
Improved Parameters and an Implementation
of Graded Encoding Schemes from Ideal Lattices

Martin R. Albrecht1, Catalin Cocis2, Fabien Laguillaumie3, and Adeline Langlois4

1 Information Security Group, Royal Holloway, University of London
2 Technical University of Cluj-Napoca

3 Université Claude Bernard Lyon 1, LIP (U. Lyon, CNRS, ENS Lyon, INRIA, UCBL)
4 EPFL, Switzerland

Abstract. We discuss how to set parameters for GGH-like graded encoding schemes approximating
cryptographic multilinear maps from ideal lattices and propose a strategy which reduces parameter
sizes for concrete instances. Secondly, we discuss a first software implementation of a graded encoding
scheme based on GGHLite, an improved variant of Garg, Gentry and Halevi’s construction (GGH)
due to Langlois, Stehlé and Steinfeld. Thirdly, we provide an implementation of non-interactive
N -partite Diffie-Hellman key exchange. We discuss our implementation strategies and show that
our implementation outperforms previous work.

1 Introduction

Multilinear maps, starting with bilinear ones, are crucial tools for designing cryptosystems. When
pairings were introduced to cryptography [Jou04], many previously unreachable cryptographic
primitives, such as identity-based encryption [BF03], became possible to construct. Maps of
higher degree of linearity were conjectured to be hard to find – at least in the “realm of algebraic
geometry” – [BS03]. But in 2013 Garg, Gentry and Halevi [GGH13a] proposed a construction,
relying on ideal lattices, of a so-called “graded encoding scheme” that approximates the concept
of a cryptographic multilinear map.

Graded encoding schemes quickly found many applications in cryptography. Already in
[GGH13a] the authors showed how to adapt the generalisation of the Diffie-Hellman key exchange
first constructed with cryptographic bilinear maps [BS03]: the protocol allows N users to share
a secret key with only one broadcast message each. A graded encoding scheme also allows
to construct very efficient broadcast encryption [BS03,BWZ14]: a broadcaster can encrypt a
message and send it to a group where only a part of it (decided by the broadcaster before
encrypting) will be able to read it. Moreover, [GGH+13b] introduced new constructions based on
graded encoding schemes that go beyond what was previously considered feasible: they proposed
indistinguishability obfuscation (iO) and functional encryption based on multilinear maps and
some additional assumptions.

The principle of the GGH scheme is as follows: we are given a public principal ideal I,
generated by a small secret element g of a polynomial ring R = Z[X]/(Xn + 1), a secret element
z uniformly sampled in Rq, and a public element y which is a level-1 encoding of 1 of the form
[a/z]q with a ←↩ D1+I,σ′ (discrete Gaussian of support 1 + I and parameter σ′). We are also

given m level-i encodings of 0 named x
(i)
j , for all 1 ≤ i ≤ κ, and a zero-testing parameter pzt. To

encode an element of R/I at level-i, we multiply it by yi in Rq (which give an element of the form
[c/zi]q, where c is an arbitrary small coset representative). Then we add a linear combination

of encodings of 0 at level-i of the form
∑

i ρjx
(i)
j to it where the ρj are sampled from a discrete

Gaussian with parameter σ?. This last step is the re-randomisation process and ought to ensure
that the analogue of the discrete logarithm problem is hard: going from level-i to level-0, for
example by multiplying the encoding by y−i. Hence, anyone can encode at a superior level, given

a level-0 encoding for example, but it is assumed hard to come back to an inferior level. The
encodings are additively homomorphic at the same level, and multiplicatively homomorphic up
to κ operations. Multiplication of a level-i and a level-j encodings gives a level-(i+ j) encoding.
Additionally, a zero-testing parameter pzt allows to test if a level-κ element is an encoding of 0,
and hence also allows to test if two level-κ encodings are encoding the same elements. Finally,
the extraction procedure uses pzt to extract ` bits which are a “canonical” representation of a
ring element given the level-κ encoding of this element.

Now, given this construction for κ = N − 1, the principle of the N -partite Diffie-Hellman
key exchange is as follows: during the Setup phase all parameters of the system are chosen. In
the Publish phase each ith party chooses a (secret) random level-0 encoding ei, encodes it at
level-1 and publish this level-1 encoding. Then, in the KeyGen phase, each party multiplies her
level-0 encoding with (N − 1) level-1 encodings (of the other users) to obtain a level-κ encoding
of e = ΠN

i=1ei. Finally, each party runs the extraction procedure on this element to obtain the
same shared secret key. Note that it is easy to find a “level-(κ+ 1)” encoding of e by multiplying
all the public level-1 encodings, but hard to find a level-κ encoding of e without knowing one of
the ei.

However, instantiating and running this protocol based on the GGH construction is too costly
in practice for anything but toy instances. Coron, Lepoint and Tibouchi [CLT13] introduced an
alternative instantiation of a graded encoding scheme over the Integers. They also discuss a C++
implementation of a heuristic variant of this scheme, which was the only known implementation of
graded encoding schemes and of the multipartite Diffie-Hellman key exchange. They report that
the Setup phase ran in 27295s (parallelised on 16 cores), the Publish phase in 17.8s per party
(single core) and the KeyGen phase in 20.2s per party (single core) for a level of security λ = 80
and κ = 6 (i.e. N = 7). The the choices of λ = 80 and κ = 6 are the largest set of parameters
reported on. However, very recently [CHL+14] demonstrated that the CLT construction can be
broken in polynomial time if encodings of zero are published.

In 2014, Langlois, Stehlé and Steinfeld [LSS14b] proposed a new variant of GGH called
GGHLite, improving the re-randomisation process of the original scheme. It reduces the number
m of re-randomisers needed from Ω(n log n) to 2 and also the size of the parameter σ? used to
sample multipliers ρj during the re-randomisation phase from Õ(2λ λn4.5κ) to Õ(n5.5

√
κ) for a

security parameter λ. These improvements allow to reduce the size of the public parameters and to
improve the overall efficiency of the scheme. Indeed, with these improvements an implementation
of GGH-style graded encoding schemes from ideal lattices is feasible.

Our contribution. In this work, we first discuss how to choose practical parameters for the
GGHLite scheme. We rely on the analysis of [LSS14b] to ensure the correctness of all the
procedures of the scheme and on the analysis in [Gar13,CS97] to thwart the best known attacks.
Our refined analysis allows us to reduce the size of the parameters q and ` further compared
to [LSS14b]. Due to our modifications recovering a short multiple of g is typically less efficient
than attacking level-1 encodings of zero using a lattice as in [CS97].

Our main contribution is an implementation of a variant of the GGHLite scheme and of the N -
partite Diffie-Hellman key exchange. Our implementation is in C99 and is using the free software
libraries FLINT [HJP14], MPFR [The13] and GMP [Gt14]. We also make use of OpenMP to
parallelise our computations. Our implementation is made available under the GPLv2+ license.

We discuss our implementation choices and also compare our implementation with results
reported in [CLT13]. While [CLT13] has since been shown to be susceptible to attacks if encodings
of zero are published, the timings reported in [CLT13] are still the only reference to compare our
results to. Furthermore, some applications such as iO do not require public encodings of zero.
For those applications the CLT construction can still be used which gives another motivation to

2

compare with it. Our results are encouraging, as all the phases of the scheme are considerably
more efficient than in the implementation of the graded encoding scheme over the Integers at
security level λ = 80:

λ κ Setup Publish (pp) KeyGen (pp) pk size

[CLT13] 52 6 7s 0.18s 0.2s 26.0MB
This work 52 6 549s 3.66s 1.7s 139.5MB

[CLT13] 80 6 27295s 17.8s 20.2s 2.6GB
This work 80 6 2273s 9.0s 4.3s 300MB

Technical overview. Our implementation relies on FLINT [HJP14] but we provide our own
specialised implementations for operations in the ring of integers of Cyclotomic number fields of
order 2k such multiplication in Zq[X]/(Xn + 1), taking approximate square roots and inverses in
Q [X] /(Xn + 1) and for discrete Gaussian samplers over the Integers and over arbitrary lattices.
For the latter we use Ducas and Nguyen’s framework [DN12]. Our implementation of these
operations might be of independent interest.

Our variant of GGHLite foregos checking if g generates a prime ideal. That is, during instance
generation [LSS14b] specifies to sample g such that (g) is a prime ideal. This condition is needed
in [GGH13a] to ensure that no non-zero encoding passes the zero-testing test. Hence, we first
discuss how to speed up checking if (g) ⊂ Q [X] /(Xn + 1) is prime. However, rejection sampling
until an element is found which generates a prime ideal is still prohibitively expensive with these
improvements. Hence, in our implementation we assume that no non-zero encoding passes the
zero-testing test except perhaps with very small probability even when (g) is not prime and
forego this check. We ran two million tests on a given q to verify this hypothesis, but stress that
this does not provide sufficient assurances to rule out the possibility of this event happening. We
also note that while some applications rely on (g) being prime, they can often be adapted. We
note that picking g which is not prime was already mentioned in [Gar13, Section 6.3]. However,
in [Gar13] it is still required that g does not have any small prime factors which we do not ensure.

Our second contribution is to improve the size of the two parameters q and ` compared to
the one proposed in [LSS14b]. We first perform a finer analysis than [LSS14b], which allows
us to reduce the size of the parameter q by a factor 2. Then, we introduce a new parameter ξ,
which controls what fraction of q is considered “small”, i.e. passes the zero-testing test. This
also reduces the number of bits extracted from each coefficient `. Indeed, instead of setting
` = 1/4 log q − λ where λ is the security parameter, we set ` = ξ log q − λ with 0 < ξ ≤ 1/4. We
then argue that for a good choice of ξ this is enough to ensure the correctness of the extraction
procedure and the security of the scheme.

Open problems. Since we forego the requirement that (g) is prime, our implementation, is heuristic.
It is hence a natural question to either speed-up primality testing for principal ideals in cyclotomic
number fields of order 2k or investigate if this condition can be dropped. Furthermore, some
applications such as indistinguishability obfuscation have different requirements on the platform
graded encoding scheme which allow to reduce parameters further. Deriving concrete parameters
for these situations and evaluating the performance of the resulting schemes is, hence, also a
natural open question. Finally, establishing better estimates for lattice reduction and tuning the
parameter choices of our scheme are areas of future work.

Roadmap. After some preliminaries, we recall the GGHLite scheme, the one-round Diffie-Hellman
key exchange and the Ext-GCDH security assumption in Section 3. In Section 4, we explain
our choice of parameters for the scheme, especially concerning the parameter q. We also recall
the best known lattice attacks to explain this choice. In Section 5, we give the details of our

3

implementation. Finally, in Section 6, we provide the timings for the full scheme and compare
them with the existing one of [CLT13].

2 Preliminaries

Lattices and ideal lattices. An m-dimensional lattice L is an additive subgroup of Rm. A lattice
L can be described by its basis B = {b1, b2, . . . , bk}, with bi ∈ Rm, consisting in k linearly
independent vectors, for some k ≤ m, called the rank of the lattice. If k = m, we say that the
lattice has full-rank. The lattice L spanned by B is given by L = {

∑k
i=1 ci · bi, ci ∈ Z}. The

volume of the lattice L, denoted by vol(L), is the volume of the parallelepiped defined by its
basis vectors. We have vol(L) =

√
det(BTB), where B is any basis of L.

For n a power of two, let f(X) ∈ Z[X] be a monic polynomial of degree n (in our case,
f(X) = Xn + 1). Then, the polynomial ring R = Z[X]/f(X) is isomorphic to the integer
lattice Zn, i.e. we can identify an element u(X) =

∑n−1
i=0 ui · Xi ∈ R with its corresponding

coefficient vector (u0, u1, . . . , un−1). We also define Rq = R/qR = Zq[X]/(Xn + 1) (isomorphic
to Znq) for a large prime q and K = Q [X] /(Xn + 1) (isomorphic to Qn).

Given an element g ∈ R, we denote by I the principal ideal in R generated by g: (g) =
{g · u : u ∈ R}. The ideal (g) is also called an ideal lattice and can be represented by its
Z-basis (g,X · g, . . . , Xn−1 · g). For any y ∈ R, let [y]g be the reduction of y modulo I. That
is, [y]g is the unique element in R such that y − [y]g ∈ (g) and [y]g =

∑n−1
i=0 yiX

ig, with
yi ∈ [−1/2, 1/2),∀i, 0 ≤ i ≤ n− 1. We also use the same abuse of notation as [LSS14b] and let
σn(b) denotes the last singular value of the matrix rot(b) ∈ Zn×n, for any b ∈ I. For z ∈ R, we
denote by MSB` ∈ {0, 1}`·n the ` most significant bits of each of the n coefficients of z in R.

Gaussian distributions. For a vector c ∈ Rm and a positive parameter σ ∈ R, we define the Gaus-

sian distribution of center c and standard deviation σ as ρσ,c(x) = exp(−π ||x−c||
2

σ2), for all x ∈
Rm. This notion can be extended to ellipsoid Gaussian distribution by replacing the parameter
σ with the square root of the covariance matrix Σ = BBt ∈ Rm×m with det(B) 6= 0. We
define it by ρ√Σ,c(x) = exp(−π · (x − c)t(BtB)−1(x − c)), for all x ∈ Rm. For L a subset of
Zm, let ρσ,c(L) =

∑
x∈L ρσ,c(x). Then, the discrete Gaussian distribution over L with center c

and standard deviation σ (resp.
√
Σ) is defined as DL,σ,c(y) =

ρσ,c(y)
ρσ,c(L)

, for all y ∈ L. We use the

notations ρσ (resp. ρ√Σ) and DL,σ (resp. DL,
√
Σ) when c is 0.

Finally, for a fixed Y = (y1, y2) ∈ R2, we define: ẼY,s = y1DR,s + y2DR,s as the distribution
induced by sampling u = (u1, u2) ∈ R2 from a discrete spherical Gaussian with parameter s,
and outputting y = y1u1 + y2u2. It is shown in [LSS14b, Th. 5.1] that if Y · R2 = I and
s ≥ max(‖g−1y1‖∞, ‖g−1y2‖∞) · n ·

√
2 log(2n(1 + 1/ε))/π for ε ∈ (0, 1/2), this distribution is

statistically close from the Gaussian distribution DI,sY T .

2.1 Graded encoding scheme

The first candidate realisation of multilinear maps from [GGH13a] does not completely fit the
formal definition from [BS03]. Instead we use the notion of graded encoding scheme. A graded
encoding scheme manipulates encoding levels: the “plaintext” is a level-0 encoding, and from
the level-0 encoding one can construct a level-i encoding of the same element until κ, where κ
is called the multilinearity parameter. But given a level-i encoding, we cannot come back and
find a level-j encoding for j < i for the same element. The encodings are both additively and
multiplicatively homomorphic (up to κ operations for the multiplication). We more formally
define the procedures in Appendix A.

4

3 GGHLite

3.1 The GGHLite graded encoding scheme

We recall the GGHLite graded encoding scheme from [LSS14b] in Figure 1. This scheme is
adapted from the original [GGH13a] scheme.

The principle of this scheme is the following: we are given a public principal ideal I, generated
by a small secret element g of a polynomial ring R = Z[X]/(Xn+1), a secret element z uniformly
sampled in Rq, and a public element y which is a level-1 encoding of 1 of the form [a/z]q with
a←↩ D1+I,σ′ . Then to encode an element of R/I at level-i, we multiply it by yi in Rq, and we
add a random linear combination of encodings of 0 at level-i to randomise this encoding. The
scheme is fully described in Figure 1.

• Instance generation. InstGen(1λ, 1κ): Given security parameter λ and multilinearity parameter κ, determine
scheme parameters n, q, σ, σ′, σ?k, `g−1 , `b, ` as described below. Then proceed as follows:

• Sample g ←↩ DR,σ until ‖g−1‖ ≤ `g−1 and I = (g) is a prime ideal. Define encoding domain Rg = R/(g).
• Sample z ←↩ U(Rq).
• Sample a level-1 encoding of 1: set y = [a · z−1]q with a←↩ D1+I,σ′ .
• For k ≤ κ:
∗ Sample B(k) = (b

(k)
1 , b

(k)
2) from (DI,σ′)

2. If (b
(k)
1 , b

(k)
2) 6= I, or σn(rot(B(k))) < `b or ‖B(k)‖ >

√
n · σ′,

then re-sample.
∗ Define level-k encodings of 0: x

(k)
1 = [b

(k)
1 · z−k]q, x

(k)
2 = [b

(k)
2 · z−k]q.

• Sample h←↩ DR,√q and define the zero-testing parameter pzt = [h
g
zκ]q ∈ Rq.

• Return public parameters params = (n, q, y, {(x(k)1 , x
(k)
2)}k≤κ) and pzt.

• Level-0 sampler. Samp(params): Sample e←↩ DR,σ′ and return e.
• Level-k encoding. Enck(params, e): Given level-0 encoding e ∈ R and parameters params:
• Encode e at level k: Compute u′ = [e · yk]q.

• Return u = [u′ + ρ1 · x(k)1 + ρ2 · x(k)2]q, with ρ1, ρ2 ←↩ DR,σ∗
k
.

• Adding encodings. Add: Given level-k encodings u1 = [c1/z
k]q and u2 = [c2/z

k]q:
• Return u = [u1 + u2]q, a level-k encoding of [c1 + c2]g.

• Multiplying encodings. Mult: Given level-k1 encoding u1 = [c1/z
k1]q and a level-k2 encoding u2 = [c2/z

k2]q:
• Return u = [u1 · u2]q, a level-(k1 + k2) encoding of [c1 · c2]g.

• Zero testing at level κ. isZero(params, pzt, u): Given a level-κ encoding u = [c/zκ]q, return 1 if ‖[pztu]q‖∞ <
q3/4 and 0 else.

• Extraction at level κ. Ext(params, pzt, u): Given a level-κ encoding u = [c/zκ]q, return v = MSB`([pzt ·u]q).

Fig. 1. The GGHLite graded encoding scheme as described in [LSS14b].

The following asymptotic choice of parameters is detailed in [LSS14b]:

• the dimension n is O(κλ log λ),

• the module q is Õ(n10.5
√
κ)8κ.

• Generation of g:

• the parameter σ is O(n log n), more precisely, for some constant pg < 1:

σ ≥ 4πn
√
e ln(8n)/π/pg,

• the upper bound `g−1 is O(1/
√
n log n), more precisely `g−1 = 4

√
πen
pgσ

.

• Generation of the (b
(k)
i)i,k and a:

5

• the parameter σ′ is Õ(n3.5), more precisely, σ′ ≥ 7n
5
2 ln

3
2 (n)σ,

• the lower bound `b is O(n3), more precisely, for some constant pb < 1, `b = pb
2
√
πen

σ′.

• Re-randomisation:

• the parameter σ? is Õ(n5.5κ), more precisely, σ? = n3/2 · (σ′)2
√

8π/εd/`b with εd =
log(λ/κ).

• the number of extracted bit ` is such that: log2(8nσ) < ` ≤ 1/4 log2 q − log2(2n/εext), where
εext is the negligible probability that the extraction are the same for two different elements.

Those parameters ensure the correctness of the zero-testing and extraction procedures. This
analysis is detailed in [LSS14b].

3.2 One-round N-party Diffie-Hellman key exchange

In Figure 2, we recall the construction given by [GGH13a] to adapt the N -party Diffie-Hellman
key exchange using an encoding scheme with κ = N−1. The principle of the key exchange is that
each party shares some public parameters and starts by sampling a secret key. Then each party
publishes a public element (computed with its secret key), and given all the public elements and
his secret, each party must be able to compute a shared secret key. The consistency requirement
is that all parties must generate the same shared secret key. The function H denotes a hash
function modeled as a random oracle.

• Setup. Setup(1λ, 1N): Given security parameter λ and number of parties N , run InstGen(12λ+1, 1N−1) for the
graded encoding scheme to get (params, pzt) and output protocol public parameters (params, pzt).

• Publish. Publish(params, pzt, i): The ith party runs the level-0 encoding sampler to generate a random secret
key ei = Samp(params), and publishes a corresponding level-1 public key ui = enc1(params, ei).

• KeyGen. KeyGen(params, pzt, j, ej , {ui}i6=j): The jth party computes a level-(N−1) encoding vj = ej ·
∏
i 6=j ui

of the product
∏
i ei, and computes the key Kj = H(sj) where sj = ext(params, pzt, vj) is the extracted string

for vj .

Fig. 2. The adapted N -party Diffie-Hellman key exchange protocol.

The consistency requirement follows from the agreement property of the extraction proce-
dure. As proven in [GGH13a,LSS14b], the security follows from the randomness property of the
extraction procedure and from the Ext-GCDH assumption than we define in the next section.

3.3 Extraction Graded Computational Diffie-Hellman assumption

The security of the adaptedN -party Diffie-Hellman key exchange protocol relies on the Extraction
Graded Computational Diffie-Hellman assumption, defined in [LSS14b] and adapted from the
original GDDH/GCDH assumptions of [GGH13a].

Definition 1 ([LSS14b, Definition 3.1] Ext-GCDH). The problems Ext-GCDH is defined
as follows with respect to experiment of Figure 3:

– Extraction κ-graded CDH problem (Ext-GCDH): On inputs params, pzt and the
ui’s of Step 2, output the extracted string for a level-κ encoding of

∏
i≥0 ei + I, i.e., w =

Ext(params, pzt, vC) = MSB`([pzt · vC]q).

6

Given parameters λ, n, q, κ, σ′, σ?, proceed as follows:

1. Run InstGen(1n, 1κ) to get params = (n, q, y, {x(k)j }j,k) and pzt.
2. For i = 0, . . . , κ:

- Sample ei ←↩ DR,σ′ , fi ←↩ DR,σ′ ,
- Set ui = [ei · y + ρi,1x

(1)
1 + ρi,2x

(1)
2]q with ρi,j ←↩ DR,σ? for j ∈ {1, 2}.

3. Set u∗ =
[∏κ

i=1 ui
]
q
.

4. Set vC = [e0u
∗]q.

Fig. 3. The GGH security experiment.

4 Our parameter selection

We choose most of the parameters according to the conditions described in Section 3.1. In this
section, we describe a method which allows to reduce the size of two parameters: the module q
and the number ` of extracted bits. In a second part we describe the best known attack against
the scheme needed to choose n and q. Finally, we described our strategy to satisfy all constraints.

We note that in this work we focus exclusively on the case where re-randomisers are published
for level-1 but no other levels. This matches the requirements of the N -partite Diffie-Hellman
key exchange. The general case can be generalised by increasing q to accommodate “numerator
growth” due to re-randomisation at higher levels.

4.1 Reducing the size of q

The size of q is driven from both correctness and security considerations. To ensure the correctness
of the zero-testing procedure, [LSS14b] showed the two following lower bounds on q. Eq. 1 implies
that false negatives do not exist, and Eq. 2 implies that the probability of false positive occurrence
is negligible:

q > max
(

(n`g−1)8, (3n
3
2σ?σ′)8κ

)
, (1)

q > (2nσ)4. (2)

The strongest constraint for q is given by the inequality q > (3n
3
2σ?σ′)8κ. It comes from the

fact that for any level-κ encoding u of 0 (i.e., u ∈ S(0)
κ), the inequality ‖pztu‖∞ < q3/4 has to

hold. The condition is needed for the correctness of zero-testing and extraction.

New parameter ξ. The choice suggested in [LSS14b] is to extract ` = log q/4 − λ bits from
each element of the level-κ encoding. We show that this may supply much more entropy than
needed and that we can sample a smaller fraction, ` = ξ log q − λ bits. The equation for q can
be rewritten in terms of the variable ξ, by setting the initial condition ‖pzt u‖∞ < q1−ξ. We will
make use of the following lemma below.

Lemma 1 (Adapted from Lemma A.1 in [LSS14a]). Let g ∈ R such that I = (g) is a
prime ideal in R, let c, h ∈ R such that ‖c · h‖ < q/2 and c, h 6∈ I and q > (2tnσ)1/ξ for some
t ≥ 1. Then ‖[c · h/g]q‖ > t · q1−ξ for any 0 < ξ ≤ 1/4.

Proof. We know that since ‖c·h‖ < q/2 we must have ‖g ·[c·h/g]q‖ > q/2 by [GGH13a, Lemma 3].
So we have ‖g · [c · h/g]q‖ > q/2⇒

√
n‖g‖ · ‖[c · h/g]q‖ > q/2⇒ ‖[c · h/g]q‖ > q/(2nσ).

We have t · q1−ξ = t · q/qξ < t · q/(2tnσ) = q/(2nσ) and the claim follows. ut

7

Correctness of zero-testing. We can obtain a tighter bound of q with a more precise analysis
compared to [LSS14b]. Recall that ‖[pzt u]q‖∞ = ‖[hc/g]q‖∞ = ‖h · c/g‖∞ ≤ ‖h‖ · ‖c/g‖ ≤
‖h‖ · ‖c‖ · ‖g−1‖

√
n. The first inequality is a direct application of the inequalities between the

infinite norm of a product and the product of the Euclidean norms, the second comes from
[Gar13, Lemma 5.9].

Since h← DR,
√
q, we have ‖h‖ ≤

√
nq1/2. Moreover, c can be written as a product of κ level-1

encodings ui, for i = 1, . . . , κ, i.e., c =
∏κ
i=1 ui. Thus, ‖c‖ ≤ (

√
n)κ−1(maxi=1,...,κ ‖ui‖)κ since

each of the κ− 1 multiplications brings an extra
√
n factor. Let umax be one of the ui of largest

norm. It can be written as umax = e · a + ρ1 · b(1)1 + ρ2 · b(1)2 . As we sampled the polynomial g
such that ‖g−1‖ ≤ lg−1 the inequality ‖[pzt u]q‖∞ < q1−ξ holds if:

nlg−1(
√
n)κ−1‖(e · a+ ρ1 · b(1)1 + ρ2 · b(1)2)‖κ < q1/2−ξ. (3)

Then, since ‖e · a + ρ1 · b(1)1 + ρ2 · b(1)2 ‖κ ≤ (‖e‖ · ‖a‖
√
n + ‖ρ1‖ · ‖b(1)1 ‖

√
n + ‖ρ2‖ · ‖b(1)2 ‖

√
n)κ,

e← DR,σ′ , a← D1+I,σ′ , b
(1)
1 , b

(1)
2 ← DI,σ′ and ρ1, ρ2 ← DR,σ? , we can bound each of these values

as ‖e‖, ‖a‖, ‖b(1)1 ‖, ‖b
(1)
2 ‖ ≤ σ′

√
n, ‖ρ1‖, ‖ρ2‖ ≤ σ?

√
n to get:

nlg−1(
√
n)κ−1(σ′

√
n · σ′

√
n ·
√
n+ 2 · σ?

√
n · σ′

√
n ·
√
n)κ < q1/2−ξ,

(
nlg−1(

√
n)κ−1((σ′)2n

3
2 + 2σ?σ′n

3
2)κ
) 2

1−2ξ

< q. (4)

In [LSS14b], we had ξ = 1/4 (which give 2/(1 − 2ξ) = 4), we then have that this analysis
allows to save a factor of 2 in the size of q.

Correctness of extraction. As in [LSS14b], we need that two level-κ encodings u and u′ of different
elements have different extracted elements, which implies that we need: ‖[pzt(u−u′)]q‖∞ > 2L−`+1

with L = blog qc. This condition follows from Lemma 1 with t satisfying t · q1−ξ > 2L−`+1, which
holds for t = qξ · 2−`+1. As a consequence, the condition q > (2tnσ)1/x is still satisfied if we have
` > log2(8nσ), and to ensure that t > 1 we need that ` < ξ log q + 2. Finally, to ensure that εext,
the probability of the extraction to be the same for two different elements, is negligible, we need
that ` ≤ ξ log2 q − log2(2n/εext).

Picking ξ and q. Putting all constraints together, we let ` = log(8nσ) and

q̃ = nlg−1(
√
n)κ−1

(
(σ′)2n

3
2 + 2σ?σ′n

3
2

)κ
.

To find ξ we solve `+ λ = 2ξ
1−2ξ · log q̃ for ξ and set q = q̃

2
1−2ξ .

4.2 Known attacks

Recovering a short d · g. In this section, we described the attack of [Gar13, Section 7.3.3]
except that we have no challenge elements and we are targeting GCDH instead of GDDH.

The attack consists in recovering such a multiple of g of the form d · g and multiplying it by
the zero-test parameter pzt, thus obtaining a modified parameter p′zt = [d ·h ·zκ]q. This parameter
is then multiplied by two well chosen elements: v0 a product of κ level-one encodings uj , and v1
a product of κ− 1 level-one encodings uj multiplied by y. The attack then relies on the fact that
the elements are small enough, such that [p′zt · v0]q = p′zt · v0 and [p′zt · v1]q = p′zt · v1.

8

To recover such a multiple of g, we first recover a basis for (g) by constructing elements of
the following form:

v =

[(
r∏
`=1

x
(1)
i`

)
·

(
s∏
`=1

uj`

)
· yκ−r−s · pzt

]
q

,

for some r and s. Now assume we are sampling many vi of the above form. All these elements
share h but if we pick at least one vi with r = 1 this is, with high probability, the only common
factor. We hence get many elements in (h) from which we can compute a basis for (h). If we
play the same game but this time all vi have r > 1 we get many elements in (h · g). From bases
for (h · g) and (h) we can compute a basis for (g). We note that it is typically simply assumed
that a basis for (g) is public because an attacker can always run these steps.

Now, run lattice reduction on the public basis for (g). Lattice reduction produces a short
element d · g where we know that d is also short because g−1 is short in Q [X] /(Xn + 1). In
particular we have d = d · g · g−1 so ‖d‖ ≤

√
n · ‖d · g‖ · `g−1 . However, this is an upper bound

and indeed it is quite likely that ‖d‖ < ‖d · g‖. Indeed, based on experiments, we may expect
‖d‖ ≈ ‖d · g‖/‖g‖.

Thus, we have to make sure that no element of form d · g can be found in polynomial time
such that ‖p′zt ·

∏κ−1
j=0 uj‖∞ < q. We want each component of the product to be less than q/2,

then the overall euclidean norm would be less than q
√
n/2. We then require:∥∥∥∥∥∥d · h ·

κ−1∏
j=0

(ej · a+ ρ
(1)
j,1 · b

(1)
1 + ρ

(1)
j,2 · b

(1)
2)

∥∥∥∥∥∥ ≤ q√n/2 and (5)

∥∥∥∥∥∥d · h · a ·
κ−1∏
j=0

(ej · a+ ρ
(1)
j,1 · b

(1)
1 + ρ

(1)
j,2 · b

(1)
2)

∥∥∥∥∥∥ ≤ q√n/2 (6)

Assume, our lattice reduction manages to find an element d · g such that this inequality is
satisfied. We still have to use this short element to compute w. For this, recall thatN (I) is a prime.
Then the Hermite Normal Form of g is a diagonal matrix with N (I) at index (n− 1)× (n− 1).
In other words, reducing any element in R by I results in an integer mod N (I). We compute

ν0 = [v0]HNF(I) ≡

d · h · y · κ−1∏
j=0

ej

 mod I, and ν1 = [v1]HNF(I) ≡

d · h · y · κ−1∏
j=1

ej

 mod I.

We can now compute η = ν0 · ν−11 and observe η · ν1 = ν0 + τ · N (I) ≡ ν0 mod I. At the same
time e0 · ν1 ≡ e0 · v1 ≡ v0 ≡ ν0 mod I. Now, reducing η modulo d · g yields a short element
which is functionally equivalent to e0: a short representative of its coset. Here an element is short
enough if it does not overflow mod q when we compute pzt · w = pzt · η ·

∏κ
j=1 uj .

In this attack, we used the norm of d · g twice. Firstly, to produce v0 and v1 and, secondly,
to produce a short representative of e0. We now come back to the conditions of Eq. 5. Following
the computations of Section 4.1 and using that σ? > σ′, we get:

n ·
√
n
κ−1‖d‖ ·

(
3σ?σ′n

3
2

)κ
≤ √q/2,

which gives

‖d‖ ≤
√
q

2 · n2κ+1/2(3σ?σ′)κ
and then ‖d · g‖ ≤

σ
√
q

2 · n2κ(3σ?σ′)κ
. (7)

9

Assuming that ‖[η]d·g‖ ≈ ‖d · g‖ we get that the same condition applies. We note that under
our parameter choices this attack does not get easier as κ grows. To see why first observe that
we have

σ
√
q

2n2κ(3σ?σ′)κ
≈
σ(nlg−1 · n2κ (3σ?σ′)κ)1/(1−2ξ)

2 · n2κ(3σ?σ′)κ
=
σ(nlg−1)1/(1−2ξ)

2
· (n2κ (3σ?σ′)κ)1/(1−2ξ)

n2κ(3σ?σ′)κ
.

First, note that the first multiplicand does not grow as κ grows because σ is defined indepen-
dently of κ and ξ drops as κ grows. Second, note that that ξ is chosen such that the square of the
numerator of the second multiplicand is log(8nσ) + λ bits larger than the denominator. Hence,
regardless of choice for κ this fraction will be bounded by same magnitude in O(2λ · poly(λ)).

Recovering b̃
(1)
1 , b̃

(1)
2 from x

(1)
1 /x

(1)
2 We can also mount the attack from [CS97] against

GGHLite. We have [
x
(1)
1

x
(1)
2

]
q

=

[
b
(1)
1 /z

b
(1)
2 /z

]
q

=

[
b̃
(1)
1 · g
b̃
(1)
2 · g

]
q

=

[
b̃
(1)
1

b̃
(1)
2

]
q

where we use that b
(1)
i = b̃

(1)
i · g with b̃

(1)
i small. We setup the lattice

Λ =

(
qI 0
X I

)
where I is the n × n identity matrix, 0 is the n × n zero matrix, and X a rotational basis for

[x
(1)
1 /x

(1)
2]q. By construction Λ contains the vector (b̃

(1)
1 , b̃

(1)
2) which is short. We have det(Λ) = qn

and ‖(b̃(1)1 , b̃
(1)
2)‖ ≈

√
2nσ′/σ. In contrast, a random lattice with determinant qn and dimension 2n

is expected to have a shortest vector of norm qn/2n =
√
q which is much longer than ‖(b̃(1)1 , b̃

(1)
2)‖.

While Λ does not constitute a Unique-SVP instance because there are many short elements of
norm roughly

√
2nσ′/σ we may consider all of these “interesting”. Clearly, there is a gap between

those “interesting” vectors and the expected length of short vectors for random lattices. To hedge
against potential attacks exploiting this gap, we may hence want to ensure that finding those
“interesting” short vectors is hard. We note that this attack does not use pzt which means we
would expect it to be less efficient that the previous attack. However, the hardness of Unique-SVP
instances is determined by the ratio of the second shortest λ2(Λ) and the shortest vector λ1(Λ)
of the lattice. This ratio grows with κ. Hence in contrast to the previous attack for a given n
this attack becomes more efficient as we increase κ.

4.3 Lattice reduction

In order to succeed, an attacker needs to obtain d · g short enough to satisfy Equation 7 or
to solve a Unique-SVP instance with gap λ2(Λ)/λ1(Λ). We need to pick parameters such that
solving either problem takes at least 2λ operations.

The most efficient technique known in the literature to produce short lattice vectors is to
run lattice reduction. The quality of lattice reduction is typically expressed as the root-Hermite
factor δ0. An algorithm with root-Hermite factor δ0 is expected to output a vector v in a lattice L
such that ‖v‖ = δn0 vol(L)1/n.

Hence, in order to find a short enough d · g, we need lattice reduction with root-Hermite
factor δ0 of at most:

σ
√
q

2n2κ (3σ?σ′)κ
= δn0 · vol(g)1/n ≤ δn0

√
nσ. (8)

10

where the final inequality follows from ‖g‖∞ ≤ σ
√
n. Similarly, for the NTRU-style attack, we

require τ · δ2n0 ≤ λ2(Λ)/λ1(Λ) and thus

δ0 ≤
(√

q
√

2n · σ′/σ · τ

)1/(2n)

(9)

where τ is a constant which depends on the lattice structure and on the reduction algorithm
used. Typically τ ≈ 0.3 [GN08], which we will use as an approximation.

Currently, the most efficient algorithm for lattice reduction is a variant of the BKZ algorithm
[SE94] referred to as BKZ 2.0 [CN11]. However, its running time and behavior, especially in high
dimensions, is not very well understood. Hence, there is no consensus in the literature as to how
to relate a given δ0 to computational cost.

We estimate the cost of lattice reduction as follows. First, we estimate the required BKZ

block size required for a certain δ0 by assuming that limn→∞ δ0 = (k
2πe(πk)

1
k)

1
2(k−1) [Che13]

also approximates k for our finite n. Then the running time of BKZ is mainly determined by
two factors: firstly, the time tk it takes to find shortest or short enough vectors in lattices of
dimension k, and secondly, the number of BKZ rounds needed ρ. If tk is the number of clock
cycles it takes to solve SVP in dimension k we expect BKZ to take ρ ·n · tk clock cycles. No closed
formula for the expected number of BKZ rounds is known. The best upper bound is exponential,
but after ρ ≈ n2

k2
log n many rounds, the quality of the basis is already very close to the final

output [HPS11]. For estimating tk we take the minimum of 0.00119 k2 + 0.2275 k + 21.59 and
0.3774 k + 20. The first was extrapolated from data points made available in [LN13] and the
second was extrapolated from data points made available in [BGJ13].

We stress, though, that these assumptions requires further scrutiny. They are assuming that
the attacks in Section 4.2 are the most efficient attack and that our lattice reduction estimate
are accurate.

Putting everything together. Our overall strategy is as follows. Pick an n and compute
parameters σ, σ′, σ?, `g and q. Now, establish the root-Hermite factor required to carry out the
attack in Section 4.2 using Equations (8) and (9). If this δ0 is small enough to satisfy security
level λ terminate, otherwise double n and restart the procedure. For example parameters, see
Table 5 in Section 6.

5 Implementation

Our implementation relies on FLINT [HJP14]. We use its data types to encode elements in
Z[X], Q [X], and Zq[X] but specialised most non-trivial operations to the ring of integers of a
Cyclotomic number field of order 2k. Other operations – such as Gaussian sampling or taking
approximate inverses – are not readily available in FLINT and are hence provided by our
implementation. For computation with elements in R we use MPFR’s mpfr_t [The13] with
precision 2λ if not stated otherwise. Our implementation is available under the GPLv2+ license
at https://bitbucket.org/malb/gghlite-flint.

5.1 Polynomial Multiplication in Zq[X]/(Xn + 1)

The most time-critical operation in the online phase of a graded encoding scheme is the mul-
tiplication of polynomials in Zq[X]/(Xn + 1). Asymptotically fast multiplication in this ring
can be realised using the Fast Fourier Transform (FFT) over Z[X] directly which is the strat-
egy implemented in FLINT, which has a highly optimised FFT implementation. The FFT is

11

known to provide an O(n log n)-time algorithm to compute the product of two polynomials of
degree < n using 2n evaluation points if a 2n-th root of unity exists in the ring. Specialising to
Zq[X]/(Xn + 1) this can be reduced to n evaluation points and no modular reduction using the
Number-Theoretic Transform (NTT):

Theorem 1 (Adapted from [Win96]). Let ωn be a nth root of unity in Zq and ϕ2 = ωn. Let
a =

∑n−1
i=0 aiX

i and b =
∑n−1

i=0 biX
i ∈ Zq[X]/(Xn + 1). Let c = a · b ∈ Zq[X]/(Xn + 1) and

let a = (a0, ϕa1, . . . , ϕ
n−1an−1) and define b and c analogously. Then c = NTT−1ωn (NTTωn(a)�

NTTωn(b)).

This negative wrapped convolution was already used in lattice-based cryptography before,
cf. [LMPR08,PG12]. As noted above, FLINT does not take advantage of q−1 being a multiple of
2n in which case Theorem 1 applies because ωn and ϕ exist. While both strategies have roughly
the same asymptotic complexity and FLINT’s FFT is very optimised, if we are doing many
operations in Zq[X]/(Xn + 1) we can avoid repeated conversions between coefficient and NTT
representations of our elements by relying on the negative wrapped convolution NTT instead
of the FFT. This reduces the amortised cost from O(n log n) to O(n). That is, we can convert
encodings to their “NTT representation”

(
f(1), f(ωn), . . . , f(ωn−1n)

)
once on creation and back

only when running extraction. We implemented this strategy. While our own NTT is about 3-4
times slower than FLINT’s optimised implementation over the Integers mainly due to modular
reductions, we observe a considerable overall speed-up with this strategy.

5.2 Computing norms in Z[X]/(Xn + 1)

During instance generation we have compute several norms of elements in Z[x]/(Xn + 1). The
norm N (f) of an element f in Z[X]/(Xn + 1) is equal to res(f,Xn + 1). The usual strategy
for computing resultants over the Integers is to use a multi-modular approach. That is, we
compute resultants modulo many small primes qi and then combine the results using the Chinese
Remainder Theorem (CRT). Resultants modulo a prime qi can be computed in O(M(n) log n)
operations where M(n) is the cost of one multiplication in Z[X]/(Xn + 1). Hence, in our setting
computing the norm costs O(n log2 n) operations without specialisation.

However, we can observe that res(f,Xn+1) mod qi can be rewritten as
∏

(Xn+1)(x)=0 f(x) mod
qi as Xn+1 is monic, i.e. as evaluating f on all roots of Xn+1. Picking qi such that q ≡ 1 mod 2n
this can be accomplished using the NTT reducing the cost mod qi to O(M(d)) saving a factor
of log n.

5.3 Verifying that (g) is a prime ideal

When running the full setup phase, by far the most time consuming step is finding a g such that
(g) is a prime ideal. To check whether the ideal generated by g is prime in Z[X]/(Xn + 1) we
compute the norm N (g) and check if it is prime. However, before computing full resultants, we
first check if res(g,Xn+1) = 0 mod qi for several “interesting” primes qi. These primes are 2 and
then all primes up to some bound with qi ≡ 1 mod n because these occur with good probability
as factors.

While checking each individual g is asymptotically not much slower than polynomial mul-
tiplication, finding a g such that (g) is prime requires to run this check often. The probability
that an element generates a prime ideal is assumed to be roughly 1/(nc) for some constant c > 1
[Gar13, Conjecture 5.18], so we expect to run this check nc times, pushing us way above the
O(n log n) threshold. We list timings in Table 1.

12

n log σ′ wall time n log σ′ wall time n log σ′ wall time

1024 15.1 0.54s 2048 16.2 3.03s 4096 17.3 20.99s

Table 1. Average time of checking primality of a single (g) on Intel Xeon CPU E5-2667 v2 3.30GHz using 16
cores

In our experiments below we hence forego this check. While we always check if res(g,Xn+1) =
0 mod qi for our “interesting” primes to rule out common small prime factors, we do not verify
that the g we generate is indeed prime. We call this variant sloppy.

Primality is used only in Lemma 1 to prove that c · h/g is big if c, h 6∈ g. We experimentally
verified on 2 million samples that this condition still holds if (g) is not prime. Yet, of course, as
Lemma 1 is not just used to ensure correctness but also security, this experimental verification
cannot give sufficient assurances. We also note that some applications assume that g is prime.

5.4 Verifying that (b
(1)
1 , b

(1)
2) = (g)

When computing re-randomisation elements we require that (b
(1)
1 , b

(1)
2) = (g) holds, i.e. that our

re-randomisers generate the whole ideal. If b
(1)
i = b̃

(1)
i · g for 0 < i ≤ 2 then this condition is

equivalent to b̃
(1)
1 +b̃

(1)
2 = R. We know of no faster way of verifying this condition than to check the

sufficient but not necessary condition gcd(res(b̃
(1)
1 , Xn+1), res(b̃

(1)
2 , Xn+1)) = 1. This check which

we have to perform for every candidate pair b̃
(1)
1 , b̃

(1)
2 involves computing two resultants and their

gcd which is quite expensive. However, we observe that gcd(res(b̃
(1)
1 , Xn+1), res(b̃

(1)
2 , Xn+1)) 6= 1

when res(b̃
(1)
i 1, Xn + 1) = 0 = res(b̃

(2)
i 1, Xn + 1) mod qi for any modulus qi. Hence, we first check

this condition for the same “interesting” primes as in the previous subsection and resample if it
holds. Only if these tests pass, we compute two full resultants and their gcd. Indeed, after having
ruled out small common prime factors it is quite unlikely that the gcd of the norms is not equal
to one which means that with good probability we will perform this expensive step only once as
a final verification.

5.5 Computing the inverse of a polynomial modulo Xn + 1

Instance generation relies on inversion in Q [X] /(Xn + 1) in two places. Firstly, when sampling
g we have to check that the norm of its inverse is bounded by `g. Secondly, to setup our discrete
Gaussian samplers we need to run many inversions in an iterative process. We note that for
computing the zero-testing parameter we only need to invert g in Zq[X]/(Xn + 1) which can be
realised in n inversions in Zq in the NTT representation.

In both cases where inversion in Q [X] /(Xn + 1) is required approximate solutions are
sufficient. In the first case we only need to estimate the size of g−1 and in the second case
inversion is a subroutine of an approximation algorithm (see below). Hence, we implemented a
variant of [BCMM98] to compute the approximate inverse of a polynomial in Q [X] /(Xn + 1),
with n = 2k.

The core idea is similar to the FFT, i.e. to reduce the inversion of f to the inversion of an
element of degree n/2. Indeed, since n is even, f(X) is invertible modulo Xn + 1 if and only if
f(−X) is also invertible. By setting F (X2) = f(X)f(−X) mod Xn + 1, the inverse f−1(X) of
f(X) satisfies

F (X2) f−1(X) = f(−X) (mod Xn + 1). (10)

13

Let g(X) = Ge(X
2) +XGo(X

2) and f(−X) = Fe(X
2) +XFo(X

2) be split into their even and
odd parts respectively. From Eq. 10, we obtain F (X2)(Ge(X

2)+XGo(X
2)) = Fe(X

2)+XFo(X
2)

(mod Xn + 1) which is equivalent to{
F (X2)Ge(X

2) = Fe(X
2) (mod Xn + 1)

F (X2)Go(X
2) = Fo(X

2) (mod Xn + 1).

From this, inverting f(X) can be done by inverting F (X2) and multiplying polynomials of
degree n/2. It remains to recursively call the inversion of F (Y) modulo (Xn/2 + 1) (by setting
Y = X2). This leads to Algorithm 1 for approximately inverting elements of Q [X] /(Xn + 1)
when n is a power of 2, where we truncate the result of each recursive call to prec bits of precision.

Algorithm 1 Approximate inverse of f(X) mod Xn + 1 using prec bits of precision
if n = 1 then
g0 ← f−1

0

else
F (X2)← f(X)f(−X) mod Xn + 1
G(Y)← InverseMod(F (Y), q, n/2)
Set Se(X

2), So(X
2) such that f(−X) = Se(X

2) +XSo(X
2)

Te(Y)← G(Y) · Se(Y)
To(Y)← G(Y) · So(Y)
f−1(X)← Te(X

2) +XTo(X
2)

f̃−1(X) = f−1(X) truncated to prec bits of precision
return f̃−1(X)

end if

Since Algorithm 1 reduces to polynomial multiplication and has log n iterations, it is easy
to see that it can be performed in O(n log2(n)) operations in Q. Yet, since we truncate out
operands in each recursive call, it is not immediately obvious that this algorithm indeed produces
an answer that is even close to f−1(X). Hence, we call Algorithm 1 in a loop, each time doubling
the precision, until ‖f̃−1(X) · f(X)− 1‖ < 2−prec to ensure the accuracy of our result. We give
experimental results comparing Algorithm 1 with FLINT’s extended GCD algorithm in Table 2.

n log σ xgcd prec=160 iter, prec=160 prec=∞ n log σ xgcd prec=160 iter, prec=160 prec=∞
4096 17.2 334.9s 3.5s 3.9s 104.9s 8192 18.2 2055.5s 14.2s 16.7s 619.7s

Table 2. Inverting g ←↩ DZn,σ with FLINT’s extended Euclidean algorithm (“xgcd”), Algorithm 1 with precision
160 (“prec-160”), iterating Algorithm 1 until ‖f̃−1(X) ·f(X)‖ < 2−160 (“iter, prec=160”) and Algorithm 1 without
truncation (“prec=∞”) on Intel Core i7-4850HQ CPU at 2.30GHz, single core.

5.6 Approximate Square Roots

During setup, for sampling from a discrete Gaussian D(g),σ′,c with support (g) we need to compute
an approximate square root of an element in Q [X] /(Xn+1). That is, for some input elementΣ we

want to compute some element
√
Σ
′ ∈ Z[X]/(Xn+1) such that ‖

√
Σ
′ ·
√
Σ
′−Σ‖ < 2−2λ. We use

iterative methods as suggested in [Duc13, Section 6.5] which iteratively refine the approximation
of the square root similar to Newton’s method. Computing approximate square roots of matrices
is a well studied research area with many algorithms known in the literature (cf. [Hig97]). All

14

algorithms with global convergence invoke approximate inversions in Q [X] /(Xn + 1) for which
we call Algorithm 1.

We implemented the Babylonian method, the Denman-Beavers iteration [DJ76] and the Padé
iteration [Hig97]. Although the Babylonian method only involves one inversion which allows us
to compute with lower precision, we used Denman-Beavers, since it converges faster in practice
and can be parallelised on two cores. While the Padé iteration can be parallelised on arbitrarily
many cores, the workload on each core is much greater than in the Denman-Beavers iteration
and in our experiments only improved on the latter when more than 8 cores were used.

Most algorithms have quadratic convergence but in practice this does not assure rapid
convergence as error can take many iterations to become small enough for quadratic convergence
to be observed. This effect can be mitigated, i.e. convergence improved, by applying scaling.
A common scaling scheme is to scale by the determinant which in our case means computing
res(f,Xn+ 1) for some f ∈ Q [X] /(Xn+1). Computing resultants in Q [X] /(Xn+ 1) reduces to
computing resultants in Z[X](Xn + 1) after some scaling. As discussed in Section 5.3 computing
resultants in Z[X]/(Xn + 1) can be expensive. However, since we are only interested in an
approximation of the determinant for scaling, we can compute with reduced precision. For this,
we clear all but the most significant bit for each coefficient’s numerator and denominator of f to
produce f ′ and compute res(f ′, Xn + 1). The effect of clearing out the lower order bits of f is
to reduce the size of the integer representation in order to speed up the resultant computation.
With this optimisation scaling by an approximation of the determinant is both fast and precise
enough to produce fast convergence.

5.7 Sampling from a Discrete Gaussian

Our implementation needs to sample from discrete Gaussians over arbitrary integer lattices. For
this, a fundamental building block is to sample from the Integer lattice. We implemented a
discrete Gaussian sampler over the Integers both in arbitrary precision – using MPFR – and in
double precision – using machine doubles. For both cases we implemented rejection sampling
from a uniform distribution with and without table (“online”) lookups [GPV08] and Ducas et
al’s sampler which samples from DZ,kσ2 where σ2 is a constant [DDLL13, Algorithm 12]. Our
implementation automatically chooses the best algorithm based on σ, c and τ (the tail cut). In
our case σ is typically relatively large, so we call the latter whenever sampling with a centre
c ∈ Z and the former when c 6∈ Z. We list example timings of our discrete Gaussian sampler in
Table 3. We note that in our implementation of GGHLite we – conservatively – only make use
of the arbitrary precision implementation of this sampler with precision 2λ.

algorithm σ c double mpfr t

prec rate per s prec rate per s

tabulated [GPV08, SampleZ] 10000 1.0 53 660.000 160 310.000
tabulated [GPV08, SampleZ] 10000 0.5 53 650.000 160 260.000

online [GPV08, SampleZ] 10000 1.0 53 414.000 160 9.000
online [GPV08, SampleZ] 10000 0.5 53 414.000 160 9.000
[DDLL13, Algorithm 12] 10000 1.0 53 350.000 160 123.000

Table 3. Example timings for discrete Gaussian sampling over Z on Intel Core i7-4850HQ CPU at 2.30GHz, single
core.

Using our discrete Gaussian sampler over the Integers we implemented discrete Gaussian
samplers over lattices. We implemented both [GPV08, SampleD] as well as a variant of [Pei10].

15

The former is not applicable for anything but toy instances as it requires to compute the Gram-
Schmidt matrix of our lattice basis which costs O(n5) if computations are performed over Q
and O(n3) if performed with fixed precision. Neither is feasible for large n. Instead, we utilise
a variant of [Pei10]. Namely, we first observe that D(g),σ′ = g · DR,σ′·g−T and then use [Pei10,

Algorithm 1] to sample from DR,σ′·g−T . Here, g−T means the conjugate of g−1. That is, gT0 = g0
and gTn−i = −gi for 1 ≤ i < n if deg(g) = n− 1. We then proceed as follows. We first compute
an approximate square root of Σ′2 = g−T · g−1 up to λ bits of precision where operations are
performed with precision 1

2 log2(n) · (log2(n‖σ‖)) using the Denman-Beavers iteration. We then
use this value, scaled appropriately, as the initial value from which to start the Babylonian
method for computing a square-root of Σ2 = σ′2 · g−T · g−1 − r2 · I where r = 2 · d

√
log n e. Here

we perform operations with 1
2 log2(n) · (log2(n‖σ‖) + 2 log2 σ

′ precision and terminate when the
square of the approximation is within distance 2−2λ to Σ2. This typically happens after just one
iteration because our initial candidate is already very close to the target value which is also why
we call the cheaper Babylonian method.

Given an approximation
√
Σ2
′

of
√
Σ2 we then sample a vector x ←↩ Rn from a standard

normal distribution and interpret it as a polynomial in Q [X] /(Xn + 1). We then compute
y =
√
Σ2
′ · x in Q [X] /(Xn + 1) and return g · (byer). Where byer denotes sampling a vector in

Zn where the i-th component follows DZ,r,yi . We give experimental results in Table 4.

prec n log σ′ sqrt iter. sqrt wall time log ‖(
√
Σ2
′
)2 −Σ2‖ ←↩ Dg,σ′ per second

160 1024 45.8 9 2.5s -200 26.0
160 2048 49.6 9 7.8s -221 12.0
160 4096 53.3 10 23.2s -239 4.8
160 8192 57.0 10 61.7s -253 2.0
200 16384 60.7 11 203.0s -270 0.8

Table 4. Example timings for taking approximate square roots of Σ2 = σ′2 · g−T · g − r2 · I for discrete Gaussian
sampling over g with parameter σ′ on Intel Core i7-4850HQ CPU at 2.30GHz. Computing square roots uses 2
cores for Denman-Beavers and 16 cores for estimating the scaling factor, sampling uses one core.

6 NIKE Timings

In Table 5 we give experimental results on running a non-interactive key exchange in the common
reference string model based on our implementation of GGHLite. In Table 6 we compare these
results with those reported in [CLT13]

Acknowledgement: We would like to thank Guilhem Castagnos, Steven Galbraith, Bill Hart,
Claude-Pierre Jeannerod, Clément Pernet and Damien Stehlé for helpful discussions. This work
has been supported in part by ERC Starting Grant ERC-2013-StG-335086-LATTAC. The work
of Albrecht was supported by EPSRC grant EP/L018543/1 “Multilinear Maps in Cryptography”.

16

λ κ n log q ξ log σ log σ′ δ0 Setup Publish (pp) KeyGen (pp) ‖|params‖
52 6 32768 2551 0.036 20.4 65.7 1.0128 549s 3.66s 1.7s 139.5MB
52 9 32768 3768 0.024 20.4 65.7 1.0192 607s 5.89s 3.6s 292.3MB
52 14 65536 6052 0.015 21.4 69.4 1.0158 1982s 27.24s 21.31s 1.4GB

80 6 65536 2746 0.044 21.4 69.4 1.0069 2232s 8.97s 4.3s 300.0MB
80 9 65536 4005 0.030 21.4 69.4 1.0102 2315s 13.93s 8.30s 625.7MB
80 14 131072 6428 0.019 22.4 73.1 1.0084 7679s 64.09s 48.45s 2.9GB

Table 5. Experimental results for running the (κ + 1)-partite Non-Interactive Key Exchange. Timings were
produced on Intel Xeon CPU E5-2667 v2 3.30GHz, Setup was parallelised on 16 cores, times for Publish and
KeyGen are given per participant (“pp”). All instances are sloppy, i.e. (g) is not verified to be prime. The column

“Setup−” gives the setup time excluding the time to verify that (b
(1)
1 , b

(1)
2) = (g). All times are wall times.

λ κ Setup Publish (pp) KeyGen (pp) pk size

[CLT13] 52 6 7s 0.18s 0.2s 26.0MB
This work 52 6 549s 3.66s 1.7s 139.5MB

[CLT13] 80 6 27295s 17.8s 20.2s 2.6GB
This work 80 6 2273s 9.0s 4.3s 300MB

Table 6. Comparison with timings reported in [CLT13]. Our experiments were run on Intel Xeon CPU E5-2667
v2 3.30GHz, utilising 16 cores during the Setup phase and 1 core otherwise. The experiments in [CLT13] were run
on Intel Xeon E7-8837 2.67GHz, utilising 16 cores during the Setup phase and 1 core otherwise. All our instances
are sloppy, i.e. (g) is not verified to be prime. All CLT instances rely on heuristic assumptions [CLT13, Section 6].
All times are wall times.

17

References

[BCMM98] Dario Bini, Gianna M. Del Corso, Giovanni Manzini, and Luciano Margara. Inversion of circulant
matrices over Zm. In Proc. of ICALP 1998, volume 1443 of LNCS, pages 719–730. Springer, 1998.

[BF03] Dan Boneh and Matthew Franklin. Identity-based encryption from the Weil pairing. SIAM J. Comput.,
32(3):586–615, 2003.

[BGJ13] Anja Becker, Nicolas Gama, and Antoine Joux. Solving shortest and closest vector problems: The
decomposition approach. Cryptology ePrint Archive, Report 2013/685, 2013. http://eprint.iacr.

org/2013/685.
[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contemporary

Mathematics, 324:71–90, 2003.
[BWZ14] Dan Boneh, Brent Waters, and Mark Zhandry. Low overhead broadcast encryption from multilinear

maps. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 206–223. Springer, August 2014.

[CG13] Ran Canetti and Juan A. Garay, editors. CRYPTO 2013, Part I, volume 8042 of LNCS. Springer,
August 2013.

[Che13] Yuanmi Chen. Réduction de réseau et sécurité concrète du chiffrement complètement homomorphe.
PhD thesis, Paris 7, 2013.

[CHL+14] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis
of the multilinear map over the integers. Cryptology ePrint Archive, Report 2014/906, 2014. http:

//eprint.iacr.org/.
[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the

integers. In Canetti and Garay [CG13], pages 476–493.
[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon

Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 1–20. Springer,
December 2011.

[CS97] Don Coppersmith and Adi Shamir. Lattice attacks on NTRU. In Walter Fumy, editor, EURO-
CRYPT’97, volume 1233 of LNCS, pages 52–61. Springer, May 1997.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and
bimodal gaussians. In Canetti and Garay [CG13], pages 40–56.

[DJ76] Eugene D. Denman and Alex N. Beavers Jr. The matrix sign function and computations in systems.
Applied Mathematics and Computation, 2:63–94, 1976.

[DN12] Léo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling using lazy floating-point arithmetic.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 415–432.
Springer, December 2012.

[Duc13] Léo Ducas. Signatures Fondées sur les Réseaux Euclidiens: Attaques, Analyse et Optimisations . PhD
thesis, Université Paris Diderot, 2013.

[Gar13] Sanjam Garg. Candidate Multilinear Maps. PhD thesis, University of California, Los Angeles, 2013.
[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In

Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
1–17. Springer, May 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49.
IEEE Computer Society Press, October 2013.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Nigel P. Smart, editor,
EUROCRYPT 2008, volume 4965 of LNCS, pages 31–51. Springer, April 2008.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages
197–206. ACM Press, May 2008.

[Gt14] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple Precision
Arithmetic Library, 6.0.0 edition, 2014. http://gmplib.org/.

[Hig97] Nicholas J. Higham. Stable iterations for the matrix square root. Numerical Algorithms, 15(2):227–242,
1997.

[HJP14] William Hart, Fredrik Johansson, and Sebastian Pancratz. FLINT: Fast Library for Number Theory,
2014. Version 2.4.4, http://flintlib.org.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing blockwise lattice algorithms using
dynamical systems. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 447–464.
Springer, August 2011.

[Jou04] Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptology, 17(4):263–276,
September 2004.

18

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT: A modest proposal
for FFT hashing. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS, pages 54–72. Springer,
February 2008.

[LN13] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update. In Ed Dawson, editor,
CT-RSA 2013, volume 7779 of LNCS, pages 293–309. Springer, February / March 2013.

[LSS14a] A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More Efficient Multilinear Maps from Ideal Lattices.
Cryptology ePrint Archive, Report 2014/487, 2014. Full version of [LSS14b].

[LSS14b] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient multilinear maps from
ideal lattices. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 239–256. Springer, May 2014.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 80–97. Springer, August 2010.

[PG12] Thomas Pöppelmann and Tim Güneysu. Towards efficient arithmetic for lattice-based cryptography
on reconfigurable hardware. In Proc. of Latincrypt 2012, volume 7533 of LNCS, pages 139–158.
Springer, 2012.

[SE94] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving
subset sum problems. Mathematical Programming, 66(1-3):181–199, 1994.

[The13] The MPFR team. GNU MPFR: The Multiple Precision Floating-Point Reliable Library, 3.1.2 edition,
2013. http://www.mpfr.org/.

[Win96] Franz Winkler. Polynomial Algorithms in Computer Algebra. Texts and Monographs in Symbolic
Computation. Springer, 1996.

A Graded Encoding Scheme

InstGen(1λ, 1κ)→ (params, pzt). This algorithm takes λ and κ as inputs and outputs (params, pzt),
where params is a description of the graded encoding system as above, and pzt is a zero-testing
parameter at level κ.

Samp(params)→ a. The ring sampler algorithm takes as input the parameters params and out-

puts a level-0 encoding a ∈ S(α)
0 for a nearly uniform element α ∈ R .

Enci(params, a)→ u. The encoding algorithm takes as inputs the parameters params, a level i

and a level-0 encoding a ∈ S(α)
0 of an element α ∈ R. It outputs the level-i encoding u ∈ S(α)

i

for α.
Add(params, i, u1, u2)→ u. The addition algorithm takes as inputs the parameters params, a

level i, and two level-i encodings u1 ∈ S(α1)
i and u2 ∈ S(α2)

i . It outputs a level-i encoding

u1 + u2 ∈ S(α1+α2)
i .

Neg(params, i, u1)→ u. The negation algorithm takes as inputs the parameters params, a level i,

and a level-i encoding u1 ∈ S(α1)
i . It outputs a level-i encoding −u1 ∈ S(−α1)

i .
Mult(params, i1, i2, u1, u2)→ u. The multiplication algorithm takes as inputs the parameters

params, two levels i1 and i2 such that i1 + i2 ≤ κ, and a level-i1 (resp. i2) encoding u1 ∈ S(α1)
i1

and u2 ∈ S(α2)
i2

. It outputs a level-(i1 + i2) encoding u1 × u2 ∈ S(α1·α2)
i1+i2

.
isZero(params, pzt, u)→ {0, 1}. The zero-test algorithm takes as inputs the parameters params,

the zero-testing parameter pzt and a level-κ encodings u ∈ S(α)
κ . It outputs 1 for every u ∈ S(0)

κ ,
and 0 otherwise, except with negligible probability:

Pr
α∈R

[
∃u ∈ S(α)

κ s.t. isZero(params, pzt, u) = 1
]

= negligible(λ).

Ext(params, pzt, u)→ s. The extraction algorithm takes as inputs the parameters params, the

zero-testing parameter pzt and a level-κ encodings u ∈ S(α)
κ . It outputs s such that:

1. For a randomly chosen a← Samp(params), and two encodings of a: u1 ← Encκ(params, a)
and u2 ← Encκ(params, a) then Pr [Ext(params, pzt, u1) = Ext(params, pzt, u2)] ≥ 1 −
negligible(λ).

2. The distribution {Ext(params, pzt, u) : a← Samp(params), u← Encκ(params, a)} is nearly
uniform over {0, 1}λ.

19

