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Abstract. Multilinear maps have become popular tools for designing cryptographic schemes
since a first approximate realisation candidate was proposed by Garg, Gentry and Halevi
(GGH). This construction was later improved by Langlois, Stehlé and Steinfeld who pro-
posed GGHLite which offers smaller parameter sizes. In this work, we provide the first
implementation of such approximate multilinear maps based on ideal lattices. Implementing
GGH-like schemes naively would not allow instantiating it for non-trivial parameter sizes.
We hence propose a strategy which reduces parameter sizes further and several technical
improvements to allow for an efficient implementation. In particular, since finding a prime
generator for some ideal when generating instances is an expensive operation, we show how
we can drop this requirement. We also propose algorithms and implementations for sampling
from discrete Gaussians, for inverting in some Cyclotomic number fields and for computing
norms of ideals in some Cyclotomic number rings. Due to our improvements we were able
to compute a multilinear jigsaw puzzle for κ “ 52 (resp. κ “ 38) and λ “ 52 (resp. λ “ 80).

1 Introduction

Multilinear maps, starting with bilinear ones, are popular tools for designing cryptosystems. When
pairings were introduced to cryptography [Jou04], many previously unreachable cryptographic
primitives, such as identity-based encryption [BF03], became possible to construct. Maps of higher
degree of linearity were conjectured to be hard to find – at least in the “realm of algebraic
geometry” [BS03]. But in 2013, Garg, Gentry and Halevi [GGH13a] proposed a construction,
relying on ideal lattices, of a so-called “graded encoding scheme” that approximates the concept
of a cryptographic multilinear map.

As expected, graded encoding schemes quickly found many applications in cryptography. Already
in [GGH13a] the authors showed how to generalise the 3-partite Diffie-Hellman key exchange first
constructed with cryptographic bilinear maps [BS03] to N parties: the protocol allows N users
to share a secret key with only one broadcast message each. Furthermore, a graded encoding
scheme also allows constructing very efficient broadcast encryption [BS03,BWZ14]: a broadcaster
can encrypt a message and send it to a group where only a part of it (decided by the broadcaster
before encrypting) will be able to read it. Moreover, [GGH`13b] introduced indistinguishability
obfuscation (iO) and functional encryption based on a variant of multilinear maps and some
additional assumptions.

The GGH scheme. For a multilinearity parameter κ, the principle of the symmetric GGH graded
encoding scheme is as follows: given a ring R and a principal ideal I generated by a small secret
element g P R, a plaintext is a small element of R{I and is viewed as a level-0 encoding. Given
a level-0 encoding, it is easy increase the level to a higher level i ď κ, but it is assumed hard to
come back to an inferior level. The encodings are additively homomorphic at the same level, and
multiplicatively homomorphic up to κ operations. The multiplication of a level-i and a level-j
encoding gives a level-pi ` jq encoding. Additionally, a zero-testing parameter pzt allows testing
if a level-κ element is an encoding of 0, and hence also allows testing if two level-κ encodings are



encoding the same elements. Finally, the extraction procedure uses pzt to extract ` bits which are
a “canonical” representation of a ring element given its level-κ encoding.

More precisely, in GGH we are given R “ Z rXs {pXn ` 1q, where n is a power of 2, a secret
element z uniformly sampled in Rq “ R{qR (for a certain prime number q), and a public element y
which is a level-1 encoding of 1 of the form ra{zsq for some small a in the coset 1` I. We are also

given m level-i encodings of 0 named x
piq
j , for all 1 ď i ď κ, and a zero-testing parameter pzt. To

encode an element of R{I at level-i (for i ď κ), we multiply it by yi in Rq (which give an element
of the form

“

c{zi
‰

q
, where c is an arbitrary small coset representative). Then, we add a linear

combination of encodings of 0 at level-i of the form
ř

j ρjx
piq
j to it where the ρj are sampled from a

certain discrete Gaussian. This last step is the re-randomisation process and ought to ensure that
the analogue of the discrete logarithm problem is hard: going from level-i to level-0, for example
by multiplying the encoding by y´i. We will see later that the encodings of zero made public for
this step are a problem for the security of the scheme.

The asymmetric variant of this scheme replaces levels by “groups” which are identified with
subsets of t1, . . . , κu. Addition of two elements in the same group stays within the group, multiplying
two elements of different groups with disjoint index sets produces an element in the group defined by
the union of their index sets. These groups are realised by defining one zi for each index 1 ď i ď κ
and then dividing by the appropriate product of zi. Given a group characterised by S Ď t1, . . . , κu
we call the cardinality of S its level.

We can distinguish between GGH instances where encodings of zero are made publicly available
to allow anyone to encode elements and those where this is not the case. The latter are also
called “Multilinear Jigsaw Puzzles” and were introduced in [GGH`13b] as a building block for
indistinguishability obfuscation. Such instances can be thought of as secret-key graded encoding

schemes. To distinguish the two cases, we denote those instances where no encodings of zero x
piq
j

are published as GGHs. In such instances the secret elements g and zi are required to encode
elements at levels above zero.

Security. Already in [GGH13a] it was shown that an attacker can recover the ideal pgq and the
coset of pgq for any encoding at level ď κ if encodings of zero are made available. However, since
these representatives of either pgq or the cosets are not small, it was believed that these “weak
discrete log” attacks would not undermine the central security goal of GGH – the analogue of
the BDDH assumption. However, in [HJ15] it was shown that these attacks can be extended to
recover short representatives of the cosets. As a consequence, if encodings of zero are published,
then [HJ15] breaks the GGH security goals in many scenarios and it is not clear, at present, if
and how GGH-like graded encoding schemes can be defended against such attacks. A candidate
proposal to prevent weak discrete logarithm attacks was proposed in [CLT15, Appendix G], where
the strategy is to change zero testing to make it non-linear in the encodings such that the attack
does not work anymore. However, no security analyses was provided in [CLT15] and revision
20150516:083005 of [CLT15] drops any mention of this candidate fix. Hence, the status of GGH-
like schemes where encodings of zero are published is currently unclear. However, we note that
GGHs, where no encodings of zero are made available, does not appear to be vulnerable to weak
discrete log attacks. This version is a central building block of indistinguishability obfuscation, i.e.
this case has important applications despite being more limited in functionality.

Alternative Constructions. An alternative instantiation of graded encoding schemes over the
integers promising practicality was proposed by Coron, Lepoint and Tibouchi [CLT13]. This first
proposal was also broken in polynomial time using public encodings of zero in [CHL`15]. The attack
was later generalised in [GHMS14] and a candidate defence against these attacks was proposed
in [CLT15]. The authors of [CLT15] also provided a C++ implementation of a heuristic variant of
this scheme. They report that the Setup phase of an 7-partite Diffie-Hellman key exchange takes
4528s (parallelised on 16 cores), publishing a share (Publish) takes 7.8s per party (single core) and
the final key derivation (KeyGen) takes 23.9s per party (single core) for a level of security λ “ 80.
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Instantiation. The implementation reported in [CLT15] is to date the only implementation of a
candidate graded encoding scheme. This is partly because instantiating the original GGH con-
struction is too costly in practice for anything but toy instances. In 2014, Langlois, Stehlé and
Steinfeld [LSS14a] proposed a variant of GGH called GGHLite, improving the re-randomisation
process of the original scheme. It reduces the number m of re-randomisers, public encodings of
zero, needed from Ωpn log nq to 2 and also the size of the parameter σ‹i of the Gaussian used to

sample multipliers ρj during the re-randomisation phase from rOp2λ λn4.5κq to rOpn5.5
?
κq. These

improvements allow reducing the size of the public parameters and improving the overall efficiency
of the scheme. But even though [LSS14a] made a step forward towards efficiency and in some cases
no public re-randomisation is required at all (GGHs), GGH-like schemes are still far from being
practical.

Our contribution. Our main contribution is a first and efficient implementation of improved GGH-
like schemes which we make publicly available under an open-source license. This implementation
covers symmetric and asymmetric flavours and we allow encodings of zero to be published or not.
Since the security of GGH-like constructions is unclear when encodings of zero are published, we
do not discuss this variant here. We note, however, that our implementation provides a good basis
for implementing any future fixes and improvements for GGH-based graded encoding schemes.

Implementing GGH-like schemes efficiently such that non-trivial levels of multilinearity and
security can be achieved is not straight forward and to obtain an implementation we had to
address several issues. In particular, we contribute the following improvements to make GGH-like
multilinear maps more practical:

‚ We show that we do not require pgq to be a prime ideal for the existing proofs to go through.
Indeed, sampling an element g P Z rXs {pXn ` 1q such that the ideal it generates is prime, as
required by GGH and GGHLite, is a prohibitively expensive operation. Avoiding this check is
then a key step to allow us to go beyond toy instances.

‚ We give a strategy to choose practical parameters for the scheme and extend the analysis
of [LSS14a] to ensure the correctness of all the procedures of the scheme. Our refined analysis
reduces the bitsize of q by a factor of about 4, which in turn reduces the required dimension n.

‚ We apply the analyses from [CS97] to pick parameters to defend against lattice attacks.
‚ For all steps during the instance generation we provide implementations and algorithms which

work in quasi-linear time and efficiently in practice. In particular, we provide algorithms and
implementations for inverting in some Cyclotomic number fields, for computing norms of ideals
in some Cyclotomic number rings, for producing short representatives of elements modulo pgq

and for sampling from discrete Gaussians in rOpnq. For the latter we use Ducas and Nguyen’s
strategy [Duc13] Our implementation of these operations might be of independent interest
(cf. [LP15] for recent work on efficient sampling from a discrete Gaussian distribution), which
is why they are available as a separate module in our code.

‚ We discuss our implementation and report on experimental results.

Our results (cf. Table 1) are promising, as we manage to compute up to multilinearity level κ “ 52
(resp. κ “ 38) at security level κ “ 52 (resp. λ “ 80) in the asymmetric GGHs case. We note
that much smaller levels of multilinearity have been used to realise non-trivial functionality in the
literature. For example, [BLR`14] reports on comparisons between 16-bit encrypted values using
a 9-linear map (however, this result holds in a generic multilinear map model). We note that the
results in Table 1, where no encodings of zero are made available, are not directly comparable with
those reported in [CLT15].

Technical overview. Our implementation relies on FLINT [HJP14]. However, we provide our
own specialised implementations for operations in the ring of integers of Cyclotomic number fields
where the degree is a power of two and related rings as listed above.

Our variant of GGH foregoes checking if g generates a prime ideal. During instance genera-
tion [GGH13a,LSS14a] specify to sample g such that pgq is a prime ideal. This condition is needed
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λ κ λ1 n log q Setup Encode Mul }enc}

52 6 64.4 215 2117 114s 26s 0.05s 8.3MB
52 9 53.5 215 3086 133s 25s 0.12s 12.1MB
52 14 56.6 216 4966 634s 84s 0.62s 38.8MB
52 19 56.6 216 6675 762s 75s 1.38s 52.2MB
52 25 59.6 217 9196 2781s 243s 5.78s 143.7MB
52 52 62.7 218 19898 26695s 1016s 84.1s 621.8MB

80 6 155.2 216 2289 415s 74s 0.13s 17.9MB
80 9 86.7 216 3314 445s 72s 0.27s 25.9MB
80 14 120.9 217 5288 1525s 252s 1.38s 82.6MB
80 19 80.4 217 7089 1821s 268s 3.07s 110.8MB
80 25 138.8 218 9721 9595s 967s 13.52s 303.8MB
80 38 80.3 218 14649 20381s 947s 16.21s 457.8MB

Table 1. Computing a κ-level asymmetric multilinear maps with our implementation without
encodings of zero. Column λ gives the minimum security level we accepted, column λ1 gives the
actually expected security level based on the best known attacks for the given parameter sizes.
Timings produced on Intel Xeon CPU E5–2667 v2 3.30GHz with 256GB of RAM, parallelised on
16 cores, but not all operations took full advantage of all cores. Setup gives the time for generating
the GGH instance. Encode lists the time it takes to reduce an element P Zp with p “ N pIq to
a small element in Z rXs { pXn ` 1q modulo pgq. Mult lists the time to multiply κ elements. All
times are wall times.

in [GGH13a,LSS14a] to ensure that no non-zero encoding passes the zero-testing test and to argue
that the non-interactive N -partite key exchange produces a shared key with sufficient entropy.
We show that for both arguments we can drop the requirement that g generates a prime ideal.
This was already mentioned as a potential improvement in [Gar13, Section 6.3] but not shown
there. As rejection sampling until a prime ideal pgq is found is prohibitively expensive due to the
low density of prime ideals in Z rXs {pXn ` 1q, this allows speeding-up instance generation such
that non-trivial instances are possible. We also provide fast algorithms and implementations for
checking if pgq Ă Z rXs {pXn ` 1q is prime for applications which still require prime pgq.

We also improve the size of the two parameters q and ` compared to [LSS14a]. We first perform
a finer analysis than [LSS14a], which allows us to reduce the size of the parameter q by a factor 2.
Then, we introduce a new parameter ξ, which controls what fraction of q is considered “small”, i.e.
passes the zero-testing test, which reduces the size of q further. This also reduces the number of
bits extracted from each coefficient `. Indeed, instead of setting ` “ 1{4 log q ´ λ where λ is the
security parameter, we set ` “ ξ log q ´ λ with 0 ă ξ ď 1{4. We then show that for a good choice
of ξ this is enough to ensure the correctness of the extraction procedure and the security of the

scheme. Overall, our refined analysis allows us to reduce the size of q « p3n
3
2σ‹1σ

1q
8κ

in [LSS14a]

to q « p3n
3
2σ‹1σ

1q
p2`εqκ

which, in turn, allows reducing the dimension n. When no encodings of
zero are published we simply set σ‹1 “ 1 and apply the same analysis.

Open problems. The most pressing question at this point is whether GGH-like constructions are
secure. There exist no security proofs for any variant and recent cryptanalysis results recommend
caution. Even speculating that secure variants of GGH-like multilinear maps can be found, perfor-
mance is still an issue. While we manage to compute approximate multilinear maps for relatively
high levels of κ in this work, all known schemes are still at least quadratic in κ which presents a
major obstacle to efficiency. Any improvement which would reduce this to something linear in κ
would mean a significant step forward. Finally, establishing better estimates for lattice reduction
and tuning the parameter choices of our schemes are areas of future work. For example, it is clear
that our analysis, where we simply set σ‹1 “ 1 when no encodings of zero are published, can be
refined further.
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Roadmap. We give some preliminaries in Section 2. In Section 3 we describe the GGH-like
asymmetric graded encoding schemes and the multilinear jigsaw puzzles used for iO. In Section 4,
we explain our modifications to GGH-like schemes, especially concerning the parameter q. We also
recall a lattice attack to derive the parameter n and show that we do not require pgq to be prime.
In Section 5, we give the details of our implementation.

2 Preliminaries

Lattices and ideal lattices. An m-dimensional lattice L is an additive subgroup of Rm. A lattice L
can be described by its basis B “ tb1, b2, . . . , bku, with bi P Rm, consisting in k linearly independent
vectors, for some k ď m, called the rank of the lattice. If k “ m, we say that the lattice has full-
rank. The lattice L spanned by B is given by L “ t

řk
i“1 ci ¨ bi, ci P Zu. The volume of the

lattice L, denoted by volpLq, is the volume of the parallelepiped defined by its basis vectors. We
have volpLq “

a

detpBTBq, where B is any basis of L.
For n a power of two, let fpXq P Z rXs be a monic polynomial of degree n (in our case,

fpXq “ Xn`1). Then, the polynomial ring R “ Z rXs {fpXq is isomorphic to the integer lattice Zn,

i.e. we can identify an element upXq “
řn´1
i“0 ui ¨X

i P R with its corresponding coefficient vector
pu0, u1, . . . , un´1q. We also define Rq “ R{qR “ ZqrXs{pXn ` 1q (isomorphic to Znq ) for a large
prime q and K “ Q rXs {pXn ` 1q (isomorphic to Qn).

Given an element g P R, we denote by I the principal ideal in R generated by g: pgq “
tg ¨ u : u P Ru. The ideal pgq is also called an ideal lattice and can be represented by its Z-basis
pg,X ¨ g, . . . , Xn´1 ¨ gq. We denote by N pgq its norm. For any y P R, let rysg be the reduction of y

modulo I. That is, rysg is the unique element in R such that y´rysg P pgq and rysg “
řn´1
i“0 yiX

ig,
with yi P r´1{2, 1{2q,@i, 0 ď i ď n ´ 1. Following [LSS14a] we abuse notation and let σnpbq
denotes the last singular value of the matrix rotpbq P Znˆn, for any b P I. For z P R, we denote by
MSB` P t0, 1u

`¨n the ` most significant bits of each of the n coefficients of z in R.

Gaussian distributions. For a vector c P Rn and a positive parameter σ P R, we define the Gaussian

distribution of centre c and width parameter σ as ρσ,cpxq “ expp´π ||x´c||
2

σ2 q, for all x P Rn.
This notion can be extended to ellipsoid Gaussian distribution by replacing the parameter σ
with the square root of the covariance matrix Σ “ BBt P Rnˆn with detpBq ‰ 0. We define
it by ρ?Σ,cpxq “ expp´π ¨ px ´ cqtpBtBq´1px ´ cqq, for all x P Rn. For L a subset of Zn, let
ρσ,cpLq “

ř

xPL ρσ,cpxq. Then, the discrete Gaussian distribution over L with centre c and standard

deviation σ (resp.
?
Σ) is defined as DL,σ,cpyq “

ρσ,cpyq
ρσ,cpLq

, for all y P L. We use the notations ρσ
(resp. ρ?Σ) and DL,σ (resp. DL,

?
Σ) when c is 0.

Finally, for a fixed Y “ py1, y2q P R
2, we define: rEY,s “ y1DR,s ` y2DR,s as the distribution

induced by sampling u “ pu1, u2q P R
2 from a discrete spherical Gaussian with parameter s,

and outputting y “ y1u1 ` y2u2. It is shown in [LSS14a, Th. 5.1] that if Y ¨ R2 “ I and s ě
maxp}g´1y1}8, }g

´1y2}8q¨n¨
a

2 logp2np1` 1{εqq{π for ε P p0, 1{2q, this distribution is statistically
close to the Gaussian distribution DI,sY T .

3 GGH-like Asymmetric Graded Encoding Scheme

We now recall the definitions given in [GGH`13b, Section 2.2] for the notions of Jigsaw specifier,
Multilinear Form and Multilinear Jigsaw puzzle. We refer to the original paper for the security of
this construction.

Definition 1 ([GGH`13b, Def. 5]). A Jigsaw specifier is a tuple pκ, `, Aq where κ, ` P Z` are
parameters and A is a probabilistic circuit with the following behavior: On input a prime number
q, A outputs the prime q and an ordered set of ` pairs pS1, a1q, . . . , pS`, a`q where each ai P Zq and
each Si Ď rκs.
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Definition 2 ([GGH`13b, Def. 6 and 7]). A Multilinear Form is a tuple F “ pκ, `,Π, F q
where κ, ` P Z` are parameters and Π is a circuit with ` imput wires, made out of binary and
unary gates. F is an assignment of an index set I Ď rκs to every wire of Π. A multilinear form
must satisfies constraints given in the original definition (on gates, and the output wire is assigned
to rκs).

We say that a Multilinear Form F “ pκ1, `1, Π, F q is compatible with X “ ppS1, a1q, . . . , pS`, a`qq
if κ “ κ1, ` “ `1 and the input wires of Π are assigned to the sets S1, . . . , S`. The evaluation of F
on X is then doing arithmetic operations on the inputs depending on the gates. We say that the
evaluation succeeds if the final output is prκs, 0q.

We now define the Multilinear Jigsaw Puzzles.

Jigsaw Generator: JGenpλ, κ, `, Aq Ñ pq,X, puzzleq. This algorithm takes as input λ, and a Jig-
saw specifier pκ, `, Aq. It outputs a prime q, a private output X and a public output puzzle.
The generator is using a pair of PPT algorithms JGen “ pInstGen,Encodeq.

InstGenpλ, κq Ñ pq, params, sq. This algorithm takes λ and κ as inputs and outputs pq, params, sq,
where q is a prime of size at least 2λ params is a description of public parameters, and s is
a secret state to pass to the encoding algorithm.

Encodepp, params, s, pS, aqq Ñ pS, uq. The encoding algorithm takes as inputs the prime q, the
parameters params, the secret state s, and a pair pS, aq with S Ď rκs and a P Zq and
outputs u, and encoding of a relative to S.

More precisely, the algorithm runs the Jigsaw specifier on input p to get ` pairs pS1, a1q, . . . , pS`, a`q.
Then encodes all the plaintext elements by using the Encode algorithm on each pSi, aiq which
return pSi, uiq. We have:

X “ pq, pS1, a1q, . . . , pS`, a`qq and puzzle “ pparams, pS1, u1q, . . . , pS`, u`qq.

Jigsaw Verifier: JVerppuzzle,Fq Ñ t0, 1u. This algorithm takes as input the public output of a
Jigsaw Generator puzzle, and a multilinear form F . It outputs either accept p1q or reject p0q.

Correctness. For an output pq,X, puzzleq and a form F compatible with X, we say that the verifier
JVer is correct if either the evaluation of F on X succeeds and JVerppuzzle,Fq “ 1 either the
evaluation fails and JVerppuzzle,Fq “ 0. We require that with high probability over the randomness
of the generator, the verifier will be correct on all form.

Security. The hardness assumptions for the Multilinear Jigsaw puzzle requires that for two different
polynomial-size families of Jigsaw Specifier tpκλ, `λ, AλquλPZ` and tpκλ, `λ, A

1
λquλPZ` the public

output of the Jigsaw Generator on pκλ, `λ, Aλq will be computationally indistinguishable from the
public output of the Jigsaw Generator on pκλ, `λ, A

1
λq.

3.1 Using GGH to construct Jigsaw puzzles

In Figure 1, we describe a GGH-like asymmetric graded encoding scheme without encodings of
zero based on the definition of GGHLite from [LSS14a].

We now explain how to use those procedure to construct the Jigsaw Generator, described
in [GGH`13b, Appendix A].

Jigsaw Generator. The Jigsaw Generator uses InstGen to generate all the public (params and
pzt) and secret parameters of the multilinear map. Each level of the multilinear map will be
associated with a subset of the set rκs. To create the puzzle pieces, which are encodings of
some elements of R at different level, the Generator simply encodes some random elements at
level S Ă r1, κs, those are given as puzzle.

6



‚ Instance generation. InstGenp1λ, 1κq: Given security parameter λ and multilinearity parameter κ,
determine scheme parameters n, q, σ, σ1, `g´1 , `b, ` as in [LSS14a]. Then proceed as follows:

‚ Sample g Ðâ DR,σ until }g´1
} ď `g´1 and I “ pgq is a prime ideal. Define encoding domain Rg “

R{ pgq.
‚ Sample zi Ðâ UpRqq for all 0 ă zi ď k.

‚ Sample hÐâ DR,?q and define the zero-testing parameter pzt “
”

h
g

śκ
i“1 zi

ı

q
.

‚ Return public parameters params “ pn, q, `q and pzt.

‚ Encode at level-0 Enc0pparams, g, eq: Compute a small representative e1 “ resg and sample an

element e2 Ðâ De1`I,σ1 . Output e2.
‚ Encode in group tiu. Encpparams, zi, eq: Given level-0 encoding e P R, parameters params and zi,

output re{zisq.

‚ Adding encodings. Add: Given encodings u1 “
“

c1{
`
ś

iPS zi
˘‰

q
and u2 “

“

c2{
`
ś

iPS zi
˘‰

q
with

S Ď t1, . . . , κu:
‚ Return u “ ru1 ` u2sq, an encoding of rc1 ` c2sq in the group S.

‚ Multiplying encodings. Mult: Let S1 Ă rκs, S2 Ă rκs with S1 X S2 “ H, given an encoding

u1 “

”

c1{
´

ś

iPS1
zi
¯ı

q
and an encoding u2 “

”

c2{
´

ś

iPS2
zi
¯ı

q
:

‚ Return u “ ru1 ¨ u2sq, an encoding of rc1 ¨ c2sq in S1 Y S2.

‚ Zero testing at level κ. isZeropparams, pzt, uq: Given an encoding u “
“

c{
`
śκ´1
i“0 zi

˘‰

q
, return 1 if

}rpztusq}8 ă q3{4 and 0 else.

Fig. 1. GGH-like asymmetric graded encoding scheme adapted from [LSS14a].

Jigsaw Verifier. The verifier is given the public parameters params and pzt, a valid form Π
(which is defined [GGH`13b, Def. 6] in as a circuit made of binary and unary gates) and puzzle,
an input for Π (which are some encodings). The verifier is then evaluating Π on these input
using Add for addition gates and Mult for multiplication gates. The verifier must succeeds if
the evaluation of F on X succeeds, which means that the final output of the evaluation is an
encoding of zero at level κ. The verifier is invoking the zero-testing procedure, and outputs 1
if the test passes, 0 otherwise.

4 Modifications to and parameters for GGH-like schemes

In this section, we first show that we do not require a prime pgq and then describe a method
which allows to reduce the size of two parameters: the modulus q and the number ` of extracted
bits. In Section 4.3 then we describe the lattice-attack against the scheme which we use to pick
the dimension n. Finally, we describe our strategy to choose parameters that satisfy all these
constraints.

4.1 Non-prime pgq

Both GGHLite and GGH-like jigsaw puzzles as specified in Figure 1 require to sample a g such
that pgq is a prime ideal. However, finding such a g is prohibitively expensive. While checking each
individual g whether pgq is a prime ideal is asymptotically not slower than polynomial multiplication,
finding such a g requires to run this check often. The probability that an element generates a
prime ideal is assumed to be roughly 1{pncq for some constant c ą 1 [Gar13, Conjecture 5.18], so
we expect to run this check nc times. Hence, the overall complexity is at least quadratic in n which
is too expensive for anything but toy instances.

Primality of pgq is used in two proofs. Firstly, to ensure that after multiplying κ` 1 elements
in Rg the product contains enough entropy. This is used to argue security of the N -partite non-
interactive key exchange. Secondly, to prove that c ¨ h{g is big if c, h R g (cf. Lemma 2). Below,
we show that we can relax the conditions on g for these two arguments to still go through, which
then allows us to drop the condition that pgq should be prime. We note, though, that some other
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applications might still require g to be prime and that future attacks might find a way to exploit
non-prime pgq.

Entropy of the product. The next lemma shows that excluding prime factors ď 2N and guaranteeing
N pgq ě 2n is sufficient to ensure 2λ bits of entropy in a product of κ ` 1 elements in Rg with
overwhelming probability. We note that both conditions hold with high probability, are easy to
check and are indeed checked in our implementation.

Lemma 1. Let κ ě 2, λ be the security parameter and g P Z rXs {pXn ` 1q with norm p “
N pgq ě 2n such that p has no prime factors ď 2κ ` 2, and such that n ě κ ¨ λ ¨ logpλq. Then,
with overwhelming probability, the product of κ` 1 uniformly random elements in Rg has at least
κ ¨ λ ¨ logpλq{4 bits of entropy.

Proof. Write p “
śr
i“1 p

ei
i where pi are distinct primes and ei ě 1 for all i. Let us consider the set

S “ ti P t1, . . . , ru : ei “ 1u. Then, following [CDKD14] we define ps “
ś

iPS pi as the square-free
part of p. Asymptotically, it holds that #tp ď x : p{ps ą psu is cx3{4 for some computable constant
c (cf. [CDKD14]). Since in our case we have x ě 2n, this implies that with overwhelming probability
it holds that ps ě

?
p and hence logppsq ě n{2.

By the Chinese Remainder Theorem, Rg is isomorphic to F1 ˆ ¨ ¨ ¨ ˆ Fr where each “slot”
Fi “ Zpeii . The set of Fi, for i P S corresponds to the square-free part of p. Those Fi are fields,
and each of them has order pi ě 2N which means that a random element in such Fi is zero with
probability 1{pi. In those slots, the product of N elements has Es bits of entropy, where

Es “
ÿ

iPS

ˆ

1´
N

pi

˙

logppiq.

First, as pi ě 2N for all i P S, the quotient N{pi ď 1{2 and then
´

1´ N
pi

¯

ě 1{2 for all i P S. This

implies that

Es ě 1{2
ÿ

iPS
logppiq “ 1{2 log

´

ź

iPS
pi

¯

“ 1{2 logppsq.

Because logppsq ě n{2, we conclude that Es ě
n
4 ě

κ¨λ¨logpλq
4 . [\

Probability of false positive. It remains to be shown that we can ensure that there are no false
positives even if pgq is not prime. In [GGH13a, Lemma 3] false positives are ruled out as follows.
Let u “ rc{zκsq where c is a short element in some coset of I, and let w “ rpzt ¨ usq, then we have
w “ rc ¨ h{gsq. The first step in [GGH13a] is to suppose that }g ¨ w} and }c ¨ h} are each at most
q{2, then, since g ¨ w “ c ¨ h mod q we have that g ¨ w “ c ¨ h exactly. We also have an equality
of ideals: pgq ¨ pwq “ pcq ¨ phq, and then several cases are possible. If pgq is prime as in [GGH13a,
Lemma 3], then pgq divides either pcq or phq and either c or h is in pgq. As, by construction, none
of them is in pgq if c is not in I, either }g ¨ w} or }c ¨ h} is more than q{2. Using this, they conclude
that there is no small c (not in I) such that w is small enough to be accepted by the zero-test.

Our approach is to simply notice that all we require is that pgq and phq are co-prime. Checking if
pgq and phq are co-prime can be done by checking gcdpN pgq,N phqq “ 1. However, computing N phq
is rather costly because h is sampled from DZn,?q and hence has a large norm N phq. To deal with
this issue we notice that if gcdpN pgq,N phqq ‰ 1 then we also have gcdpN pgq,N ph mod gqq ‰ 1
which can be verified with a simple calculation. Now, interpreting h mod g as “a small representative
of h modulo g”, we can compute h mod g as h ´ g ¨ tg´1 ¨ hs, which produces an element of size
«
?
n ¨ }g}. We can use this observation to reduce the complexity of checking if pgq and phq are

co-prime to computing two norms for elements of size }g} and «
?
n ¨ }g} and taking their gcd.

Furthermore, this condition holds with high probability, i.e. we only have to perform this test Op1q
times. Indeed, by ruling out likely common prime factors first, we expect to run this test exactly
once. Hence, checking co-primality of pgq and phq is much cheaper than finding a prime pgq but
still rules out false positives.
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Finally, we note that recent proposals of indistinguishability obfuscation from multilinear
maps [Zim15,AB15] requires composite order maps. These are not the maps we are concerned with
here as in [Zim15,AB15] it is assumed that the factorisation of pgq is known. However, we note
that our techniques and implementation easily extend to this case by considering g “ g1 ¨ g2 for
known co-prime g1 and g2.

4.2 Reducing the size of q

In this section show how to reduce q for which we consider the case where re-randomisers are
published for level-1 but no other levels. This matches the requirements of the N -partite Diffie-
Hellman key exchange but not the Jigsaw puzzle case. However, when no re-randomisers are
published we may simply set σ‹1 “ 1 and apply the same analysis. Hence, assuming that re-
randomisers are published fits our framework in all cases and makes our analysis compatible with
previous work. We note that the analysis can be easily generalised to accommodate re-randomisers
at higher levels than one by increasing q to accommodate “numerator growth”.

The size of q is driven from both correctness and security considerations. To ensure the cor-
rectness of the zero-testing procedure, [LSS14a] showed the two following lower bounds on q. Eq. 1
implies that false negatives do not exist, and Eq. 2 implies that the probability of false positive
occurrence is negligible:

q ą max
´

pn`g´1q
8
, p3n

3
2σ‹1σ

1q
8κ
¯

, (1)

q ą p2nσq
4
. (2)

The strongest constraint for q is given by the inequality q ą p3n
3
2σ‹1σ

1q
8κ

. It comes from the fact

that for any level-κ encoding u of 0 (i.e., u P S
p0q
κ ), the inequality }pztu}8 ă q3{4 has to hold. The

condition is needed for the correctness of zero-testing and extraction.

New parameter ξ. The choice suggested in [LSS14a] is to extract ` “ logpqq{4´ λ bits from each
element of the level-κ encoding. We show that this supplies much more entropy than needed and
that we can sample a smaller fraction, ` “ ξ logpqq ´ λ bits. The equation for q can be rewritten
in terms of the variable ξ, by setting the initial condition }pzt u}8 ă q1´ξ.

Lemma 2 (Adapted from Lemma A.1 in [LSS14b]). Let g P R and I “ pgq, let c, h P R

such that c R I, pgq and phq are co-prime, }c ¨ h} ă q{2 and q ą p2tnσq
1{ξ

for some t ě 1 and any
0 ă ξ ď 1{4. Then }rc ¨ h{gsq} ą t ¨ q1´ξ.

Proof. From [GGH13a, Lemma 3] and the discussion in Section 4.1 we know that since }c ¨ h} ă q{2

we must have
›

›

›
g ¨ rc ¨ h{gsq

›

›

›
ą q{2 if pgq and phq are co-prime (note that c ¨ h ‰ g ¨ rc ¨ h{gsq in

R{pXn ` 1q). So we have
›

›

›
g ¨ rc ¨ h{gsq

›

›

›
ą q{2 ùñ

?
n }g} ¨

›

›

›
rc ¨ h{gsq

›

›

›
ą q{2 ùñ

›

›

›
rc ¨ h{gsq

›

›

›
ą

q{p2nσq. We have t ¨ q1´ξ “ t ¨ q{qξ ă t ¨ q{p2tnσq “ q{p2nσq and the claim follows. [\

Correctness of zero-testing. We can obtain a tighter bound on q by refining the analysis in [LSS14a].
Recall that }rpzt usq}8 “ }rhc{gsq}8 “ }h ¨ c{g}8 ď }h} ¨ }c{g} ď }h} ¨ }c} ¨ }g

´1}
?
n. The first

inequality is a direct application of the inequalities between the infinity norm of a product and the
product of the Euclidean norms, the second comes from [Gar13, Lemma 5.9].

Since hÐ DR,
?
q, we have }h} ď

?
nq1{2. Moreover, c can be written as a product of κ level-1

encodings ui, for i “ 1, . . . , κ, i.e., c “
śκ
i“1 ui. Thus, }c} ď p

?
nq
κ´1
pmaxi“1,...,κ }ui}q

κ
since each

of the κ´ 1 multiplications brings an extra
?
n factor. Let umax be one of the ui of largest norm.

It can be written as umax “ e ¨ a` ρ1 ¨ b1
p1q
` ρ2 ¨ b2

p1q. As we sampled the polynomial g such that
›

›g´1
›

› ď lg´1 the inequality }rpzt usq}8 ă q1´ξ holds if:

nlg´1p
?
nq
κ´1
}pe ¨ a` ρ1 ¨ b

p1q
1 ` ρ2 ¨ b

p1q
2 q}κ ă q1{2´ξ. (3)

9



Then, since

}e ¨ a` ρ1 ¨ b
p1q
1 ` ρ2 ¨ b

p1q
2 }κ ď p}e} ¨ }a}

?
n` }ρ1} ¨ }b

p1q
1 }
?
n` }ρ2} ¨ }b

p1q
2 }
?
nq
κ
,

eÐ DR,σ1 , aÐ D1`I,σ1 , b
p1q
1 , b

p1q
2 Ð DI,σ1 and ρ1, ρ2 Ð DR,σ‹1

, we can bound each of these values

as }e}, }a}, }b
p1q
1 }, }b

p1q
2 } ď σ1

?
n, }ρ1}, }ρ2} ď σ‹1

?
n to get:

nlg´1p
?
nq
κ´1
pσ1
?
n ¨ σ1

?
n ¨
?
n` 2 ¨ σ‹1

?
n ¨ σ1

?
n ¨
?
nq
κ
ă q1{2´ξ,

ˆ

nlg´1p
?
nq
κ´1
ppσ1q

2
n

3
2 ` 2σ‹1σ

1n
3
2 q
κ
˙

2
1´2ξ

ă q. (4)

In [LSS14a], we had ξ “ 1{4 (which give 2{p1´ 2ξq “ 4), we hence have that this analysis allows
to save a factor of 2 in the size of q even for the same ξ. If we additionally consider ξ ă 1{4 bigger
improvements are possible. For practical parameter sizes we reduce the size of q by a factor of
almost 4 because ξ tends towards zero as κ and λ grow.

Correctness of extraction. As in [LSS14a], we need that two level-κ encodings u and u1 of different
elements have different extracted elements, which implies that we need: }rpztpu´ u

1qsq}8 ą 2L´``1

with L “ tlog qu. This condition follows from Lemma 2 with t satisfying t ¨ q1´ξ ą 2L´``1, which

holds for t “ qξ ¨ 2´``1. As a consequence, the condition q ą p2tnσq
1{x

is still satisfied if we have
` ą log2p8nσq, and to ensure that t ą 1 we need that ` ă ξ log q ` 2. Finally, to ensure that εext,
the probability of the extraction to be the same for two different elements, is negligible, we need
that ` ď ξ log2 q ´ log2p2n{εextq.

Picking ξ and q. Putting all constraints together, we let ` “ logp8nσq and

q̃ “ nlg´1p
?
nq
κ´1

ˆ

pσ1q
2
n

3
2 ` 2σ‹1σ

1n
3
2

˙κ

.

To find ξ we solve `` λ “ 2ξ
1´2ξ ¨ log q̃ for ξ and set q “ q̃

2
1´2ξ .

4.3 Lattice attacks

To pick a dimension n we rely on lattice attacks. The most efficient lattice attacks described [GGH13a]
rely on computing weak discrete logarithms and hence do not seem to be applicable to either the
case where no encodings of zero are published or the case where such attacks are ruled out in some
other way. However, we may mount the attack from [CS97] against GGH-like graded encoding
schemes. We explain it in the symmetric setting. Assume two encodings of random elements:
u1 “ re1{zsq and u2 “ re2{zsq. We have

„

u1
u2



q

“

„

e1{z

e2{z



q

“

„

e1
e2



q

with e1 and e2 small. We set up the lattice Λ “

ˆ

qI 0
X I

˙

where I is the nˆ n identity matrix, 0 is

the nˆn zero matrix, and U a rotational basis for ru1{u2sq. By construction Λ contains the vector

pe1, e2q which is short. We have detpΛq “ qn and }pe1, e2q} «
?

2nσ1. In contrast, a random lattice
with determinant qn and dimension 2n is expected to have a shortest vector of norm « qn{2n “

?
q

which is much longer than }pe1, e2q}. While Λ does not constitute a Unique-SVP instance because
there are many short elements of norm roughly

?
2nσ1 we may consider all of these “interesting”.

Clearly, there is a gap between those “interesting” vectors and the expected length of short vectors
for random lattices. To hedge against potential attacks exploiting this gap, we may hence want to
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ensure that finding those “interesting” short vectors is hard. The hardness of Unique-SVP instances
is determined by the ratio of the second shortest λ2pΛq and the shortest vector λ1pΛq of the lattice.
We assume that the complexity of finding a short element in Λ depends on the gap between pe1, e2q
and

?
q in a similar way.

In order to succeed, an attacker needs to solve something akin of a Unique-SVP instance with
gap λ2pΛq{λ1pΛq. We need to pick parameters such that this problem takes at least 2λ operations.
The most efficient technique known in the literature to produce short lattice vectors is to run
lattice reduction. The quality of lattice reduction is typically expressed as the root-Hermite factor
δ0. An algorithm with root-Hermite factor δ0 is expected to output a vector v in a lattice L such
that }v} “ δn0 volpLq1{n. Hence, in our case we require τ ¨ δ2n0 ď λ2pΛq{λ1pΛq and thus

δ0 ď

ˆ ?
q

?
2n ¨ σ1 ¨ τ

˙1{p2nq

, (5)

where τ is a constant which depends on the lattice structure and on the reduction algorithm used.
Typically τ « 0.3 [APS15], which we will use as an approximation.

Currently, the most efficient algorithm for lattice reduction is a variant of the BKZ algo-
rithm [SE94] referred to as BKZ 2.0 [CN11]. However, its running time and behaviour, especially
in high dimensions, is not very well understood: there is no consensus in the literature as to how
to relate a given δ0 to computational cost. We estimate the cost of lattice reduction as in [APS15].

We stress, though, that these assumptions requires further scrutiny. Firstly, this attack does
not use pzt which means we expect that better lattice attacks can be found eventually. Secondly,
we are assuming that the lattice reduction estimates in [APS15] are accurate. However, should
these assumptions be falsified, then this part of the analysis can simply be replaced by refined
estimates.

4.4 Putting everything together

Our overall strategy is as follows. Pick an n and compute parameters σ, σ1, σ‹1 as in [LSS14a] and
`g and q as in Section 4.2. Now, establish the root-Hermite factor required to carry out the attack
in Section 4.3 using Equation (5). If this δ0 is small enough to satisfy security level λ terminate,
otherwise double n and restart the procedure.

5 Implementation

Our implementation relies on FLINT [HJP14]. We use its data types to encode elements in
Z rXs, Q rXs, and ZqrXs but re-implement most non-trivial operations for the ring of integers
of a Cyclotomic number field where the degree is a power of two. Other operations — such as
Gaussian sampling or taking approximate inverses — are not readily available in FLINT and
are hence provided by our implementation. For computation with elements in R we use MPFR’s
mpfr_t [The13] with precision 2λ if not stated otherwise. Our implementation is available under the
GPLv2+ license at https://bitbucket.org/malb/gghlite-flint. We give experimental results
for computing multilinear maps using our implementation in Table 1.

For many operations considered in this section straight-forward algorithms are available in
O
`

n3 log q
˘

bit operations. However, the smallest set of parameters we consider in Table 1 is
n “ 215 and log q « 2117 which implies that if implemented naively each operation would take 256

bit operations for the smallest set of parameters we consider. Even quadratic algorithms can be
prohibitively expensive. Hence, in order to be feasible, all algorithms should run in quasi-linear time
in n, or more precisely in Opn log nq. All algorithms discussed in this section run in quasi-linear
time.
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5.1 Polynomial Multiplication in ZqrXs{pX
n ` 1q

During the evaluation of a GGH-style graded encoding scheme multiplications of polynomials in
ZqrXs{pXn ` 1q are performed. Asymptotically fast multiplication in this ring can be realised
by first reducing to multiplication in Z rXs and then to the Schönehage-Strassen algorithm for
multiplying large integers in Opn log n log log nq. This is the strategy implemented in FLINT, which
has a highly optimised implementation of the Schönehage-Strassen algorithm. Alternatively, we
can get an Opn log nq algorithm by using the Number-Theoretic Transform (NTT). Furthermore,
using a negative wrapped convolution we can avoid reductions modulo pXn ` 1q:

Theorem 1 (Adapted from [Win96]). Let ωn be a nth root of unity in Zq and ϕ2 “ ωn. Let

a “
řn´1
i“0 aiX

i and b “
řn´1
i“0 biX

i P ZqrXs{pXn ` 1q. Let c “ a ¨ b P ZqrXs{pXn ` 1q and let
a “ pa0, ϕa1, . . . , ϕ

n´1an´1q and define b and c analogously. Then c “ 1{n ¨NTT´1
ωn pNTTωnpaq d

NTTωnpbqq.

The NTT with a negative wrapped convolution has been used in lattice-based cryptography
before, e.g. [LMPR08]. We note that if we are doing many operations in ZqrXs{pXn`1q we can avoid
repeated conversions between coefficient and “evaluation” representations,

`

fp1q, fpωnq, . . . , fpω
n´1
n q

˘

,
of our elements, which reduces the amortised cost from Opn log nq to Opnq. That is, we can con-
vert encodings to their evaluation representation once on creation and back only when running
extraction. We implemented this strategy. We observe a considerable overall speed-up with the
strategy of avoiding the conversions where possible. We also note that operations on elements in
their evaluation representation are embarrassingly parallel.

5.2 Computing norms in Z rXs {pXn ` 1q

During instance generation we have to compute several norms of elements in Z rXs {pXn` 1q. The
norm N pfq of an element f in Z rXs {pXn ` 1q is equal to the resultant respf,Xn ` 1q. The usual
strategy for computing resultants over the integers is to use a multi-modular approach. That is, we
compute resultants modulo many small primes qi and then combine the results using the Chinese
Remainder Theorem. Resultants modulo a prime qi can be computed in OpMpnq log nq operations
where Mpnq is the cost of one multiplication in ZqirXs{pXn ` 1q. Hence, in our setting computing
the norm costs Opn log2 nq operations without specialisation.

However, we can observe that respf,Xn`1q mod qi can be rewritten as
ś

pXn`1qpxq“0 fpxq mod
qi as Xn`1 is monic, i.e. as evaluating f on all roots of Xn`1. Picking qi such that qi ” 1 mod 2n
this can be accomplished using the NTT reducing the cost mod qi to OpMpnqq saving a factor of
log n, which in our case is typically ą 15.

5.3 Checking if pgq is a prime ideal

While we show in Section 4.1 that we do not require prime pgq for a non-interactive N -partite key
exchange, some applications might still rely on this property. We hence provide an implementation
for sampling such g.

To check whether the ideal generated by g is prime in Z rXs {pXn ` 1q we compute the norm
N pgq and check if it is prime which is a sufficient but not necessary condition. However, before
computing full resultants, we first check if respg,Xn`1q “ 0 mod qi for several “interesting” primes
qi. These primes are 2 and then all primes up to some bound with qi ” 1 mod n because these
occur with good probability as factors. We list timings in Table 2.

5.4 Verifying that pb
p1q
1 , b

p1q
2 q “ pgq

If re-randomisation elements are required, then we require that they generate all of pgq, i.e.

pb
p1q
1 , b

p1q
2 q “ pgq. If b

p1q
i “ b̃

p1q
i ¨g for 0 ă i ď 2 then this condition is equivalent to pb̃

p1q
1 q`pb̃

p1q
2 q “ R.

We check the sufficient but not necessary condition gcdprespb̃
p1q
1 , Xn ` 1q, respb̃

p1q
2 , Xn ` 1qq “ 1,
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n log σ wall time n log σ wall time n log σ wall time

1024 15.1 0.54s 2048 16.2 3.03s 4096 17.3 20.99s

Table 2. Average time of checking primality of a single pgq on Intel Xeon CPU E5–2667 v2 3.30GHz
with 256GB of RAM using 16 cores

i.e. if the respective ideal norms are co-prime. This check, which we have to perform for every

candidate pair pb̃
p1q
1 , b̃

p1q
2 q, involves computing two resultants and their gcd which is quite expensive.

However, we observe that gcdprespb̃
p1q
1 , Xn ` 1q, respb̃

p1q
2 , Xn ` 1qq ‰ 1 when respb̃

p1q
1 , Xn ` 1q “

0 “ respb̃
p1q
2 , Xn ` 1q mod qi for any modulus qi. Hence, we first check this condition for several

“interesting” primes and resample if this condition holds. These “interesting” primes are 2 and
then all primes up to some bound with qi ” 1 mod n because these occur with good probability as
factors. Only if these tests pass, we compute two full resultants and their gcd. Indeed, after having
ruled out small common prime factors it is quite unlikely that the gcd of the norms is not equal
to one which means that with good probability we will perform this expensive step only once as
a final verification. However, this step is still by far the most time consuming step during setup
even with our optimisations applied. We note that a possible strategy for reducing setup time is

to sample m ą 2 re-randomisers b
p1q
i and to apply some bounds on the probability of m elements

b̃
p1q
i sharing a prime factor (after excluding small prime factors).

5.5 Computing the inverse of a polynomial modulo Xn ` 1

Instance generation relies on inversion in Q rXs {pXn ` 1q in two places. Firstly, when sampling g
we have to check that the norm of its inverse is bounded by `g. Secondly, to set up our discrete
Gaussian samplers we need to run many inversions in an iterative process. We note that for
computing the zero-testing parameter we only need to invert g in ZqrXs{pXn ` 1q which can be
realised in n inversions in Zq in the NTT representation.

In both cases where inversion in Q rXs {pXn`1q is required approximate solutions are sufficient.
In the first case we only need to estimate the size of g´1 and in the second case inversion is a sub-
routine of an approximation algorithm (see below). Hence, we implemented a variant of [BCMM98]
to compute the approximate inverse of a polynomial in Q rXs {pXn ` 1q, with n a power of two.

The core idea is similar to the FFT, i.e. to reduce the inversion of f to the inversion of an
element of degree n{2. Indeed, since n is even, fpXq is invertible modulo Xn ` 1 if and only if
fp´Xq is also invertible. By setting F pX2q “ fpXqfp´Xq mod Xn ` 1, the inverse f´1pXq of
fpXq satisfies

F pX2q f´1pXq “ fp´Xq pmod Xn ` 1q. (6)

Let f´1pXq “ gpXq “ GepX
2q ` XGopX

2q and fp´Xq “ FepX
2q ` XFopX

2q be split into
their even and odd parts respectively. From Eq. 6, we obtain F pX2qpGepX

2q ` XGopX
2qq “

FepX
2q `XFopX

2q pmod Xn ` 1q which is equivalent to
"

F pX2qGepX
2q “ FepX

2q pmod Xn ` 1q
F pX2qGopX

2q “ FopX
2q pmod Xn ` 1q.

From this, inverting fpXq can be done by inverting F pX2q and multiplying polynomials of
degree n{2. It remains to recursively call the inversion of F pY q modulo pXn{2 ` 1q (by setting
Y “ X2q. This leads to Algorithm 1 for approximately inverting elements of Q rXs {pXn`1q when
n is a power of 2, where we truncate the result of each recursive call to prec bits of precision.

Since Algorithm 1 reduces to polynomial multiplication and has log n iterations, it is easy to
see that it can be performed in Opn log2

pnqq operations in Q. Yet, since we truncate out operands
in each recursive call, it is not immediately obvious that this algorithm indeed produces an answer
that is even close to f´1pXq. Hence, we call Algorithm 1 in a loop, each time doubling the precision,
until }f̃´1pXq ¨ fpXq ´ 1} ă 2´prec to ensure the accuracy of our result.
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Algorithm 1 Approximate inverse of fpXq mod Xn ` 1 using prec bits of precision

if n “ 1 then
g0 Ð f´1

0

else
F pX2

q Ð fpXqfp´Xq mod Xn
` 1

F̃ pY q “ F pY q truncated to prec bits of precision
GpY q Ð InverseModpF̃ pY q, q, n{2q
Set FepX

2
q, FopX

2
q such that fp´Xq “ FepX

2
q `XFopX

2
q

TepY q, TopY q Ð GpY q ¨ FepY q, GpY q ¨ FopY q
f´1

pXq Ð TepX
2
q `XTopX

2
q

f̃´1
pXq “ f´1

pXq truncated to prec bits of precision
return f̃´1

pXq
end if

We give experimental results comparing Algorithm 1 with FLINT’s extended GCD algorithm in
Table 3 which highlights that computing approximate inverses instead of exact inverses is necessary
for anything but toy instances.

n log σ xgcd 160 160iter 8

4096 17.2 234.1s 0.067s 0.073s 121.8s
8192 18.3 1476.8s 0.195s 0.200s 755.8s

Table 3. Inverting g Ðâ DZn,σ with FLINT’s extended Euclidean algorithm (“xgcd”), our imple-

mentation with precision 160 (“160”), iterating our implementation until }f̃´1pXq ¨ fpXq} ă 2´160

(“160iter”) and our implementation without truncation (“8”) on Intel Core i7–4850HQ CPU at
2.30GHz, single core.

5.6 Small remainders

The Jigsaw Generator as defined in [GGH`13b, Definition 8] takes as input elements ai in Zp where
p “ N pIq and produces level encodings with respect to some source group Si. In particular, this
algorithm produces some small representative of the coset ai modulo pgq from large integers of size
« pσ

?
nq
n

if we represents elements in Zp as integers 0 ď ai ă p. This can be accomplished by using
Babai’s trick and that g is small, i.e. by computing ai ´ g ¨ tg

´1 ¨ ais in Q rXs {pXn ` 1q. However,
in order for this operation to produce sufficiently small elements, we need g´1 either exactly or
with high precision. Computing such a high quality approximation of g´1 can be prohibitively
expensive in terms of memory and time. Our strategy for computing with a lower precision is to
rewrite ai as

ai “

rlog2paiq{Bs
ÿ

j“0

2B¨j ¨ aij

where aij ă 2B for some B. Then, we compute small representatives for all 2B¨j and aij using an
approximation of g´1 with precision B. Finally, we multiply the small representatives for 2B¨j and
aij and add up their products. This produces a somewhat short element which we then reduce
using our approximation of g´1 with precision B until its size does not decrease any more.

5.7 Sampling from a Discrete Gaussian

While the strategy in Section 5.6 produces short elements it does not necessarily produce elements
which follow a spherical Gaussian distribution and hence do not leak geometric information about
g. To produce such samples we need to sample from the discrete Gaussian Dpgq,σ1,c where c is
a small representative of a coset of pgq. Furthermore, if encodings of zero are published, we are
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required to sample from Dpgq,σ1,0 and Dpgq,σ1,1. For this, a fundamental building block is to sample
from the integer lattice. We implemented a discrete Gaussian sampler over the integers both in
arbitrary precision – using MPFR — and in double precision — using machine doubles. For
both cases we implemented rejection sampling from a uniform distribution with and without table
(“online”) lookups [GPV08] and Ducas et al’s sampler which samples from DZ,kσ2

where σ2 is a
constant [DDLL13, Algorithm 12]. Our implementation automatically chooses the best algorithm
based on σ, c and τ (the tail cut). In our case σ is typically relatively large, so we call the latter
whenever sampling with a centre c P Z and the former when c R Z. We list example timings of our
discrete Gaussian sampler in Table 4. We note that in our implementation we — conservatively —
only make use of the arbitrary precision implementation of this sampler with precision 2λ.

algorithm σ c double mpfr t

prec samp./s prec samp./s

tabulated [GPV08, SampleZ] 10000 1.0 53 660.000 160 310.000
tabulated [GPV08, SampleZ] 10000 0.5 53 650.000 160 260.000

online [GPV08, SampleZ] 10000 1.0 53 414.000 160 9.000
online [GPV08, SampleZ] 10000 0.5 53 414.000 160 9.000
[DDLL13, Algorithm 12] 10000 1.0 53 350.000 160 123.000

Table 4. Example timings for discrete Gaussian sampling over Z on Intel Core i7–4850HQ CPU
at 2.30GHz, single core.

Using our discrete Gaussian sampler over the integers we implemented discrete Gaussian sam-
plers over lattices. We implemented a variant of [Pei10] which we reproduce in Algorithm 2. Namely,
we first observe that Dpgq,σ1,0 “ g ¨ DR,σ1¨g´T and then use [Pei10, Algorithm 1] to sample from

DR,σ1¨g´T where g´T is the conjugate of g´1. That is, gT0 “ g0 and gTn´i “ ´gi for 1 ď i ă n for
degpgq “ n´ 1. We then proceed as follows. We first compute an approximate square root (see be-
low) of Σ12 “ g´T ¨g´1 up to λ bits of precision. We perform operations with logpnq`4 plogp

?
n}σ}qq

bits of precision. If the square root does not converge for this precision, we double it and start over.
We then use this value, scaled appropriately, as the initial value from which to start computing
a square-root of Σ2 “ σ12 ¨ g´T ¨ g´1 ´ r2 with r “ 2 ¨ r

?
log n s. We terminate when the square

of the approximation is within distance 2´2λ to Σ2. This typically happens quickly because our
initial candidate is already very close to the target value.

Algorithm 2 Computing an approximate square root of σ12 ¨ g´T ¨ g´1 ´ r2.

p, s1 Ð logn` 4 logp
?
n}σ}q, 1

Σ12 Ð g´T ¨ g´1

while }s12 ´Σ12} ą 2´λ do
s1 Ð«

a

Σ12 computed at prec. p until }s12 ´Σ2} ă 2´λ or no more convergence
pÐ 2p

end while
p, r Ð p` 2 log σ1, 2 ¨ r

?
logns

Σ2 Ð σ ¨ g´T ¨ g´1
´ r2

sÐ«
?
Σ2 computed at precision p using s1 as initial approximation until }s2 ´Σ2} ă 2´2λ

return s

Given an approximation
?
Σ2

1
of
?
Σ2 we then sample a vector xÐâ Rn from a standard normal

distribution and interpret it as a polynomial in Q rXs {pXn` 1q. We then compute y “
?
Σ2

1
¨x in

Q rXs {pXn ` 1q and return g ¨ ptysrq, where tysr denotes sampling a vector in Zn where the i-th
component follows DZ,r,yi . This algorithm is then easily extended to sample from arbitrary centres
c. The whole algorithm is summarised in Algorithm 3 and we give experimental results in Table 5.
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Algorithm 3 Sampling from Dpgq,σ1
?
Σ2

1
Ð«

a

σ12 ¨ g´T ¨ g´1 ´ r2

x1 P Rn Ðâ ρ1,0
xÐ x1 considered as an element P Q rXs {pXn

` 1q
y Ð

?
Σ2

1
¨ x

return g ¨ ptysrq

square root

prec n log σ1 iterations wall time log }p
?
Σ2

1
q
2
´Σ2} Dpgq,σ1{s

160 1024 45.8 9 0.4s -200 26.0
160 2048 49.6 9 0.9s -221 12.0
160 4096 53.3 10 2.5s -239 5.1
160 8192 57.0 10 8.6s -253 2.0
160 16384 60.7 10 35.4s -270 0.8

Table 5. Approximate square roots of Σ2 “ σ12 ¨ g´T ¨ g ´ r2 ¨ I for discrete Gaussian sampling
over g with parameter σ1 on Intel Core i7–4850HQ CPU at 2.30GHz, 2 cores for Denman-Beavers,
4 cores for estimating the scaling factor, one core for sampling. The last column lists the rate
(samples per second) of sampling from Dpgq,σ1 .

5.8 Approximate square roots

Our Gaussian sampler requires an (approximate) square root in Q rXs {pXn ` 1q. That is, for

some input element Σ we want to compute some element
?
Σ
1
P Q rXs {pXn ` 1q such that

}
?
Σ
1
¨
?
Σ
1
´ Σ} ă 2´2λ. We use iterative methods as suggested in [Duc13, Section 6.5] which

iteratively refine the approximation of the square root similar to Newton’s method. Computing
approximate square roots of matrices is a well studied research area with many algorithms known
in the literature (cf. [Hig97]). All algorithms with global convergence invoke approximate inversions
in Q rXs {pXn ` 1q for which we call our inversion algorithm.

We implemented the Babylonian method, the Denman-Beavers iteration [DJ76] and the Padé
iteration [Hig97]. Although the Babylonian method only involves one inversion which allows us to
compute with lower precision, we used Denman-Beavers, since it converges faster in practice and
can be parallelised on two cores. While the Padé iteration can be parallelised on arbitrarily many
cores, the workload on each core is much greater than in the Denman-Beavers iteration and in our
experiments only improved on the latter when more than 8 cores were used.

Most algorithms have quadratic convergence but in practice this does not assure rapid con-
vergence as error can take many iterations to become small enough for quadratic convergence
to be observed. This effect can be mitigated, i.e. convergence improved, by scaling the operands
appropriately in each loop iteration of the approximation [Hig97, Section 3]. A common scaling
scheme is to scale by the determinant which in our case means computing respf,Xn ` 1q for some
f P Q rXs {pXn ` 1q. Computing resultants in Q rXs {pXn ` 1q reduces to computing resultants
in Z rXs pXn ` 1q. As discussed above, computing resultants in Z rXs {pXn ` 1q can be expensive.
However, since we are only interested in an approximation of the determinant for scaling, we
can compute with reduced precision. For this, we clear all but the most significant bit for each
coefficient’s numerator and denominator of f to produce f 1 and compute respf 1, Xn`1q. The effect
of clearing out the lower order bits of f is to reduce the size of the integer representation in order
to speed up the resultant computation. With this optimisation scaling by an approximation of the
determinant is both fast and precise enough to produce fast convergence. See Table 5 for timings.
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Duc13. Léo Ducas. Signatures Fondées sur les Réseaux Euclidiens: Attaques, Analyse et Optimisations
. PhD thesis, Université Paris Diderot, 2013.
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LSS14b. Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient multilinear
maps from ideal lattices. Cryptology ePrint Archive, Report 2014/487, 2014. http://eprint.

iacr.org/2014/487.
OF15. Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part I, volume 9056 of

LNCS. Springer, April 2015.
Pei10. Chris Peikert. An efficient and parallel gaussian sampler for lattices. In Tal Rabin, editor,

CRYPTO 2010, volume 6223 of LNCS, pages 80–97. Springer, August 2010.
S`13. William Stein et al. Sage Mathematics Software Version 6.2. The Sage Development Team,

2013. Available at http://www.sagemath.org.
SE94. C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and

solving subset sum problems. Mathematical Programming, 66(1-3):181–199, 1994.
The13. The MPFR team. GNU MPFR: The Multiple Precision Floating-Point Reliable Library, 3.1.2

edition, 2013. http://www.mpfr.org/.
Win96. Franz Winkler. Polynomial Algorithms in Computer Algebra. Texts and Monographs in

Symbolic Computation. Springer, 1996.
Zim15. Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc Fischlin,

editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 439–467. Springer, April
2015.

A Graded Encoding Scheme

InstGenp1λ, 1κq Ñ pparams, pztq. This algorithm takes λ and κ as inputs and outputs pparams, pztq,
where params is a description of the graded encoding system as above, and pzt is a zero-testing
parameter at level κ.

Samppparamsq Ñ a. The ring sampler algorithm takes as input the parameters params and outputs

a level-0 encoding a P S
pαq
0 for a nearly uniform element α P R.

Encipparams, aq Ñ u. The encoding algorithm takes as inputs the parameters params, a level i and

a level-0 encoding a P S
pαq
0 of an element α P R. It outputs the level-i encoding u P S

pαq
i for α.

Addpparams, i, u1, u2q Ñ u. The addition algorithm takes as inputs the parameters params, a level i,

and two level-i encodings u1 P S
pα1q

i and u2 P S
pα2q

i . It outputs a level-i encoding u1 ` u2 P

S
pα1`α2q

i .
Negpparams, i, u1q Ñ u. The negation algorithm takes as inputs the parameters params, a level i,

and a level-i encoding u1 P S
pα1q

i . It outputs a level-i encoding ´u1 P S
p´α1q

i .
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Multpparams, i1, i2, u1, u2q Ñ u. The multiplication algorithm takes as inputs the parameters params,

two levels i1 and i2 such that i1 ` i2 ď κ, and a level-i1 (resp. i2) encoding u1 P S
pα1q

i1
and

u2 P S
pα2q

i2
. It outputs a level-pi1 ` i2q encoding u1 ˆ u2 P S

pα1¨α2q

i1`i2
.

isZeropparams, pzt, uq Ñ t0, 1u. The zero-test algorithm takes as inputs the parameters params, the

zero-testing parameter pzt and a level-κ encodings u P S
pαq
κ . It outputs 1 for every u P S

p0q
κ ,

and 0 otherwise, except with negligible probability:

Pr
αPR

”

Du P Spαqκ s.t. isZeropparams, pzt, uq “ 1
ı

“ negligiblepλq.

Extpparams, pzt, uq Ñ s. The extraction algorithm takes as inputs the parameters params, the zero-

testing parameter pzt and a level-κ encodings u P S
pαq
κ . It outputs s such that:

1. For a randomly chosen aÐ Samppparamsq, and two encodings of a: u1 Ð Encκpparams, aq
and u2 Ð Encκpparams, aq then

Pr rExtpparams, pzt, u1q “ Extpparams, pzt, u2qs ě 1´ negligiblepλq.

2. The distribution

tExtpparams, pzt, uq : aÐ Samppparamsq, uÐ Encκpparams, aqu

is nearly uniform over t0, 1u
λ
.

B More Parameters

In this section we give additional parameter sets for multilinear jigsaw puzzles at various levels
of security and multilinearity. These tables were produced using the Sage [S`13] module from
Appendix C.

λ κ n q }enc} }params} δ0 BKZ Enum BKZ Sieve

52 2 214
« 2781.5

« 223.6
« 223.6 1.006855 « 2112.2

« 2101.8

52 4 215
« 21469.0

« 225.5
« 225.5 1.007031 « 2110.4

« 2102.3

52 6 215
« 22114.9

« 226.0
« 226.0 1.010477 « 264.4

« 283.3

52 10 215
« 23406.8

« 226.7
« 226.7 1.017404 « 253.5

« 268.6

52 20 216
« 27014.8

« 228.8
« 228.8 1.018311 « 256.6

« 271.7

52 40 217
« 214599.3

« 230.8
« 230.8 1.019272 « 259.6

« 274.8

52 80 218
« 230508.4

« 232.9
« 232.9 1.020258 « 262.7

« 277.8

52 160 218
« 260827.8

« 233.9
« 233.9 1.040912 « 254.0

« 254.0

80 2 214
« 2837.5

« 223.7
« 223.7 1.007451 « 298.2

« 294.5

80 4 215
« 21525.0

« 225.6
« 225.6 1.007330 « 2103.7

« 298.8

80 6 216
« 22287.2

« 227.2
« 227.2 1.005661 « 2160.9

« 2128.3

80 10 217
« 23844.7

« 228.9
« 228.9 1.004882 « 2209.0

« 2150.9

80 20 218
« 27824.9

« 230.9
« 230.9 1.005074 « 2198.9

« 2148.5

80 40 219
« 216152.9

« 233.0
« 233.0 1.005294 « 2188.4

« 2145.7

80 80 220
« 233546.4

« 235.0
« 235.0 1.005528 « 2179.7

« 2143.6

80 160 221
« 269810.9

« 237.1
« 237.1 1.005769 « 2171.3

« 2141.4

Table 6. Additional Parameters.
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C Parameter Estimation Source Code

# -*- coding: utf -8 -*-

from collections import OrderedDict
from copy import copy

from sage.calculus.var import var
from sage.functions.log import log
from sage.functions.other import sqrt
from sage.misc.misc import get_verbose
from sage.rings.all import ZZ, RR , RealField
from sage.symbolic.all import pi, e

# Utility Functions

def params_str(d, keyword_width=None):
"""
Return string of key ,value pairs as a string "key0: value0 , key1: value1"

:param d: report dictionary
:keyword_width: keys are printed with this width
"""
if d is None:

return
s = []
for k in d:

v = d[k]
if keyword_width:

fmt = u"%%%ds" % keyword_width
k = fmt % k

if ZZ(1) /2048 < v < 2048 or v == 0:
try:

s.append(u"%s: %9d" % (k, ZZ(v)))
except TypeError:

if v < 2.0 and v >= 0.0:
s.append(u"%s: %9.7f" % (k, v))

else:
s.append(u"%s: %9.4f" % (k, v))

else:
t = u"«2^%.1f" % log(v, 2).n()
s.append(u"%s: %9s" % (k, t))

return u", ".join(s)

def params_reorder(d, ordering):
"""
Return a new ordered dict from the key:value pairs in ‘d‘ but reordered such that the
keys in ordering come first.

:param d: input dictionary
:param ordering: keys which should come first (in order)

"""
keys = list(d)
for key in ordering:

keys.pop(keys.index(key))
keys = list(ordering) + keys
r = OrderedDict ()
for key in keys:

r[key] = d[key]
return r

# Lattice Reduction Estimates

def k_chen(delta):
"""
Estimate required blocksize ‘k‘ for a given root -hermite factor δ_0.

:param delta: root -hermite factor δ_0
"""
k = ZZ(40)
RR = delta.parent ()
pi_r = RR(pi)
e_r = RR(e)
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f = lambda k: (k/(2* pi_r*e_r) * (pi_r*k)**(1/k))**(1/(2*(k-1)))

while f(2*k) > delta:
k *= 2

while f(k+10) > delta:
k += 10

while True:
if f(k) < delta:

break
k += 1

return k

def bkz_runtime_k_sieve(k, n):
"""

Runtime estimation given ‘k‘ and assuming sieving is used to realise the SVP oracle.

For small ‘k‘ we use estimates based on experiments. For ‘k ě 90‘ we use the asymptotics.

"""
repeat = 3*log(n, 2) - 2*log(k, 2) + log(log(n, 2), 2)
if k < 90:

return RR (0.45*k + 12.31) + repeat
else:

# we simply pick the same additive constant 12.31 as above
return RR (0.3366*k + 12.31) + repeat

def bkz_runtime_k_bkz2(k, n):
"""
Runtime estimation given ‘k‘ and assuming [CheNgu12]_ estimates are correct.

The constants in this function were derived as follows based on Table 4 in [CheNgu12]_::

sage: dim = [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240,
250]

sage: nodes = [39.0 , 44.0, 49.0, 54.0, 60.0, 66.0, 72.0, 78.0, 84.0, 96.0, 99.0, 105.0 ,
111.0, 120.0, 127.0 , 134.0]

sage: times = [c + log (200 ,2).n() for c in nodes]
sage: T = zip(dim , nodes)
sage: var("a,b,c,k")
sage: f = a*k*log(k, 2.0) + b*k + c
sage: f = f.function(k)
sage: f.subs(find_fit(T, f, solution_dict=True))
k |--> 0.270188776350190*k*log(k) - 1.0192050451318417*k + 16.10253135200765

.. [CheNgu12] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates (
Full Version).

2012. http ://www.di.ens.fr/~ychen/research/Full_BKZ.pdf

"""
repeat = 3*log(n, 2) - 2*log(k, 2) + log(log(n, 2), 2)
return RR (0.270188776350190*k*log(k) - 1.0192050451318417*k + 16.10253135200765 + repeat)

def complete_lattice_attack(d):
"""
Fill in missing pieces for lattice attack estimates

:param d: a cost estimate for lattice attacks
:returns: a cost estimate for lattice attacks

"""
r = copy(d)
if r[u"δ_0"] >= 1.0219:

r["k"] = 2
r["bkz2"] = r["n"]**3
r["sieve"] = r["n"]**3

else:
r["k"] = k_chen(r[u"δ_0"])
r["bkz2"] = ZZ(2)** bkz_runtime_k_bkz2(r["k"], r["n"])
r["sieve"] = ZZ(2)** bkz_runtime_k_sieve(r["k"], r["n"])

r = params_reorder(r, [u"δ_0", "k", "bkz2", "sieve"])
return r

def gghlite_params(n, kappa , target_lambda =80, xi=None , rerand=False , gddh_hard=False):
"""
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Return GGHLite parameter estimates for a given dimension ‘n‘ and
multilinearity level ‘κ‘.

:param n: lattice dimension , must be power of two
:param kappa: multilinearity level ‘κ>1‘
:param target_lambda: target security level
:param xi: pick ‘ξ‘ manually
:param rerand: is the instance supposed to support re -randomisation

This should be true for ‘N‘-partite DH key
exchange and false for iO and friends.

:param gddh_hard: should the GDDH problem be hard
:returns: parameter choices for a GGHLite -like graded -encoding scheme
"""
n = ZZ(n)
kappa = ZZ(kappa)
RR = RealField (2* target_lambda)
sigma = RR(4*pi*n * sqrt(e*log(8*n)/pi))
ell_g = RR(4* sqrt(pi*e*n)/( sigma))
sigma_p = RR(7 * n**(2.5) * log(n)**(1.5) * sigma)
ell_b = RR (1.0/(2.0* sqrt(pi*e*n)) * sigma_p)
eps = RR(log(target_lambda)/kappa)
ell = RR(log(8*n*sigma , 2))
m = RR(2)

if rerand:
sigma_s = RR(n**(1.5) * sigma_p **2 * sqrt (8*pi/eps)/ell_b)
if gddh_hard:

sigma_s *= 2** target_lambda * sqrt(kappa) * target_lambda / n
else:

sigma_s = 1
normk = sqrt(n)**(kappa -1) * (( sigma_p)**2 * n**RR (1.5) + 2* sigma_s * sigma_p * n**RR(1.5))

**kappa
q_base = RR(n * ell_g * normk)

if xi is None:
log_negl = target_lambda
xivar = var(’xivar ’)
f = (ell + log_negl) == (2* xivar /(1-2* xivar))*log(q_base , 2)
xi = RR(f.solve(xivar)[0]. rhs())
q = q_base **(ZZ(2)/(1 -2*xi))
t = q**xi * 2**(-ell + 2)
assert(q > 2*t*n*sigma **(1/xi))
assert(abs(xi*log(q, 2) - log_negl - ell) <= 0.1)

else:
q = q_base **(ZZ(2)/(1 -2*xi))
t = q**xi * 2**(-ell + 2)

params = OrderedDict ()
params[u"κ"] = kappa
params["n"] = n
params[u"σ"] = sigma
params[u"σ’"] = sigma_p
if rerand:

params[u"σ^*"] = sigma_s
params[u"lnorm_κ"] = normk
params[u"unorm_κ"] = normk # if we had re-rand at higher levels this could be bigger
params[u"`_g"] = ell_g
params[u"`_b"] = ell_b
params[u"ε"] = eps
params[u"m"] = m
params[u"ξ"] = xi
params["q"] = q
params["|enc|"] = RR(log(q, 2) * n)
if rerand:

params["|par|"] = (2 + 1 + 1)*RR(log(q, 2) * n)
else:

params["|par|"] = RR(log(q, 2) * n)

return params

def gghlite_attacks(params , rerand=False):
"""
Given parameters for a GGHLite -like problem instance estimate how
long two lattice attacks would take.

The two attacks are:

- finding a short multiple of ‘g‘.
- finding short ‘b_0/b_1 ‘ from ‘x_0/x_1 ‘
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:param params: parameters for a GGHLite -like graded encoding scheme
:returns: cost estimate for lattice attacks

"""
n = params["n"]
q = params["q"]
sigma = params[u"σ"]
sigma_p = params[u"σ’"]

# NTRU attack
nt = OrderedDict ()
nt["n"] = n
nt[u"τ "] = RR (0.3)
base = (sqrt(q)/(sqrt (2) * sqrt(n)* sigma_p * nt[u"τ "]))
if rerand:

base = base/sigma
nt[u"δ_0"] = RR(base **(1/(2*n)))
nt = complete_lattice_attack(nt)

return nt

def gghlite_brief(l, kappa , **kwds):
"""

Return parameter choics for a GGHLite -like graded encoding scheme
instance with security level at least ‘λ‘ and multilinearity level
‘κ‘

:param l: security parameter ‘λ‘
:param kappa: multilinearity level ‘k‘
:returns: parameter choices for a GGHLite -like graded -encoding scheme

.. note::

‘‘lambda ‘‘ is a reserved key word in Python.
"""
n = 1024
while True:

params = gghlite_params(n, kappa , target_lambda=l, **kwds)
best = gghlite_attacks(params , rerand=kwds.get(’rerand ’, False))

current = OrderedDict ()
current[u"λ"] = l
current[u"κ"] = kappa
current["n"] = n
current["q"] = params["q"]
current["|enc|"] = params["|enc|"]
current["|par|"] = params["|par|"]

current[u"δ_0"] = best[u"δ_0"]
current[u"bkz2"] = best[u"bkz2"]
current[u"sieve"] = best[u"sieve"]
current[u"k"] = best[u"k"]

if get_verbose () >= 1:
print params_str(current)

if best["bkz2"] >= ZZ(2)**l and best["sieve"] >= ZZ(2)**l:
break

n = 2*n
return current

def gghlite_latex_table(L, K, **kwds):
"""
Generate a table with parameter estimates for ‘λ P L‘ and ‘κ P K‘.

:param L: a list of ‘λ‘
:param K: a list of ‘κ‘
:returns: a string , ready to be pasted into TeX

"""
ret = []
for l in L:

for k in K:
line = []
current = gghlite_brief(l, k, **kwds)
line.append("%3d" % current[u"λ"])
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line.append("%3d" % current[u"κ"])
line.append("$2^{%2d}$" % log(current["n"], 2))
t = u"$«2^{%7.1f}$" % log(current["q"], 2).n()
line.append(u"%9s" % (t,))
t = u"$«2^{%4.1f}$" % log(current["|enc|"], 2).n()
line.append(u"%9s" % (t,))
t = u"$«2^{%4.1f}$" % log(current["|par|"], 2).n()
line.append(u"%9s" % (t,))
line.append("%8.6f" % current[u"δ_0"])
t = u"$«2^{%5.1f}$" % log(current[u"bkz2"], 2)
line.append(u"%9s" % (t,))
t = u"$«2^{%5.1f}$" % log(current[u"sieve"], 2)
line.append(u"%9s" % (t,))
ret.append(u" & ".join(line) + "\\\\")

ret.append(r"\midrule")

header = []
header.append(r"\begin{tabular *}{0.75\ textwidth }{@{\ extracolsep {\fill}} "

+ ("r" * 9) + "}")
header.append(r"\toprule")
line = u"$λ$ & $κ$ & $n$ & $q$ & \\encs & \\pars & $δ_0$ & BKZ Enum & BKZ Sieve \\\\"
header.append(line)
header.append(r"\midrule")

ret = header + ret
ret.append(r"\end{tabular *}")

return "\n".join(ret)
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# -*- coding: utf-8 -*-

from collections import OrderedDict
from copy import copy

from sage.calculus.var import var
from sage.functions.log import log
from sage.functions.other import sqrt
from sage.misc.misc import get_verbose
from sage.rings.all import ZZ, RR, RealField
from sage.symbolic.all import pi, e

# Utility Functions


def params_str(d, keyword_width=None):
    """
    Return string of key,value pairs as a string "key0: value0, key1: value1"

    :param d:        report dictionary
    :keyword_width:  keys are printed with this width
    """
    if d is None:
        return
    s = []
    for k in d:
        v = d[k]
        if keyword_width:
            fmt = u"%%%ds" % keyword_width
            k = fmt % k
        if ZZ(1)/2048 < v < 2048 or v == 0:
            try:
                s.append(u"%s: %9d" % (k, ZZ(v)))
            except TypeError:
                if v < 2.0 and v >= 0.0:
                    s.append(u"%s: %9.7f" % (k, v))
                else:
                    s.append(u"%s: %9.4f" % (k, v))
        else:
            t = u"≈2^%.1f" % log(v, 2).n()
            s.append(u"%s: %9s" % (k, t))
    return u",  ".join(s)


def params_reorder(d, ordering):
    """
    Return a new ordered dict from the key:value pairs in `d` but reordered such that the
    keys in ordering come first.

    :param d:        input dictionary
    :param ordering: keys which should come first (in order)

    """
    keys = list(d)
    for key in ordering:
        keys.pop(keys.index(key))
    keys = list(ordering) + keys
    r = OrderedDict()
    for key in keys:
        r[key] = d[key]
    return r


# Lattice Reduction Estimates


def k_chen(delta):
    """
    Estimate required blocksize `k` for a given root-hermite factor δ_0.

    :param delta: root-hermite factor δ_0
    """
    k = ZZ(40)
    RR = delta.parent()
    pi_r = RR(pi)
    e_r = RR(e)

    f = lambda k: (k/(2*pi_r*e_r) * (pi_r*k)**(1/k))**(1/(2*(k-1)))

    while f(2*k) > delta:
        k *= 2
    while f(k+10) > delta:
        k += 10
    while True:
        if f(k) < delta:
            break
        k += 1

    return k


def bkz_runtime_k_sieve(k, n):
    """

    Runtime estimation given `k` and assuming sieving is used to realise the SVP oracle.

    For small `k` we use estimates based on experiments. For `k ≥ 90` we use the asymptotics.

    """
    repeat = 3*log(n, 2) - 2*log(k, 2) + log(log(n, 2), 2)
    if k < 90:
        return RR(0.45*k + 12.31) + repeat
    else:
        # we simply pick the same additive constant 12.31 as above
        return RR(0.3366*k + 12.31) + repeat

def bkz_runtime_k_bkz2(k, n):
    """
    Runtime estimation given `k` and assuming [CheNgu12]_ estimates are correct.

    The constants in this function were derived as follows based on Table 4 in [CheNgu12]_::

        sage: dim = [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250]
        sage: nodes = [39.0, 44.0, 49.0, 54.0, 60.0, 66.0, 72.0, 78.0, 84.0, 96.0, 99.0, 105.0, 111.0, 120.0, 127.0, 134.0]
        sage: times = [c + log(200,2).n() for c in nodes]
        sage: T = zip(dim, nodes)
        sage: var("a,b,c,k")
        sage: f = a*k*log(k, 2.0) + b*k + c
        sage: f = f.function(k)
        sage: f.subs(find_fit(T, f, solution_dict=True))
        k |--> 0.270188776350190*k*log(k) - 1.0192050451318417*k + 16.10253135200765

    .. [CheNgu12] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates (Full Version).
                  2012. http://www.di.ens.fr/~ychen/research/Full_BKZ.pdf


    """
    repeat = 3*log(n, 2) - 2*log(k, 2) + log(log(n, 2), 2)
    return RR(0.270188776350190*k*log(k) - 1.0192050451318417*k + 16.10253135200765 + repeat)


def complete_lattice_attack(d):
    """
    Fill in missing pieces for lattice attack estimates

    :param d: a cost estimate for lattice attacks
    :returns: a cost estimate for lattice attacks

    """
    r = copy(d)
    if r[u"δ_0"] >= 1.0219:
        r["k"] = 2
        r["bkz2"]  = r["n"]**3
        r["sieve"] = r["n"]**3
    else:
        r["k"] = k_chen(r[u"δ_0"])
        r["bkz2"]  = ZZ(2)**bkz_runtime_k_bkz2(r["k"], r["n"])
        r["sieve"] = ZZ(2)**bkz_runtime_k_sieve(r["k"], r["n"])
    r = params_reorder(r, [u"δ_0", "k", "bkz2", "sieve"])
    return r


def gghlite_params(n, kappa, target_lambda=80, xi=None, rerand=False, gddh_hard=False):
    """
    Return GGHLite parameter estimates for a given dimension `n` and
    multilinearity level `κ`.

    :param n:             lattice dimension, must be power of two
    :param kappa:         multilinearity level `κ>1`
    :param target_lambda: target security level
    :param xi:            pick `ξ` manually
    :param rerand:        is the instance supposed to support re-randomisation
                          This should be true for `N`-partite DH key
                          exchange and false for iO and friends.
    :param gddh_hard:     should the GDDH problem be hard
    :returns:             parameter choices for a GGHLite-like graded-encoding scheme
    """
    n = ZZ(n)
    kappa = ZZ(kappa)
    RR = RealField(2*target_lambda)
    sigma   = RR(4*pi*n * sqrt(e*log(8*n)/pi))
    ell_g = RR(4*sqrt(pi*e*n)/(sigma))
    sigma_p = RR(7 * n**(2.5) * log(n)**(1.5) * sigma)
    ell_b = RR(1.0/(2.0*sqrt(pi*e*n)) * sigma_p)
    eps = RR(log(target_lambda)/kappa)
    ell = RR(log(8*n*sigma, 2))
    m = RR(2)

    if rerand:
        sigma_s = RR(n**(1.5) * sigma_p**2 * sqrt(8*pi/eps)/ell_b)
        if gddh_hard:
            sigma_s *= 2**target_lambda * sqrt(kappa) * target_lambda / n
    else:
        sigma_s = 1
    normk = sqrt(n)**(kappa-1) * ((sigma_p)**2 * n**RR(1.5) + 2*sigma_s * sigma_p * n**RR(1.5))**kappa
    q_base = RR(n * ell_g * normk)

    if xi is None:
        log_negl = target_lambda
        xivar = var('xivar')
        f = (ell + log_negl) == (2*xivar/(1-2*xivar))*log(q_base, 2)
        xi = RR(f.solve(xivar)[0].rhs())
        q = q_base**(ZZ(2)/(1-2*xi))
        t = q**xi * 2**(-ell + 2)
        assert(q > 2*t*n*sigma**(1/xi))
        assert(abs(xi*log(q, 2) - log_negl - ell) <= 0.1)
    else:
        q = q_base**(ZZ(2)/(1-2*xi))
        t = q**xi * 2**(-ell + 2)

    params = OrderedDict()
    params[u"κ"] = kappa
    params["n"] = n
    params[u"σ"] = sigma
    params[u"σ'"] = sigma_p
    if rerand:
        params[u"σ^*"] = sigma_s
    params[u"lnorm_κ"] = normk
    params[u"unorm_κ"] = normk  # if we had re-rand at higher levels this could be bigger
    params[u"ℓ_g"] = ell_g
    params[u"ℓ_b"] = ell_b
    params[u"ε"] = eps
    params[u"m"] = m
    params[u"ξ"] = xi
    params["q"] = q
    params["|enc|"] = RR(log(q, 2) * n)
    if rerand:
        params["|par|"] = (2 + 1 + 1)*RR(log(q, 2) * n)
    else:
        params["|par|"] = RR(log(q, 2) * n)

    return params


def gghlite_attacks(params, rerand=False):
    """
    Given parameters for a GGHLite-like problem instance estimate how
    long two lattice attacks would take.

    The two attacks are:

    - finding a short multiple of `g`.
    - finding short `b_0/b_1` from `x_0/x_1`

    :param params: parameters for a GGHLite-like graded encoding scheme
    :returns: cost estimate for lattice attacks

    """
    n = params["n"]
    q = params["q"]
    sigma = params[u"σ"]
    sigma_p = params[u"σ'"]

    # NTRU attack
    nt = OrderedDict()
    nt["n"] = n
    nt[u"τ"] = RR(0.3)
    base = (sqrt(q)/(sqrt(2) * sqrt(n)* sigma_p * nt[u"τ"]))
    if rerand:
        base = base/sigma
    nt[u"δ_0"] = RR(base**(1/(2*n)))
    nt = complete_lattice_attack(nt)

    return nt


def gghlite_brief(l, kappa, **kwds):
    """

    Return parameter choics for a GGHLite-like graded encoding scheme
    instance with security level at least `λ` and multilinearity level
    `κ`

    :param l:     security parameter `λ`
    :param kappa: multilinearity level `k`
    :returns:     parameter choices for a GGHLite-like graded-encoding scheme

    .. note::

       ``lambda`` is a reserved key word in Python.
    """
    n = 1024
    while True:
        params = gghlite_params(n, kappa, target_lambda=l, **kwds)
        best = gghlite_attacks(params, rerand=kwds.get('rerand', False))

        current = OrderedDict()
        current[u"λ"] = l
        current[u"κ"] = kappa
        current["n"] = n
        current["q"] = params["q"]
        current["|enc|"] = params["|enc|"]
        current["|par|"] = params["|par|"]

        current[u"δ_0"]   = best[u"δ_0"]
        current[u"bkz2"]  = best[u"bkz2"]
        current[u"sieve"] = best[u"sieve"]
        current[u"k"] = best[u"k"]

        if get_verbose() >= 1:
            print params_str(current)

        if best["bkz2"] >= ZZ(2)**l and best["sieve"] >= ZZ(2)**l:
            break
        n = 2*n
    return current


def gghlite_latex_table(L, K, **kwds):
    """
    Generate a table with parameter estimates for `λ ∈ L` and `κ ∈ K`.

    :param L: a list of `λ`
    :param K: a list of `κ`
    :returns: a string, ready to be pasted into TeX

    """
    ret = []
    for l in L:
        for k in K:
            line = []
            current = gghlite_brief(l, k, **kwds)
            line.append("%3d" % current[u"λ"])
            line.append("%3d" % current[u"κ"])
            line.append("$2^{%2d}$" % log(current["n"], 2))
            t = u"$≈2^{%7.1f}$" % log(current["q"], 2).n()
            line.append(u"%9s" % (t,))
            t = u"$≈2^{%4.1f}$" % log(current["|enc|"], 2).n()
            line.append(u"%9s" % (t,))
            t = u"$≈2^{%4.1f}$" % log(current["|par|"], 2).n()
            line.append(u"%9s" % (t,))
            line.append("%8.6f" % current[u"δ_0"])
            t = u"$≈2^{%5.1f}$" % log(current[u"bkz2"], 2)
            line.append(u"%9s" % (t,))
            t = u"$≈2^{%5.1f}$" % log(current[u"sieve"], 2)
            line.append(u"%9s" % (t,))
            ret.append(u" & ".join(line) + "\\\\")
        ret.append(r"\midrule")

    header = []
    header.append(r"\begin{tabular*}{0.75\textwidth}{@{\extracolsep{\fill}} "
                  + ("r" * 9) + "}")
    header.append(r"\toprule")
    line = u"$λ$ & $κ$ & $n$ & $q$ & \\encs & \\pars & $δ_0$ & BKZ Enum & BKZ Sieve\\\\"
    header.append(line)
    header.append(r"\midrule")

    ret = header + ret
    ret.append(r"\end{tabular*}")

    return "\n".join(ret)


