
Efficient Generic Zero-Knowledge Proofs from
Commitments

Samuel Ranellucci ? ??, Alain Tapp, and Rasmus Zakarias? ??

1 Department of Computer Science, Aarhus University
{samuel,rwl}@cs.au.dk

2 DIRO, Université de Montréal, Canada,
tappa@iro.umontreal.ca

Abstract. Even though Zero-knowledge has existed for more than 30
years, few generic constructions for Zero-knowledge exist. In this paper
we present a new kind of commitment scheme on which we build a novel
and efficient Zero-knowledge protocol for circuit satisfiability.

1 Introduction

Zero-knowledge was introduced in 1985 by Goldwasser, Micali and Rackoff in
their seminal paper [6] introducing the IP hierarchy for interactive proof systems
and the concept of Zero-knowledge complexity.

Informally, a Zero-knowledge argument is an interactive protocol that allows
a prover to persuade a verifier of the validity of some NP statement using knowl-
edge of some hidden witness. Essentially, the verifier should learn nothing more
than the fact that the prover knows a witness that satisfies the statement.

One motivating example is that of graph isomorphism: the NP statement
here is that two graphs are isomorphic. The witness is a permutation held by
the prover permuting one graph into the other. One obvious way for the prover
to convince the verifier would be to send the permutation. However, this reveals
much more information than the one bit of information to be conveyed, namely
whether the graphs are isomorphic or not. Zero-Knowledge proofs are interactive
proof systems ensuring that the verifier learns only this information and nothing
more.

Following this ground breaking work, [1] showed that for any relation that
can be proven by an interactive proof systems, it can also be proven in Zero-
knowledge. Thus, the potential for applications of Zero-knowledge are expansive.
A large body of work has shown that specialized efficient constructions for spe-
cific NP relations are possible. However, even though Zero-knowledge has existed

? The authors acknowledge support from the Danish National Research Foundation
and The National Science Foundation of China (under the grant 61061130540) for
the Sino-Danish Center for the Theory of Interactive Computation, within part of
this work was performed; and from the CFEM research center, supported by the
Danish Strategic Research Council.

?? Supported by the European Research Council Stating Grant 279447

for almost 30 years, generic constructions for Zero-knowledge are very few. More-
over, the generic constructions that do exist, use the relatively impractical Karp
reductions to NP-complete languages.

Generic constructions for Zero-knowledge are starting to emerge. The recent
line work starting with [8] focus on the novel idea of using garbled circuits for
Zero-knowledge proofs of generic statements. This line of work was continued by
Frederiksen et al. in [4] where they build specialized garbling schemes tailored
for Zero-knowledge proofs. The garbling approach communicates at least one
symmetric encryption per and gate in the circuit. In contrast, our protocol only
requires a number of commitments proportional to the security parameter where
the constant is small (roughly 5).

2 Contributions

In this paper, we present a novel approach for achieving generic Zero-knowledge
proofs. Similar to the line of work using garbled circuits, our construction uses the
idea of proving knowledge of a satisfying assignment for a circuit. However our
construction differs from the garbling approach in several ways. Our construction
is very simple and clean using only one primitive, a commitment scheme. Such
a scheme can be realized in the Random Oracle Model in a very efficient way.
This makes our construction extremely efficient, since it only relies on evaluating
hash functions.

We take a similar approached then the one used in [2,3]. They use xor oper-
ations over individually committed bits to prove statements. We employ strings
which allow us to get faster protocols.

In a bit more detail, our construction is a novel way of committing to bit-
strings, enabling Zero-knowledge proofs of linear relations. In particular we
present efficient protocols for proving equality and inequality of bits in a string
given two regular commitments to the xor sharing of that string. From this we
build protocols for circuit satisfiability where a prover proves to a verifier that
he has knowledge of a witness w that satisfies the circuit. The prover does this
by committing to a truth assignment of all gates in the circuit along with some
additional information. Then he proves relationships (corresponding to the gates
of the circuit) between bits in the committed string.

By the hiding property of the commitment the verifier learns nothing about
the inputs to the circuit. In the end the prover essentially opens the output bit
of the circuit by proving that the output bit of the circuit committed is one and
this is essentially the only new information that the verifier learns.

For a circuit of size n with l input gates, a and gates and g linear gates
our construction communicates 6a+ g bits of data with soundness one-half. To
form a secure protocol with security 2−κ, we repeat our construction κ times
realizing a protocol with communication complexity O(κn). We emphasize that
the constants involved are small.

2

3 Commitment with Linear proofs

In this section, we define a commitment scheme which allows a prover to prove
linear relationships between bits within a committed string. These relationships
include equality, inequality and a proof that a set of committed bits xor to a
particular value. The proofs are complete and Honest-Verifier Zero-knowledge.
The soundness only holds with probability one-half. We will use the notation
xom(m) to say that a prover commits to a message m using commitments with
linear proofs.

The proofs will take the form of sigma protocols. The verifier’s challenge
will consist of one bit. Proofs within a single string can be combined similar to
how sigma protocols can be combined. If a commitment would take part in two
tests which have distinct challenges, then the committed value is revealed. This
implies that the soundness of the proofs cannot be improved.

In the following we are going to work on strings, therefore we need a bit of
notation. Then follows our xor-commitment scheme.

Notation For an l-bit string m we denote mi the i’th bit of m. When a message
m is xor-shared, we denote m0 and m1 the xor-shares of m = m0 ⊕ m1. We
sometimes combine these notations and take m0

i to mean the i’th bit of the 0’th
share of m and similarly for m1

i .

The xor commitment scheme is as follows. The commit phase has two-steps.
First, the prover will choose a string r uniformly at random, he will then commit
to m0 = r and he will also commit to m1 = m⊕ r using a standard commitment
scheme from the literature denoted by com(·).

The first important property of this commitment scheme is that for any
committed value m, the view of mi is indistinguishable from a uniformly random
string as long as m1−i stays hidden.

If two bit positions in m are equal, say mi = mj , then there exists a δ such

that δ = m0
i ⊕m0

j = m1
i ⊕m1

j . The view (δ,mi) looks independent of m as long

as m1−k stays hidden.

In contrast, if mi 6= mj , then for any choice of δ, δ 6= m0
i or m0

j or δ 6=
m1
i ⊕m1

j . This is equivalent to saying there exists an ε such that ε = m0
i ⊕m0

j =

1⊕m1
i ⊕m1

j . The view (ε,mk) looks independent of m as long as (m1−k) remain
hidden.

These properties will allow us to generate proofs for linear relationships
among commitments.

3.1 Xor commitment scheme

Let m ∈ {0, 1}l be a bit string of length l. To create an xom(·) commitment
to m a random message r ∈R {0, 1}l is chosen. Then we compute m0 = r and
m1 = m ⊕ r and define xom(m) = (com(m0), com(m1)) see Figure 1.

3

Φcommit(m)

Prover Verifier

r ∈R {0, 1}l

m0 = r,m1 = m⊕ r

com(m0), com(m1)

xom(m) = (com(m0), com(m1))

Fig. 1. Commit

3.2 Reveal

To open completely, we simply open both commitments. In cases where we wish
to do linear proofs, we will open the commitment partially meaning that we
only open one of the standard commitments associated to the xor commitment.
For a commitment with linear proofs M , associated to value m with standard
commitments we will use Reveal(M, t) to denote a prover opening the value of
the standard commitment com(mt).

4 Zero Knowledge with weak soundness

In our first result we show how to do an honest verifier zero knowledge proof
of equality between two bit positions of an xor-commitment to a string m. The
basic idea is as follows: we will exploit the fact that if the bits mi,mj in positions

i, j of m are equal then there exists a δ such that m0
i ⊕m0

j = m1
i ⊕m1

j = δ. On
the other hand, if mi 6= mj then no such δ exists.

We can use this fact to prove equality of the two bit positions in m revealing
essentially nothing else. Informally, observe that for any b ∈ {0, 1}, the view
(δ,mb

i ,m
b
i) looks independent of the value of mi and mj as long as (m1−b

i ,m1−b
j)

stay hidden. In the first step of the proof, the prover will reveal δ. This reveals
no information and forces a cheating prover to prepare to answer a b′ such that
mb′

i ⊕mb′

j 6= δ. Then the verifier will select a b at random for which the prover
can only reply correctly if b = b′. This ensures that a cheater gets caught with
probability one-half. The soundness is evident since any challenge can be easily
answered. It is Zero-knowledge since the values of (δ,mb

i ,m
b
j) are independent.

4.1 Protocol for equality

For a string m ∈ {0, 1}l and M = xom(m) = (com(m0), com(m1)), we show how
to prove for a given i, j that mi = mj . The scheme allows the prover to prove
equality for multiple positions {(ik, jk)}k, however recall that the challenge ε used
has to be the same otherwise the bits mi and mj are revealed. The protocol for
equality is depicted in Figure 2.

4

ΦEquality(M, i, j)

Prover Verifier

δ := m0
i ⊕m0

j

δ

ε ∈R {0, 1}
ε

Reveal(M, ε)

if mε
i⊕mε

j = δ accept
else reject

Fig. 2. Equality

4.2 Zero-knowledge

Completeness: To show completeness, we show that an honest verifier will be
convinced by an honest prover. Therefore, assuming mi = mj , we consider two
cases:

case 1 : if m0
i = m0

j then m1
i = m1

j in which case δ = 0 = m0
i ⊕m0

j = m1
i ⊕m1

j

and thus the verifier accepts.
case 2 : if on the other hand m0

i 6= m0
j then m1

i 6= m1
j in which case δ = 1 =

m0
i ⊕m0

j = m1
i ⊕m1

j and the verifier accepts. These cases are exhaustive given
that we are only proving equality assuming that mi = mj .

Soundness: To show soundness holds with probability one-half, we consider
a cheating prover and show that an honest verifier accepts with probability at
most one-half. That is, if mi 6= mj and the prover will try to convince the verifier
otherwise. If m0

i 6= m0
j then m0

i ⊕m0
j 6= m1

i ⊕m1
j and therefore for any δ ∈ {0, 1}

there exists a value ε such that the verifier will not accept. As such a cheater is
detected with probability 1/2.

Honest Verifier Zero-Knowledge: To prove Zero Knowledge for a verifier,
we give a simulator that generates the view (δ,mb) which is indistinguishable
from a real execution, see Figure 3.

Simulator MEq
V ∗

1 Select b ∈R {0, 1}
2 Compute δ ← mb

i ⊕mb
j

3 Accept to receive the ε ∈ {0, 1}
4 If ε = b the simulator continues and opens the commitment to the message mε.
5 Otherwise we rewind to step 1.

Fig. 3. Simulator for equality

5

Consider the simulator in Figure 3. We argue that the view generated is
indistinguishable from a real execution: clearly the distribution of δ send to the
verifier is uniform as in the real execution. Also, in Step 4, the simulator behaves
exactly as in the real execution and the transcript exhibits exactly the same
distribution. From this, we conclude that the view (δ,mb) is indistinguishable
from a real execution. ut

4.3 Parallel equality proofs

For an xor-commitmentM = xom(m) and for a set of pairs of indices {(iv, jv)}v=1,...,t

into m we can prove all positions equal with soundness one-half.

Φpeq({(iv, jv)}v=1,...,t)

Prover Verifier

δr := m0
ir ⊕m

0
jr

∆ := δ1, · · · , δt
∆

ε ∈R {0, 1}
ε

Reveal(M, ε)

if ∀v,mε
iv⊕m

ε
jv = ∆v

accept else reject

Fig. 4. Parallel Equality

Following the same reasoning as for the equality protocol in Figure 2 our
protocol for parallel equality in Figure 4 is also Honest Verifier Zero Knowledge
with soundness one-half. The proof is omitted since it follows trivially from the
definition.

5 Proof of inequality

The proof of inequality is very similar to the equality proof. The main difference
is that there exists a ε such that for any b ∈ {0, 1}, ε = mi

b ⊕m
j
b ⊕ b instead if

the δ = m0
i ⊕m0

j as before. We put the protocol and its proof in the appendix.

6 The Linear Zero Knowledge proof

In the previous sections we have seen how to do equality and inequality proofs
of bits in a committed message. That is, protocols where a prover commits to
a message and convinces a verifier that certain bit positions in the committed

6

message are equal bits or different bits. In fact we can combine these two in one
protocol to convince our verifier that bit positions XOR to a particular value.
This cover equality and inequality as special cases.

The input of the protocol will be a pair of elements, the first element will be
a set of indices and the second will be the value that they are supposed to xor
to. Note that equality is covered by putting two elements in the set and setting
it to 0 and by putting a one instead we have inequality. In addition, by only
putting a single index in the set, it is a proof that the value committed is equal
to the given bit without having to open both strings. Figure 5 below depicts
our protocol for proving the XOR relation between bit positions. Figure 6 is a
protocol showing how to pack multiple such proofs together into one protocol
still using only one xom(·).

ΦLZK(I, b)

Prover Verifier

δ :=
⊕
i∈I

m0
i

δ
ε ∈R {0, 1}

ε

Reveal(M, ε)

if
⊕
i∈I

mε
i = δ⊕ (b∧ ε)

accept else reject

Fig. 5. Linear Zero-knowledge

Secure Proofs Our proofs of equality, inequality and linear relations above has
soundness one-half. For a security parameter κ we later show how we can make
a protocol that essentially repeats the proofs of equality κ times to decrease the
success probability of a dishonest prover to 2−κ.

6.1 And-proof

In this section, we wish to be able to prove that for an xor-committed string
and for three indices (i, j, k) of the string, it holds that mi ∧mj = mk. This will
be done by using another triple of values that will be made explicitly for this
purpose.

To construct such a proof, we will exploit the following relationship:

x ∧ y = z if and only if z = Maj(x, y, 0).

We will have an additional three bits per and gate which will be a random
permutation of the two input values and zero. The protocol for the proof is

7

ΦPLZK({(Iv, bv) | Iv ⊆ {1, . . . , l}, bv ∈ {0, 1}}v=1,...,t)

Prover Verifier

δr :=
⊕
i∈Ir

m0
i

∆ := (δ1, . . . , δt)
∆

ε ∈R {0, 1}
ε

Reveal(M, ε)

if ∀v,⊕
i∈Iv m

ε
iv = ∆v⊕ (bv ∧ ε)

accept else reject

Fig. 6. Parallel Linear Zero-knowledge

depicted in Figure 7 and proceeds as follows: the prover will for each and gate,
randomly ask that the receiver either show that the three committed bits are a
permutation of the two inputs and zero or show that the majority of the three
additional bits is the output value. If the bits do not form a valid triple then
the prover must fail one of two tests with probability one-half. As a result, a
cheating prover will get caught with probability one-quarter.

The proof that this protocol is honest verifier zero knowledge follows from a
later proof where we show this protocol is UC-secure if the underlying commit-
ment scheme is UC-secure. That is, we show the verifiers view can be simulated
and for UC-secure commitments the provers side can also be simulated. We refer
to Section 8.

7 Zero-knowledge for circuit satisfiability

In this section we will give a zero-knowledge proof of circuit satisfiability. This is
done by combining the equality, inequality, and the and test together. Notice that
if we commit to a satisfying assignment for the circuit using an xor-commitment,
we can already prove linear relations. This means that with the and proof we
get a Zero-knowledge proof of satisfiability for any circuit.

7.1 Circuit notation

In this section, we define a circuit notation which is convenient for our zero-
knowledge proofs. Indices will be used to identify wires. When there is a fork
in the circuit, the input of the fork and the outputs of the fork will share the
same index. Each pair of wires which are not forked will have different indices. A
negation gate is represented as a pair of indices where the first value of the pair
is the index of the input wire and the second value is the index of the output
wire. In a similar fashion, the xor gates will be represented as a triple of values

8

ΦPMul(M, i, j, k, i′, j′, k′)

Prover V erifier

b b ∈R {0, 1}

If b = 0:

ΦTriplet

π ∈R S3 s.t.
(e, f, g) = π(i′, j′, k′) =⇒ (me,mf ,mg) = (mi,mj , 0)

π
(e, f, g)← π(i′, j′, k′) (e, f, g)← π(i′, j′, k′)

S ← {({i, e}, 0), ({j, f}, 0), ({g}, 0)}
ΦPLZK(M,S)

If b = 1:

ΦMajority

µ ∈R S3 s.t.
(e, f, g) = µ(i′, j′, k′) =⇒ (me,mf ,mg) = (z, z, ·)a

µ
(e, f, g)← µ(i′, j′, k′) (e, f, g)← µ(i′, j′, k′)

S ← {({i, e}, 0), ({j, f}, 0)}
ΦPLZK(M,S)

a µ is assigned a permutation that takes the majority of zeros or ones z
in the triplet (mi,mj ,mk′) and places that value in the first two entries
of the triplet µ(mi,mj ,mk′) = (z, z, ·). The last entry can be any value
ensuring there is always a choice to be made here.

Fig. 7. Multiplication protocol

where the first two values will be the index of the input wires and the third will
be the index of the output wire. Finally, for the and gates, each and gate will
consist of 4 indices, the first value will be a unique identifier given to the and
gate, the second and third values will be the input wires and the fourth value will
be the index of the output wire. The identifier given to the and gates will allow
us to reference them in our protocol and will also be used to find the associated
helper triples. We will denote Λ as the set of and gates, χ as the set of xor gates
and N as the set of negation gates. We denote n as the number of wires and a
as the number of and gates. We denote Π as a set of pairs (c, π) where 1 ≤ c ≤ a
and π ∈ S3 which is the set of permutations of three elements. We define v as
the values of a valid assignment for the circuit.

9

A B
4

3

1

2

5

6

7

8

Λ = {(A, 3, 4, 6), (B, 6, 7, 8)}
χ = {(1, 2, 5), (5, 6, 7)}
N = {}

Fig. 8. Circuit representation example

7.2 The Protocol for circuit satisfiability

Our protocol for circuit satisfiability assumes a public circuit known to both
verifier and prover. In addition the prover knows a witness w satisfying the
circuit. The circuit consists of and, inversion and XOR gates. Essentially the
verifier commits to her challenge, then the prover communications a set of per-
mutations, one for each and gate, and also prepares a set of linear relation S
to be proven in parallel. In the end all the relation in S are proven using ΦPLZK.
Pseudo-code is given below for an overview and concise description in Algorithm
1. Then Figure 9 depicts how the linear relations in S are proven. In full detail
our protocol for circuit satisfiability goes as follows:

First, the verifier will commit to his challenge. Then both prover and verifier
initialize a set S of pairs to be empty. This set will denote the set of linear
relationships that will be tested.

The prover will generate a string containing the input bits satisfying the cir-
cuit followed by the output bit of each gate in the circuit. Following these circuit
values is some additional information: for each and gate, the prover generates a
helper triple which are a permutation of the inputs and the 0 value. The prover
will store the permutation and also find the permutation which permutes the
helper triple such that the two first elements of the permuted triple equal the
output of the and gate. The helper triple is appended to the string. The prover
xor commits to this string. Then, the verifier will decide which test to perform
for each and gate. That is, the verifier flips a coin deciding whether to check if
the associated helper triple is a valid permutation of its input with the value 0
or if at least two of those values are equal to the value of the output. The prover
will reveal the appropriate permutations and they will add the appropriate linear
tests to verify the selected property for each and gate. We will then insert the
linear tests for negation and xor relations into the set of things to be verified.
The equality and inequality tests are added to the set S and all executed in

10

parallel at once when all permutations has been communicated for the entire
circuit. Finally, the verifier and prover will use a modified version of ΦPLZK where
the challenge will be the value which the verifier committed to at the beginning
of the protocol.

// commitment to the challenge

ε = com(E)
// Set of linear Relationships that

will be proven

S ← ∅
// proof that circuit assignment has

value 1

S ← S · ({n}, 1)
Prover

Π,P ← ∅ // Permutation for

triples and majority

m← {0}n+3a

for i ∈ {1, . . . , n} do
mi ← vi

// generate triples, store

permutations

for (c, i, j, k) ∈ Λ do
π ∈R S3

Π ← Π · (c, π)
(d1, d2, d3)← π(1, 2, 3)
z ← n+ 3(p− 1)
mz+d1 ← mi

mz+d2 ← mj

mz+d3 ← 0
p ∈R { µ ∈
S3 | µ(mz+1,mz+2,mz+3) =
(mk,mk, .) }
P ← P · (c, p)

// commit to the string

Prover↔ Verifier

xom(w)

// select challenge for ands

Verifier

b ∈R {0, 1}
Verifier

b→ Prover

// triples challenge

if b = 0 then

Prover
Π→ Verifier

for (c, i, j, k) ∈ Λ do
d1, d2, d3 ← π(1, 2, 3) where
(p, π) ∈ Π
z ← n+ 3(p− 1)
S ← S · ({i, z + d1}, 0)
S ← S · ({j, z + d2}, 0)
S ← S · ({z + d3}, 0)

// majority challenge

if b = 1 then

Prover
M→ Verifier

for (c, i, j, k) ∈ Λ do
d1, d2, d3 ← m(1, 2, 3) where
(p,m) ∈M
z ← n+ 3(p− 1)
S ← S · ({k, z + d1}, 0)
S ← S · ({k, z + d2}, 0)

// insert xor relationships

for (i, j, k) ∈ χ do
S ← S · ({i, j, k}, 0)

// insert inequality relationships

for (i, j) ∈ N do
S ← S · ({i, j}, 1)

Algorithm. 1. Pseudo code describing how prover and verifier exchange per-
mutations for and-gates and prepare the set, S, of linear relations to be proven.

11

Prover Verifier

(Iu, bu) := Su

δu :=
⊕
i∈Iu

m0
i

∆ := (δ1, . . . , δ|S|)

∆

ε := open(E)

Reveal(M, ε)

if
⊕
i∈I

mε
i = δi⊕ (bi∧ ε)

accept else reject

Fig. 9. Parallel proof for the relations added the set S by Algorithm 1

8 Weak Zero-knowledge

The weak Zero-knowledge functionality works as follows: on receiving an input
and a witness from an honest prover, it verifies that the witness is valid for the
given input and simply informs the verifier that a witness for the input has been
proven. On the other hand, if the prover is corrupt, the weak Zero-knowledge
functionality behaves differently.

Theorem 1. ΦWZK securely realizes FWZK in the FCOM hybrid model.

Prover corrupt The simulator plays the role of the verifier. First, he sends
the message (committed) to the environment. The simulator awaits that the
prover send the commit commands for the xor commitment. He verifies if the
string committed to contains a valid assignment of the circuit. If so, he sends
(witness, x, w, sid) to FWZK where x is the circuit.

Otherwise, he sends (witness, x,⊥, sid) to FWZK, he checks which test for
the and gates, would the simulator be able to always pass. If he could always
pass the majority test he selects a1 = 0, otherwise if he can always pass the
triples test, he selects a1 = 1 otherwise he selects a1 = ⊥. He then sends the
command (perm, a1, sid) and then receives (go, a2, sid), it then forwards a2 to
the environment.

The simulator then awaits that the environment forwards the appropriate
permutations. and the ∆ of his choice. The simulator then determines for which
challenge the test could be passed, if none then the simulator sends (test,⊥, sid)
to the ideal functionality, if at least one then send (test, b1, sid) where b is one
of them to the ideal functionality. It then awaits to receive a (proceed, b2, sid)

12

FWZK

– On receipt of (witness, x, w, sid) from the prover, there are four cases:
1 If a command of the form (witness, ·, ·, sid) has already been sent, ignore

the command.

2 If the prover has not been corrupted and (x,w) ∈ R tell the verifier that
(proven, x, sid).

3 If the prover has not been corrupted and (x,w) 6∈ R, then ignore the
command.

4 If the prover has been corrupted and the command has not already been
seen, record (x,w, sid).

– On receipt of (perm, a1, sid) from the prover, if (x,w, sid) has not been recorded
or a command of the form (perm, ·, sid) has already been sent, ignores the com-
mand. Otherwise select at random a2 ∈ {0, 1}, it then records (go, a1, a2, sid)
and sends (go, a2, sid) to the prover.

– On receipt of (test, b1, sid) from the prover, if (go, a2, sid) has not been sent
to the prover or a command of the form (test, ·, sid) has already been sent,
ignore the command. Otherwise select at random b2 ∈ {0, 1}, it then records
(proceed, b1, b2, sid) and sends (proceed, b2, sid) to the prover.

– On input (proof, sid) from the prover, if (proceed, b2, sid) has not been sent
to the prover or (proof, sid) has already been sent, ignore the command. Oth-
erwise if a1 = a2 or b1 = b2 or if (x,w) ∈ R then output (proven, x, sid) to the
verifier

Fig. 10. The Weak Zero Knowledge Functionality

from the ideal functionality. The simulator then forwards (reveal, b). It awaits
that the environment reveals the given commitment.

The sender checks if a verifier would accept, if so he sends (proof) otherwise
he aborts. Note that acceptance can only happen if a valid witness was entered
or if a1 = a2 or b1 = b2.

8.1 Prover simulation indistinguishability

The real world and ideal world are indistinguishable because the choices given
for the test to choose and the string to determine are dictated by the ideal
functionality. The simulator can see for which tests the environment would pass.
As a result, the environment can only pass in the ideal world if it would pass in
the real world. The remaining messages are duplicated from the environment.
As a result, the real and ideal world are indistinguishable.

Verifier corrupt The simulator awaits that the environment send the com-
mand (commmit, ε). Now the simulator knows the challenge ahead of time. The

13

FWZK

(witness, w, x, sid)

(perm, a1, sid)

(go, a2, sid)

(test, b1, sid)

(proceed, b2, sid)

(proof, sid)

(proven, x, sid)

Fig. 11. Ideal functionality for Weak Zero-knowledge assuming a dishonest prover. The
internal state of the functionality is hidden for readability.

FWZK

(witness, w, x, sid)

(proven, x, sid)

Fig. 12. Ideal functionality for Weak Zero-knowledge assuming an honest prover, again
hidding the internal state for readability.

simulator then sends the commit message associated to the xor commitments, he
also select random mε which he will decide to reveal. He now awaits the choice of
test for the and gates from the environment. He selects random permutation for
the given test and ∆ such that he will be able to pass the given committed chal-
lenge. He then awaits that the environment send the open command associated
to the commitment to the challenge. Finally, he sends the message (reveal,mε)
to the environment.

8.2 Verifier simulation indistinguishability

Notice, that aside from the ∆,mε and the permutation , the other messages are
the same in the ideal and in the real world. Finally, the real world distribution of
distributed variables are all sampled uniformly or are masked with a randomly
sampled variable. As a result, the real and ideal world are indistinguishable.

Theorem 2. FZK can be securely instantiated using 5s calls FWZK.

see appendix A for details.

14

9 Improvement

For the protocol defined above, in the random oracle model, the commitment
can be instantiated using a hash function to make the protocol more efficient.

The xor commitment consists of two commitment, the first one is used to
commit to a random string. To reduce the communication, we could modify the
xor commitment scheme so that instead of committing to a full length string.
We instead commit to a short seed and then expand it using a pseudo-random
number generator. The second string would be the message xored with this se-
quence. This means that opening the first string becomes very short. Simply
send the commitment of the seed. We could also do the same trick to reduce the
amount of communication for the permutations. Commit to the triples permuta-
tion by committing to a short seed and then fix the other majority permutations
in consequence.

The final trick is to notice that the ∆ in the proof are given to the verifier
and then the verifier checks that these are indeed the values that he has. Now, an
equivalent way of doing this, would be for the prover to simply send a Hash(∆)
to the verifier and after getting the opening of the message he could just hash the
values of ∆, he would compute and hashes it and then verifies that this matches
what he would get.

10 Conclusions

We have presented an information theoretic construction extending commit-
ments to zero knowledge proofs. We show that when our construction builds
on top of a UC-secure commitment scheme it is UC-secure. The flavor of sup-
ported proofs are circuit satisfiability. The statement to be proven is a circuit
for which the prover knows a satisfying assignment for the input gates. On the
theoretical side our scheme exhibits small constants in addition to the underlying
commitment scheme.

Currently we are experimenting with implementing our scheme using SHA-
512 as the underlying commitment scheme. The full version will include an
appendix with a more comprehensive review of our empirical result. The pre-
liminary tests looks promising: we have our xor-commitment scheme running
between two standard consumer grade machines. In our experiment we are com-
mitting to strings encoding circuits of up to two million gates in less than 4
seconds. That is, we measure the time it takes for the prover to create the com-
mitments on one machine until they are transmitted to the verifier on a second
machine.

We have circuits for AES, SHA-1, and SHA-256 3 which are all smaller than
this. For AES we hope to show knowledge of plaintext, the key or both given a
ciphertext. For SHA we hope to show knowledge of preimages in zero knowledge.
All with very shorty running time.

3 Kindly borrowed from http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
with many thanks to Nigel Smart and his crew at Bristol.

15

References

1. Michael Ben-Or, Oded Goldreich, Shafi Goldwasser, Johan H̊astad, Joe Kilian,
Silvio Micali, and Phillip Rogaway. Everything provable is provable in zero-
knowledge. In Advances in Cryptology-CRYPTO 88, pages 37–56, 1988.

2. Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs
of knowledge. Journal of Computer and System Sciences, pages 156–189, 1988.

3. Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed oblivious trans-
fer and private multi-party computation. In Advances in Cryptology—CRYPT0 95,
pages 110–123. Springer, 1995.

4. Tore Kasper Frederiksen, Jesper Buus Nielsen, and Claudio Orlandi. Privacy-free
garbled circuits with applications to efficient zero-knowledge. Cryptology ePrint
Archive, Report 2014/598, 2014. http://eprint.iacr.org/.

5. Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in np have zero-knowledge proof systems. Journal
of the ACM (JACM), 38(3):690–728, 1991.

6. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal of Computing, pages 186–208, 1989.

7. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing, pages 21–30. ACM, 2007.

8. Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013, pages 955–966, 2013.

9. Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings
of the twenty-fourth annual ACM symposium on Theory of computing, pages 723–
732. ACM, 1992.

10. Alain Tapp. Cryptography based on oblivious transfer. In Proceedings of
Pragocrypt 96. 1996.

16

A Zero-knowledge from weak zero-knowledge

A.1 ZK from WZK

FZK

– Upon receiving (proof, x, w, sid) from the Prover, if a command of the form
(proof, ·, ·, sid) has already been sent or if (x,w) 6∈ R, it ignores the command.
Otherwise, it sends (proven, x, sid) to the verifier.

Fig. 13. Zero Knowledge Functionality

ΦZK

Verifier selects s unused session ids S := {sid1, . . . , sids} and sends them to the
prover. For each session id, the prover sends (witness, x, w, sid) to FWZK.

Verifier accepts after receiving for each i ∈ I, the message (proven, x, sidi) from
FWZK

Fig. 14. Protocol for Zero Knowledge

Theorem 3. ΦZK securely realizes FZK in the FWZK, FCOM hybrid model.

Prover simulation The simulator sends to the environment a set of unused
indices S := {sid1, . . . , sids}. In parallel, for each sidi, the simulator awaits
(witness, x, w, sidi). The simulator on reception of such a message, if such a
message with the given sidi has not already been sent, it stores (x,w, sidi). The
simulator then awaits a message of the form (perm, a1, sidi). It then selects a
random a2 ∈ {0, 1} and forwards (go, a2, sidi), It then awaits (test, b1, sidi), se-
lects at random a b2 ∈ {0, 1} and sends (proceed, b2, sidi) back to the receiver. It
then awaits (proof, sidi). After having awaiting (proof, sid) and received them
he checks if for all sid that the values stored associate to that id are such that
a1 = a2 or b1 = b2 or (x,w) ∈ R. If this is the case for all of them then the
simulator looks for a valid witness among the witnesses sent. He then sends
(proof, x, w, sid)

Prover simulation The real and ideal world can be distinguished if and only if
the corrupted prover can succeed in passing all the weak zero-knowledge proofs
without inputting a witness. This can only happen with negligible probability.

17

Corrupt verifier On input (proven, x, sid) from the zero-knowledge function-
ality, The simulator await the set of ids S := {sid1, . . . , sids} from the environ-
ment. It then send for each i ∈ {1, . . . , s} the message (proven, x, sidi) to the
environment.

Verifier simulation Proof is trivial.

B Concrete example: ZK-proof that (x1 ∧ x2)⊕ (x3 ⊕ x4)
is satisfiable

We will give an example here where a prover proves in Zero-knowledge that he
knows a satisfying assignment for the circuit (x1 ∧ x2) ⊕ (x3 ⊕ x4). In fact the
steps illustrated by this example is those of ΦPMul in Figure 7. We will abuse
notation a bit for a cleaner presentation. Openings of all protocols invoked in the
follow should be pick up and done in the very end. That is, when we invoke e.g.
the protocol for equality the xom commitment is opened. However this should in
a real execution be postponed to the very end for the proof of the entire circuit.

B.1 Step 1:

Generate a string a string w of length n+ 3a. All bit positions in this string are
set to ⊥ initially. Recall n is the number of input wires and gates all together in
the circuit. a is the number of and gates are present in the circuit. We will need
the prover to commit to some helper triples for each and gate. As we have 4
input wires, 3 gates one of which are an and gate we have our string w of length
10, as n = 7 and a = 1. w = (⊥,⊥,⊥,⊥⊥,⊥,⊥,⊥,⊥,⊥).

B.2 Step 2: Generate satisfying assignment with output one

In the first step, the prover generates a satisfying assignment for the circuits. In
essence he selects a valid assignment for the circuit which outputs 1. Input these
values in the string.

– x5 = x1 ∧ x2
– x6 = x3 ⊕ x4
– x7 = x5 ⊕ x6

– x1 = 1, x2 = 1, x3 = 0, x4 = 0
– x5 = 1, x6 = 0
– x7 = 1

– foreach i ∈ {1, . . . , 7}, wi ← xi

w = (1, 1, 0, 0, 1, 0, 1,⊥,⊥,⊥)
As there is one And gate in the circuit we have left room for at one helper

triple, that what the three ⊥ are placeholders for.

18

B.3 Step 3: Append permutation of inputs for And gates and
include permutations in set

In the second step, for each And triple, the prover generates a random permuta-
tion π. The only And triplet is of the form (p, i, j, k) = (1, 1, 2, 5) where p is the
index of the And triple, i, j are the indicies of the input operands to the And gate
and k is where the result is. That is the prover prepares to convince the verifier
of the And relationship m1 ∧m2 = m5 by appending a random permutation as
follows:

– suppose π was randomly selected to be π(1, 2, 3) = (2, 3, 1)
– (d1, d2, d3)← (2, 3, 1) = π(1, 2, 3)
– (wz+d1 , wz+d2 , wz+d3) = wz+2, wz+3, wz+1 ← (w1, w2, 0)
– µ will be chosen such that µ(1, 2, 3) ∈ {(2, 3, 1), (3, 2, 1)}
– prover sets Π ← Π · (c, π)
– prover sets P ← P · (c, µ)

w = (1, 1, 0, 0, 1, 0, 1, 1, 1, 0)

B.4 Step 4: use commitment with linear proofs to commit to circuit
and helper triples

In the third step, the prover xor commits to this constructed message w with
the circuit and the helper triples. That is he applies Φcommit(w) such that both
prover and verifier obtain:

– W = xom(w) := (com(w0), com(w1))

B.5 Step 5: Permutation test selection

In this step, the verifier selects which permutation test will be used for the mul-
tiplicative proof. In particular, will the verifier check that (mn+1,mn+2m,mn+3)
is a permutation of (m1,m2, 0) or that a received permutation p ∈ S3, such that
for d1, d2, d3 := π(1, 2, 3) that such that m5 = mn+d1 ∧ m5 = mn+d2 . In this
case, it would be m5 = m10, m5 = w9 (since m(1, 2, 3) = (3, 2, 1))

– The verifier selects which test to do

B.6 Step 6: Prover circuit commitment

This step combines the first part of the equality test for the and triples and the
equality tests. The prover will reveal the δ for the different proofs of equality.
This forces -due to the proof of equality- a dishonest prover to decide which
challenge he can’t respond to. If we think of this protocol as a sigma protocol,
this is the point where the prover has finished committing to his values.

1. If triplet challenge was selected

19

2. The prover sends the permutation π of (w1, w2, 0)
3. The prover and verifier now executes ΦEq(W, 1, 9) ΦEq(W, 2, 10) ΦZeq(W, 8).

If all three tests passes the verifier accepts.

1. If the Majority challenge was selected
2. prover sends µ e.g. say (2, 3, 1) to verifier.
3. Now since the helper triple is in index 8,9,10 this permutation translates into

the triple (w9, w10, w8)
4. The prover and verifier now executes ΦEq(W, 1, 9) ΦEq(W, 2, 10) and the

verifier accepts if both equality tests passes.

B.7 Step 6: The linear gates

We still need the prover to prove the two Xor gates in the circuit. That is we
need to prove w0

3⊕w0
4⊕w0

6 = w1
3⊕w1

4⊕w1
6 and that w0

5⊕w0
6⊕w0

7 = w1
5⊕w1

6⊕w1
7.

This can be done using the generalized equality box ΦLZK(W, {(I1, 0), (I2, 0)})
where I1 = {3, 4, 6} and I2 = 5, 6, 7.

Recall the circuit is public and at this point the prover has shown the rela-
tionships between bit positions of the circuit encoded in w. Thus the verifier is
convinced that w10 will hold the result.

B.8 Step 7: The final step

In the final step the prover shows that w10 equals one.

20

C Inequality protocol and proofs

M = xom(m) = (com(m0), com(m1)) Prover inequality between two bits of the
committed string.

ΦInequality(M, i, j)

Prover Verifier
δ := m0

i ⊕m0
j

δ

ε ε ∈R {0, 1}

Reveal(M, ε)

if v ⊕ mε
i ⊕ mε

j = δ
accept else reject

Fig. 15. Inequality

C.1 Zero-knowledge

Completness: Since mi 6= mi, we can see that
case 1 : if mi

0 = mj
0 then mi

1 6= m1
j in which case ε = 0 = mi

0⊕m
j
0 = mi

1⊕m1
j⊕1.

case 2 : if mi
0 6= mj

0 then mi
1 = m1

j in which case ε = 1 = mi
0⊕m

j
0 = mi

1⊕m1
j⊕1.

Soundness: if x = y then mi
0 ⊕m

j
0 = mi

1 ⊕m1
j and therefore for any value of

ε there exists a value v such that the verifier will not accept. As such a cheater
is detected with probability 1/2.

Honest Verifier Zero-Knowledge: To prove the protocol is zero-knowledge
for a verifier we give the description of a simulator MNeq

V ∗ that generates a view
(δ,mb) indistinguishable from a real execution.

Simulator MNeq
V ∗

1 Select b ∈R {0, 1}
2 Compute δ ← b⊕mb

i ⊕mb
j

3 Accept to receive the ε ∈ {0, 1}
4 If ε = b the simulator continues and opens the commitment to the message mε

5 Otherewise we rewind to step 1.

Fig. 16. Simulator for inequality

21

Clearly the distribution of δ send to the verifier is uniform as in the real
execution. Also in Step 4 the simulator behaves exactly as in the real execution
and the transcript exhibit the exact same distribution. ut

22

