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Abstract—We describe a method of cryptographically-secure
key extraction from a noisy biometric source. The computational
security of our method can be clearly argued through hardness
of Learning Parity With Noise (LPN).

We use a fuzzy commitment scheme so the extracted key is cho-
sen by definition to have uniformly random bits. The biometric
source is used as the noise term in the LPN problem. A key idea
in our construction is to use additional ‘confidence’ information
produced by the source for polynomial-time key recovery even
under high-noise settings, i.e., Θ(m) errors, where m is the
number of biometric bits. The confidence information is never
exposed and is used as a noise-avoiding trapdoor to exponentially
reduce key recovery complexity. Previous computational fuzzy
extractors were unable to correct Θ(m) errors or would run in
exponential time in m.

A second key result is that we relax the requirement on the
noise in the LPN problem, which relaxes the requirement on
the biometric source. Through a reduction argument, we show
that in the LPN problem, correlation in the bits generated by
the biometric source can be viewed as a bias on the bits, which
affects the security parameter, but not the security of the overall
construction.

Using a silicon Physical Unclonable Function (PUF) as a
concrete example, we show how keys can be extracted securely
and efficiently even under extreme environmental variation.

Index Terms—Physical Unclonable Function, PUF, ring oscilla-
tor, learning parity with noise, LPN, learning with errors, LWE.

I. INTRODUCTION

Fuzzy extractors convert biometric data into reproducible
uniform random strings, and make it possible to apply cryp-
tographic techniques for biometric security; the biometric can
be human or silicon in nature. They are used to encrypt and
authenticate user data with keys derived from biometric inputs
[15]. Fuzzy extractors are designed to achieve information-
theoretic security. Secure sketches, a part of the the fuzzy
extractor model, are also proposed in [15] and allow precise
reconstruction of a noisy input without addressing nonunifor-
mity. On input w, a procedure outputs a sketch h. Then, given
h (also called “helper data”) and a value w′ close to w, it is
possible to recover w. The sketch is secure in the sense that it
does not reveal much about w: w retains much of its entropy
even if h is known. This means that h can be stored in public
without compromising the privacy of w.

Fuzzy extractors typically require two stages during key
recovery: the secure sketch (error correction) phase and a
privacy amplification (hashing) phase. The recovery of w rep-
resents the first of these phases. However, in typical biometric

applications, w does not have full entropy, so it must be
compressed prior to its use as a cryptographic key.

Based on the fuzzy extractor framework, it is possible to
extract near-full-entropy keys from a biometric source while
maintaining information-theoretic security. The information-
theoretic security, however, comes at a high cost in terms of
the raw entropy required. For example, consider generating a
128-bit key by using a hash function for privacy amplication.
The entropy loss associated with the use of the hash alone
is ≥ 128 bits [27] due to the left-over hash lemma. To
satisfy this information-theoretic requirement would more than
double the size of the entropy source required to generate a
key. Moreover, there is additional leakage associated with the
secure sketch (error correction) phase of the fuzzy extractor,
where the helper data leakage has to be accounted for. The
higher the noise in the biometric source, the larger the size of
the helper data, and the more difficult it is to argue security.
Moreover, growing the source entropy is expensive and grows
the noise. For some noise settings, the resulting min-entropy
may be negative. For these reasons there has been recent work
looking into computational fuzzy extractors (e.g., [16]).

We present a computational fuzzy extractor with a trap-
door in this paper. The fuzzy extractor is based on a well-
established computational hardness assumption corresponding
to the Learning Parity With Noise (LPN) problem and is ex-
tensible to the Learning With Errors (LWE) problem. Broadly
speaking, we differ from previous work in that:
• Constructions that are information-theoretically secure

can only correct a limited number of errors in w [17],
[40] or make strong assumptions about the statistics of
the biometric source (e.g., [30], [43]).

• Constructions (e.g., [16]) that are computationally secure
under well-established assumptions (e.g., LWE) require
exponential time to correct Θ(m) errors, where m is the
number of bits in the biometric source.

• Other constructions either assume that the helper data
does not leak information (e.g., [33]) or argue compu-
tational security based on hardness assumptions of less
well established problems [34], [44], [32].1

We summarize our contributions below:
1) We present a novel Project function that instead of

correcting a small number of random errors, projects w
in the fuzzy extractor discussion above onto a subspace

1For example, that any learning algorithm requires at least z vectors to
learn a model with non-negligible advantage.
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of w that has a lower probability of error (i.e., picks
bits of w that are more stable). If it is unknown as to
which bits are stable, this approach is only practical
for low-noise settings (O(logm)) and impractical for
Θ(m) high-noise settings. However, we recognize that
many physical systems that provide keying material also
provide ‘confidence information’ that can be used to
identify which bits of w are stable.2 Incorporating this
information into the key recovery process results in an
exponentially faster algorithm that is polynomial-time
even for O(m) noise. This confidence information is
never revealed, and as such serves as a noise-avoiding
trapdoor during the key recovery process. In our con-
struction the biometric source is itself the trapdoor.

2) We use m, the number of equations in the LPN problem
(and the number of biometric bits) in a novel way. In
LPN/LWE cryptosystems m > n is determined based
on requirements of encryption/decryption procedures. In
our construction, the choice of m is crucial to reliable
key recovery. We derive the value of m in relation to n
such that a negligible failure probability can be obtained
for Θ(m) noise and show that m = Θ(n3) in this
situation.

3) We define the assumptions that are made on the distribu-
tions of the biometric data as well as their correlations.
We recognize that the proposed approach remains secure
with weaker assumptions about these data than previous
schemes which assumed uniform distributions in the
LWE case. In particular, we do not require the biometric
data to be i.i.d. or uniformly distributed. Through a
reduction argument, we show that correlation in the bio-
metric source turns into a heavier bias in the associated
LPN problem, and only affects the security parameter
and not the security of the construction.

We provide a simple extension of our construction that deals
with helper data that can be maliciously manipulated without
impacting security, and briefly discuss an extension to the more
celebrated Learning With Errors (LWE) problem.

Finally, we provide a concrete instantiation of our scheme
in the context of key generation using a silicon Ring Oscil-
lator (RO) Physical Unclonable Function (PUF) that naturally
provide confidence information [18], [41]. We analyze the re-
lationship between the length of the secret key and the security
parameter for LPN and provide concrete numbers for all as-
pects of the design. Using experiments on Field Programmable
Gate Arrays (FPGAs) we show that our scheme has compa-
rable helper data to previously-implemented schemes under
higher environmental variation, and most important, easily-
argued computational security.

Organization: We give background on LPN and PUFs in
section II. We discuss related work in section III. Section IV
describes the key provisioning and key extraction schemes
whose security is based on LPN. The reliability of key
extraction is the subject of section V, where we show that

2As an example, a bit in w′ may be (re)generated using a majority vote
on repeated evaluations, and the confidence information may simply be the
strength of the vote.

the confidence information serves as a trapdoor. We discuss
our security assumptions in Section VI. Extensions to our
construction are the subject of Section VII. We show in section
VIII that an efficient, computationally secure key extraction
scheme can be instantiated using ring oscillator PUFs. We
conclude the paper in section IX.

II. BACKGROUND

We provide background on the Learning Parity with Noise
problem and ring oscillator Physical Unclonable Functions
(PUFs) that we will use in the concrete instantiation of our
key extraction scheme.

A. Learning Parity with Noise

The Learning Parity with Noise (LPN) problem is a famous
open problem that is widely conjectured to be hard, as the
best known algorithm is slightly subexponential (2Ω(n/ logn))
[7], [4]. As a result, this problem has since been used as the
foundation of several cryptographic primitives [21], [3], [2],
[6]. The LPN problem can be thought of as a special case
of the Learning With Errors (LWE) problems discussed by
Regev [35]. However, Regev’s reduction to the independent
shortest vector problem (ISVP) does not apply to the LPN
case. Therefore, the difficulty of solving LPN is a separate
conjecture from the difficulty of solving LWE.

The extension of our key extractor to the LWE case can be
easily and briefly described; the majority of this paper will
focus on a key extractor whose helper information reveals no
bits of the secret to an adversary assuming that LPN is hard.
With this in mind, we present the canonical LPN cryptographic
construction. One can easily extend this construction to LWE
by allowing the bits in the following representation to instead
be integers modulo a prime number P .

The problem is posed as follows. Let −→s ∈ {0, 1}n be
chosen uniformly at random. Let ai ∈ {0, 1}n be uniformly
random, and i from 1 to m > n. Let ei ∈ {0, 1} be chosen
according to a distribution χ. Finally, define bi as:

b1 = 〈−→a1,
−→s 〉+ e1

b2 = 〈−→a2,
−→s 〉+ e2

... =
...

bm = 〈−→am,−→s 〉+ em

The problem is to learn −→s given only the values of bi and
−→a i. When each ei has probability τ of being 1 and probability
1− τ of being 0 with non-negligible τ and 1− τ , there is no
known polynomial-time algorithm that solves this problem.

B. Physical Unclonable Functions (PUFs)

Physical Unclonable Functions (PUFs) are primitives that
are used for authentication and secret key storage without the
requirement of secure EEPROMs or tamper-resistant hardware
[18], [36]. This is possible, because instead of storing secrets
in digital memory, PUFs derive a secret from the physical
characteristics of the integrated circuit (IC). This approach is
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Fig. 1. A basic Ring Oscillator PUF with m differential pairs. Note that in
addition to the output bits ei, confidence values ci may be made available to
the surrounding logic. These confidence values are in the form of the actual
differential count between the two ring oscillators, while the PUF output bits
ei correspond to whether the differential count is greater/less than 0.

advantageous over standard secure digital storage for several
reasons including enhanced physical security of volatile keys
(as opposed to keys stored in non-volatile memory).

A PUF is based on the idea that even though the mask and
manufacturing process is the same among different ICs, each
IC is actually slightly different due to normal manufacturing
variability. PUFs leverage this variability to derive ‘secret’
information that is unique to the chip (a silicon ‘biometric’). In
addition, due to the manufacturing variability that defines the
secret, one cannot manufacture two identical chips, even with
full knowledge of the chip’s design. PUF architectures exploit
manufacturing variability in multiple ways. In addition to gate
delay, architectures also use the power-on state of SRAM,
threshold voltages, and many other physical characteristics to
derive the secret.

To date, there has been little or no cryptographic backing
to many practical PUF implementations. When PUFs are
used for authentication, many challenge response schemes are
vulnerable to machine learning attacks (e.g., [37]). Our focus
in this paper is key generation using PUFs. These schemes
typically use public helper data to correct for PUF errors.
While information-theoretic constructions exist, in practical
implementations, this helper data either does not correct
enough PUF errors or there is no clear theory proving that
the helper data bits do not reveal bits of the secret key.

C. Ring Oscillator PUFs

The PUF construction in this paper will be based on the
Ring Oscillator (RO) PUF, shown in Figure 1. Many PUF
architectures have been proposed that leverage this particular
construction [43], [45], [44], [32]. In general, RO PUFs gen-
erate bits by comparing the frequencies of two ring oscillators
that are identical by design. Manufacturing variation, however,
leads to one of the oscillators being faster than the other.

The frequencies are compared by counting oscillations from
each oscillator for a certain amount of time and subtracting

one from the other. The PUF bit is simply determined by
which oscillator is faster. The design and layout of each
ring oscillator is identical, and fabrication variation results
in different frequency of oscillation. Each ei bit could be a
0 or a 1. Moreover, because the measurement is differential,
many environmental effects are significantly reduced. How-
ever, noise and environmental factors can and do cause errors
in the regeneration of bits by ring oscillator PUFs. Therefore,
key extraction needs to correct for these errors.

The variation in the manufacturing process typically has
both random and systematic components. Assumptions need to
be made about the independence of ring oscillator frequencies
and/or the entropy and bias of bits generated from ring
oscillator comparisons to make claims about the extracted
keys.

Additional bits of information can be used in a fuzzy
extractor, in particular, the difference in counts between the
two oscillators. It has been observed that if the difference in
counts between the two ring oscillators (ci) is large, then one
can have a higher degree of confidence that noise and changes
in environmental parameters will not cause the output bit ei to
flip erroneously when read from the PUF at a later time [41].

This confidence information has been used to generate
helper data in some schemes [41] [43]. It is not used as a
part of the secret key. In our construction, we will not use
the confidence information to even generate helper data3, but
we will use it to aid the extractor design process and key
recovery process, never exposing it to the outside. This will
be described in greater detail in sections IV and V.

Each PUF bit (denoted ei) corresponds to a pair of ring
oscillators. Therefore, to generate unique ei for 1 ≤ i ≤ m,
one needs a bank of m pairs of ring oscillators.

III. RELATED WORK

A. PUF Error Correction

Silicon Physical Unclonable Function (PUF) key generation
was first introduced using Hamming codes in [17] and more
details were presented in [40]. A limited number of errors
could be corrected since the security argument was information
theoretic. Specifically, if one requires a k-bit secret from n
bits generated by the PUF, then at most n − k bits could be
exposed.

The fuzzy extractor described in [15] consists of a secure
sketch (error correction) and privacy amplication stage (hash-
ing), and [15] described the requirements for information-
theoretic security. There have been many attempts to instanti-
ate a version of a fuzzy extractor in the context of PUF key
generation. These works can be divided based on the scope
of the security argument used to justify the security of the
PUF-generated keying bits.

Information-Theoretic Security of Error Correction Helper
Data. There were several works that created helper data that is
information-theoretically secure. These works, however, were
confined to address the first part of the fuzzy extractor (secure
sketch) and did not explicitly address the leakage associated

3If we did we would have to argue about the security of this use.
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with the second part (privacy amplification). We describe these
below.

[43] uses PUF error correction helper data called Index-
Based Syndrome (IBS), as an alternative to Dodis’ code-
offset helper data. IBS is information theoretically secure,
under the assumption that PUF output bits are independent and
identically distributed (i.i.d.). Given this i.i.d. assumption, IBS
can expose more helper data bits than a standard code-offset
fuzzy extractor construction. We note that [43] uses confidence
information to generate helper data and therefore requires the
i.i.d. assumption to argue security.

Efficiency improvements to IBS, which maintained
information-theoretic security of the error correction helper
data are described in [19] and [20]. A soft-decision PUF
error correction decoder was described in [30], [31] where the
confidence information part of the helper data was proven to
be information-theoretically secure under an i.i.d. assumption
(the remaining redundancy part followed the standard code-
offset construct).

We note that while these works are laudable, and practical
implementations were created based on a provably secure
information-theoretic foundation, these works did not explic-
itly address the full key generation processing (secure sketch +
privacy amplification), and addressed only the error correction
(secure sketch) phase, and are in that sense incomplete.
Further, they made a strong assumption on PUF output bits.
Finally, while they use confidence information (to generate
helper data), our construction uses confidence information in
a very different way.

Computational Security Based on Machine Learning Heuris-
tics. There were several works [34] [44] that created helper
data that were heuristically secure based on results of state-
of-the-art machine learning attacks on PUFs (e.g., [38]). These
designs used a candidate strong PUF based on XORs [41] but
leak only a limited number of PUF response bits as helper data
to generate a key. While over 3+ years of attacks by several
groups around the world have established the heuristic security
of leaking a limited number of bits from a candidate strong
PUF [12] [22] [37] [38] there is not yet a proof to reduce this
difficulty into a computational hardness assumption accepted
by the cryptography community. These works are also limited
in scope in that they do not explicitly address the full key
generation processing, only the error correction phase.

Secure Sketch + Privacy Amplification. To the best of our
knowledge, there is one paper that attempted to implement
and address the security associated with both stages of a PUF
fuzzy extractor [32]. The paper accounted for the information-
theoretic loss of the error correction helper data, using code-
offset syndrome [15], but did not implement the extra over-
head required for an information-theoretically secure privacy
amplification stage and instead opted for a more efficient
implementation using a lightweight hash called SPONGENT
[8] as an entropy accumulator. The error rate corrected in
[32] corresponds to limited environmental variation of ring
oscillator PUFs, and the overheads for a 128-bit secret (i.e.,
2000+ bits of helper data) would increase if environmental

noise increased.

Others. There are several works that cite the need for a fuzzy
extractor [15] but did not fully implement it in a manner that
fully accounts for the information-theoretic entropy loss. This
includes [9] [42]. There are some works that describe a PUF
key generation scheme but without specific accounting for
entropy loss associated with helper data and key generation
[33].

In aggregate, these works show that while the fuzzy ex-
tractor framework [15] is theoretically sound, it is difficult
to implement practically and achieve an information-theoretic
level of security in real-world settings. As such, a more
efficient key extraction framework, based on an established
computational hardness problem is compelling.

B. Computational Fuzzy Extractors and Fuzzy Encryption

Fuller et al. [16] describe a computational fuzzy extractor
based on LWE. Their construction is similar to our LPN con-
struction in that the biometric source is used as the noise term
in the LWE problem and in their use of a fuzzy commitment
scheme. However, they do not have a Project function and
therefore can only correct O(logm) errors efficiently. They
state that there is no place to store a trapdoor in a fuzzy
extractor because there is no place for secure storage – in
our construction the biometric source is itself the trapdoor.

Our work is related to but distinct from fuzzy identity-based
encryption (IBE) [39] [1]. Fundamentally, in fuzzy IBE, the
noisy ID string is public and is used to derive the private
key that is noise-free. In our case, the noisy ID string (e.g.,
PUF bits) are private and are used to derive the ‘public key’
(our helper information) that is noiseless. Correspondingly, the
noisy ID bits in our construction affect the implementation of
the decryption algorithm, while in fuzzy IBE constructions,
they affect the encryption algorithm.

C. Helper Data Manipulation

The issue of helper data manipulation has been addressed
in the biometric realm with robust fuzzy extractors [10]
[14]. Their use of a helper data hash do not address recent
helper data manipulation attacks in [25] [13]. If helper data
is manipulated in our schemes, key recovery may fail if the
corrupted bits are used to solve for the key. The adversary
can conceivably learn information about what bits are stable
based on helper data manipulation and key recovery success
or failure. Our scheme can be made secure against helper data
manipulation (see section VII).

IV. FUZZY EXTRACTOR USING LPN

We will construct a computationally secure extractor from
the LPN problem. Recall the description of the LPN problem
in section II-A. The key intuition behind our construction is
that one can use biometric data as the ei values. Therefore,
while an adversary may have to learn the equations with
probability of error being τ , where τ relates to the entropy of
the biometric data, having access to the biometric data allows
one to regenerate estimates e′i of the original ei values. Note
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that these are estimates due to intrinsic noise of the biometric
data as well as environmental changes. Therefore, the error
rate τ ′ of the LPN problem with access to the biometric data
is dramatically reduced (τ ′ � τ ). However, the LPN problem
remains hard even for small τ ′ implying that key recovery will
run in exponential time for Θ(m) number of errors.

We will show in the next two sections that using this intu-
ition in combination with ‘confidence information’ techniques
allows the one to efficiently regenerate the secret key given
just the public helper information (−→ai , bi), and the biometric
source, even for O(m) errors.

In the following description, we will refer to the bits
of the biometric data (measured at provisioning) as −→e =
{e1, e2, . . . em}, (ei ∈ {0, 1}) and their noisy counterparts
(measured during key extraction) as −→e ′ = {e′1, e′2, . . . e′m},
(once again, e′i ∈ {0, 1}). Moreover, the confidence in-
formation associated with these noisy measurements (where
applicable) will be denoted as −→c ′ = {c′1, c′2 . . . c′m}, where
c′i ∈ Z.

We describe the algorithms associated with the key extrac-
tion below. Typically, a fuzzy extractor, information-theoretic
or computational, has the functions Gen and Extract, where
Gen produces the public helper information, and Extract takes
the biometric data and public helper information and returns
the error-corrected key.

This paper expands this construction to include four func-
tions in the extraction process:
• Fab(1k, ε1, ε2,BIAS): Represents the fabrication step:

takes the security parameter k, the desired probabilities
of failure ε1, ε2 (see section V for further description). It
performs the following:

1) Set n = f(k,BIAS) (see section VI for discussion).
The BIAS term describes the bias of individual ring
oscillators towards 0 or 1. n will be the size of
the secret vector. n will increase with as the ring
oscillators become more biassed (BIAS goes to 0 or
1). This is reflected in the analysis in VI.

2) Compute m such that with probability greater than
1− ε1, at least n of the m bits of biometric data are
‘stable’ over relevant noise/environmental parame-
ters. We define ‘stable’ to be Pr(e′i 6= ei) ≤ ε2. (See
section V for how this is done). Note that although
we will use confidence information to identify these
stable bits during key reconstruction, no confidence
information is used in Fab or Gen.

3) Manufacture a device that produces m biometric
bits.

• Gen(n) → (−→a i, bi): Represents the provisioning step of
the device manufactured in Fab. Gen takes the size of
the secret vector n (calculated in Fab) and returns public
helper data (−→a i, bi) to be used in the Recovery function.
Recall that there are m bits of biometric data. Gen has
the following steps:

1) Measure m bits of biometric data as −→e =
{e1, e2, . . . em}.

2) Generate m unique uniformly random −→ai ∈ {0, 1}n.
3) Generate uniformly random −→s ∈ {0, 1}n. For ex-

ample, using a hardware random number generator.
(We differ from a conventional fuzzy extractor in
that we are using a fuzzy commitment scheme [24]).

4) Compute bi = 〈−→ai ,−→s 〉+ ei for i between 1 and m.
5) Store in insecure nonvolatile memory and/or publish

(−→a i, bi). Note that the −→a i can be the same for
every system and can be hardcoded into the sys-
tem. Therefore, we will only have to store system-
specific bi’s and count these as the helper data, not
the −→a i’s, which are public system parameters.

6) Discard −→s and ei.
• Project(−→c ′, ε2) → S: Represents the algorithm that

determines the projections that Recovery will use during
its execution. In effect, an algorithm that determines the
‘stable bits’ of biometric data. We describe Project as
taking a set of confidence information −→c ′ ∈ Zn that is
correlated to the probability that a given bit of biometric
information is stable.

1) Use confidence information c′i to find n ≤ m′ < m
stable bits of the biometric data. For each of the m′

stable bits, Pr(e′i 6= ei|c′i) < ε2 for some small ε2.
(See section V for how this is done).

2) Construct S, a polynomial-sized sample of the
(
m′

n

)
possible subsets of size n of the m′ stable bits.
Different rules may be used to select these subsets
depending on application.

3) Return S.
• Recovery(−→e ′, S) → −→s : Represents the augmented key

recovery algorithm.4 Note that in addition to receiving the
noisy biometric data −→e ′, this function also takes as an
argument S, the polynomially-sized set of projections that
describe how to choose n stable bits from the m noisy
bits in −→e ′. The steps of the algorithm are as follows:

1) Select Si ∈ S, and select the n equations denoted
by Si. (See figure 2).

2) Use Gaussian elimination on the n equations to
solve for −→s .

3) Repeat (1) and (2) for each Si ∈ S. We now have
|S| different estimates for −→s .

4) Return the −→s that occurs most frequently.
We note that the Fab algorithm can be viewed as system

design steps, while the Gen algorithm will be executed for
each instantiation of the design. One exception to this is the
selection of −→a i. These values can be set to constant, random
values across all designs of this type.

Before looking into the effects of noise on the above
algorithm, there are several notes that should be made.

First, if the LPN problem is hard, then an adversary in
possession of (−→ai , bi) cannot compute −→s . In fact, the public
helper information (−→ai , bi) is precisely the public key of the
LPN cryptosystem. Since knowing −→e makes it trivial for an
adversary to solve −→s , the LPN hardness assumption also
guarantees an adversary cannot figure out −→e . Therefore, if
the LPN conjecture is true, this key extraction algorithm is
secure.

4Together, Project and Recovery correspond to Extract in a fuzzy extrac-
tor.
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Derived Equation Confidence (e.g.)

𝑏1 = 𝒂𝟏,  𝐬 + 𝑒′1 𝑐′1 = −168

𝑏2 = 𝒂𝟐,  𝐬 + 𝑒′2 𝑐′2 = 103

𝑏3 = 𝒂𝟑,  𝐬 + 𝑒′3 𝑐′3 = −23

…
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Fig. 2. Overview of LPN Key extraction algorithm. The e′i values are
regenerated and the c′i values identify the e′i values that have high absolute
values of confidence. Gaussian elimination is then used on these selected
equations to extract the secret key.

Also recognize that although the algorithm uses the con-
fidence information c′i for each bit of biometric data e′i,
confidence information is not used to determine the secret key
nor the public key, never published, and is discarded after use.
Therefore, no adversary will have access to this information.

There are two critical intuitions as to why the LPN key
extractor works. One is that the LPN (and LWE) algorithm
allows arbitrary redundancy in the number of equations
supplied. In other words, m can be much greater than n.
Therefore, we can supply enough helper information to where
with high probability (see section V for precise definitions) we
will have greater than n stable bits of biometric data, even for
large error rates. Furthermore, the confidence information c′i
acts as a trapdoor for identifying ‘stable’ bits in key recovery.
Therefore, the key recovery algorithm is faced with a much
lower error rate and hence much easier problem than an
adversary without the trapdoor.

This intuition suggests that difficult learning problems in
general should be applicable to key extraction algorithms since
the difficulty such problems is insensitive to the number of
training data supplied.

Without the confidence information, recovery degenerates
to the computational fuzzy extractor by Fuller et al. [16]. We
show below that such a computational fuzzy extractor can only
correct a logarithmic number of errors in the noisy biometric
data. Its recovery algorithm works as follows:

1) Upon receiving a noisy version of an input biometric
data −→e ′ = {e′1, e′2, . . . e′m}, randomly select n out of
the m equations bi = 〈−→ai ,−→s 〉+ e′i.

2) Solve −→s (using Gaussian Elimination for instance) and
compute the residue Σmi=1| 〈

−→ai ,−→s 〉+ e′i − bi|.
3) If the residue is ≤ t, output the recovered string ei =
〈−→ai ,−→s 〉 − bi for i between 1 and m. Else, repeat the
above steps.

If the input −→e ′ satisfies |−→e − −→e ′| ≤ t, the recovery
algorithm will eventually terminate with the correct −→e once
it selects n noise-free equations. From those equations, the
algorithm would find the correct −→s and recover −→e . If
|−→e −−→e ′| > t, the recovery algorithm is likely to not converge.

Now we analyze the expected runtime of this recovery
algorithm. Assuming |−→e − −→e ′| ≤ t, in each iteration, the
algorithm has a probability of at least

(
m−t
n

)
/
(
m
n

)
to select

n noise-free equations. So the expected number of trials

is
(
m
n

)
/
(
m−t
n

)
= m(m−1)···(m−n+1)

(m−t)(m−t−1)···(m−t−n+1) < ( m
m−t )

n =

(1 + t
m−t )

n < e
nt

m−t .
For some parameter settings (m = 2n, t � m), the

number of expected iterations is less than et, and the recovery
algorithm finishes in etPoly(n) time. Therefore, t = O(logm)
allows this recovery algorithm to be polynomial time. For
high-noise situations, t could, for example, be m

4 or Θ(m),
and the above recovery algorithm requires an exponential
number of iterations. In fact, the LPN conjecture precludes
the existence of any polynomial recovery algorithm at such a
high noise rate.

We will show in sections V and VIII how using confidence
information can reduce the expected number of iterations to
1.

V. NOISE-AVOIDING TRAPDOORS

In section IV, the LPN based key extraction construction
requires two functions (Fab and Project) that required knowl-
edge of the error rate of bits of biometric data. This section
will explore how these functions are implemented in the case
where the biometric data is provided by ring oscillator PUFs.

Fab uses a priori knowledge of the statistical distribution of
PUF internal properties. The bound on bias given to Fab is
public information. Project leverages ‘confidence’ information
that the PUF bit is correct (e′i = ei) . Confidence data are
extracted upon measurement of a PUF in the manner described
in section II-C, and are considered private information.

As discussed in section II-C, ring oscillator (RO) PUFs are
a standard PUF topology. Moreover, one can easily measure
not only the output bit from a differential ring oscillator
pair, but also some ‘confidence’ information in the form of
the magnitude of the difference in counts between the two
oscillators.

In general, if the RO pair differs by a large number of
counts, then one can be more confident that the bit has not
(and will not) flip when one considers noise and/or changes
the temperature, voltage, or other environmental parameters.

We define our notation as ci to be the differential counts
measured at the time of PUF provisioning, and ei = Sign(ci).
We define c′i to be the differential counts measured at the time
of key extraction and e′i = Sign(c′i).

To provide concrete analysis, we consider the probability
distribution of the ci and c′i values. Among different pairs
of ring oscillators (i.e., the distribution of ci with no prior
information), this PDF can be taken to be a zero-mean
Gaussian with variance σINTER. Note that this directly implies
that the τ parameter to the LPN problem is 1

2 . In other words,
ei is not biased towards 1 or 0.

In actual physical systems, there will be a bias towards 1 or
0. However, we will see that assuming a 50% bias represents
a ‘worst case’ from the standpoint of error correction. (Note
that we will use a different worst case bias of 40% as an input
to Fab to determine n given the security parameter in section
VI.)

Now, given that ci and c′i represent the distribution of mea-
suring the same RO pair at different times and environmental
parameters, the conditional distribution Pr(ci|c′i) is different.
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Pr (ci ) = Pr (c 'i ) =

N (0, σINTER )

Pr(ci c 'i ) =

N (c 'i , σINTRA )

Pr(Err c 'i )
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Fig. 3. Distribution of differential counts for RO pairs among different RO
pairs and with the same ith pair measured repeatedly over time/environmental
parameters. We show the probability of error given a confidence measurement
c′i as the integral of the shaded region.

This distribution is described as a Gaussian distribution with
mean c′i and variance σINTRA. Both distributions are shown
in figure 3.

Note that since ci and c′i are extracted from the same ring
oscillator pair, they have the same distribution (with no prior
knowledge). Therefore, one can recognize that Pr(ci|c′i) =
Pr(c′i|ci).

This is critical, because it allows us to use the confidence
information collected during the fabrication step to reason
about the probability of error at key extraction. We may now
define the probability of error given confidence information.
Since ei = Sign(ci), we recognize that the error probability
given a measurement of the confidence information is the
integral of the shaded region in figure 3. In particular, the
CDF up to 0:

Pr(e′i 6= ei|c′i) =
1

2

(
1 + Erf(−|c′i|/(

√
2σINTRA))

)
(1)

First note that the probability of error in this system Pr(e′i 6=
ei) is the integration of equation 1 over the distribution of c′i,
which is the distribution in figure 3. This probability depends
only on σINTRA and σINTER (not on n, m, etc.). Therefore
the error rate for m ring oscillator pairs is clearly Θ(m).

Once again, due to the symmetry of the distributions of ci
and c′i, we know that Pr(e′i 6= ei|c′i) = Pr(e′i 6= ei|ci).

With this in mind, we may now describe how Fab and
Project work.

A. Fabrication/Provisioning

In addition to the bound on bias, the Fab algorithm is
given a security parameter k, and two error rates ε1, ε2 > 0
that are defined as follows. Fab must compute m such that
with probability greater than 1− ε1, at least n of the m ring
oscillator pairs will produce stable bits. A bit ei is defined
to be stable if Pr(e′i 6= ei) < ε2 over relevant environmental
parameters.

We recognize that, given ci, we can compute the probability
of error of a future measurement c′i according to equation 1
and the symmetry of ci and c′i.

We use this in combination with the distribution on ci to
compute how many ring oscillator pairs we need before at least
n of them will produce stable bits with probability 1− ε1.

To do this, we recognize that requiring Pr(e′i 6= ei|ci) < ε2
sets a threshold cT . If a ring oscillator has |ci| > cT , then
the probability of an error in this bit is less than ε2 (the bit is
stable). We plug these requirements into equation 1 and solve
for cT : (define Erf−1 as the inverse of Erf)

cT =
√

2σINTRAErf
−1(1− 2ε2) (2)

Therefore, the probability that a given ring oscillator pair is
stable (has a ci value above the threshold) can be computed
by integrating the PDF of Pr(ci) shown in figure 3 at in the
region |ci| > cT . This is equal to:

PSTABLE = Pr(|ci| > cT ) > 1− Erf
(
cT /(
√

2σINTER)
)

The inequality is because the probability of a bit being
stable is smallest when the bit bias is 50% (the Gaussian is
centered at 0). One can see that as the center of the Gaussian
shifts, more probability density falls in the region of |ci| > cT .
Therefore, we will complete the calculation assuming bias is
50% with the knowledge that the probability of a stable bit
can only be higher than our calculation expects. Plugging in
cT from equation 2 gives the completed formula:

PSTABLE > 1− Erf

(
σINTRA

σINTER
Erf−1(1− 2ε2)

)
(3)

The final step is to compute m such that at least m′ PUF
bits will be stable (ci > cT ), with probability 1− ε1. This is a
binomial distribution and is subject to a Chernoff bound. We
identify the canonical Chernoff bound for observing less than
m′ stable bits out of a total of m, given PSTABLE:

Pr(X ≤ m′) ≤ exp

(
−1

2

(
1− m′

mPSTABLE

)2

mPSTABLE

)
≤ ε1

Using this bound and our requirement of ε1, we find that to
ensure the probability that n of the m PUF bits are stable with
probability 1−ε1, we need the following relationship between
n and m:

m ≥ 1

PSTABLE

(
m′ − log(ε1) +

√
log(ε1) (log(ε1)− 2m′)

)
(4)

Where PSTABLE is a function of ε2. Therefore, given m′,
ε1, and ε2, one can compute m such that at least m′ of the
PUF bits are stable, as is required in the Fab algorithm.

B. Projection/Extraction

The extension of the above analysis to the Project algorithm
is comparatively simple. Recall that in Project, we will use the
confidence information c′i to generate a set S of a polynomial
number of sets Si ∈ [m] such that ∀j ∈ Si,Pr(e′j 6= ej |c′j) <
ε2 and |Si| = n.
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Given an ε2, we use equation 2 to compute a threshold
cT value for which we can be confident that if |c′i| > cT ,
Pr(e′i 6= ei|c′i) < ε2.

We then use the PUF to generate each of the m values of
ci. We select only those such that |c′i| > cT . Because of the
properties of the Fab algorithm, we can be confident that we
will find at least n of them. Assume that the algorithm finds
m′ > n stable bits. There are a total of

(
m′

n

)
possible sets that

can be returned.
Project then selects an arbitrary non-empty subset of these(

m′

n

)
sets and returns it as S.

C. Showing the ‘Trapdoor’

In this section, we show that with this trapdoor, we only
need m ∈ Poly(n) RO pairs, and our Project and Recovery
algorithms finish in polynomial time with negligible failure
probability.

At a high level, we want at least 1− ε1 probability to have
m′ = n2 stable bits, each stable bit with an error probability
of at most ε2. Then, we can divide these n2 stable bits into
n groups, and solve for −→s using Gaussian elimination for
each of the n groups. As long as there exists two groups that
contain n error-free bits, we can solve −→s and recover all ei’s
from one group and verify on the other group. (We note that
performing Gaussian elimination on two groups with errors is
very unlikely to yield the same solution because each group
is associated with independently chosen −→ai ’s.) Since each bit
has an error probability of at most ε2, the probability that a
group of n bits is not error-free is bounded by nε2. Thus, the
probability that at most one of the n groups is error-free is
less than ≈ n(nε2)n−1(1− nε2). Taking ε1 into account, the
failure probability of our construction is bounded by ε1 +(1−
ε1)n(nε2)n−1(1−nε2). If we set ε1 to be negligible (e.g., 2−n)
and ε2 ∈ Θ(1/n), the above failure probability is negligible
in n.

We now show that to achieve m′ = n2, ε1 = 2−n and
ε2 ∈ Θ(1/n), we only need m = O(n3). To see this, first rec-
ognize that PSTABLE (probability of a bit being ‘stable’ across
environment/temperature) depends only on σINTRA/σINTER
and ε2. We consider σINTRA/σINTER to be a constant defined
by the manufacturing process. We consider a worst case, where
σINTRA/σINTER = 1. In this case, equation 3 reduces to
PSTABLE = 2ε2.

Plug them into equation 4, and one obtains:

m =
1

2ε2

(
n2 + n+

√
n(n+ n2)

)
= Θ

(
n3
)
∈ Poly(n)

This shows that even in pessimistic scenarios, m ∈ Poly(k). In
reality, σINTRA/σINTER < 1, so the growth is much smaller,
as will be seen in section VIII.

We remark that without the confidence trapdoor, the LPN
hardness states exactly that it is infeasible to compute the key
in polynomial time with non-negligible success probability.
Therefore, while an adversary requires exponential time to
calculate the key, the owner of the fuzzy extractor requires
only polynomial time. This is the definition of a trapdoor.

D. Concluding Remarks on Noise Analysis

The noise analysis above depends on only two properties
of the PUF: σINTER and σINTRA. Both of these parameters
are identical for every ring oscillator pair and every physical
chip.

Moreover, the critical property of PUFs is that σINTRA <
σINTER. However, σINTRA > 0, so the key extraction tech-
nique must correct for possible errors.

Note also that we do not justify the assumption that the
distribution of measuring the i’th ring oscillator pair repeatedly
over time and environmental parameters should be Gaussian.
Indeed, this distribution depends on the distribution of envi-
ronmental conditions that the PUF is operating in, which is
far more complex. However, we will use this distribution as
a pessimistic estimation of the potential variations in a single
ring-oscillator pair by setting σINTRA to be large enough. This
will be discussed further with associated empirical data in
section VIII.

VI. SECURITY ANALYSIS AND ASSUMPTIONS

A. Security Parameter and Computational Hardness Assump-
tion

The security of our construction clearly depends on the
conjecture that the LPN problem is hard. There is significant
evidence to justify this conjecture [35], [7], [5]. Moreover,
this construction is simply extensible to depend on the LWE
problem, which has been reduced to the ISVP problem [35].

In the above algorithm, we derive the size n of the secret
vector −→s as a function of the security parameter k. In typical
LPN constructions, the adversary gains significant advantage
can be gained from the fact that distribution of the error term
Pr(ei = 1) must be much less than 50% for the decryption
algorithm to execute correctly. For a security parameter of 128,
the associated noise probability τ = Pr(ei = 1) = 0.0024
[11]. This in turn requires n to be very large – on the order
of 29000.

However, although our algorithm is based on the LPN prob-
lem, we do not use the LPN encryption/decryption algorithm.
Therefore, we do not have the same restriction on τ .

In our construction we set τ to be the bias of the biometric
data. We pessimistically assume this bias to be 40% (τ = 0.4).
We emphasize that the key extractor will work for any non-
zero bias for a corresponding n. As such, we use the analysis
presented in [5] to discover an estimate for n based on k in
order to obtain a security parameter of 128. We obtain for
this set of parameters, n ≈ 540. Details of this analysis are
presented in the Appendix.

B. Assumptions on Biometric Data

We do not assume that the bits of biometric data have perfect
50% bias. Therefore, we must discuss our assumptions about
the bounds of this bias. We must also discuss our assumptions
about whether one bit is correlated to a different bit. This
correlation may exist within a single extractor (i.e., if ei is
correlated to ej), as well as across different extractors (i.e., if
e1 is correlated across two or more different extractors).
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We do assume for the purposes of experimentation that ring
oscillator comparison bits will have a bias between 40% and
60%. This is a loose bound, as we will see in section VIII.

We do not assume that different biometric bits are un-
correlated (on the same extractor, or different extractors).
This correlation is plausible in a physical instantiation of
such a construction. For example, in the case of biometric
data coming from a Ring Oscillator (RO) PUF, the ith ring
oscillator pair (resulting in ei) may always have significant bias
towards 1 among different chips due to some effect resulting
from its location on the die/wafer. We show in the next section
that correlation in biometric data does not break LPN hardness.

C. Dealing with Correlation in Biometric Data

We will show that potential correlation between biometric
data (in one or more devices) does not impact the security
of the overall construction. Basically, correlation turns into a
increased bias for ring oscillator bits that, in turn, will result
in increased n to keep the security parameter the same.

We show in Lemma VI.2 that attacking a system of LPN
problems (or one problem) that has correlated bits is still hard
if you don’t know which bits they are. This is the case if only
the public helper information (−→a i, bi) are revealed.

Definition VI.1. Define the ‘Correlated LPN’ problem
CORLPN with arguments η, τ ′ as the following problem:

Present the public keys (−→a i,u, bi,u), (−→a i,v, bi,v) of 2 LPN
systems to an adversary, where:

bi,u = 〈−→a i,u,−→s u〉+ ei,u

bi,v = 〈−→a i,v,−→s v〉+ ei,v

η = Pri(ei,u = ei,v)

τ ′ = Pri(ei,u = 1) = Pri(ei,v = 1)

Ask the adversary to solve for ←−su, ←−sv .
Without loss of generality, define η > 1/2, and τ ′ < 1/2.

We present the following Lemma: (Once again, we let η >
1/2, τ, τ ′ < 1/2 without loss of generality)

Lemma VI.2. An algorithm A capable of solving CORLPN
with correlation η and bias τ ′ to non-negligible advantage in
polynomial time can solve a system of two uncorrelated LPN
with non-negligible advantage in polynomial time if its bias is

τ =
1

2

(
1−

√
2η − 1

)
as long as 1/2 > τ ′ > τ .

Proof. At a high level, we will prove this lemma by con-
structing a correlated LPN problem from an uncorrelated LPN
problem while maintaining the solution of the uncorrelated
problem. We do this by adding correlated noise to the public
key of the uncorrelated LPN problem.

In particular, we define the following problem that is
equivalent to the problem in Definition VI.1.

System A: Define a system of three LPN problems:

bi,u = 〈−→a i,u,−→s u〉+ ei,u (5)
bi,v = 〈−→a i,v,−→s v〉+ ei,v (6)

bi,u + bi,v = 〈−→a i,u|−→a i,v,−→s u|−→s v〉+ ei,w (7)

Let Pri(ei,u = 1) = Pri(ei,v = 1) = τ ′, and Pri(ei,w =
1) = 1− η. (This can be seen because ei,w = ei,u + ei,v .)

Give the public keys (−→a i,u, bi,u), and (−→a i,v, bi,v) to an
adversary and ask it to solve for −→s u and −→s v .

If A can solve CORLPN, clearly it can solve for ←−su, ←−sv
given the above system of equations.

Now, consider a system of LPN problems using Pri(ei,x =
1) = Pri(ei,y = 1) = τ , and ei,x, ei,y uncorrelated. We would
like to use A to break this system:

System B:

bi,x = 〈−→a i,x,−→s x〉+ ei,x (8)
bi,y = 〈−→a i,y,−→s y〉+ ei,y (9)

bi,x + bi,y = 〈−→a i,x|−→a i,y,−→s x|−→s y〉+ ei,x + ei,y (10)

Note that since ei,x, ei,y are uncorrelated with bias τ , this
implies Pri(ei,x + ei,y = 1) = 2τ(1− τ).

We construct System B such that Pri(ei,x + ei,y = 1) =
Pri(ei,w = 1). Specifically, we define τ = 1

2

(
1−
√

2η − 1
)
.

Now, the LPN problem described by equation 7 in System A
and the LPN problem in equation 10 in Problem B have the
same error probability.

Given an uncorrelated system with these error probabilities
(System B), we can now modify this system (System B) such
that all three LPN problems have the same error statistics as
the correlated system (System A) by probabilistically flipping
bits in the public keys ((ai,x, bi,x), (ai,y, bi,y)). If the error
rates are identical, then the systems are identical, and A can
break it.

We modify the public keys as follows: Given an initial error
rate τ of System B, and a desired error rate τ ′ > τ of System
A, we randomly flip bits of bi,x with probability τ ′−τ

1−2τ . This
will increase the error rate of the LPN problem in equation 8
to τ ′.

Now, we flip the same bits of bi,y . This way, we increase
the error of the LPN problem in equation 9 to τ ′, but the error
rate of the LPN problem in equation 10 remains the same –
flipping the same bits of bi,1 and bi,2 have no effect on the
left hand side.

Therefore, by probabilistically flipping bits of the public
key of System B, we have created a system identical in its
statistics to System A.

Therefore, we can now use A to extract −→sx, −→sy . This is a
contradiction if the LPN problem with error rate τ is hard.

In effect, the proof shows that one can introduce correlation
to a system of LPN problems by modifying only the public
keys.

Note that the above proof trivially extends to the case where
> 2 systems of LPN problems are considered. One can simply
flip the same bits on all three bi vectors to add correlation
between the three systems.
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It also extends to a single LPN problem that has correlation
within several of its internal bits. For example, say one wanted
to construct an LPN problem with e1, e2 correlated using
an uncorrelated LPN problem by only modifying the public
parameters. One starts with an uncorrelated LPN problem
with significant bias (same as in the reduction). One then
probabilistically flips bi bits, excluding b1, b2. The new LPN
problem has e1, e2 correlated, but clearly the difficulty is
reducible to the original problem, since only bits of the public
key are flipped.

Therefore, if we believe that bits of the biometric data are
correlated with probability η, one must increase n to maintain
the security parameter (τ has decreased), but the security of
the problem is maintained.

We note that ring oscillators are a primary means of
discovering and measuring correlations in silicon fabrication
processes. Therefore, a fuzzy extractor designer can take
correlation into account to set a bound on the bias. If analysis
of fabricated ring oscillators in a particular fabrication process
shows correlation due to the manufacturing process, and this is
discovered after LPN key extractor chips have been built, these
chips need not be thrown away provided n can be configured
appropriate to the correlation. Assuming a loose bias for the
design (e.g., 40%) is thus a conservative approach.

D. Advantages of LPN-based Key Extractor

The key extractor described in this paper is novel in its use
of LPN as a foundation for its security. It turns out that taking
this approach results in several advantages over previous
approaches that required information-theoretic security.

First, there is a clear reduction of the security of this
construction to the difficulty of the LPN problem. For many
fuzzy extractor based systems, the computational hardness
assumption is not clear.

Second, the extracted key is immediately usable as a cryp-
tographic key since it has full entropy.

Third, we can correct a much higher error rate than
information-theoretically secure fuzzy extractors, or prior
computational fuzzy extractors for that matter. To observe
this, first recognize that the released helper data (−→a i, bi) has
many more bits than −→s .5 This would typically spell disaster
in the information-theoretic case, but clearly this construction
is secure assuming LPN is hard. This provides intuition for
why we are able to correct for a much higher probability of
error than is possible using traditional fuzzy extractors.

Recall that instead of requiring a small number of errors,
we only require n ‘stable’ bits of biometric data. This is a
much looser requirement on the noise of the biometric bits. It
is possible to do this because the LPN problem is necessarily
overdetermined, so the equations (bi = 〈−→a i, bi〉 + ei) have
redundancy. The Project and Recovery algorithms leverage
this redundancy to pick only the most stable bits (as indicated
by the confidence information) for use in Gaussian elimination
to dramatically improve recovery efficiency.

5As mentioned earlier, the −→a i values can be stored in compact Read-Only
Memory (ROM) or otherwise be part of the design.

As a result, this intuitively demonstrates that this construc-
tion will be much more resilient to higher error rates in the
biometric data. This analysis is confirmed by physical data for
RO PUFs that will be presented in sections V, VIII.

Fourth and finally, we recognize that our assumptions re-
garding the distributions on the biometric bits are much looser
than is the case for many fuzzy extractor constructions (e.g.,
those that assume i.i.d.). In particular, as long as the bias on
individual bits is bounded, LPN remains hard, and correlations
between these bits cannot be discovered as long as −→s is
never revealed. This property is critical for silicon biometric
data such as PUFs, where there may be (and probably are)
correlations between ring oscillator behavior depending on the
location of the ring oscillator on the die/wafer/lot.

VII. EXTENSIONS

A. Malicious Helper Data

We observe that although one can store the helper informa-
tion (−→ai , bi) in insecure memory with the PUF, this does not
have to be the case. If the PUF is designed to receive the public
helper information from an external source, we must consider
the possibility of receiving malicious helper information. The
adversary can repeatedly tweak the helper information and
attempt to discover the stable bits by observing if key recovery
fails or succeeds for each tweak. Key recovery will succeed
if the bi’s that are modified are not used to recover the secret
key.

An easy way of preventing this attack is to tweak the Gen
algorithm to produce a hash of the public key keyed with −→s
and store it along with the public key. The Recover algorithm
attempts to regenerate −→s , and is augmented to check that the
keyed hash matches. If −→s is recovered correctly (because the
subsystem of equations corresponding to ‘stable’ bits were not
changed by the adversary), any modification of the public key
will be detected with overwhelming probability. If a different
−→s ′ is recovered (because the adversary changed one of the
system of equations corresponding to a ‘stable’ bit), due to
public key modification, the keyed hash will also not match
with overwhelming probability.

B. Combination with Public Key Cryptosystems

One can easily use the key from the above construction
as the input to a public key cryptosystem. For example the
ECDLP problem of size n can be solved in O(2

√
n), so one

may use the output −→s to generate the private key for ECDSA
[23]. In particular, for 128-bit security, we require a uniformly
randomly generated secret of size n = 540 bits for LPN.
Therefore, one can simply use 256 of the bits for the 256-
bit private key for ECDSA.

One could instead consider using the LPN-based public
key cryptosystems as the signing/encryption algorithm. This
would have the advantages of unifying the entire cryptosystem
under a single computational hardness assumption as well as
potentially allowing for re-use of hardware to compute the dot
products and thresholds.

However, as noted in section VI, LPN-based public key
cryptosystems suffer from requiring very small biases in the



11

ei parameters [2], [6]. This, in turn, requires comparatively
enormous n to achieve a security parameter of 128 [5], [11].
This immediately implies that one would not want to architect
the above extractor to also function as a public key system
(i.e., −→s is also the private key for the LPN-based public key
cryptosystem). This is because using −→s as a private key would
require n to be very large (on the order of 29000 [11] for a
security parameter of 128), and correspondingly requires m >
n bits of biometric data, which is expensive.

Instead one could consider using the extracted −→s to decrypt
(using AES or similar) the private key of a separate LPN
cryptosystem. Unfortunately, the LPN cryptosystem will still
require very high n for comparably small security parameter.
Also, one is adding the assumption that AES is secure to the
foundation of the security of the cryptosystem.

In conclusion, although our extractor is using the LPN
hardness assumption as well as hardware implementing certain
aspects of the LPN problem, it is likely more efficient (from a
practical perspective) to couple the extracted key to a well-
established public key cryptosystem such as EC or RSA,
rather than try to leverage the existing LPN-related hardware
resources of the construction as part of the cryptosystem.

C. Extension to LWE

The learning parity with noise problem is deeply related to
the learning with errors problem. Therefore, it would make
intuitive sense that our construction is extensible to leverage
LWE instead of LPN.

This is indeed the case, but there are some aspects of the
construction that become more complicated, so it is simpler
to describe the LPN construction above and then remark on
the changes to support LWE.

First, recognize that the majority of the hardware remains
very similar. The −→a i and −→s values would still be uniformly
randomly chosen, only now each would have log(Q) bits
(where Q is the modulus of the LWE cryptosystem). Indeed,
the only challenge is to produce the ei values correctly given
the noise of the biometric data such that the extraction strategy
discussed above still applies.

One simple extension of the above algorithm would be to
generate ei by concatenating order log2Q unique biometric
bits. Recall that in LWE, Q is of order n2, and n is on the
order of the security parameter (remember that for a given
security parameter k, the associated n for LWE is smaller
than for LPN) [35].

For example, we choose n = 128, Q = 2053 based on
the analysis in [29]. Note that in their example, the security
parameter for these choices of n and Q is low, but we are
considering the case where the ei parameters have a much
wider distribution. We find that increasing the variance of ei
to levels representative of our construction brings the security
parameter to a reasonable level (just as in the LPN case).

Note that there are log2 2053 = 11 biometric bits per
ei. The primary complication is that we now must consider
the probability of a stable ei value given the stability of a
biometric bit (see section V for details on the definition of
‘stability’). In order for an ei to be stable we need all 11 bits

Temp. −40◦C 25◦C 105◦C

Bias 54% 52% 53%
TABLE I

MEASURED BIAS OF 320 RO PUFS AT VARYING TEMPERATURES.

to be stable. This means that we need n = 128 groups of 11
bits to be stable. This is much more stringent than requiring
128×11 bits to be stable out of m total bits. If one follows the
analysis of section V, we observe that such a system would
require roughly 100× more bits of biometric data than in the
LPN case to recover the secret key with high confidence.

This is clearly not feasible. One area for future research
would be into more efficient usage of biometric data in the
LWE construction.

VIII. RESULTS USING A RING OSCILLATOR PUF

Although the LPN construction has applications that are
much more broad than PUFs, we have noted that the LPN
construction is well suited to address the problem of PUF key
extraction because of the availability of ‘confidence informa-
tion’ as described in section II-C.

We have provided a theory explaining the resilience of
the LPN construction to noise and environmental parameters
using this ‘confidence information’ in section V. Now, we
use this theory and collected data from a set of 320 pairs
of ring oscillator PUFs measured across temperature and
voltage ranges to demonstrate the efficiency of the LPN fuzzy
extractor construction in a concrete fashion. Experiments were
conducted on a Xilinx Virtex 7 Series Field Programmable
Gate Array (FPGA).

We measured the differential counts of a set of 320 ring
oscillator pairs in a wide (beyond industrial) range of temper-
ature and voltage. Three interesting points are −40◦C@0.95V ,
25◦C@1.00V , and 110◦C@1.05V . Other ranges that we will
use are the differential count values at commercial (0◦C
to 70◦C) and extended industrial (−40◦C to 85◦C). The
σINTRA/σINTER ratios improve as the temperature range is
reduced.

We note that approximately 25% of the ring oscillator pairs
produce different responses in the environmental range; this is
the typical O(m) error case for such circuits.

We first measured the bias of the RO counts across temper-
ature as shown in table I. Therefore, our pessimistic estimate
of bias as 40% (or 60% equivalently) is correct.

These differential count values are distributed according to
the distribution discussed in section V with variance σ2

INTER.
We verified for each of these temperatures that the distribution
of differential counts was Gaussian, as we assumed in section
V. Each of the fits from which we derived parameters have
a χ2 value corresponding to > 95% confidence. Moreover,
neither the mean nor variance of the distribution changed sig-
nificantly over temperature or voltage. Therefore, we describe
the distribution in terms of a single mean, variance (µINTER,
σINTER) shown in figure 4.

To measure µINTRA and σINTRA, one must measure the
distribution of how these differential counts change regardless
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σINTER= 85.1±2.4

μINTER= 5.7±3.2
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Fig. 4. Measurement of σINTER through the estimation of the distribution
of differential counts across 320 RO pairs across room temperature and the
fast and slow process corners.
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Fig. 5. Measurement of σINTRA by subtracting differential counts at
25◦C@1V from 105◦C@1.05V .

of the differential count measured at provisioning. This dis-
tribution is Pr(c′i − ci). We can calculate this distribution by
using data from different ring oscillators. We then recognize
that the standard deviation of this distribution is σINTRA.

To accomplish this, we used room temperature as a baseline
(this would be the conditions in which the PUF would be
provisioned), and measured how the differential counts change
as temperature/voltage vary for each of the 320 ring oscillator
pairs. These data provide a statistical distribution of how
much the differential count value will change with a change
in environmental parameters (the distribution described by
σINTRA, µINTRA in section V).

The distribution at 105◦C is shown in figure 5. The mea-
surements at various temperatures are shown in table II.

It is important to note that although we mentioned in section
V that we do not present any theoretical justification for
the reason why the distribution of counts of a single ring

Temp. σINTRA

−40◦C 24.3± 1.3
0◦C 8.9± 0.40
70◦C 17.4± 0.64
85◦C 24.0± 1.0
105◦C 33.7± 1.4

TABLE II
MEASURED σINTRA FOR VARYING TEMPERATURES.

oscillator pair over relevant environmental conditions would
be Gaussian, this does turn out to be the case. This is found
to be true to within experimental error as demonstrated in
figure 5.

Using these measurements, we now can calculate the ratio
(σINTRA

σINTER
) required in section V for commercial (0◦C to 70◦C)

as 0.20, extended industrial (−40◦C to 85◦C) as 0.29, and
the maximum temperature range our experiment could support
(−40◦C to 105◦C) as 0.40.

Finally, we must choose ε1, ε2. We choose an error rate of
ε1 = ε2 ≈ 10−6.

Using n = 540 (a security parameter of 128) and these
values for ε1 and σINTRA/σINTER with equations 3, 4 we may
compute m for commercial temperature ranges as ≈ 1850,
extended industrial as ≈ 3700, and our max range as ≈ 11000.

Note that our analysis is pessimistic (e.g., the choice of
the bias of 40% for the choice of n in section IV, choosing
the bias to be 50% for the noise analysis in section V) and
our construction is unoptimized. Even with an unoptimized
implementation, these results compare favorably, e.g., 1850
helper data bits for commercial range of operation, with
the works described in Section III. Given the clear security
argument for the construction, we believe that our construction
will be attractive to theoreticians and practitioners alike.

Some optimizations left to future work are:
1) In the results above, the number of Gaussian elimina-

tions required is exactly 1, providing an exponential
reduction in key recovery algorithm complexity through
the use of confidence information. Choosing these values
of m guarantee that if one chooses n ring oscillator pairs
whose confidence/stability is over the chosen threshold,
they will be stable to confidence 1 − ε1. However, by
choosing, for example, two disjoint or overlapping sets
of n oscillators (at different thresholds) and attempting
key recovery sequentially, one can reduce the failure
probability for a given m or reduce m for a given failure
probability.

2) Rather than choosing a threshold, one can sort the ring
oscillators in decreasing confidence and pick the top n.
This complicates the analysis, but will reduce failure
probability, since the most stable bits will be selected.

IX. CONCLUSION

Fuzzy extractors have served as a useful construct to
generate secret keys from noisy biometric sources. How-
ever, practical issues such as the level of noise, and the
size of the helper data, have held back fully information-
theoretically secure constructions, and security compromises
are typically made. Computational fuzzy extractors are thus
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attractive, provided they can address efficiency problems under
established computational hardness assumptions. Prior work in
computational fuzzy extractors has been unable to address the
noise level issue, running in exponential time for Θ(m) errors.
Especially in the silicon biometric source realm, e.g., Physical
Unclonable Functions (PUFs), low level of noise is far from
achievable.

We presented the first construction of a computational fuzzy
extractor with a trapdoor in this paper. We use the Learning
Parity With Noise (LPN) problem as the hard problem in our
construction. While a construction under Learning With Errors
is also feasible, LPN is particularly well-suited to PUFs. The
trapdoor is unusual in that it is part of the biometric source and
is used to avoid noise. Due to the exponential reduction in key
recovery complexity enabled by the trapdoor, our construction
is able to correct Θ(m) errors in polynomial time.

We relax the assumptions on the biometric source with
respect to correlation showing that if correlation can be esti-
mated, the only change to the construction is in the selection of
parameters. Finally, we show how error profiles obtained from
a Field Programmable Gate Array implementation of PUFs
subject to wide environmental variation can be efficiently
corrected.
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APPENDIX

SECURITY PARAMETER DERIVATION

In section IV, we derived the n (the length of −→s ) based on the
security parameter k using known cryptanalysis of the LPN problem
[35], [7], [5].

The purpose of this appendix is to provide more detail on the
derivation of n from k.

We follow the concrete attack approach put forth in [5], which
combines ideas from canonical LPN attacks [7], [26], [28].

We restrict the memory of the attack to 223, as this corresponds to
roughly 10MB of memory which must be accessed at a single-cycle
latency.

The algorithm in [5] requires parameters of a, b, l, W , and q.
These are new parameters that are not related to any other variables
in this paper.

In particular, we optimize over 1 ≤ a ≤ 100, 1 ≤ b ≤ 100,
1 ≤ l ≤ 10, and 1 ≤W ≤ 4, and 1 ≤ q ≤ 500.

We find that for n = 540, τ = 0.40, the expected number of bit
operations is on the order of 2131 for parameters in table III.

Using the breakdown from [5], we recognize that an individual
iteration is required of several steps: The extraction of the required
additional queries requires 223.7 bit operations. The filtering/clearing
step requires roughly 226.3 bit operations. The Walsh transform
requires roughly 225.7 bit operations. Finally, the dot product com-
putation dominates with roughly 233.6 bit operations.

Therefore, a single iteration of the algorithm requires roughly 233.7

bit operations. However, one iteration of the algorithm has probability
2−97.7 of success, and so it must be repeated an expected number of
297.7 times.

This yields an overall expected number of bit operations equal to
2131.

Parm. Value
n 540
τ 0.4
a 94
b 4
l 1
W 4
q 4

TABLE III
TABLE OF PARAMETERS FOR [5] THAT MINIMIZE COMPUTATION TIME FOR

10MB MEMORY LIMIT ACHIEVING A SECURITY PARAMETER OF 128.
SINCE WE ARE NOT USING LPN IN A CRYPTOSYSTEM WE CAN HAVE A

LARGE VALUE FOR τ .


