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Abstract. Biclique cryptanalysis is a recent technique that has been successfully applied to AES resulting in
key recovery faster than brute force. However, a major hurdle in carrying out biclique cryptanalysis on AES
is that it requires very high data complexity. This naturally warrants questions over the practical feasibility of
implementing biclique attack in the real world. In Crypto’13, Canteaut et al. proposed biclique attack where
the data complexity of the attack was reduced to a single plaintext-ciphertext pair. However, no application
of the same on AES was suggested.

In this paper, we re-evaluate the security-bound of full round AES against biclique attack. Under some rea-
sonable restrictions, we exhaustively analyze the most promising class of biclique cryptanalysis as applied to
AES through a computer-assisted search and find optimal attacks towards lowest computational and data
complexities:

— Among attacks with the minimal data complexity of the unicity distance, the ones with computational
complexity 212967 (for AES-128), 2!99? (for AES-192) and 22°° (for AES-256) are the fastest. Each attack
just requires 2 (for AES-128 and AES-192) or 3 (for AES-256) known plaintexts for success probability 1.
We obtain these results using the improved biclique attack proposed in Crypto’13.

— Among attacks with data complexity less than the full codebook, for AES-128, the ones of computational
complexity 2'26-16 are fastest. Within these, the one with data complexity 25* requires the smallest amount
of data. Thus, the original attack (with data complexity 288) did not have the optimal data complexity
for AES-128. Similar findings are observed for AES-192 as well (data complexity 2*® as against 2%° in the
original attack). For AES-256, we find an attack that has a lower computational complexity of 225431 a9
compared to the original attack complexity of 225442,

— Among all attacks covered, the ones of computational complexity 2'2°-56 (for AES-128), 2'8%-%! (for AES-
192) and 2?5387 (for AES-256) are fastest, though requiring the full codebook. This can be considered as
an indication of the limitations of the independent-biclique attack approach as applied to AES.
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1 Introduction

Today, the most frequently used block cipher is AES (Advanced Encryption Standard) [13] — the current
U.S. encryption standard selected by NIST in an open competition. AES is the only publicly known
cipher that is NSA-approved for protecting secret and top secret government information in the U.S.
Recently, the theoretical security of AES has been challenged by biclique cryptanalysis [6]. Biclique
key recovery is based on the meet-in-the-middle approach at its core but borrows an important twist
— initial structures — from the domain of hash function cryptanalysis. Namely, biclique cryptanalysis
uses the fact that, for some ciphers such as AES, the adversary can efficiently prepare structures of
internal states that cover many keys. The work [6] scrutinizes the notion of initial structures for block
ciphers, formalizes it to bicliques (complete bipartite graphs) which are efficient to construct and proposes
key recovery attacks with computational complexities below brute force for all three variants of the
full AES. Biclique key recovery may be considered as an advancement in the field of symmetric-key
cryptography but it has been prepared by a considerable number of works in the area of meet-in-the-
middle (MITM) attacks on block ciphers [7,8,/10,(14,17] and hash function cryptanalysis [3,/4}15] including
the introduction of initial structures [22] and bicliques for preimage search in hash functions [20]. Since
the introduction of bicliques, an entire line of research emerged aiming to apply the technique to various
block ciphers |1}2,11}/12.|16,/18,/19,21}23]. The original work [6] introducing biclique key recovery leaves
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several questions unanswered though, which are crucial to judge the real-world security of AES and
implications of the biclique cryptanalysis in general:

— Is there much potential in minimizing the data complexity of the biclique attacks? In fact, it is low
data complexity attacks that are most relevant in practice, especially in the context of efficient imple-
mentation of the attacks — the point clearly made in [5]. Actually, the data complexity of the original
biclique attack makes any practical implementation of them highly unreasonable since the standard
brute force is very likely to be both cheaper and faster in reality (mainly due to the high requirements
in terms of storage or oracle access).

— Though the new technique has been coined after bicliques, the initial structures are explicitly limited
to balanced bicliques only, i.e,. complete bipartite graphs in which the two set of vertices have exactly
the same cardinality. Canteaut et al. in [9] first suggested construction of unbalanced bicliques where
one set of vertices only contain a single element. We call such bicliques - stars. Can one take any
advantage of using such unbalanced bicliques (or stars) as initial structures in AES?

— Finally, no comprehensive investigation of attack optimality in terms of computational complexity,
data complexity or both has been performed. So it is still not clear if there are faster biclique attacks,
even in the same class of the attacks as proposed in [6].

In this paper, we aim to bridge these gaps and answer all three questions in the positive for all
the variants of AES namely — AES-128, AES-192 and AES-256. In [9], Canteaut et al. also proposed
sieve-in-the-middle technique which when combined with the biclique method, further reduces the com-
putational complexities. We examine the combination of sieve-in-the middle process alongwith biclique
attack procedure in our work and report the new reduced complexities so found.

1.1 Our contributions
The contributions of this paper are as follows:

— In terms of the attack space exploration for biclique cryptanalysis, we limit ourselves to the most

promising class of attacks as applied to AES: Namely, we enumerate all truncated independent bal-
anced bicliques and stars whose key modification trails have upto three active bytes in some state
of the expanded key. For the sake of conciseness, we will refer to this class of attacks as based on
tight truncated independent bicliques and stars (see Section. Clearly, this exploration does not cover
many advanced and inherently harder-to-analyze attack vectors such as long-bicliques (bicliques of a
lower dimension whose key modification differentials share active S-boxes) or narrow bicliques [19).
That is why, one cannot claim any formal bounds on the complexity of biclique attack complexity in
general.
Nonetheless, it is the tight truncated independent-biclique approach to key recovery that has resulted
in the fastest attack on the full AES-128,192 and 256 so far and we believe that this investigation
does provide important new insight into the limits of the current techniques of biclique cryptanalysis
especially when applied to AES.

— Using stars as initial structures, we propose the first key recovery attack faster than brute force on
AES-128, AES-192 and AES-256 with the minimal theoretically possible data complexity. AES-128
requires 1 or 2 known plaintexts and has computational complexity 2'26-67. Similar results are found
for AES-192 (2190-9) and AES-256 (225%).

— Next, we exhaustively enumerate all attacks based on tight truncated independent bicliques and
stars for all AES variants which have a data complexity lower than the full codebook. It turns out
that for AES-128, the ones of computational complexity 212616 are fastest. Interestingly, this exactly
corresponds to the original key recovery on AES-128 [6].We further investigate the data complexity
of these attacks for the biclique dimension d = 8 and show that the minimum data complexity is 264
(cf. 2% in the original attack). This implies that the original attack did not have the optimal data
complexity. We find similar results for AES-192. The fastest attacks have a computational complexity
of 219016 However, amongst these, the one having 2% (cf. 259 in the original attack) data complexity
has the lowest data requirements.



— Interestingly, for AES-256 we find that the fastest attacks having a data complexity lower than full
codebook have a computational complexity of 22°431. This turns out to be lower than 22°442 reported
in the original attack in [6], implying again that the original attack did not mention the minimal
values. We also find some discrepancies in the complexity estimate of AES-256 in [6]. We show that
the time complexity of the attack should be 22742 as against 22°442 stated in [6].

— To investigate the limits of this class of biclique cryptanalysis, we abandon all restrictions on the
data complexity and search for the fastest attacks on AES in this class. We find that the ones
with computational complexity of 212556 218951 anq 225387 for AES-128, AES-192 and AES-256
respectively are the fastest (though requiring the full code book). An interesting outcome of these
constructions is that they utilize the longest biclique covered in the full AES attack so far. For AES-
128, the longest biclique has length of 3 rounds whereas for AES-192 and AES-256 the longest bicliques
cover 5 rounds each.

Using sieve-in-the-middle technique, the above computational complexities can be reduced further. This
extension is discussed in Section [§] The cryptanalytic results of the paper combined with and without
sieve-in-the-middle (SIM) technique are summarized in Table

Table 1: Key recovery with bicliques for full AES

Algorithm data computations | memory | computations | memory | success || biclique length property reference
without SIM with SIM prob (rounds) shown
258 CC 9126.16 28 R - 1 2.5 - 6] 1
AES-128 | 27 Cp 212689 28 - - 1 2 - 5] |
2% CC - - 2125691 2% 1 2.5 - [9]
Unic. dist: 2126.67 28 2126.59 264 1 1 fastest with §l4.1
2 KP minimum data
AES-128 | 2% CcC 212616 28 212598 2% 1 2.5 fastest with §l6.1
< 218 data
9128 9125.56 98 9125.35 964 1 3 fastest §|7.1|
Ags1gy |2 CC [ 20 2° - - 1 35 - lolf2] |
248 CcC 2190-28 28 - - 1 3.5 - 2]
Unic. dist: 2190-9 28 2190.83 264 1 1.5 fastest with §l4.2
AES-192 2 KP minimum data
2*8 cC 219016 28 2190:05 264 1 3.5 fastest with §16.2
< 2'%8 data
9128 9189.51 98 9189.31 964 1 5 fastest §I7.2|
AEgase |_2-CC [ e 2° - - 1 35 - o] |
2% cC 2254.53 28 - - 1 3.5 - 2]
Unic. dist: 925 28 925194 261 1 15 fastest with §
AES-256 3 KP minimum data
264 cC 2254-31 28 9254.24 204 1 3.5 fastest with §16.3
< 2'%8 data
2128 2253,87 28 2253.82 264 1 5 fastest § IEI

T Our analysis shown in the Section [8] estimates the cost as 2125-98,
¥ Our analysis shown in the Section estimates the cost as 2254-52,

2 Biclique key recovery for AES

Biclique cryptanalysis for ciphers was proposed by [6] in two different paradigms: independent-biclique
and long-biclique approaches. It is the independent-biclique technique that has resulted in key recovery
for full AES and is the focus of our work.



2.1 Description of AES

AES is a block cipher which adopts the classical substitution-permutation network structure. The AES
specification defines 3 key sizes - 128 bit, 192 bit and 256 bit with block size limited to a fixed 128 bit
size for all the three variants. By design, AES is byte-oriented and follows operations in GF(2%). Each
AES variant has a different number of rounds per full encryption, i.e., 10, 12 and 14 rounds for AES-128,
AES-192 and AES-256 respectively. Each round consists of 4 steps: SubBytes, ShiftRows, MixColumns
and AddRoundKey. AES operates on a state array of 4 x 4 byte matrix and key array of 4 x 4, 4 x 6 and
4 x 8 byte size respectively. For further information on AES, please refer to |13].

To avoid confusion and facilitate comparison, we follow the same notation as adopted in [6]. Briefly, in
a differential path, terms # 1, #2 represent the state before SubBytes and after MixColumns for Round
1, terms #3, #4 represent the state before SubBytes and after MixColumns for Round 2 and so on.
The 128-bit subkeys are denoted as $0, $1, $2 .... and so on. Bytes are addressed column-wise (0-3#-irst
column), (4-T#tsecond column), (8-114third column) and (12-15#fourth column). The " byte in state
A is represented as A;. The j' active S-box in any state is represented as S;.

2.2 Balanced bicliques

Biclique attack is a kind of divide-and-conquer approach. To find the unknown secret key, all possible keys
are partitioned into a set of groups. Each group of keys has the structure of a biclique — a complete bipartite
graph. In the standard implementation of independent-biclique cryptanalysis, the biclique consists of two
sets S, and Sy of intermediate cipher states (two disjoint sets of vertices of the biclique), where each set
of states has |S;| = |S,| = 2 elements and a set of keys having |K| = 22¢ keys which map each element
in one set of states to each element in the other one (edges of the biclique) as shown in Fig. |1} To fix
the notation, we denote S, = {z;}, Sy = {y:}, and K = {K[i, j]} with 4,5 € {0,2¢ — 1}. d is called the
biclique dimension.

2.3 Bicliques via independent differentials

So far the most efficient way of building bicliques for AES is from independent related-key differentials.
Consider two families of related-key differentials over the rounds covered by biclique (from values z; to
yi): 2% — 1 distinet A-differentials:

(0, AKY — A,

with input state difference 0, input key difference A;-K and output state difference A; as well as 2¢ — 1
distinct V-differentials
(V5 VE) —0

with input state difference V;, input key difference VJK and output state difference 0. Now we assume
that the A- and V-differentials do not share any active nonlinear components (S-boxes in the case for
AES). Then, it has been shown in [6] that if input xg, output yo and key K|[0,0] conforms to both A-
and V-differentials, then the values

Tj = Xo b Vj,

Yi = Yo D 4,

K[i,j] = K[0,0] @ VI & AF
form a balanced biclique of dimension d, with Ag = Vo = AKX = V& = 0. The computation over the
biclique rounds from input z to output yo with key K|0,0] is called the base computation. KJ0,0] is
called the base key.

2.4 Key recovery

In [6], a meet-in-the-middle key recovery with partial matching (in one intermediate state byte) and splice-
and-cut technique (going over the decryption oracle from the generated ciphertexts to the corresponding



plaintexts) is applied. The entire space of 2" keys (where n is the AES key size in bits ) is divided into
2724 pon-overlapping groups (bicliques) of 22¢ keys each. In each biclique, the base key is fixed. For each
combination of z; and y; (corresponding to K[i, j]), it is tested if there is a match.

For each biclique, the computational complexity consists of the complexity Cprecomp 0f preparing A-
and V-propagations (including preparing the biclique), the complexity Chrecomp Of recomputing states
for each key Ki,j], and the complexity Cfaisepos Of checking the key candidates surviving the partial
matching:

Cfull = 2n_2d(cprecomp + Crecomp + Cfalsepos)-

The computational complexity is dominated by Cyecomp- The data complexity is determined by the number
of state differences 4A; in all key groups, since the ciphertext of the base computation remains the same
in all key groups.

3 Stars

In [9], Canteaut et al. proposed biclique attack where data complexity can be reduced to a single plaintext-
ciphertext pair. They suggested construction of bicliques with just one state in one vertex set and 22¢
states in the other one: S, = {z}, S, = {9}, 4,5 € {0,2% — 1}, where each y; ; is obtained by encrypting
x with key K[i, 7], covering 22¢ keys. We call such unbalanced bicliques which are trees with one node
and many leaves as — a star of dimension d (as shown in Fig. . However, in [9], no application of their
improved biclique attack with low data complexity is demonstrated on AES. As such, our work can be
considered to be the first attempt towards this direction on all the variants of AES.

z
o 1 Pod_q

k1 kg2d

K[0,0] k24 — 1,29 — 13

.o
) Yp2d

Y0 Y1 Yod _q

Fig. 2: Star: maximally unbalanced biclique of dimen-
Fig. 1: Balanced biclique of dimension d sion d for the minimum data complexity

If we place the star at the beginning of the cipher, and let x be the plaintext (or ciphertext) - the data
complexity of the MITM part of the key recovery will be exactly 1. Note that x can be any value and,
thus, we deal with a known-plaintext key recovery here. The overall data complexity is solely defined by
the unicity distance of the cipher and, therefore, minimal theoretically attainable.

3.1 Stars from independent differentials

Similar to balanced bicliques, stars can be constructed efficiently from independent sets of differentials.
Unlike balanced bicliques, however, the necessary form of differentials is different. Suppose we have a set
of 2¢ — 1 distinct related-key A-differentials from x to y; ;:

(0, AK) — A,
and a set of 2¢ — 1 distinct related-key V-differentials from over the same part of the cipher:
(0,VE) — v;.

We assume that the A-differentials and V-differentials do not share any active nonlinear compo-
nents. If input x, output yoo and key K[0,0] conform to both A- and V-differentials, then the values
m?
Yij = Y0,0 D A; ®V;, and
K[i,j] = K[0,0] @ AF @ VE
form a star of dimension d, with Ag = Vo = AX = V& = 0.



4 Minimum data complexity key recovery for AES

In this section, we apply this concept to demonstrate star-based independent-biclique key recoveries for
the full AES-128, AES-192 and AES-256. The star-based biclique can be placed either at the initial
rounds of AES or at the last few rounds of the same. We tested the attack complexity for both locations
through our C-program and only report the best values for all the three AES variants in the subsequent
writeup.

4.1 AES-128

In AES-128, it is possible to construct a star of dimension 8 over the first round. The master key $0,
i.e., the first subkey is taken as the base key. The index ¢ is placed in byte 0 whereas index j is placed
in byte 1. The base keys are all 16-byte values with two bytes (i.e., bytes 0 and 1) fixed to 0 whereas
the remaining 14-bytes take all possible values. Thus, the 128-bit key space is divided into 2''? groups
with 216 keys in each group. A-trail activates byte 0 of key $0 and V-trail activates byte 1 of key $0
(shown in Fig. . Difference propagation in these differentials over one round is non-overlapping till
the end of round 1. In state #3, there is a linear overlap between those and, already in round 2, one has
to recompute 2 S-boxes for each key (shown in Fig. . Rather surprisingly, even if the length of the
star is just one round, the form of its trails is such that this short biclique still allows the adversary to
obtain a reasonable computational advantage over brute force.

vo vi .y

:
e m e
:

% (c) Backward Recomputations

Base Computation A~ differentials S differentials

(a) Star over first round

2126.67

Fig. 3: Fastest biclique attack on AES-128 with minimum data: time and data 1 or 2 ciphertexts.

In the forward direction of matching, starting in round 2, a part of the state has to be recomputed
for each key. In round 2, only 2 S-boxes have to be recomputed. Starting in round 3 and forwards, the
propagation affects the whole state (shown in Fig. . In the backward direction of matching, one starts
with the ciphertext obtained using the encryption oracle under the right key for plaintext . The A- and
V-propagations in the key schedule are such that only 5 bytes of the $10 depend on both A and V. This
means that only 5 S-boxes have to be recomputed in round 10. Starting in round 9 and backwards, the
propagation affects the full state (as shown in Fig. .

We match on byte 12 in state #11 of round 5, in which only one S-boxes need recomputation. In
round 4 and round 6, only 4 S-boxes, respectively, are recomputed. The S-boxes in the four remaining
rounds need to be recomputed completely (another 64 S-boxes). No S-box recomputations are needed in
the key schedule. The full trail is shown in Fig.

The whole process yields a recomputation of 80 out of 200 S-boxes. Thus, Crecomp
key group. About 28 keys will be suggested in each key group after the meet-in-the-middle filtering, thus
Claisepos = 28 The complexity of precomputations and star generation is upper-bounded by Cprecomput =
285 full AES computations. Thus, Crun = 212667 The data complexity exactly corresponds to the

~ 2167 i one



unicity distance of AES-128 — the minimal data complexity theoretically attainable. One known plaintext-
ciphertext pair can sometimes be enough (with success probability of 1/e ~ 0.3679). Two known plaintext-
ciphertext pairs yield a success probability of practically 1. The memory complexity is upper bounded
by 28 computations of sub-cipher involved in the precomputation stage [6].

4.2 AES-192

In AES-192, we construct a star of dimension 8 over the last 1.5 rounds (shown in Fig. [4(a)]). A-trail
activates byte 0 of sub-key $12 and V-trail activates byte 2 of $10 sub key. Non-overlapping trails cover
rounds 11 and 12. We define the key groups with respect to the expanded key block K7 which consists of
two right columns of $10 (further denoted by 10g) and $11 subkeys. The index i is placed in bytes 0 and
4 whereas index j is put in bytes 2 and 6. The base key in each group is chosen such that the key coverage
is complete and there are no intersections between the key groups. The base keys are all 24 -byte values
with two bytes (i.e., bytes 0 and 2 ) fixed to 0 whereas the remaining 22-bytes taking all possible values.
This yields a partition of AES-192 key space into 2'7® groups with 2'6 keys in each.

Base Computation A - differentials V - differentials

%ﬂ zg Af" %ﬂ En Vf( #20, ;

ERER ERES

Key Schedule

HH H#

SB
ISR

. % i (c) Backward Recomputations

(a) Star over last 1.5 rounds in AES-192
Fig. 4: Fastest biclique attack on AES-192 with minimum data: time 2'9-9 and data 2 ciphertexts.

In the matching phase we match on byte 12 in state #11. During the forward recomputations (in
Fig. , we start with plaintext obtained from ciphertext y using the decryption oracle under the
right key. The A and V propagations in the key schedule are such that there are no overlapping bytes
in $0 which depend on both A and V trails. Hence, no recomputations are required in round 1, i.e.,
state #1. Starting from round 2, 16 + 16 + 16 + 4 = 52 S-boxes are required to be recomputed.
Backward recomputations starting from round 10 require 16+16+16+4+1 = 53 S-boxes to be recomputed
in Fig. No recomputations in key schedule are required. Hence, a total of 105 out of 224 S-boxes are
required for recomputation. Thus Cyecomp =~ 21482 The precomputations and star generation (based on S-
box calculations) are upper bounded by Cpyecomp = 285 full AES computations. Thus Crun = 2190-9 Two
ciphertexts are required to carry out the attack with a success probability of 1. The memory complexity
stands at 28. The full trail is shown in Fig.

4.3 AES-256

In AES-256, a star of dimension 8 over the last 1.5 rounds (shown in Fig. |5(a)) is constructed. A-trail
activates byte 0 of sub-key $13 and V-trail activates byte 5 of $13 sub key. Non-overlapping trails cover



rounds 13 and 14. We define the key groups with respect to the expanded key block K% which consists of
$13 and $14 subkeys. The index ¢ is placed in byte 16 and index j is put in byte 21. The base keys are all
32 -byte values with two bytes (i.e., bytes 16 and 21 ) fixed to 0 whereas the remaining 30-bytes taking
groups with 216 keys in each.

all possible values. This yields a partition of AES-256 key space into 2240

vk
i

B BRI B
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Key Schedule

% (b) Forward Recomputations

(c) Backward Recomputations
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e
W%WW

A - differentials ¥ - differentials

(a) Star over last 1.5 rounds in AES-256

Fig. 5: Fastest biclique attack on AES-256 with minimum data: time 22°° and data 2 or 3 ciphertexts.

In the matching phase, we match on byte 1 of state #11. 52 S-boxes (164+16+14+4) in the for-
ward direction (shown in Fig. and 85 S-boxes (1+4416416+16+16+16) in the backward direction
(Fig. are recomputed. Together with 1 S-box recomputation in key schedule, a total of 138 out of
276 S-boxes are recomputed. Thus, Cy,y =~ 2255 Two known plaintext-ciphertext pair can sometimes be
enough (with success probability of 1/e ~ 0.3679) whereas three known plaintext-ciphertext pairs yield

a success probability of practically 1 with memory not more than 2% required. The full biclique trail is
shown in Fig. [I7}

5 A search technique for biclique attacks on AES

In this section, we describe how we enumerate all biclique key recoveries in a large promising class of
biclique attacks.

5.1 Enumerating bicliques

Clearly, going over all possible initial structures, even without enumerating possibilities for the actual key
recovery, would be infeasible for the AES. So we have to confine the search space of attacks by imposing
some limitations. We now describe our search strategy along with some justifications for our choices.

— First, we consider bicliques (complete bipartite graphs) as initial structures. We stress that we include
both balanced bicliques and stars in our search.

— Second, we restrict the search to independent-bicliques only. This constraint excludes such bicliques as
long-bicliques [6] and narrow-bicliques [19], which are especially challenging to enumerate. However,
despite not being optimal in the number of rounds covered, it is the independent-bicliques that attain
the highest advantages over brute force for full AES-128 and its variants so far.




— Third, we confine the search to independent related key-differentials that have a key state in their
trails with exactly one or two E] or three active bytes ﬂ Note that these bytes do not have to be the
bytes where the key difference is injected and the key difference can still be injected in multiple bytes.
We also consider the special rules defined in [6] for AES-192 as mentioned below and apply it to other
AES variants also.

e We test differential trails in which double byte differences (i1,i2) are injected in A trail and
single/double/triple byte differences are injected in V trail. These (i1,i2) are all possible columns
that have one zero byte after applying MizColumns™!, i.e.,

0 * 11 7 0

il . -1 1 ’ig . -1 * 0 . -1
. = MixColumns or = MixColumns or | . = MixColumns
19 * 0 0 11

0 0 0 * 19

e Similarly, we also test differential trails in which triple byte differences (i1,i2,,i3) are injected in
1

A trail such that all possible (i1,i2,i3) have two zero bytes after applying MixColumns™, i.e.,
11 0 0 0
Z.2 = MixColumns—! “Aor Z.l = MixColumns™! O
13 * 19 2
0 0 i3 *

— Finally, to keep the search space from exploding, we consider the trails of the bicliques in a truncated
manner: We do not differentiate between the active values of the key modification trails in our bicliques
(values of differences in the related-key differentials). In particular, it means that once activated, a
difference in a byte of a trail cannot be cancelled out. This is a significant but necessary limitation since
we believe it is infeasible to run the exhaustive search otherwise for excessively high computational
complexities.

We implemented these restrictions in a C program and were able to successfully enumerate all the
tight truncated independent balanced bicliques and stars of AES-128, AES-192 and AES-256.

5.2 Searching for key recoveries

Having enumerated all the bicliques as described above exhaustively, we apply meet-in-the-middle (MITM)
technique to each of the initial structures obtained to evaluate their time and data complexities. This is
done as follows.

First of all, we set the opimization goal as minimizing the time complexity for a given data complezity
restriction. That is, in each search for a key recovery, we fix an upper bound on the data complexity.
Then we perform the exhaustive search over all possibilities for matching. In terms of key enumeration, we
impose the restriction that the forward and backward key modifications should have at least one state of
linear intersection. This enables full key space coverage and success probability of 1. The MITM technique
used includes partial matching (the matching is performed on a byte of the state to save computations)
and the cut-and-splice technique (so that trails can go over the encryption/decryption oracles to win
degrees of freedom).

To evaluate the time complexity of a key recovery attack efficiently on-the-fly, the computational
model proposed in [6] is used: All linear operations (AddRoundKey, ShiftRows, and MixColumns) are
ignored and one counts only the number of required S-box computations. As an example, one full AES-
128 evaluation requires 200 S-box computations — a metric that proved to be meaningful in practice [5].
Similarly, one complete evaluation of AES-192 and AES-256 corresponds to 224 and 276 S-boxes respec-
tively. The time complexity is measured as the number of S-box computations that have to be performed

3 Such trails do not collapse into a single active byte in any of the key states.
4 Such trails do not collapse into a single active byte or two active bytes in any of the key states.

* =0 X% O



per key tested. Again, this is the parameter that has lead to the fastest attacks so far since it makes the
key group larger and minimizes the impact of biclique construction on the total complexity.

Depending on the data complexity restriction, the program can find the optimal attack, i.e., the attack
with the lowest measured time complexity under the data complexity restriction.

As a second optimization goal, we focus on minimizing the data complezity for a given time complexity.
This second optimization is applied once the lowest computational complexity for recovering the key has
been found in the previous step. At this point, we already know that there are no faster key recoveries in
our search space. So we check if the data complexity of the fastest attack identified can be reduced. For
this task, we fix the computational complexity to the value that we obtained in the previous step, and
then among all the bicliques having that computational complexity, we search for the one that has the
lowest data complexity. This task typically requires much less computations.

5.3 Applications to find attacks with minimal data and time complexities
We implemented our program to search for three data complexity restrictions:

— Minimum data complexity: The minimum data complexity attacks for AES-128/192/256 were dis-
covered using this program by setting the upper bounds of the data complexity to its theoretical
minimum of the unicity distance. So we can claim that this is the fastest biclique key recovery with
the minimal data complexity of exactly the unicity distance in the class of bicliques covered by our
program.

— Data complexity strictly lower than the full codebook: This restriction is a standard line that is infor-
mally drawn between interesting attacks — that require less than the full codebook of texts - and less
interesting attacks — that can only work with the full codebook. It is found that the fastest biclique
key recoveries in the covered class with these restrictions have lower computational complexities (for
AES-256) and lower data complexities (for AES-128 and AES-192) as compared to the original attack.

— No data complexity constraint: The program finds the fastest biclique key recovery in the entire class
of biclique attacks covered when there is no restriction on the amount of data required. This attack
provides an important insight into the limits of the independent-biclique approach developed so far.

The fastest key recoveries corresponding to minimum data complexity for AES-128/192/256 are already
discussed in Section 4l Rest of the above mentioned categories are analyzed for all AES variants and their
details are covered in the subsequent sections.

6 Fastest biclique key recovery with less than the full codebook of data

In this section, we demonstrate the biclique key recoveries with optimal time complexity for the full
AES-128, AES-192 and AES-256.

6.1 AES-128

This attack is based on a balanced biclique of dimension 8 over the last 2.5 rounds of AES-128 (shown in
Fig. . The forward and backwards trails in the biclique have an intersection in byte 0 of $8. However,
this intersection is in a linear operation (xor) of the key schedule and does not affect the biclique property.
The key is enumerated in $9 which is the only key state that is linear in the key modification, both in
forward and backward trails. The bytes of key enumeration with ¢ and j differences are non-intersecting.
The index i is placed in bytes 0,4,8, and 12 while index j is put in bytes 5 and 9. The 2!'? base keys are
all 16-byte values with two bytes (i.e., bytes 0 and 5) set to 0 whereas the remaining 14-bytes taking all
possible values. This yields 2'¢ keys in each group.

For key recovery, in the MITM stage, partial matching is done in byte 12 of data state #7 of round
4, where only one S-box needs recomputation. In round 3 and round 5, only 4 S-boxes, respectively and
in round 7, only 8 S-boxes are recomputed. In round 1, 5 S-boxes are recomputed as the plaintext is
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influenced by 5 active bytes of the backward key modification through the key schedule. The S-boxes of
rounds 2 and 6 have to be recomputed completely (as shown in Figs. and. In total, also counting
the necessary recomputations in the key schedule, we arrive at 55 S-boxes that have to be recomputed for
each key, resulting in Cyrecomp ~ 21414 " Ag in the previous attacks, C Falsepos = 28 and Chprecomp = 285 This
yields Cpyy ~ 212616, Furthermore, since AX ($103) = AKX ($1011) = AK($1015), the ciphertext bytes Cs,
C11 and Ci5 are always equal. Hence, the data complexity is 264 chosen ciphertexts. As in all our attacks,
the success probability is 1 and memory complexity is 28. The full biclique trail is shown in Fig.

Decryption Oracle
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i
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g
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@m (c) Backward Recomputations

(a) Biclique over last 2.5 rounds

Fig. 6: Fastest biclique attack on AES-128 with less than full codebook: time 212616 and data 264.

6.2 AES-192

This attack is based on a balanced biclique of dimension 8 over the last 3.5 rounds of AES-192 (Fig. [7(a)).
A-trail activates byte 1 of sub-key $10 and V-trail activates byte 8 of $12 sub-key. Non-overlapping trails
cover rounds 9 to round 12. We define the key groups with respect to the expanded key block K7 which
consists of two right columns of $10 (further denoted by 10g) and $11 subkeys. The index i is placed in
bytes 17 and 21 whereas index j is put in bytes 8 and 12. The base keys are all 24 -byte values with two
bytes (i.e., bytes 8 and 17 ) fixed to 0 whereas the remaining 22-bytes taking all possible values. This
allows a partition of AES-192 key space into 2!76 groups with 2'¢ keys in each. In the matching phase, 33
S-boxes in the forward direction (Fig. and 29 S-boxes in the backward direction (shown in Fig.
are recomputed yielding a total of 62 out of 224 S-box recomputations. Thus, Cr,; ~ 219016 The success
probability of the attack is 1. Since AX($12)) = AKX ($124) = AK($123), the ciphertext bytes Cp, Cy and
Cg are always equal. Hence, the data complexity is 2*8 chosen ciphertexts with memory complexity being
28. The full biclique trail is shown in Fig.

6.3 AES-256

Through our automated program we detected certain discrepancies in the cost calculation in [6]. According

to our calculations of the same, the computational complexity should be 22°452 (c.f. 225442 in the original
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Fig. 7: Fastest biclique attack on AES-192 with less than full codebook: time 219016 and data 248.

attack). The details of the same are as follows. Firstly, in Fig. 12 in [6], $0 and $1 subkeys have been
marked as $1 and $2 subkeys respectively. Secondly, the required S-box calculation is given as 5.4375 Sub-
Bytes operations which is 87 S-boxes operations in [6] whereas it should be 6.3125 Sub-Bytes operation
(101 S-boxes) i.e., 2145 runs of full AES-256 (as shown in Fig. . As a result, the full computational
complexity should be 2240 x 21452 = 2254.52 The data complexity does not exceed 240 queries.

Fig. 8: Corrected AES-256 forward computation.

For the fastest biclique key recovery requiring less than full codebook of data, we could construct
a balanced biclique of dimension 8 over the last 3.5 rounds (shown in Fig. [9(a)) with lesser number of
S-boxes that need to be recomputed. A-trail activates byte 13 of sub-key $10 and V-trail activates bytes 0
and 4 of $13 sub key. Non-overlapping trails cover rounds 11 to 14. Key groups are defined with respect to
the expanded key block K% which consists of subkeys $10 and $11. The index i is placed in byte 13 whereas
index j is put in bytes 16 and 24.The base keys are all 32-byte values with two bytes (i.e., bytes 13 and 24)
fixed to 0 whereas the remaining 30-bytes taking all possible values. This allows a partition of AES-256
key space into 2240 groups with 26 keys in each. In the matching phase, forward recomputations require
13 S-boxes (shown in Fig. and backward recomputations require 73 S-boxes (shown in Fig. .
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No recomputations in key schedule are required. Hence, matching yields a recomputation of total 86 out
of 276 S-boxes. Thus Cy,; is =~ 225431 The data complexity as defined by the form of the biclique is 264
with memory complexity being 28. The full biclique trail is shown in Fig.
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Fig. 9: Fastest biclique attack on AES-256 with less than full codebook: time 22431 and data 264.

7 Fastest biclique key recovery in AES with no restriction on data complexity

In this section, we demonstrate the fastest biclique key recovery attacks on the full AES-128, AES-192
and AES-256.
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7.1 AES-128

When we drop the constraint of data complexity being below the full codebook, we can construct a
balanced biclique of dimension over 3 full AES-128 rounds and with the minimal recomputation of just
one S-box in the fourth round, immediately after the biclique. The biclique is placed in rounds 2-4 which
implies the data complexity of 2!?® for the backward trail (as shown in Fig. [10(a)). In the forward
recomputation, 12 S-boxes are recomputed (as shown in Fig whereas in the backward direction,
25 S-boxes are recomputed (shown in Fig. [L0(c)) yielding a total of 37 S-box recomputations. Thus,
Crun = 212556 The data complexity in this attack is the full codebook. The success probability is again 1
since key coverage is complete. The memory complexity stands at 2% memory blocks for precomputation
stage. The full biclique trail is shown in Fig.
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Fig. 10: Fastest biclique attack on AES-128: time 2'2°5 and data 2'?%. Here v represents the matching
byte.

This key recovery can be converted into a preimage search for the compression function constituted
by AES-128 in Davies-Meyer mode. Here the attack works offline and does not have to make any online
queries. This preimage attack requires 2'2°3%> AES-128 operations and finds a preimage with probability
about 0.632. The generic preimage search would require 2128 time to succeed with probability 0.632.

7.2 AES-192

For AES-192, we could construct a balanced biclique of dimension 8 over 5 full rounds. The biclique is
placed in rounds 2-6 shown in Fig. [I1(a)l A-trail activates byte 0 of sub-key $3 and V-trail activates byte
1 of $6 sub key (shown in Fig.[22)). In the matching phase, 10 S-boxes in the forward direction (Fig. [11(c))),
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29 S-boxes in the backward direction (Fig.|[11(b)) and 1 S-box in the key schedule are recomputed leading
to a total of 40 out of 224 S-box recomputations. Hence Cly,y =~ 218951 with data complexity being
2128 and memory complexity of 28. This key recovery when converted into a preimage search for the
compression function constituted by AES-192 in Davies-Meyer mode requires 212551 AES-192 operations
and finds a preimage with probability about 0.632.

i i
-
« FHA « e o @
HH HHH
= =
|l e
i i
= i
i E
e @E (. %ﬂ_@ i (c) Backward Recomputations
et £
(a) 5 round Biclique for AES-192
Fig. 11: Fastest biclique attack on AES-192: time 28951 and full codebook.
7.3 AES-256

For AES-256, we could construct a balanced biclique of dimension 8 over 5 full rounds. The biclique is
placed in rounds 2-6 (shown in Fig. . A-trail activates byte 8 of sub-key $1 and V-trail activates
byte 0 of $6 sub key. In the matching phase, 25 S-boxes in the forward direction ( shown in Fig.
and 41 S-boxes in the backward direction (shown in Fig. are recomputed leading to a total of
66 out of 276 S-box recomputations. Hence Cy,y =~ 225387 with data complexity being 2'?8. This key
recovery when converted into a preimage search for the compression function constituted by AES-256
in Davies-Meyer mode requires 22593 AES-256 operations and finds a preimage with probability about
0.632.
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Fig. 12: Fastest biclique attack on AES-256: time 225387 and full codebook.

8 Improving Biclique Attack Complexities on AES through Sieve-in-the-middle
process

Sieve-in-the-middle process (SIM), proposed in Crypto 2013 by Canteaut et al. [9], is a variant of the
meet-in-the-middle technique. This technique differs from the traditional meet-in-the-middle process in
the sense that it searches for the existence of valid transitions through some middle S-box instead of
matching at some intermediate state. Canteaut et al. presented analysis of sieve-in-the-middle process
on many block ciphers including AES-128 and showed that for AES-128 there is a diminutive decrease
in the total time complexity from 21261 to 212569 The application of this technique essentially involves
choosing a set of intermediate states which will form a super S-box. A look-up table for that super S-box
(say SS), is then constructed where all its possible input-output transitions (i.e., z, y where y = SS(z))
are precomputed and stored. For each (K|[i,0],K]0,j]) pair, where K|[i, 0] forms the forwards key and
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K0, j] forms the backwards key, input state x is calculated by forward computation and output state
y is computed by backward computation. It is then checked through table lookup if a valid transition
from = — y exists. If not, then the corresponding key pair is discarded and another (K[i,0],K[0, j])
pair is picked up for testing. The process iterates until a valid key pair is obtained. This saves the
recomputation of S-boxes involved in the super S-box each time leading to a slight decrease in the overall
cost complexity. E|

We illustrate the application of this process on AES-128. Let us consider the backward recomputations
of AES-128 (as shown in Fig. discussed in Section 4] In this case, let us further consider states #11
to #14 (as shown in Fig. . Here the states enclosed in the rectangle form the super S-box. This super
S-box, i.e., SS (of size 32 x 32) consists of 4 S-boxes namely Sy, S1, S and Ss. It can be seen in Fig.
that the super S-box is key dependent i.e., each 32-bit output of S.S depends on 32-bit input and 32-bit
key. Hence for each guess of the 232 values of key bits, a lookup table having 232 entries is constructed
where all 32-bit input-output transitions: & + y are precomputed and stored. Thus, we have 232 such
tables and total memory required to store these tables is 232 x 232 = 264,

Fig. 13: Backward Recomputations in AES-128 in [6]

In the recomputation stage of biclique attack, S-boxes upto state just before state #11 are recom-
puted in the forward computation. In the backward computation, S-boxes upto state #14 are recom-
puted. For each biclique, it can be noted that the key part involved in the super S-box does not involve
recomputation of any S-box. Hence, for each biclique group we will choose the table corresponding to
the 32-bits of the base key involved in the Super S-box for that biclique. Through lookup table it is
then checked if a valid transition from #1112 — #1312,13,14,15 exists. If such a transition exists, the
corresponding (K [i, 0], K|0,j]) key pair forms a valid candidate. Through this process, 5 S-boxes (i.e.,
#1119, #1312, #1313, #1314, #1315) need not be recomputed each time. Hence, instead of 80 S-boxes
(calculated in , only 75 S-boxes need to be recomputed in all. This translates to a computational com-
plexity of 212659 instead of 212667, H The same procedure can be applied to all other bicliques of AES-128,
AES-192 and AES-256. However, as pointed out in [9], this attack is faster only in those platforms where
lookup in a table of size 232 is faster than five S-box evaluations. The reduced complexities of the attacks
for all the cases are described in Table [l

#11

SRl BN B N R
S N B et

input difference output difference

ISR

Fig. 14: Super S-box.

5 Many a times, during forward and backward computations, instead of calculating whole of (x, y), partial intermediate
states (u,v) where u is a m-bit (m < |z|) part of  and v is a p-bit (p < |y|) part of y respectively are computed. It is
then checked if the given (u,v) pair forms a valid part of some (z, y) by table lookup [9].

6 In [9], the attack complexity for AES-128 is mentioned as 2'%°:%%, however we could not validate it. Our analysis estimates
this complexity to be 212598
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Conclusions

In this paper, we explore the space of independent bicliques as applied to key recovery for the full AES-128,
AES-192 and AES-256. We put some reasonable restrictions on the bicliques to make the search feasible.
The class of bicliques analysed by a tool deveoped by us looks most promising in terms of cryptanalysis
so far. In fact, the best key recoveries known so far for the full AES-128, AES- 192 and AES-256 belong
to this class. Moreover, we utilize star structure (maximally unbalanced bicliques) to reduce the data
complexity to the theoretically attainable minimum. We further note that the structure of the biclique
is more important for the data complexity of the attack whereas the length of the biclique appears to be
correlated with the computational complexity. We also propose biclique attacks which are fastest when
there is no restriction on data complexity. We demonstrate that these attacks are the fastest among all
independent-biclique attacks we study and might be considered as an indication of the limits beyond the
current approaches to AES key recovery using bicliques.
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Fig. 15: Precomputations and Recomputations required in AES-128 for key recovery attack with lowest data complexity. The
purple and blue colored boxes show the precomputations required in A; trail and V; trail respectively. The gray colored boxes
show the recomputations required in A; @ V; for matching.



28
cEEE

o7

iE3-
HE

M~ et~ M

HH
o
5

it

o

HH
o

E
K

53

FFFH&ijH:H A FFFHMFFFH&jo:FHMFH:H A FFFH&ijH:H Sl HH

Bl i

R

E

HHH HHH FFH HFH

:

E

A

| o

e i

=

538

A % o -

|
FE

Sl SRt

Fig.16: Precomputations and Recomputations required in AES-192 for key recovery attack with lowest data complexity. The
purple and blue colored boxes show the precomputations required in A; trail and V; trail respectively. The gray colored boxes
show the recomputations required in A; @ V; for matching.



F
e

===

@

e

BT
e

8

-

RERE [RERa] RERS)

|

aaee
HEH

HH

FE

AT
)

s,

A FFFHFFFH&jo:FHFFFH A

FEE
)

i

ies
gt

H

AT

H

|t
i
i

AT
e

:
3| B
HH o

RERE RERE

ittt

e

Fig. 17: Precomputations and Recomputations required in AES-256 for key recovery attack with lowest data complexity. The
purple and blue colored boxes show the precomputations required in A; trail and V; trail respectively. The gray colored boxes
show the recomputations required in A; & V; for matching.



R

&ﬂﬁﬂvv%&ﬂ%vv%&ﬁ%”%&ﬂjﬂﬁ FFFHtHjFH?%

el

qx;@ Enxw E
b3 3 =

H

@@
o

sk

x 5 <

R
@
==

R Bl Bl EEReR B

i

EE

Schedule
8 ;@

e

53
g

£

Ty
FFS

g

A

Ty

g

B

DFFFH&ijHF FFFHtHjFH?q FFFHtHjFH?q FFFHtHjFH?q FFFHtHjFH?q FFFH&ijHq{

A

e e I eI

Fig. 18: Precomputations and Recomputations required in AES-128 for key recovery attack with optimal time complexity. The
purple and blue colored boxes show the precomputations required in A; trail and V; trail respectively. The gray colored boxes
show the recomputations required in A; @ V; for matching.



-

e
e

B

52
i

HH
o
5

o

HH
o

5at
HH

52

iTE
B PR B | BR O mE | mE g | pm o

Bl i

HH HFH B B
HEEFEE 7 B

.
HH
-
2-
HHH HHH

Fig.19: Precomputations and Recomputations required in AES-192 for key recovery attack with optimal time complexity. The
purple and blue colored boxes show the precomputations required in A; trail and V; trail respectively. The gray colored boxes
show the recomputations required in A; @ V; for matching.



iR
E

===

@

==

AT
R

-

H HH HH

|

sase
F

HH

F

AT
)

o

HHH FFFHFFFH&ijFH _FH A

FEE
)

Te

a5t

HH HH

ies
)
o
gt

AT

|t
i
i

i

W ass
S=ax]

F7E
&=

Fig. 20: Precomputations and Recomputations required in AES-256 for key recovery attack with optimal time complexity. The
purple and blue colored boxes show the precomputations required in A; trail and V; trail respectively. The gray colored boxes
show the recomputations required in A; & V; for matching.
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Fig. 21: Precomputations and Recomputations required in AES-128 for key recovery attack with lowest time complexity. The
purple and blue colored boxes show the precomputations required in A; trail and V; trail respectively. The gray colored boxes
show the recomputations required in A; @ V; for matching.
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Fig. 22: Precomputations and Recomputations required in AES-192 for key recovery attack with lowest time complexity. The
purple and blue colored boxes show the precomputations required in A; trail and V; trail respectively. The gray colored boxes
show the recomputations required in A; & V; for matching.
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Fig. 23: Precomputations and Recomputations required in AES-256 for key recovery attack with lowest time complexity. The
purple and blue colored boxes show the precomputations required in A; trail and V; trail respectively. The gray colored boxes
show the recomputations required in A; & V; for matching.
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