify algorithm requires 6 Exp(GT ,U) + 4 Pairing (+Verify) Here, we
apply bilinearity of pairing in order to optimize the costs of algorithms by using Table 2 as follows. For
GSign, we modify R1 and R2 as

R1 = e(hrδ−rxβA−rx , g2) e(h,W)rβ ,

R2 = e(g1, g2)
rx

x+T ,

12https://www.openssl.org
13https://wiki.gnome.org/Projects/GLib

13

Table 3: OpenSSL signing and verification costs (msec)

x86 64 Server Raspberry Pi

3072-bit RSA
Sign 2.844 236.736
Verify 0.061 5.165

3072-bit DSA
Sign 0.942 75.864
Verify 1.154 90.917

prime256v1 Sign 0.041 12.383
ECDSA Verify 0.104 14.716

Table 4: The number of operations for each algorithms

Algorithms Operations

GSign (Original) 2 Mul(G1,K) + 4 Exp(GT) + 2 Pairing (+Verify)
GSign (Pairing-free) 2 Mul (G1,K) + 4 Exp(GT) (+Verify)
GSign (Optimized) 4 Mul(G1,K) + 2 Exp(GT) + 1 Pairing (+Verify)
TokenGen 1 Mul (G2,K) + Sign
GVerify (Original) 6 Exp(GT) + 4 Pairing (+ Verify)
GVerify (Optimized) 5 Mul(G2,K) + 1 Exp(GT) + 3 Miller loop + 2 Final exp. (+Verify)
Revoke |RLT | Mul(G1,K)

and this modification allows us to run the GSign algorithm with 4 Mul(G1,K) + 2 Exp(GT ,U) + 1 Pairing
(+Verify) Moreover, for GVerify, we modify R′

1 and R′
2 as

R′
1 = e(h, gsδ2 W sβ) e(C, g−sx

2 W−c) e(g1, g2)
c,

R′
2 = e(τ, gsx2 W c

T) e(g1, g2)
−c,

and this modification allows us to run the GVerify algorithm with 5 Mul(G2,K) + 1 Exp(GT ,U) +
3 Miller loop + 2 Final exp. (+Verify). As a remark, we use Mul(G2,K) for computing W c

T since WT

is fixed during the time period T . If T is frequently updated, Mul(G2,U) should be used instead. We
summarize the number of operations for each algorithms in Table 4. We can reduce the number of
Exp(GT ,U) and pairings from the originals. In our environment, the running time of GSign (Optimized)
is faster than that of GSign (Pairing-free). However, if the running time of 2 Exp(GT ,Type) is faster
than that of 1 Pairing, then Pairing-free variant is more efficient.

Benchmarks of each algorithms: We give our experimental results of our GS-TDL scheme in Table 5.
The total number of signers is 10,000,000, and the number of revoked signers is specified in parentheses ()
in the GVerify algorithm and the Revoke algorithm. We employ 3072-bit RSA for (TokenGen, Sign,Verify)
which is used in our GS-TDL scheme since the verification cost (which is run by signers in the GSign
algorithm) is faster than that of DSA and ECDSA in our environment.

We evaluate our results as follows.

• (Almost) Constant Verification Cost: First of all, we should highlight that cryptographic oper-
ations in the GVerify algorithm do not depend on the number of revoked vehicles (i.e., scalable)
due to our time-dependent linkability, i.e., τ is deterministic, though we employ VLR-type re-
vocation. In our implementation, a table preserves (ID, x) in the Join algorithm is regarded as
grs, and ID is set as a searching key (i.e., the table takes ID as input, and outputs the corre-
sponding x). In the Revoke algorithm, an array of (ID, x, τ) which corresponds to information
of revoked users is constructed, and each τ contained in the array are updated on T such that

RLT := {(IDT,1, g
1

xT,1+T

1), . . . (IDT,nT
, g

1
xT,nT

+T

1)}, and the corresponding hash table of τ is gener-
ated for (almost) constant-time searching. Therefore, the cost of the Revoke algorithm depends
on the number of revoked vehicles (but we emphasize that this procedure is run by the key issuer,

14

Table 5: Benchmarks (msec)

Algorithms x86 64 Server Raspberry Pi

Join 0.146 -
TokenGen 2.92 238.553
GSign (Optimized) 2.078 142.472
GSign (Pairing-free) 2.212 161.616
GVerify(1,000) 2.889 210.883†

GVerify(10,000) 2.891 -
GVerify(100,000) 2.892 -
GVerify(1,000,000) 2.888 -
Revoke(1,000) 55.706 -
Revoke(10,000) 555.466 -
Revoke(100,000) 5,578.380 -
Revoke(1,000,000) 55,640.379 -

† The GVerify algorithm on Raspberry Pi does not contain the cost
of serching on the revocation list.

Table 6: Simulation Environments

Software CPU RAM

PTV VISSIM 5.4 Core i7-4500U 1.8GHz 4GB
RapLab 8.0.4 Core i5-3470 3.2GHz 12GB
QualNet 7.4 Xeon E5-2643v3 3.40GHz × 2 (6 cores × 2) 256GB

who has plenty of computational resource.). In the GVerify algorithm, the verifier can easily check
whether τ is contained in RLT or not by using the hash table without any cryptographic operation.

• Practically Efficient Signing: In some situation, such as a road-to-vehicle communication system
introduced in the next subsection, a verifier has a constrained computational power, and moreover
the verifier needs to generate signatures frequently. In our experimental result, the GSign algorithm
can be run at 142.472 msec even on Raspberry Pi, and it is comparable to RSA/DSA with similar
security level, though our system additionally supports anonymity. If the verifier has a standard
computational power (as in x86 64 server), then the GSign/GVerify algorithms can be run at 2.078
msec and 2.889 msec respectively. This result shows that our system is feasible enough in practice.

5.2 Network Simulation

For constructing an actual system, we need to find a suitable time period interval (e.g., 1 sec, 1 hour, 1
day, etc.). Moreover, we need to decide when vehicles generate signatures and send them to RSUs (e.g.,
a vehicle does when it comes within a range of a RSU, a vehicle broadcasts local info with a signature
at fixed intervals, etc.). We need to investigate these values by simulation. Here, we give our simulation
results for specifying the time T . We employ a traffic simulator PTV, a radio wave propagation analysis
tool RapLab, and a network simulator QualNet. Simulation environments are shown in Table 6. The
running time of PTV and RapLab is about 20 minutes in total, and that of QualNet is about 8 hours
in total.

System Architecture: We define four entities as follows: a vehicle V, the vehicle manufacturer VM,
the Road Side Unit RSU , and the Token Generation Unit T GU . We can consider multiple RSUs but
we assume only one T GU in this paper. We assume that params ← Setup(1λ) has been honestly run,
and all entities share params. First, VM runs (gpk, gsk, grs,RL0)← GKeyGen(params) and T GU runs
(tpk, tsk) ← TKeyGen(params). When a vehicle V is sold, VM runs sigkID ← Join(gsk, grs, ID), and V
preserves sigkID. In each time period T , T GU runs tT ← TokenGen(tsk, T) and broadcasts tT . Moreover,
VM updates the revocation list, and sends RLT to all RSU . A vehicle V generates a group signature

15

on local information M such that σ ← GSign(gpk, tpk, tT , sigkID,M).

Simulation Setup: We consider the following two cases:

• Method 1: A vehicle V generates σ every a few second, and broadcasts (M,σ, T). In our simulation,
we set three seconds as its interval.

• Method 2: A vehicle V generates σ and sends (M,σ, T) to an RSU when V enters a certain range
of the RSU . In our simulation, the range is 239m.

We set T as 10 minutes, and prepare a “blank” time period where vehicles stop to generate signatures
during the blank time14. We set 10 minutes as the blank. After the blank time period, the next T will
start and vehicles generate signatures (according to the method). The communication protocol from a
vehicle V to an RSU is IEEE 802.11p. The road network considered covers an area of 2.4 × 2.4 km2.
We selected two places for different visibility. One is Ginza area, which has low visibility due to tall
buildings, and the other is Koganei area, which has high visibility. We set 2,000 vehicles and 1,000
vehicles in these areas, respectively. Since about 200,000 vehicles are discarded per a year in Japan15,
we set the number of revoked vehicles is 4,000,000 that covers the number of discarded vehicles during
20 years. The detailed simulation flow is as follows:

1. At the beginning of the time period T , VM generates the current revocation list, and each RSU
receives it. In the simulation, each RSU waits a few minutes which are determined by the size of
the revocation list and Table 5. We set it 278.2 seconds, and assume that there is a channel to
send the revocation list to each RSU and ignore the sending time.

2. Right after T starts, each vehicle generates a group signature and send it to RSUs (according
to the method). We assume that each vehicle can obtain a time token immediately, and ignore
this time. In the simulation, each vehicle waits 142.472 msec (see Table 5) for generating a group
signature. If RSUs wait to receive the revocation list, then RSUs preserve the group signature,
and verify it after the waiting time. In the simulation, each RSU waits 2.90 msec (see Table 5)
for a group signature verification.

3. During the blank time, each vehicle does nothing. If RSUs have group signatures that have not
been verified, then RSUs verify these signatures.

We display our simulation results over maps in Fig 2, 3, 4, and 5. We use OpenStreetMap.16 Each dot
indicates a group signature generated by a vehicle. In our simulation (60 minutes), the vehicle generates
signatures during the first 10 minutes which are colored by red. After the blank time (10 minutes),
these signatures are colored by black during 10 minutes. Again, after the blank time (10 minutes),
these signatures are colored by brown during 10 minutes. Recall that, as the colors in the figures show,
signatures generated in the same time period are linkable, and ones generated in different time periods
are unlinkable. For the sake of clarity, we draw blue line as the route that the vehicle went through
during the simulation.

Our simulation results indicate that Method 2 is more suitabe to correct linkable information since
we can easily follow the track of the route that a vehicle passes during 10 minutes. Since we set RSUs
to cover the map, e.g., on lights of crossroad, a middle of a long road, and so on, we need to consider
more adequate installation location of RSUs in practice. We leave it as a future work of this paper.

14This blank time is necessary to cut linkage of location information which would be contained in messages. Suppose
that a vehicle broadcasts a message and a corresponding signature periodically, e.g. in a second, and there is no such blank
time. Then, the last message generated in the time period T and the first message generated by the next time period are
linkable even though corresponding signatures are unlinkable, since locations indicated by these messages are too close to
guess these are generated by the same vehicle.

15Japan Automobile Dealers Association (Japanese): http://www.jada.or.jp/
16OpenStreetMap: https://www.openstreetmap.org/

16

Figure 2: Method 1: Ginza, 2,000 vehicles Figure 3: Method 2: Ginza, 2,000 vehicles

Figure 4: Method 1: Koganei, 1,000 vehicles Figure 5: Method 2: Koganei, 1,000 vehicles

The number of stacked signatures on RSUs: Since each vehicle sends group signatures during
RSUs wait to receive the revocation list, these signatures are stacked in RSU to wait verification. Fig 6
shows the number of stacked signature in an RSU . As the figure shows, the number of stacked signature
is immediately reduced after the RSUs start to verify the signatures. This result shows that our scheme
has enough performance for road-to-vehicle communication systems even in a practical situation.

17

Figure 6: RSUstack

6 Conclusion

In this paper, we propose a road-to-vehicle communication system via group signatures with time-token
dependent linking (GS-TDL), and show our network simulation whose results indicate our system has
enough performance for road-to-vehicle communication systems even in a practical situation. Since our
system has not only a good performance but also supports the revocation property which is indispensable
in real systems. It is particularly worth noting that no vehicle is involved in the revocation procedure
and the signing/verification costs do not depend on the number of revoked vehicles.

Acknowledgement

We would like to thank Ryo Nojima for his helpful comments and suggestions.

References

[1] IntelliDrive Program. Available at http://www.intellidrive.org.

[2] ITS Info-communications Forum. Available at http://www.itsforum.gr.jp/E_index.html.

[3] PRESERVE: Preparing Secure Vehicle-to-X Communication Systems. Available at http://www.
preserve-project.eu/.

[4] TEPLA: University of Tsukuba Elliptic Curve and Pairing Library. Available at http://www.

cipher.risk.tsukuba.ac.jp/tepla/index_e.html.

[5] M. Abe, S. S. M. Chow, K. Haralambiev, and M. Ohkubo. Double-trapdoor anonymous tags for
traceable signatures. Int. J. Inf. Sec., 12(1):19–31, 2013.

[6] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. Structure-preserving signatures
and commitments to group elements. In CRYPTO, pages 209–236, 2010.

[7] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography. https:

//github.com/relic-toolkit/relic.

[8] N. Attrapadung, K. Emura, G. Hanaoka, and Y. Sakai. Revocable group signature with constant-
size revocation list. Comput. J., 58(10):2698–2715, 2015.

[9] J. Balasch, A. Rial, C. Troncoso, B. Preneel, I. Verbauwhede, and C. Geuens. PrETP: Privacy-
preserving electronic toll pricing. In USENIX Security Symposium, pages 63–78, 2010.

[10] R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé. A heuristic quasi-polynomial algorithm for
discrete logarithm in finite fields of small characteristic. In EUROCRYPT, pages 1–16, 2014.

18

[11] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In Selected
Areas in Cryptography, pages 319–331, 2005.

[12] M. Belenkiy, M. Chase, M. Kohlweiss, and A. Lysyanskaya. Compact e-cash and simulatable VRFs
revisited. In Pairing, pages 114–131, 2009.

[13] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definitions,
simplified requirements, and a construction based on general assumptions. In EUROCRYPT, pages
614–629, 2003.

[14] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups.
In CT-RSA, pages 136–153, 2005.

[15] P. Bichsel, J. Camenisch, G. Neven, N. P. Smart, and B. Warinschi. Get shorty via group signatures
without encryption. In SCN, pages 381–398, 2010.

[16] D. Boneh and X. Boyen. Short signatures without random oracles and the SDH assumption in
bilinear groups. J. Cryptology, 21(2):149–177, 2008.

[17] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO, pages 41–55, 2004.

[18] D. Boneh and H. Shacham. Group signatures with verifier-local revocation. In ACM Conference
on Computer and Communications Security, pages 168–177, 2004.

[19] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, and J. Groth. Foundations of fully dynamic group
signatures. Cryptology ePrint Archive, Report 2016/368, 2016. http://eprint.iacr.org/.

[20] C. Busold, A. Taha, C. Wachsmann, A. Dmitrienko, H. Seudie, M. Sobhani, and A.-R. Sadeghi.
Smart keys for cyber-cars: secure smartphone-based NFC-enabled car immobilizer. In CODASPY,
pages 233–242, 2013.

[21] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and M. Meyerovich. How to win the
clone wars: efficient periodic n-times anonymous authentication. In ACM Conference on Computer
and Communications Security, pages 201–210, 2006.

[22] D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT, pages 257–265, 1991.

[23] B. K. Chaurasia, S. Verma, and S. M. Bhasker. Message broadcast in VANETs using group
signature. In WCSN, pages 131–136, 2009.

[24] C. Delerablée and D. Pointcheval. Dynamic fully anonymous short group signatures. In VI-
ETCRYPT, pages 193–210, 2006.

[25] D. Derler and D. Slamanig. Fully-anonymous short dynamic group signatures without encryption.
Cryptology ePrint Archive, Report 2016/154, 2016. http://eprint.iacr.org/.

[26] C. Dwork. Differential privacy. In ICALP, pages 1–12, 2006.

[27] K. Emura and T. Hayashi. A light-weight group signature scheme with time-token dependent
linking. In LightSec, pages 37–57, 2015.

[28] K. Emura, A. Kanaoka, S. Ohta, and T. Takahashi. Secure and anonymous communication tech-
nique: Formal model and its prototype implementation. IEEE Transactions on Emerging Topics
in Computing, pages 1, PrePrints, doi:10.1109/TETC.2015.2400131, 2015.

[29] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO, pages 186–194, 1986.

[30] M. K. Franklin and H. Zhang. Unique group signatures. In ESORICS, pages 643–660, 2012.

19

[31] J. Furukawa and H. Imai. An efficient group signature scheme from bilinear maps. IEICE Trans-
actions, 89-A(5):1328–1338, 2006.

[32] M. Götz, S. Nath, and J. Gehrke. Maskit: privately releasing user context streams for personalized
mobile applications. In ACM SIGMOD, pages 289–300, 2012.

[33] R. Granger, T. Kleinjung, and J. Zumbrägel. Breaking ‘128-bit secure’ supersingular binary curves
(or how to solve discrete logarithms in F24·1223 and F212·367). In CRYPTO (2), pages 126–145, 2014.

[34] J. Groth. Fully anonymous group signatures without random oracles. In ASIACRYPT, pages
164–180, 2007.

[35] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In EUROCRYPT,
pages 415–432, 2008.

[36] J. Guo, J. P. Baugh, and S. Wang. A Group Signature Based Secure and Privacy-Preserving
Vehicular Communication Framework. In Mobile Networking for Vehicular Environments, pages
103–108, 2007.

[37] J. Y. Hwang, L. Chen, H. S. Cho, and D. Nyang. Short dynamic group signature scheme supporting
controllable linkability. IEEE Transactions on Information Forensics and Security, 10(6):1109–
1124, 2015.

[38] J. Y. Hwang, S. Lee, B.-H. Chung, H. S. Cho, and D. Nyang. Short group signatures with control-
lable linkability. In LightSec, pages 44–52, 2011.

[39] J. Y. Hwang, S. Lee, B.-H. Chung, H. S. Cho, and D. Nyang. Group signatures with controllable
linkability for dynamic membership. Inf. Sci., 222:761–778, 2013.

[40] K. Kasamatsu, S. Kanno, T. Kobayashi, and Y. Kawahara. Barreto-naehrig curves. Internet-
Draft draft-kasamatsu-bncurves-01, IETF Secretariat, July 2015. http://www.ietf.org/

internet-drafts/draft-kasamatsu-bncurves-01.txt.

[41] A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In EUROCRYPT, pages 571–589,
2004.

[42] V. Kumar, H. Li, J. J. Park, K. Bian, and Y. Yang. Group signatures with probabilistic revocation:
A computationally-scalable approach for providing privacy-preserving authentication. In ACM
Conference on Computer and Communications Security, pages 1334–1345, 2015.

[43] A. Langlois, S. Ling, K. Nguyen, and H. Wang. Lattice-based group signature scheme with verifier-
local revocation. In Public Key Cryptography, pages 345–361, 2014.

[44] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and ℓ-diversity.
In ICDE, pages 106–115, 2007.

[45] B. Libert, T. Peters, and M. Yung. Group signatures with almost-for-free revocation. In CRYPTO,
pages 571–589, 2012.

[46] B. Libert, T. Peters, and M. Yung. Scalable group signatures with revocation. In EUROCRYPT,
pages 609–627, 2012.

[47] B. Libert, T. Peters, and M. Yung. Short group signatures via structure-preserving signatures:
Standard model security from simple assumptions. In CRYPTO, pages 296–316, 2015.

[48] B. Libert and D. Vergnaud. Group signatures with verifier-local revocation and backward unlink-
ability in the standard model. In CANS, pages 498–517, 2009.

20

[49] J. K. Liu, C. Chu, S. S. M. Chow, X. Huang, M. H. Au, and J. Zhou. Time-bound anonymous
authentication for roaming networks. IEEE Transactions on Information Forensics and Security,
10(1):178–189, 2015.

[50] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. ℓ-diversity: Privacy beyond
k-anonymity. In ICDE, page 24, 2006.

[51] L. Malina, J. Hajny, and V. Zeman. Light-weight group signatures with time-bound membership.
Security and Communication Networks, 9(7):599–612, 2016.

[52] M. S. I. Mamun and A. Miyaji. Group signature with relaxed-privacy and revocability for VANET.
IACR Cryptology ePrint Archive, 2013:804, 2013.

[53] M. S. I. Mamun and A. Miyaji. Secure VANET applications with a refined group signature. In
PST, pages 199–206, 2014.

[54] S. Meiklejohn, K. Mowery, S. Checkoway, and H. Shacham. The phantom tollbooth: Privacy-
preserving electronic toll collection in the presence of driver collusion. In USENIX Security Sym-
posium, 2011.

[55] T. Nakanishi, T. Fujiwara, and H. Watanabe. A linkable group signature and its application to
secret voting. JIP, 40(7):3085–3096, 1999.

[56] T. Nakanishi and N. Funabiki. Verifier-local revocation group signature schemes with backward
unlinkability from bilinear maps. In ASIACRYPT, pages 533–548, 2005.

[57] T. Nakanishi and N. Funabiki. A short verifier-local revocation group signature scheme with back-
ward unlinkability. In IWSEC, pages 17–32, 2006.

[58] D. Pointcheval and O. Sanders. Short randomizable signatures. In CT-RSA, pages 111–126, 2016.

[59] R. A. Popa, H. Balakrishnan, and A. J. Blumberg. VPriv: Protecting privacy in location-based
vehicular services. In USENIX Security Symposium, pages 335–350, 2009.

[60] B. Qin, Q. Wu, J. Domingo-Ferrer, and L. Zhang. Preserving security and privacy in large-scale
VANETs. In ICICS, pages 121–135, 2011.

[61] I. Rouf, R. D. Miller, H. A. Mustafa, T. Taylor, S. Oh, W. Xu, M. Gruteser, W. Trappe, and
I. Seskar. Security and privacy vulnerabilities of in-car wireless networks: A tire pressure monitoring
system case study. In USENIX Security Symposium, pages 323–338, 2010.

[62] Y. Sun, Z. Feng, Q. Hu, and J. Su. An efficient distributed key management scheme for group-
signature based anonymous authentication in VANET. Security and Communication Networks,
5(1):79–86, 2012.

[63] Y. Sun, R. Lu, X. Lin, X. Shen, and J. Su. An efficient pseudonymous authentication scheme
with strong privacy preservation for vehicular communications. IEEE T. Vehicular Technology,
59(7):3589–3603, 2010.

[64] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[65] S. Tillich and M. Wójcik. Security analysis of an open car immobilizer protocol stack. In INTRUST,
pages 83–94, 2012.

[66] T. M. Truta, A. Campan, and P. Meyer. Generating microdata with p-sensitive k-anonymity
property. In Secure Data Management, pages 124–141, 2007.

21

[67] J. Wetzels. Broken keys to the kingdom: Security and privacy aspects of RFID-based car keys.
CoRR, abs/1405.7424, 2014.

[68] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn. A security credential management system
for V2V communications. In IEEE Vehicular Networking Conference, pages 1–8, 2013.

[69] Q. Wu, J. Domingo-Ferrer, and Ú. González-Nicolás. Balanced trustworthiness, safety, and privacy
in vehicle-to-vehicle communications. IEEE T. Vehicular Technology, 59(2):559–573, 2010.

[70] Y. Xi, K. Sha, W. Shi, L. Schwiebert, and T. Zhang. Probabilistic adaptive anonymous authenti-
cation in vehicular networks. J. Comput. Sci. Technol., 23(6):916–928, 2008.

[71] Y. Xi, W. Shi, and L. Schwiebert. Mobile anonymity of dynamic groups in vehicular networks.
Security and Communication Networks, 1(3):219–231, 2008.

[72] M. Xu, W. Xu, J. Walker, and B. Moore. Lightweight secure communication protocols for in-vehicle
sensor networks. In CyCAR, pages 19–30, 2013.

A. Security Analysis of Our GS-TDL

In this appendix, we give security proofs of our GS-TDL scheme.

Proof of Theorem 4.1

Proof. We define the following two games: Game 0 is the same as Expanon-tg-bGS-TDL,A(λ). Game 1 is the same
as Game 0, except τ∗ contained in σ∗ is randomly chosen, and σ∗ is generated by the simulation of
NIZK. Here, we show that there exist an algorithm B that breaks the SDDHI problem by using A as
follows.

Let (p,G1,G2,GT , e, g1, g2) be a bilinear group, and (g1, g2, g
x
1) is an instance of the SDDHI problem.

Let q be the number of AddU queries. B chooses i∗ ∈ [1, q] and set x is a part of signing key of the

user. B chooses γ
$← Zp, and h

$← G1, computes W = gγ2 , and sets gpk = (params, h,W, e(g1, g2),
e(h,W), e(h, g2),H), where H : {0, 1}∗ → Zp is a hash function modeled as a random oracle. B also
runs (vk, sigk)← Gen(1λ), and sets tpk := vk and tsk := sigk. B sends gpk, tpk, and tsk to A.

In the i-th AddU query (with input ID), where i ̸= i∗, B chooses x, y
$← Zp, computes A = (g1h

−y)
1

γ+x ,
sets sigkID = (x, y,A), and adds ID to GU. In the i∗-th AddU query (with input ID∗), B adds ID∗ to GU.

For a GSign query with input (ID, tT ,M), if ID ̸∈ GU, then B runs the simulation of the AddU
oracle. If ID ̸= ID∗, then B computes a group signature σ as in the actual GSign algorithm, returns σ

to A, and adds (ID, T) to STSet. Let ID = ID∗. B sends T to Ox, and obtains τ = g
1

x+T

1 . B chooses

sx, sδ, sβ, c
$← Zp and C

$← G1, computes

R1 =
e(h, g2)

sδe(h,W)sβ

e(C, g2)sx

(e(C,W)

e(g1, g2)

)−c

and

R2 = e(τ, g2)
sx
(e(g1, g2)
e(τ,WT)

)−c
,

and patches H such that c := H(gpk, tpk, C, τ, R1, R2,M). B returns σ = (C, τ, c, sx, sδ, sβ) to A.
In the challenge phase, A sends (IDi0 , IDi1 , tT0 , tT1 ,M

∗
0 ,M

∗
1) to B. B chooses b

$← {0, 1}. If IDib ̸= ID∗,
then B aborts. Let IDib = ID∗ (this holds with the probability at least 1/q). Next, we consider the
following two cases:

22

• T0 = T1: Let (T,WT) be contained in both tT0 and tT1 . B sends T := T0 = T1 to the challenger
of the SDDHI problem, and obtains τ∗. We remark that T was not sent to Ox. B chooses

s∗x, s
∗
δ , s

∗
β, c

∗ $← Zp and C∗ $← G1, computes

R∗
1 =

e(h, g2)
s∗δe(h,W)s

∗
β

e(C, g2)s
∗
x

(e(C,W)

e(g1, g2)

)−c∗

and

R2 = e(τ∗, g2)
s∗x
(e(g1, g2)

e(τ∗,WT)

)−c∗
,

and patchesH such that c∗ := H(gpk, tpk, C∗, τ∗, R∗
1, R

∗
2,M

∗). B returns σ∗ = (C∗, τ∗, c∗, s∗x, s
∗
δ , s

∗
β)

to A.

• T0 ̸= T1: Let (T0,WT0) and (T1,WT1) be contained in tT0 and tT1 , respectively. B sends T0 to Ox,

and obtains τ∗0 = g
1

x+T0
1 . B chooses s∗x,0, s

∗
δ,0, s

∗
β,0, c

∗
0

$← Zp and C∗
0

$← G1, computes

R∗
1,0 =

e(h, g2)
s∗δ,0e(h,W)s

∗
β,0

e(C∗
0 , g2)

s∗x,0

(e(C∗
0 ,W)

e(g1, g2)

)−c∗0

and

R∗
2,0 = e(τ∗0 , g2)

s∗x,0
(e(g1, g2)

e(τ∗0 ,WT0)

)−c∗0 ,

and patches H such that c∗0 := H(gpk, tpk, C∗
0 , τ

∗
0 , R

∗
1,0, R

∗
2,0,M

∗
0). Moreover, B sends T1 to the

challenger of the SDDHI problem, and obtains τ∗1 . We remark that T1 was not sent to Ox. B
chooses s∗x,1, s

∗
δ,1, s

∗
β,1, c

∗
1

$← Zp and C∗
1

$← G1, computes

R∗
1,1 =

e(h, g2)
s∗δ,1e(h,W)s

∗
β,1

e(C∗
1 , g2)

s∗x,1

(e(C∗
1 ,W)

e(g1, g2)

)−c∗1

and

R∗
2,1 = e(τ∗1 , g2)

s∗x,1
(e(g1, g2)

e(τ∗1 ,WT1)

)−c∗1 ,

and patchesH such that c∗1 := H(gpk, tpk, C∗
1 , τ

∗
1 , R

∗
1,1, R

∗
2,1,M

∗
1). B returns σ∗

0 = (C∗
0 , τ

∗
0 , c

∗
0, s

∗
x,0, s

∗
δ,0, s

∗
β,0)

and σ∗
1 = (C∗

1 , τ
∗
1 , c

∗
1, s

∗
x,1, s

∗
δ,1, s

∗
β,1) to A.

Finally, A outputs b′. If τ∗ = g
1

x+T (or τ∗1 = g
1

x+T1), then B simulates Game 0, and if τ∗ (or τ∗1) is a
random value, then B simulates Game 1. In Game 1, no information of the challenge bit b is revealed
from σ∗, σ∗

0, and σ∗
1. So, B desides the challenge is a random value if b′ ̸= b, and it is not a random

value, otherwise, and solves the SDDHI problem. We remark that B can revoke ID∗ at a time T ′ > T
(or T ′ > T1) using the Ox oracle. This concludes the proof.

Proof of Theorem 4.2

Proof. We consider the following two cases. The first one is A produces a valid signature although A
does not have tT ((1) ∧ (2) ∧ (3) in the definition), and the second one is A produces a valid signature
although A does not have a signing key ((1) ∧ (2) ∧ (4) in the definition).

First Case: We construct an algorithm B that breaks EUF-CMA security of the underlying signature
scheme (Gen, Sign,Verify). The challenger of the signature scheme runs (vk, sigk)← Gen(1λ), and sends
vk to B. B sets tpk := vk, runs params ← Setup(1λ) and (gpk, gsk) ← GKeyGen(params), and sends
(gpk, tpk) to A. For a TokenGen query T , B computes WT = gT2 , sends WT to the challenger as a signing
query, and obtains Σ. B sets tT = (T,WT ,Σ), and sends tT to A. Since B has gsk, B can respond all
AddU, GSign, and USK queries. We remark that A does not access the TSK oracle. Finally, A outputs

23

(T,M, σ). Since σ is a valid group signature, there exist (Σ,WT) such that WT is used in the verification
algorithm, and Σ is a valid signature under vk. That is, A produces tT = (T,WT ,Σ), and sets it via the
SetToken oracle. Since WT is not sent to B as a TokenGen query, B outputs (Σ,WT) as a forgery of the
signature scheme.

Second Case: We construct an algorithm B that breaks the q-SDH problem as follows. Let (g1, g
γ
1 , . . . , g

γq

1 ,
g2, g

γ
2) be an SDH instance. Here, q be the number of AddU queries. B runs (vk, sigk) ← Gen(1λ), and

sets tpk := vk. B chooses x1, . . . , xq, y1, . . . , yq
$← Zp and α, θ

$← Z∗
p. Let define

f(X) =

q∏
i=1

(X + xq) :=

q∑
i=0

αiX
i

and

fi(X) := f(X)/(X − xi) =

q∏
j=1,j ̸=i

(X + xi) :=

q−1∑
i=1

βiX
i,

and set g′1 = (
∏q

i=0(g
γi

1)αi)
θ = g

θf(γ)
1 . Then, for each i ∈ [1, q] (

∏q−1
j=0(g

γi

1)βi)θ = g
θfi(γ)
1 = g′1

1
γ+xi hold. Set

h := g′1
α. For each i ∈ [1, q], B computes Ai := (g′1

1
γ+xi)1−yiα = (g′1h

−y)
1

γ+xi . B sets W := gγ2 , params
= (G1,G2,GT , e, g

′
1, g2), and gpk = (params, h,W, e(g′1, g2), e(h,W), e(h, g2),H), and gives (gpk, tpk) to

A.
For an AddU query, B chooses unselected x ∈ {x1, . . . , xq} and sets the corresponding (x, y,A) as

the signing key. Since B has tsk, B can respond TokenGen and TSK queries. Moreover, B can respond
GSign and Revoke queries since B has all signing keys (xi, yi, Ai) for each i ∈ [1, q].

Finally, A outputs a forge group signature σ = (C, τ, c, sx, sδ, sβ). B rewinds A and obtains σ′ =
(C, τ, c′, s′x, s

′
δ, s

′
β) where c ̸= c′ with non-negligible probability (due to the forking lemma). Set

x̃ :=
sx − s′x
c− c′

, ỹ :=
(sx − s′x)(sβ − s′β)− (sδ − s′δ)(c− c′)

(c− c′)2
,

and β̃ :=
sβ − s′β
c− c′

.

Then,

e(C,W)

e(g′1, g2)
=

e(h, g2)
β̃x̃−ỹe(h,W)β̃

e(C, g2)x̃

and

e(τ, g2)
x̃ =

e(g′1, g2)

e(τ,WT)

hold. That is, (x̃, ỹ, Ã) can be extracted. If 1 − ỹα = 0, then B aborts. Moreover, if x̃ ∈ {x1, . . . , xq},
then B aborts. Since α and all x are randomly chosen, the aborting probability is at most q/p, and is
negligible. From now on, we assume that 1− ỹα ̸= 0 and x̃ ̸∈ {x1, . . . , xq}. Since Ã can be represented

as Ã = (g′1h
−ỹ)

1
γ+x̃ , B can compute Ã

1
1−ỹα = g′1

1
γ+x̃ = (g

θf(γ)
1)

1
γ+x̃ . Next, B computes F (X) and γ∗ ∈ Z∗

p

which satisfy f(X) = (X + x̃)F (X) + γ∗. Finally, B computes

((
(g

θf(γ)
1)

1
γ+x̃

) 1
θ

q−1∏
i=0

(gx
i

1)−Fi

) 1
γ∗ = g

1
γ+x̃

1 ,

where F (X) :=
∑q−1

i=0 FiX
i, and outputs (x̃, g

1
γ+x̃

1) as a solution of the SDH problem.

Proof of Theorem 4.3

24

Proof. Let (ID0, ID1, T0, T1,M) and (M∗, σ∗) be the output of A, where (ID0, T0) ̸= (ID1, T1). Let x0 be
contained in sigkID0

and x1 be contained in sigkID1
, respectively. If Link(gpk, tpk,RLT , (M,σ0, T0), (M

∗, σ∗, T1)) =

1, then g
1

x0+T0
1 = g

1
x1+T1
1 and T = T0 = T1 holds. Then, x0 = x1 holds. Since x0 and x1 are randomly

chosen, this equation holds with probability at most 1/p. This concludes the proof.

25

