
1

Trapdoor Computational Fuzzy Extractors and
Stateless Cryptographically-Secure Physical

Unclonable Functions
Charles Herder, Ling Ren, Marten van Dijk, Meng-Day (Mandel) Yu, and Srinivas Devadas

Abstract
We present a fuzzy extractor whose security can be reduced to the hardness of Learning Parity with Noise (LPN) and can

efficiently correct a constant fraction of errors in a biometric source with a “noise-avoiding trapdoor.” Using this computational
fuzzy extractor, we present a stateless construction of a cryptographically-secure Physical Unclonable Function. Our construct
requires no non-volatile (permanent) storage, secure or otherwise, and its computational security can be reduced to the hardness
of an LPN variant under the random oracle model. The construction is “stateless,” because there is no information stored between
subsequent queries, which mitigates attacks against the PUF via tampering. Moreover, our stateless construction corresponds
to a PUF whose outputs are free of noise because of internal error-correcting capability, which enables a host of applications
beyond authentication. We describe the construction, provide a proof of computational security, analysis of the security parameter
for system parameter choices, and present experimental evidence that the construction is practical and reliable under a wide
environmental range.

I. INTRODUCTION

A. Background and Motivation

S ILICON Physical Unclonable Functions (PUFs) are a
promising innovative primitive that are used for authen-

tication and secret key storage without the requirement of
secure memory or expensive tamper-resistant hardware [26],
[53]. This is possible, because instead of storing secrets
in digital memory, PUFs derive secrets from the physical
characteristics of the integrated circuit (IC). Silicon PUFs rely
on the fact that even though the mask and manufacturing
process is the same among different ICs, each IC is actually
slightly different due to normal manufacturing variability.
PUFs leverage this variability to derive ‘secret’ information
that is unique to the chip (a silicon “biometric”). Due to
the manufacturing variability, one cannot manufacture two
chips with identical secrets, even with full knowledge of
the chip’s design. PUF architectures that exploit different
types of manufacturing variability have been proposed. In
addition to gate delay, there are PUFs that use the power-on
state of SRAM, threshold voltages, and many other physical
characteristics to derive the secret.

The (informal) requirements for a PUF are:
1) Upon being given a challenge, the PUF produces a re-

sponse, and no other data about the internal functionality
of the PUF is revealed.

2) Large enough challenge-response space such that an
adversary cannot enumerate all challenge-response pairs
within reasonable time.

3) An adversary given a polynomial number of challenge-
response pairs cannot predict the response to a new,
randomly chosen challenge.

4) Not feasible to manufacture two PUFs with the same
responses to all challenges.

These requirements correspond to what has been sometimes
called a strong PUF in the literature.

The silicon PUF approach is advantageous over standard
secure digital storage for several reasons:
• Since the “secret” is derived from physical characteristics

of the IC, the chip must be powered on for the secret to

reside in digital memory. Any physical attack attempting
to extract digital information from the chip therefore must
do so while the chip is powered on.

• Authentication of devices and secure communication
to devices do not require embedding and permanently
storing secrets in the devices. Devices therefore do
not require non-volatile memory, which is more expen-
sive and not available in all manufacturing processes.
For example, EEPROMs require additional mask layers,
and battery-backed RAMs require an external always-on
power source.

PUFs can therefore serve as one way to address the growing
counterfeit electronics problem [29].

For authentication, PUFs usually adopt a simple challenge-
response protocol. An entity, call it the verifier, collects
challenge-response pairs in a secure location when in posses-
sion of the PUF. At any later point of time, to authenticate a
remote device, the verifier sends a challenge to the device and
asks for the response1. If the response “matches” the stored
response, verification is successful, else it is not.

The simplicity and power of the above protocol motivated
the construction of many candidate silicon PUFs. We note that
the physical system and the protocol are both stateless (i.e.,
store no data between subsequent queries and do not require
non-volatile digital storage). The stateless property implies that
there is no separate “provisioning” stage: the interface exposed
by the PUF is static, and any valid query can be made at any
time. Unfortunately, none of the candidate constructions have
a proof of computational security, and further, most, if not
all, of them have been shown to be susceptible to machine
learning attacks (cf. Section III). In the context of stateless
PUFs, Gassend et al. [26] write: “An important direction of
research is to find a circuit that is provably hard to break ...”.
In this paper we accomplish this objective.

B. Physically Obfuscated Keys
Physically Obfuscated Keys (POKs) (e.g., [44]) predate

silicon PUFs and have sometimes been called weak PUFs in
1To defeat man-in-the-middle attacks, challenges should not be repeated.

2

the literature. The (informal) requirements for a POK are less
stringent than the requirements for a PUF: (1) a small number
of challenge-response pairs, and (2) these responses are un-
predictable and depend strongly on the innate manufacturing
variability of the device.

Both PUFs and POKs rely on analog physical properties of
the fabricated circuit to derive secret information. Naturally,
these analog properties have noise and variability associated
with them. As environmental parameters vary, so does the
“digital fingerprint” measured by the PUF/POK. If the param-
eters vary too much, the PUF or POK response will change.
In the PUF authentication protocol, “matching” means the
response stored by the verifier and the regenerated response
are within a chosen threshold.

If a POK’s responses are exposed, it can be easily cloned
by enumerating all challenge-response pairs and storing them
in a table. However, a PUF can be built using public tamper-
proof storage, error correction logic, cryptographic primitives,
and a POK as we describe below. Choose a POK output or
bits derived from the POK output during a provisioning step
as the secret key, and error correct the POK outputs when they
are regenerated so the key is always the same. Assuming the
public helper data associated with the error correcting code
does not give away (too much) information about the POK
outputs and therefore the secret key, one can use the secret key
as one input to a one-way hash function to build a PUF. This
PUF is noise-free through error correction using helper data
that can be stored on the verifier side. However, even when the
helper data is stored off-device, there is still a requirement for
storage on the PUF device for information-theoretically secure
constructions.

The reason is subtle: generation of helper data can only
be done once or a limited number of times, because the
helper data leaks information about the POK outputs as men-
tioned above. To repeatedly generate helper data an arbitrary
number of times under potentially different environmental
conditions where POK outputs change significantly requires
strong independence assumptions on POK outputs. If these
assumptions cannot be made, this provisioning functionality
needs to be turned off; else the system can be broken. This
implies an irreversible fuse, i.e., storage that is tamper proof.
Else, an attacker with physical access just has to modify one
bit of storage to potentially break the system by rerunning the
provisioning step, as opposed to having to read volatile values
in a stateless PUF.

C. Overview of our Approach
In this paper, we show how to build a stateless PUF

with a computational security reduction. Our construction has
internal error correction, and therefore the PUF outputs will
be completely stable, assuming the error correction range
matches the requirement posed by environmental variation.
Our PUF therefore is a controlled PUF [25], which is much
more powerful than a conventional PUF that can only be used
for authentication (cf. Section VII-C3).

We accomplish our task in two steps. First, by making an
assumption about the characteristics of the POK, namely, that
it can provide “confidence” information, we demonstrate a
computational fuzzy extractor that can correct O(m) errors in
polynomial time.The confidence information is never stored or
exposed, and can thus be viewed as a noise-avoiding trapdoor.

Abstractly, confidence information can be thought of as
information measured from the POK in addition to the output
bits that represents which bits of the output have higher/lower
probability of error. This information is available from a large
number of POK sources, since many sources define their
output bits in terms of whether an analog/digital value is
greater/less than some threshold. In this case, the confidence
information would be the distance of the analog/digital value
from that threshold. One example corresponds to simply
making repeated measurements of a POK (e.g., SRAM state
[33]) and taking a majority vote to produce a bit. The degree
of majority would be the confidence information. The most
natural example that we know of is the ring oscillator POK
(cf. Section II-A) used in our case study (cf. Section IX),
which produces bits based on the sign of the difference of
oscillator frequencies.

We stress that while previous constructions leveraging confi-
dence information published their confidence information [13],
[15], [46], [47] (which requires persistent memory storage and
also affects the information-theoretic security argument) the
confidence information in our construction is not persistent,
rather, it is regenerated on each key recovery and then dis-
carded. Our PUF remains stateless.

Second, we show given a POK, how to set up a restricted
version of a Learning Parity with Noise (LPN) problem such
that a sateless secure PUF is enabled. There are two modes
of operation for this PUF. The first is to generate a challenge-
response pair, and the second is to return a response given a
challenge. Using our error correction scheme, all challenge-
response pairs are reliable in that a challenge contains neces-
sary helper data for regeneration to always reproduce the same
response. We prove that the stateless PUF protocol is secure
under the random oracle model given the hardness of LPN
and the strong assumption that the confidence information
is independent of the actual bit values. We then relax this
assumption by augmenting the construction to selectively
inject random noise during challenge-response generation and
show that this construction requires a variant of LPN hardness
assumption under the random oracle model.

D. Our Contributions

We defer a detailed comparison to prior work to Section III,
and elaborate on our contributions below.

1) We propose a fuzzy extractor that is able to correct Θ(m)
errors in an m-bit POK output and recover an n-bit key
in polynomial time. Two novel ideas enable this result.
• First, we take advantage of the confidence information

as a trapdoor to a hard problem. The confidence
information is never stored; it is regenerated (and may
change on each key extraction) and then erased (cf.
Section IV).

• Second, compared with traditional LPN/LWE cryp-
tosystems, we use the number of equations m in a
novel way – to provide redundancy – and show that
setting m = Θ(n2) results in a negligible failure
probability for key recovery even with Θ(m) errors
(cf. Section V).

2) LPN is hard given independent, identically distributed
(i.i.d.) noise (which corresponds to POK bits in our
construction). To provide more flexibility with respect to

3

POK distributions, we give a reduction for a large class
of noise distributions that are significantly more relaxed
(cf. Section VI).

3) We provide stateless PUF constructions and show that
breaking the PUF requires breaking LPN or a variant of
LPN under the random oracle model (cf. Section VII,
VIII).

4) We provide experimental evidence that our fuzzy extrac-
tor and our PUF construction are efficient and work under
significant environmental variation (cf. Section IX).

E. Organization

We give background for ring oscillator POKs and LPN in
Section II. We discuss related work in Section III. Section IV
describes how noisy POK outputs can be corrected securely
using a computational fuzzy extractor. We analyze the relia-
bility of key regeneration in Section V, where we show that
the confidence information serves as a trapdoor. Section VI
gives a security analysis of our fuzzy extractor, relaxes the
assumptions on the POK bits, and also provides quantitative
analysis on parameters. Section VII gives formal definitions
and our construction of a stateless PUF, with the corresponding
security proofs given in Section VIII. We show in Section
IX that our constructions can be efficiently built using ring
oscillator POKs. We conclude the paper in Section X.

II. BACKGROUND

A. Ring Oscillator POK

Following the formalization provided in [4], we first define
a Physically Obfuscated Key (POK) as a physical function
wherein there is only one challenge. A POK returns a single
m-bit response, denoted as e = {e1, e2, · · · , em} in this paper.

If the POK response is completely stable across measure-
ments, then constructing a stable secret key or strong PUF
would be trivial: just use the POK output as the secret key.
Unfortunately, the POK response in practice will be slightly
different each time due to internal noise, i.e.,

e = econst + enoise

where econst is the same for each call to the POK, and enoise

is sampled at random from some distribution over {0, 1}m.
Error-correcting the POK response to tolerate the noise is a
major challenge.

Our case study will be based on the Ring Oscillator (RO)
POK, which generates bits by comparing the frequencies of
two ring oscillators that are identical by design, yet whose
frequencies vary due to manufacturing variation. Each POK
output bit is simply determined by which oscillator is faster.
It was first observed in [57] that if the difference in counts
between the two ring oscillators is large, then one can have
higher confidence that environmental changes are unlikely to
cause the output bit to flip erroneously when measured at a
later time. This difference will be our confidence information
(cf. Figure 1). While there have been improvements in ring
oscillator structures (e.g., [23]), our case study uses the basic
structure of Figure 1.

Counter

Counter

Subtract ≥ 0? 𝒆1

𝒄1

Counter

Counter

Subtract ≥ 0?

Counter

Counter

Subtract ≥ 0?

. . .

. . .

𝒆2

𝒄2

𝒆𝑚

𝒄𝑚

𝒎 Ring Oscillator Pairs

Fig. 1: A basic Ring Oscillator POK with m differential pairs.
Note that in addition to the output bits ei, confidence values
ci may be made available to the surrounding logic. These con-
fidence values are in the form of the actual differential count
between the two ring oscillators, while the POK output bits
ei correspond to whether the differential count is greater/less
than 0.

B. Learning Parity with Noise

The Learning Parity with Noise (LPN) problem is a famous
open problem that is widely conjectured to be hard [52],
as the best known algorithm is slightly subexponential
(2Ω(n/ logn)) [10], [5], [8], [41], [30]. As a result, this problem
has since been used as the foundation of several cryptographic
primitives [34], [3], [2], [9].

The problem is posed as follows. Let s ∈ {0, 1}n be
chosen uniformly at random. Let A ∈ {0, 1}m×n be uniformly
random, m ≥ n. Let e ∈ {0, 1}m be chosen from a distribution
χ. Finally, define b ∈ {0, 1}m (where · is a dot product) as:

b1 = A1 · s + e1 mod 2

b2 = A2 · s + e2 mod 2

... =
...

bm = Am · s + em mod 2

The problem is to learn s given only the values of b and
A. When each ei is distributed according to probability
distribution χ.

Conjecture II.1 (LPN Hardness [34]). There is no algorithm
that solves an LPN problem instance (A,b, χ), where s and
A are uniformly random, in time poly(n, 1/(1

2−τ)) with non-
negligible probability in n, where χ is an Bernoulli distribution
with bias τ .

The LPN problem can be thought of as a special case of
the Learning With Errors (LWE) problems discussed by Regev
[52], by allowing the equations to instead be modulo a prime
number q (as opposed to 2). However, Regev’s reduction to the
shortest independent vector problem (SIVP) does not apply to
the LPN case. Therefore, the difficulty of solving LPN is a
separate conjecture from the difficulty of solving LWE. This
paper will focus on a fuzzy extractor and a stateless PUF based
on LPN, but our constructions can be extended to the LWE
case.

4

III. RELATED WORK

A. PUF/POK Proposals

Although many of the architectures that integrate POKs and
PUFs into existing IC technology are new, it should be noted
that the concepts of unclonability and uniqueness have been
used extensively in the past for other applications [37]. For
example, “Unique Objects” are well defined as objects with a
unique set of properties (a ‘fingerprint’) based on the unique
disorder of the object [53]. One example of early reported
usage of unique objects for security was proposed for the
identification of nuclear weapons during the cold war [28].
One would spray a thin coating of randomly distributed light-
reflecting particles onto the surface of the nuclear weapon.
Since these particles are randomly distributed, the resulting
interference pattern after being illuminated from various angles
is unique and difficult to reproduce. Unique objects were
termed Physical One-Way Functions and popularized in 2001
[50]. However, to our knowledge, none of these proposals
has an associated computational security argument that shows
hardness of model-building or machine learning attacks.

Unlike the proposals described above, silicon PUFs, intro-
duced in [26], do not require an external measurement appara-
tus. In the past several years, there have been several proposals
for candidate silicon PUF architectures. These include the
family of proposals corresponding to the Arbiter PUF [27],
feedforward Arbiter [43] and XOR Arbiter PUF [57]. Machine
learning attacks such as those of [54] and [6] have successfully
attacked these constructions to create software clones. While
other constructions using nonlinear circuit elements (e.g., [42],
[40], [49]) have not yet been broken to our knowledge, these
constructions do not as yet have clear computational security
reductions.

B. Error Correction for Silicon POKs

Silicon POK key generation was first introduced using Ham-
ming codes in [24] and more details were presented in [56].
The security argument is information-theoretic. Specifically, if
one requires a k-bit secret from n bits generated by the POK,
then at most n − k bits could be exposed. The number of
correctable errors is quite limited in this approach.

C. Fuzzy Extractors for Silicon POKs

Fuzzy extractors [21] convert noisy biometric data (either
human or silicon) into reproducible uniform random strings,
which can then serve as secret keys in cryptographic applica-
tions. Fuzzy extractors typically have two phases: a secure
sketch (error correction) phase and a privacy amplification
(hashing) phase. The secure sketch phase focuses on the
recovery of noisy data w. It first outputs a sketch h (also called
“helper data”) for w. Then, given h and a future measurement
w′ close to w, it recovers w. The sketch is secure if it does
not reveal much about w: w retains much of its entropy even
if h is known. This means that h can be stored in public
without compromising the privacy of w. However, in typical
POK applications, w does not have full entropy, so we need the
privacy amplification phase to compress w prior to obtaining
a cryptographic key. In the fuzzy extractor framework, it is
possible to extract near-full-entropy keys from a POK source
while maintaining information-theoretic security.

The information-theoretic security, however, comes at a high
cost in terms of the raw entropy required and the maximum
tolerable error rate. The secure sketch phase is well known
to lose significant entropy from the helper data h, especially
as measurement noise increases. Even in cases where entropy
remains after error correction (e.g., [48]), there is not enough
entropy remaining to accumulate the 128-bits of entropy in an
information-theoretic manner during the privacy amplification
phase. According to [38], the entropy loss associated with the
use of the information-theoretic entropy accumulator alone is
≥ 128 bits due to the leftover hash lemma.

Works on fuzzy extractors for silicon POKs can be classified
based on the additional assumptions they require:

Perfectly i.i.d. Entropy Source. There are several works that
created helper data that is information-theoretically secure.
[59] uses POK error correction helper data called Index-
Based Syndrome (IBS), as an alternative to Dodis’ code-offset
helper data. IBS is information-theoretically secure, under
the assumption that POK output bits are independent and
identically distributed (i.i.d.). Given this i.i.d. assumption, IBS
can expose more helper data bits than a standard code-offset
fuzzy extractor construction. Efficiency improvements to IBS
that maintained information-theoretic security are described in
[31] and [32].

A soft-decision POK error correction decoder based on
code-offset was described in [46], [47] where the confi-
dence information part of the helper data was proven to be
information-theoretically secure under an i.i.d. assumption (the
security of the remaining redundancy part associated with the
code-offset was not as rigorously addressed in either paper).

We note that while these works created practical imple-
mentations based on a provably secure information-theoretic
foundation, they did not explicitly address the full key gen-
eration process (secure sketch + privacy amplification); they
addressed only the error correction (secure sketch) phase.
Further, they need the strong assumption on POK output
bits being i.i.d., which allows them to publicly reveal the
confidence information. Indeed, silicon biometrics are not
necessarily i.i.d., and attacks have therefore been performed,
e.g., [7]. Our approach achieves the same advantage of using
confidence information, but it does not reveal this information.
Therefore, our proposal remains secure for non-i.i.d. entropy
sources (cf. Definition VI.1).

Computational Security Based on Machine Learning
Heuristics. There were several works [51] [60] [61] that
created helper data that is heuristically secure based on results
of state-of-the-art machine learning attacks on PUFs [55].
These designs used a candidate strong PUF based on XORs
[57] but leak only a limited number of PUF response bits as
helper data to generate a key. After several years of attacks by
several groups around the world [18], [35], [54], [55], [58],
the basic XOR PUF was “broken” in 2015 [6]. There has not
been a strong PUF architecture with a reduction from a formal
strong PUF security definition (e.g., “strong unpredictability”
in [4]) to a computational hardness assumption accepted by
the cryptography community. These works are also limited
in scope in that they do not explicitly address the full key
generation processing, but address only the error correction
phase.

5

Secure Sketch + Privacy Amplification. To the best of our
knowledge, there is one paper that attempted to implement
and address the security associated with both stages of a POK
fuzzy extractor [48]. The paper accounted for the information-
theoretic loss of the error correction helper data, using code-
offset syndrome [21], but did not have sufficient entropy
left over from the secure sketch phase to implement an
information-theoretically secure privacy amplification stage
and instead opted for a more efficient implementation using
a lightweight hash called SPONGENT [11] as an entropy
accumulator.

Under the assumption that confidence values are inde-
pendent of the measurement values, information-theoretically
secure extractors can also produce a stateless construction as
we do in Section VII. However, in our construction, we show
how this assumption can be relaxed through a computational
hardness assumption of a variant LPN problem.

D. Computational Fuzzy Extractors

Fuller et al. [22] give a computational fuzzy extractor based
on LWE. In Fuller et al.’s scheme, the output entropy improves;
the error correction capacity, however, does not. Indeed, Fuller
et al. show in their model that secure sketches are subject
to the same error correction bounds as information-theoretic
extractors. Their construction therefore requires exponential
time to correct Θ(m) errors, where m is the number of bits
output by the POK.

Fuller et al. expect that the exponential complexity in
correcting a linear number of errors is unlikely to be overcome,
since there is no place to securely put a trapdoor in a fuzzy
extractor. We recognize that certain kinds of silicon biometric
sources have dynamically regenerated confidence information
that does not require persistent storage memory and can in
fact serve as a trapdoor (cf. Sections IV and V). We show that
security can be maintained even if the bits generated by the
biometric source are correlated (cf. Definition VI.1).

E. Helper Data Manipulation

The issue of helper data manipulation has been addressed
with robust fuzzy extractors [14], [20]. Their use of a helper
data hash do not address recent helper data manipulation
attacks in [36], [19], including ones that take advantage of
the linear, bitwise-XOR nature of code-offset helper data as
applied to linear error correction codewords.

In the stateless PUF of Section VII, the helper data com-
prises (part of) the challenge. Since in an LPN-based fuzzy
extractor the key is uncorrelated computationally to the helper
information, our scheme can authenticate the helper informa-
tion in a computationally secure manner via a keyed-hash
message authentication code such as HMAC [39]. This results
in schemes that are secure in a computational sense against
active adversaries that modify the helper data in our fuzzy
extractor or stateless PUF construction.

IV. FUZZY EXTRACTOR USING LPN

This section considers how to reliably reconstruct a key s
from a noisy POK (or a noisy biometric source). We start
with the fuzzy extractor scheme described in [22], which
leverages LWE to extract a pseudorandom string from fuzzy

data. We will begin by translating that work from LWE to
LPN discussed in Section II-B.

Construction IV.1. Let k be a security parameter, and let
n = poly(k), and m ≥ n. Define (A,b) ← Gen(1k), and
s← Rep(A,b) as follows:

1: procedure (A,b)← Gen(1k)
2: Input e ∈ {0, 1}m from the POK (modeled by some

distribution χ over {0, 1}m).
3: Sample A ∈ {0, 1}m×n uniformly at random.
4: Sample s ∈ {0, 1}n uniformly at random.
5: Compute b = A · s + e.
6: return (A,b).
7: end procedure
1: procedure s← Rep(A,b)
2: Input e′ ∈ {0, 1}m from the POK.
3: Let s = Decodet(A,b, e

′).
4: return s.
5: end procedure

This construction is exactly analogous to Construction 4.1
of Fuller et al. [22], translated to LPN from LWE (all equations
are mod 2 instead of mod q). Therefore, we state the
following theorem without proof, as it is analogous to Theorem
4.7 of [22] except under the LPN hardness conjecture.

Theorem IV.2. Let k be a security parameter. If Conjecture
II.1 is true, then there is a setting of n = poly(k) for which
there exists ε = neg(k) such that the following is true: For
any randomized circuit size s = poly(k) and t = O(log n)
bit errors, Construction IV.1 is a ({0, 1}m, χ, {0, 1}n−o(n), t)
fuzzy extractor that is (ε, s)-hard, with failure rate δ = e−Ω(k)

(cf. Definition 2.5 of [22]).

In the above construction, Decode keeps picking random
sets of n equations bi = Ais + ei and solves for s (see
Recovery in Algorithm 1 for details). If t = O(log n), Decode
succeeds with overwhelming probability after a polynomial
number of trials. We will now describe a new extractor
algorithm based on LPN that can correct Θ(m) errors in
polynomial time. Before presenting the extractor formally, we
present an intuitive description.

A. Intuitive Description
Recall the description of the LPN problem in Section II-B,

which is also depicted in Figure 2. The above construction uses
the POK output as the ei values. Therefore, an adversary learns
the equations with probability of error being Pr(ei = 1) = τ ,
where τ relates to the entropy of the POK. Having access to
the POK allows one to regenerate e′i, where Pr(e′i = 1) = τ
and Pr(e′i 6= ei) = τ ′ � τ . The regeneration is imperfect
due to intrinsic noise of the POK as well as environmental
changes. The LPN problem remains hard even for small τ ′
implying that key recovery will run in exponential time for
Θ(m) number of errors.

A critical enabling property of LPN/LWE is that if one can
identify any set of n bits that are correct (e′i = ei), then one
can use Gaussian elimination to solve for s. Therefore, our key
intuition is that access to confidence information during the
regeneration of the POK bits helps the extractor decide which

6

Entropy source output (𝒆′𝑖) and confidence (𝒄′𝑖)

Derived Equation Confidence (e.g.)

𝒃1 = 𝑨1 ∙ 𝒔 + 𝒆′1 𝒄′1 = −168

𝒃2 = 𝑨2 ∙ 𝒔 + 𝒆′2 𝒄′2 = 103

𝒃3 = 𝑨3 ∙ 𝒔 + 𝒆′3 𝒄′3 = −23

…

𝒃𝑚 = 𝑨𝑚 ∙ 𝒔 + 𝒆′𝑚 𝒄′𝑚 = 86

G
au

ss
ia

n
 E

lim
in

at
io

n

𝒔

Fig. 2: Overview of LPN key extraction algorithm. The e′i
values are regenerated and the c′i values with high absolute
value identify the e′i with low probability of error (since c′i
values don’t change dramatically between measurements, and
e′i = Sign(c′i)). Gaussian elimination is then used on these
selected equations to extract the secret key.

bits are more likely to be stable (the set of stable bits may be
different from measurement to measurement). Then, Gaussian
elimination is performed on the set of equations corresponding
to these stable bits.

Of course, one must architect the system such that there
are enough stable POK bits during each measurement. To this
end, the LPN/LWE problem allows arbitrary redundancy in
the number of equations supplied. Therefore, we can supply
enough equations such that with high probability (see Section
V) the recovery succeeds.

Initially, this may sound similar to using the “mask” data
in some POK implementations. However, this approach is
fundamentally different and has superior security properties,
as we recognize the biometric source itself to be a hidden
trapdoor to a hard problem. The confidence information is
discarded after use and never exposed. The security proof
for this new construction will therefore be identical to that
of Construction IV.1, since the adversary receives identical
information.

B. Detailed Construction
In the following description, we will refer to the POK

bits as e = {e1, e2, . . . em}, (ei ∈ {0, 1}) and their noisy
counterparts (measured during response verification) as e′ =
{e′1, e′2, . . . e′m}, (once again, e′i ∈ {0, 1}). Moreover, the
confidence information associated with these noisy measure-
ments will be denoted as c′ = {c′1, c′2 . . . c′m}, where
c′i ∈ Z (as shown in Figure 2).

We describe the algorithms associated with the key extrac-
tion below. Typically, a fuzzy extractor, information-theoretic
or computational, has the functions Gen and Rep, where Gen
produces the public helper information, and Rep takes the
noisy biometric bits and public helper information and returns
the error-corrected key. This paper expands this construction
to include four functions in the extraction process as shown
in Algorithm 1.

Before looking into the effects of errors on Algorithm 1,
there are several notes to be made.

First, the Fab algorithm can be viewed as system design
steps that choose parameters for the desired security and
reliability. Project and Recovery together correspond to Rep
in a fuzzy extractor, and Recovery is exactly the same as
Recoveryt in Construction IV.1.

Algorithm 1 The LPN trapdoor fuzzy extractor algorithm.
1: procedure Fab(1k, δ, η) // Represents the

fabrication step. It takes the security
parameter k, the desired probability
of recovery failure δ, a η term that
characterizes correlation in the POK bits
(defined in Definition VI.1)

2: Select the size of the secret vector n for the desired
security level k based on η (details in Section VIII).

3: Compute m such that with probability greater than 1−
ε1, at least m′ = Θ(n) of the m POK bits are “stable” over
relevant noise/environmental parameters. Define “stable”
to be Pr(e′i 6= ei) ≤ ε2. The choice of m′, ε1, ε2 along
with other details will be presented in Section V.

4: Manufacture POKs that each produce m bits internally.
5: end procedure
6:
7: procedure (A,b)← Gen(n) // Gen takes the size

of the secret vector n (calculated in Fab)
8: Measure the m POK bits as e = {e1, e2, . . . em}.
9: Generate a uniformly random secret vector s ∈
{0, 1}n.

10: Compute b = A · s + e.
11: Discard s and e.
12: Return b.
13: end procedure
14:
15: procedure T ← Project(c′) // Determines the

‘‘stable’’ POK bits to be used in Recovery.
16: Use measured confidence information c′i to find m′ =

Θ(n) stable POK bits.
17: Let T be the set of these stable bits. Return T .
18: end procedure
19:
20: procedure s← Recovery(e′, T) // Represents

the augmented key recovery algorithm. In
addition to the noisy POK measurement e′,
this function also takes T, the set of
stable bits in e′.

21: Randomly select n out of the m′ stable bits.
22: Use Gaussian elimination to solve for s on the n

selected bits.
23: Check if bi = Ai · s + e′i on the remaining m − n

equations. An error rate of ≈ 50% implies that the derived
s is incorrect. A significant lower error rate (e.g., 25%)
indicates s is correct.

24: If s is incorrect, go back to step 1); else output s.
25: end procedure

Second, if the LPN problem is hard, then an adversary in
possession of (A,b) cannot compute s as shown in Theorem
IV.2. Furthermore, due to the simultaneous hardcore bits of s
in the LPN problem, s has n− o(n) pseudorandom bits [1].

Third, the matrix A can be made a public global system
parameter as opposed to per-device output to reduce helper
data size; this leaves b as the only per-device helper data. This
will be the same global A in the stateless PUF construction
of Section VII, though there exists a much more fundamental
security reason to make A global there.

Lastly, the confidence information c′i acts as a trapdoor for

7

Pr(ci c 'i =c) =

N (c , σINTRA)
Pr (ci) = Pr (c 'i) =

N (0, σINTER)

Pr(Err c 'i =c)

-300 -200 -100 0 100 200 300

0.

0.005

0.01

0.015

0.02

0.

0.001

0.002

0.003

0.004

Differential Counts

P
ro
ba
bi
lit
y
(1
)

Distributions of RO PUF Differential CountRates

P
ro
ba
bi
lit
y
(2
)

Fig. 3: Distribution of confidence information for different
POK bits when measured repeatedly over time/environmental
parameters. The magenta curve corresponds to the distribution
of confidence information across different devices. The blue
curve corresponds to the distribution of measured confidence
information from the same device in different conditions. We
show the probability of error given a confidence measurement
c as the integral of the shaded region.

identifying “stable” bits in key recovery. Therefore, the key
recovery algorithm is faced with a much easier problem and
can finish in polynomial time. This will be the focus of the
next section.

V. NOISE-AVOIDING TRAPDOORS

In Section IV, Project leverages confidence information
that a bit is regenerated correctly. This section will explore
the asymptotic noise tolerance and efficiency of our system,
and the required properties of the POKs (biometric source) to
provide confidence information.

ci are random variables representing the confidence infor-
mation of the i’th POK bit at the time of initial challenge-
response generation. Next, c′i are random variables represent-
ing the confidence information of the i’th POK bit at some
point in time later. We note again that confidence data are
extracted upon measurement of a POK bit, and are never
persistently stored.

Define the corresponding POK bit to be a random variable
ei = Sign(ci), and e′i = Sign(c′i). Crucially, if the confi-
dence is high for a particular bit, Pr(e′i = ei) ≈ 1.

To provide concrete analysis, we consider the probability
distribution of the ci and c′i random variables, and assume
they follow the same zero-mean Gaussian with variance
σINTER, shown in Figure 3. Note that this directly implies
that Pr(ei = 1) = τ = 1/2 for the LPN problem. In actual
physical systems, there will be a bias towards 1 or 0, but we
will see that assuming a 0.5 bias represents a “worst-case”
from the standpoint of error correction. (Note that we will
use a different worst-case bias for other purposes, e.g., to
determine n given the security parameter in Section VIII.)

Now, given that ci and c′i represent the random vari-
ables for measuring the same bit, the conditional distribution
Pr(ci|c′i = c) is much narrower (where c is the actual
measured value of c′i at regeneration). This distribution is
modeled to be a Gaussian distribution with mean c and
variance σINTRA, also shown in Figure 3.

Also note that ci and c′i represent the same POK bit
measured at different times, so they have the same distribution

(with no prior knowledge). Therefore, ∀c, Pr(ci|c′i = c) =
Pr(c′i|ci = c). In other words, one can use the confidence
information collected during the fabrication step to reason
about the probability of error at regeneration, or vice-versa.

We may now define the probability of error given confidence
information. Since ei = Sign(ci), we recognize that the error
probability given a measurement of the confidence information
is the integral of the shaded region in Figure 3, in particular,
the CDF up to 0:

Pr(e′i 6= ei|c′i = c) =
1

2

(
1 + Erf

(
− |c|√

2σINTRA

))
(1)

A. Fabrication/Provisioning

Fab must compute m such that with probability greater than
1−ε1, at least m′ of the m bits will be stable. Recall a random
bit ei is defined to be stable if Pr(e′i 6= ei) < ε2 over relevant
environmental parameters.

To do this, we recognize that requiring Pr(e′i 6= ei|c′i =
c) < ε2 sets a threshold cT on |c| in Equation 1. If for
a particular bit |c| > cT , then the bit is stable. Plug these
requirements into Equation 1 and solve for cT (define Erf−1

as the inverse of Erf):

cT =
√

2σINTRAErf
−1(1− 2ε2) (2)

Therefore, the probability that a given bit is stable (has |c| >
cT) can be computed by integrating the PDF of Pr(c′i), or
equivalently Pr(ci):

PST = Pr(|ci| > cT) > 1− Erf
(
cT /(
√

2σINTER)
)

The inequality is because the probability of a bit being stable
is smallest when the bit bias is 0.5 (the Gaussian is centered at
0). One can see that as the center of the Gaussian shifts, more
probability density falls in the region of |ci| > cT . Therefore,
we know that the probability of a stable bit can only be higher
than our calculation here expects.

Plugging in cT from Equation 2 gives:

PST > 1− Erf

(
σINTRA

σINTER
Erf−1(1− 2ε2)

)
(3)

The final step is to compute m such that at least m′ POK
bits will be stable with probability 1− ε1. This is a binomial
distribution and is subject to a Chernoff bound. Define X as
the random variable for the number of stable bits observed.

Pr(X ≤ m′) ≤ exp

(
−1

2

(
1− m′

mPST

)2

mPST

)
≤ ε1

Rearranging,

m ≥ 1

PST

(
m′ − log(ε1) +

√
log(ε1) (log(ε1)− 2m′)

)
(4)

Since PST is a function of ε2, given m′, ε1, and ε2, one can
compute m such that at least m′ of the POK bits are stable
with probability 1− ε1, as is required.

8

B. Projection/Extraction and Showing the “Trapdoor”
The extension of the above analysis to the Project algorithm

is comparatively simple. Project simply selects a set T of
m′ = Θ(n) bits that have measured confidence c′i = c where
|c| > cT . Because of the Fab algorithm, we can be confident
that we will find m′ such bits with overwhelming probability.

We need “truly stable” bits perform Gaussian elimination,
but the bits in T defined above only guarantee Pr(e′i 6=
ei|c′i = c) < ε2 (i.e., likely correct but not certainly). Define
t′ as the number bits that are not truly stable in T . If we
set ε2 = Θ(1/n), then E(t′) = Θ(1), and a Chernoff bound
gives Pr (t′ > α log n) < e−Θ(log2 n). So t′ = o(log n) with
overwhelming probability.

In Recovery, we randomly select n out of the m′ bits to
perform Gaussian elimination. If the n selected are all “truly
stable,” Gaussian elimination on them will yield the correct s
and Recovery succeeds. The above probability is given by(

m′−t′
n

)(
m′

n

) >

(
1− t′

m′ − n

)n
≈ exp

(
− nt′

m′ − n

)
=

1

poly(n)

Therefore, after poly(n) number of iterations, Recovery finds
the correct s with overwhelming probability. The overall
failure probability–accounting for all types of failures (have
less than m′ stable bits, t′ = ω(log n), or fail to select n truly
stable bits in all iterations)–is at most ε1 + (1 − ε1)negl(n).
We can set ε1 = Θ(2−n) to get overall negligible failure
probability.

We remark again that without the confidence trapdoor, the
LPN hardness states exactly that it is infeasible to compute s
in polynomial time with non-negligible success probability.
Therefore, while an adversary requires exponential time to
calculate s, the owner of the fuzzy extractor requires only
polynomial time. This is the definition of a trapdoor.

C. Setting m
We have set ε1 = Θ(2−n), ε2 = Θ(1/n) and m′ = Θ(n).

To compute m from Equation 3 and 4, we need to characterize
σINTRA/σINTER, which decides PST.

Define σr = σINTRA/σINTER. We first consider a worst-
case: σr = 1. In this case, Equation 3 reduces to PST = 2ε2.
Plug them into Equation 4, and one obtains:

m =
1

2ε2

(
m′ + n+

√
n(n+ 2m′)

)
= Θ

(
n2
)

In reality, the ratio σr < 1, so the hidden constant in Θ(n2)
is small, as will be seen in Section IX.

D. Improving on the Trapdoor
The above asymptotic result will be improved if we assume

σr = o(1). For example, let us pick σr such that PST is
asymptotically constant.2

To accomplish this, recognize that Erf−1(1 − 2ε2) ≤√
− log(ε2) as ε2 → 0 [16]. Therefore, if σr ≤ c/

√
− log(ε2)

2Note that one can make ε2 = Θ(log(n)/n) and still brute-force correct
in polynomial time. This does not impact the asymptotic analysis later in this
section, so we ignore it.

for some constant c, then PST ≥ 1 − Erf(c) for all n, and
therefore m = Θ(n).

Note that the bound of σr ≤ c/
√
− log(ε2) is very close

to constant. For example, set c = 1 and ε2 = 1/n. For n =
128, 256, we find σr < 0.45, 0.42 respectively.

Finally, consider the effect of σr ≤ c/
√
− log(ε2) on the

number of correctable errors of the fuzzy extractor. Integration
of the conditional probability distribution in Equation 1 (cf.
Figure 3) results in the associated marginal distribution (the
error probability):

Pr(e′i 6= ei) =
1

2
− 1

π
tan−1(1/σr)

A constant σr as in the previous subsection clearly implies
Θ(m) errors. For σr = o(1), Pr(e′i 6= ei) = Θ(σr) as σr → 0.
This implies that with m = Θ(n) one can no longer correct
Θ(m) errors asymptotically; instead, the maximum number
of correctable errors is O(mσr). For practical key sizes the
impact on error correction is minimal.

VI. LPN FUZZY EXTRACTOR SECURITY ANALYSIS AND
ASSUMPTIONS

The proof of security for an LPN fuzzy extractor using
confidence information is identical to Theorem IV.2. This is
because the additional confidence information (which may or
may not be correlated with the actual value of the POK bit)
described in Section V that is used to help extract the key is
never revealed.

A. Assumptions on POK Outputs
The POK outputs are used as the noise term in the LPN

problem, and our fuzzy extractor construction is secure if
the POK outputs are i.i.d. We now provide a significantly
relaxed definition of POK source entropy under which the
fuzzy extractor construction remains secure. In particular, the
following definition describes the class of sources that are
secure with LPN and hence our fuzzy extractor.

Definition VI.1. Define a set of L different m-bit entropy
sources whose probability distribution may be constructed in
the following way:

1) Begin with a set X of m × L bits that are i.i.d. with
Pr(Xi = 1) = η, 1 > η > 0.

2) Select a set of affine linear transformations F = {F0, F1,
. . . , Fk} (where F (X) = M ·X+N for some mL×mL
full rank matrix M , and mL-dimensional vector N). Se-
lect a k-bit string f according to an arbitrary distribution
over {0, 1}k that can be sampled in polynomial time.

3) Return F fkk (F
fk−1

k−1 (· · ·F f11 (F f00 (X)) · · ·)), where F 1
i =

Fi and F 0
i is the identity transformation.

This distribution is clearly much more general than an i.i.d.
distribution, as it allows for certain bits from the same/different
entropy sources to be correlated. For example, consider the i’th
bit of LPN problem A, and the j’th bit of LPN problem B –
this distribution can support a non-zero correlation coefficient
between these bits, namely, Corr(eA,i, eB,j). However, it is
tighter than min-entropy, as min-entropy allows for individual
bits to be “stuck” at one or zero. In this distribution, bits cannot
be perfectly correlated (e.g., Corr(eA,i, eB,j) = 1). We will
see that η in effect sets the “maximum correlation”, and η

9

(as well as 1− η) must not be 0 or negligible in the security
parameter.

Note also that knowledge of which bits are correlated is pub-
lic (it is assumed that the adversary knows the transformations
that are applied). Furthermore, note that the set of bits X is the
set of bits across different sources. For this discussion, each
source has m bits. If there are L different sources, then X is
the set of all L×m bits. As a result, correlations between bits
on different sources is allowable in the definition. Under this
assumption, Lemma VI.2 proves the security of the system.

Lemma VI.2. If the entropy sources for a collection of LPN
fuzzy extractors have a joint distribution that can be described
by Definition VI.1 for some η, then an algorithm that can
extract s from any of the fuzzy extractors in polynomial
time with non-negligible advantage can be used to solve the
traditional LPN problem with bias η in polynomial time with
non-negligible advantage.

Lemma VI.2 can be proved by recognizing that a set of LPN
problems with i.i.d. bits for their ei values can be converted
into a collection of LPN problems with bits described by
Definition VI.1 by probabilistically applying the identified
sequence of linear transformations F to their public keys
(A,b). The proof is given:

Proof. Consider a collection of L different m-bit entropy
sources. Let X be the set of all m× L bits, and let the joint
distribution of X be described by Definition VI.1. Specifically,
Definition VI.1 takes several parameters. Let the initial bias
be η. Let F = {F0, F1, . . . , Fk, . . .} be the set of affine
transformations. Let P = {P0, P1, . . . , Pk, . . .} be the set of
random bits that determines which subset of Fi are applied.
Let P have some joint distribution. The definition states that
we can sample from this distribution in polynomial time.

Now, consider the set of L corresponding LPN problems
(each using a distinct set of m bits from X as its ei values).
Let adversary A take as argument the public parameters of this
set of LPN problems: (Aj

i ,b
j
i), for i from 1 to m (there are m

equations in a single LPN problem), and j from 1 to L (the set
of L LPN problems). Assume that there exist parameters η, F ,
and a distribution over P such that A calculates at least one of
the secret keys of the set of LPN problems with non-negligible
probability.

Using A, we construct algorithm B that takes as argument
the public parameters of L different LPN problems whose ei
bits are i.i.d. with bias η. B will return the secret vector of at
least one of the LPN problems with non-negligible probability.
Note that B is equivalent to breaking the LPN problem, as each
LPN problem is independent.

First, consider a single LPN problem where A = {A1,A2,
. . . ,Am}, b = {b1,b2, . . . ,bm}, e = {e1, e2, . . . , em},
and bi = Ai · s + ei. The bits ei have some distribution.
The key recognition is that the act of applying an affine
transformation to the set of bits e is equivalent to applying the
same transformation to A and b. If one wants to transform the
distribution by applying F (e) = M · e +N (M is an m×m
dimensional matrix and N is an m-dimensional vector), then
one can derive a different LPN problem:

F (b)i =F (A · s + e)i

(M · b +N)i =(M ·A)i · s + F (e)i

Problem 1 :

b1

1 = A1
1 · s1 + e1

1

b1
2 = A1

2 · s1 + e1
2

...
b1
m = A1

m · s1 + e1
m

Problem 2 :

b2

1 = A2
1 · s2 + e2

1

b2
2 = A2

2 · s2 + e2
2

...
b2
m = A2

m · s2 + e2
m

...
L Problems

(5)

By setting b′ = M · b + N and A′ = M · A, we have a
new LPN problem: b′i = A′i · s+ e′i, where e′i = F (e)i. By
modifying only the public parameters, we have transformed
the distribution of ei by an affine transformation.

We generalize this to multiple LPN problems by recognizing
that the above technique can be applied to the set of equations
that comprise multiple LPN problems by simply concatenating
the vectors, resulting in Equation 5.

Now, we recognize (where | is concatenation) that to trans-
form a set of problems with e1|e2| · · · eL into a set of problems
with F (e1|e2| · · · eL), one can simply concatenate the afore-
mentioned equations (note that M is now an mL×mL sized
matrix, and N is a vector of dimension mL):

b′
1|b′2| · · ·b′L =M · (b1|b2| · · ·bL) +N

A′1|A′2| · · ·A′L =M · (A1|A2| · · ·AL)

We now return to the discussion of algorithm B. The algorithm
B is the probabilistic application of the above fact multiple
times. The steps of B are as follows:

1) Sample pi from the distribution of each Pi.
2) Set bTOT = b1|b2| · · ·bL.
3) Set ATOT = A1|A2| · · ·AL.
4) For j from 0 to k, define Fj(x) = Mj ·x+Nj . If pj = 1,

set bTOT = Mj ·bTOT+N , and set ATOT = M ·ATOT.
Otherwise, do nothing.

5) Call A using the newly created public parameters for the
set of LPN problems. Return the secret vector that A
computes.

The final value of the public parameters corresponds to a
set of LPN problems where the statistics of eji are equal to
those that can be solved by A, and we obtained this problem
by modifying bits of the public parameters only. Moreover,
since the matrix M in each transformation is full rank, the
original secret vectors remain the only solutions to the new
LPN problems. Therefore, if A exists, and recovers at least
one s with non-negligible advantage, then B can output that
s to break the i.i.d. LPN problem with bias η. This is a
contradiction if LPN is hard, so A cannot exist.

Note that the key step in the above algorithm is that B
applies the affine transformation to the public parts of the set
of LPN problems. This operation produces a new set of LPN
problems that are statistically identical to LPN problems with
correlated noise bits, while the secret vectors remain the only
solutions.

10

Also note that a corollary of Lemma VI.2 is that n− o(n)
bits of s are pseudorandom, even in the presence of correlated
bits of e. This is due to the fact that LPN’s secret has n−o(n)
simultaneous hardcore bits [1] and is proven for uncorrelated
LWE in [22]. The proof is similar for the correlated LPN con-
struction, as it is independent of the transformations performed
in Lemma VI.2.

B. Security Parameter Derivation
The security goal is that an adversary given helper data

must perform Ω(2k) operations (k is the security parameter)
to discover the secret key. We show below that for our system a
key size of n = 128 results in a security parameter of k = 128
against the best known attacks. The equality of key size and
security parameter is unusual for security constructions with
formal hardness reduction, and is especially unusual for LPN
cryptosystems.

There are two key factors enabling this property. First,
recognize that typical LPN-based cryptosystems must have a
low error rate (e.g., τ = Pr(ei = 1) = 0.0024 [17]) to ensure
correct decryption/verification. We, on the other hand, do not
use any LPN encryption/decryption algorithm, and therefore
do not have the same restriction on τ . In fact, we would like τ
to be 0.5, representing full entropy in the POK data. However,
real POK data is not ideal and may not have full entropy. To
be conservative, we pessimistically assume τ = η = 0.4 and
that the POK bits are correlated in a way that LPN is still hard
(formalized in Definition VI.1 and Lemma VI.2).

The second factor is that number of equations in our
construction is limited to m ∈ O(n2). Current best LPN
algorithms are based on the BKW algorithm [10], which
requires m = 2O(n/ logn). In order to successfully attack the
LPN fuzzy extractor, one would have to use the technique from
Lyubashevsky [45], which works with m = O(n1+ε) equa-
tions, but immediately increases the runtime to 2O(n/ log logn).

The idea of Lyubashevsky’s algorithm is to generate more
equations from the given m = O(n1+ε) equations, increasing
the noise rate to

τL =
1

2
− 1

2

(
1− 2τ

4

) 2n
ε logn

(6)

and then using other LPN algorithms, such as BKW [10], LF1,
LF2 [41] as a black box with the increased error rate. For m =
Θ(n2) (ε = 1), n = 128 and τ = 0.4, τL = 1

2 −1.31×10−48.
The recent analysis from [12] shows that the LF1, LF2

algorithms empirically have the best performance in the limit
of high noise (τL → 0.5). Table I compares BKW, LF1, LF2.
Note that each of the above algorithms performs worse than
brute-force or does not succeed at all. Therefore, we take
n = 128 for a security parameter of k = 128.

VII. STATELESS PUF CONSTRUCTION

A. Stateless PUF Definition
A Stateless PUF is a pair of functions PUF =

{GenPOK,VerPOK} with access to a POK, where GenPOK is
responsible for generating and outputting challenge-response
pairs, while VerPOK takes a challenge as input, and outputs
a response. The intent is for GenPOK to be called multiple
times by a verifier over a secure channel to obtain a collection
of challenge/response pairs. At a later time, the verifier will

Time Security
Complexity Parameter

BKW na
(

2b+1(1 − 2τL)−2a ln
(
b
θ

)
+ (a− 1)2b

)
2247

LF1 b2b + na
(

8 ln
(

2b

θ

)
(1 − 2τL)−2a + (a− 1)2b

)
2135

LF2 3 · 2bna+ b2b N/A

TABLE I: Comparison of performance of LPN algorithms
against an LPN fuzzy extractor with τL = 1

2 − 1.31× 10−48,
n = 128. Set θ = 1/3 to achieve 50% success probability
[12]. The security parameter is taken for optimal choices of a,
b (not shown). The security parameter of LF2 is N/A, because
there is no setting of parameters that results in the algorithm
converging.

send one of these challenges to the PUF over an insecure
channel, to which the PUF must generate the correct response.
A challenge-response pair therefore can only be used once by
VerPOK.

Definition VII.1. A (m,χ) stateless PUF is a pair of ran-
domized probabilistic polynomial time procedures {c, r} ←
GenPOK(1k), and r← VerPOK(c) where
• The challenge-response generation algorithm
GenPOK(1k) takes as argument the security parameter
k. It returns a challenge-response pair {c, r}, with
c, r ∈ {0, 1}∗ and |c|, |r| ∈ poly(k). The subscript POK
corresponds to the POK contained within the PUF.
That is, each PUF manufactured will have a unique
POK according to distribution χ over {0, 1}m due to
manufacturing variation.

• The verification algorithm r← VerPOK(c) takes as input
a challenge c, and returns the corresponding response r.
Again, POK refers to the unique POK contained within
the PUF.

Now we define the security of the Stateless PUF (s− uprd
refers to “strong unpredictability” as defined in [4]).

Definition VII.2 (Stateless PUF Strong Security).
A stateless PUF is ε-secure with error δ if
Pr
[
{c, r} ← GenPOK(1k) : r = VerPOK(c)

]
> 1 − δ

and for all PPT A, Advs−uprd
PUF (A) < ε, which is defined in

terms of the following experiment.

1: procedure Exps−uprd
PUF (A)

2: Make polynomial queries to GenPOK(·),VerPOK(·)
3: if A returns {r, c} such that:

• GenPOK did not return {r, c}.
• VerPOK(c) = r.

4: then return 1
5: else return 0.
6: end procedure

The s− uprd advantage of A is defined as

Advs−uprd
PUF (A) = Pr

[
Exps−uprd

PUF (A) = 1
]

(7)

While other formalizations of PUF system security have
been proposed [4], ours is slightly different in that in the above
case, there is no distinction between helper data and challenge
data. Moreover, the PUF is responsible for generating both the
challenge and the response for the verifier to use later.

11

One key recognition in the above definition is that there is
no provisioning stage. The algorithms GenPOK and VerPOK

may be called in arbitrary order as many times as required. Put
differently, there is no stage at which a secret is programmed
into the device or an irreversible operation is performed on
the device. This is critical, as the overall system can therefore
be stateless, and not have to have any additional protections
against adversaries attempting to break the provisioning logic
of the device.

The formalism of manufacturing unclonability remains the
same as that put forth in [4].

B. Our Construction

We provide concrete constructions for GenPOK and VerPOK

below, which are also illustrated in Figure 4.

Construction VII.3 (LPN Stateless PUF). Let k be a se-
curity parameter, with m,n ∈ poly(k), and m > n. Let
A ∈ {0, 1}m×n be a uniformly random but constant and
publicly known matrix row-indexed by i from 1 to m. Let both
algorithms have access to the random oracle H(·).

1: procedure {{b,Db},Ds} ← GenPOK(1k)
2: Generate s ∈ {0, 1}n uniformly at random.
3: Regenerate e ∈ {0, 1}m from POK.
4: Compute b = A · s + e.
5: return {{b, H(s,b)}, H(s)}.
6: end procedure
1: procedure Ds ← VerPOK({b,Db})
2: Regenerate e′, c′ ∈ {0, 1}m from POK.
3: Run Recovery (Section IV) to extract s from b.
4: Verify that Db = H(s,b), else return ⊥.
5: return H(s).
6: end procedure

Note that the above construction requires both internal
randomness as well as a random oracle.

C. Remarks

1) Blocking Malicious Challenges: We have included a
binding H(s,b) in the challenge-response generation, and
let VerPOK check if Db = H(s,b) before returning a
response. This is important, as Definition VII.2 allows for
active adversaries. Without this check, an attacker can trivially
win the security experiment by returning an output b by
GenPOK with one bit modified; the modified bit is likely not
used in the recovery of s at all, and VerPOK will accept,
trivially violating strong unpredictability. With this check, if s
is recovered correctly, any modification to b will be detected
with overwhelming probability.

2) Hash Function Requirements: H(·) is a random oracle
that is well-approximated by the SHA-256 or SHA-3 hash
functions, which we denote H ′(·). We require H ′ to be one-
way, since we are exposing H ′(s). To ensure that an adversary
cannot impersonate a PUF, we require non-malleability of
H ′. That is, the adversary should not be able to generate
H ′(s1 + ∆s) given H ′(s1) and ∆s. These properties are
required because of the use of H(s,b) in the construction.

TRNG

A � s + er

POK

s

er

H(s, b)

b

H H(s)

challenge

response

H

e, c
rnoise

(a) GenPOK: Generation of challenge-response pairs. TRNG stands
for True Random Number Generator. rnoise is random noise used
to replace the low-confidence bits in our variant construction
(Gen NoisyPOK) and is not needed for our basic construction
(GenPOK).

Find s
such that

A � s + e’ = b
H

POK

s

e’, c’

b H(s)
response

H(s, b)

ch
al

le
ng

e

=?
H

(b) VerPOK: Regeneration of response when the PUF is presented
with a valid challenge. The underlines on A, e′ and b indicate that
a subset of n of the m rows are selected to solve for s.

Fig. 4: Stateless PUF construction. Note that GenPOK and
VerPOK can be called any number of times in any order. The
PUF does not retain any state across invocations.

3) Controlled PUF: We have described a “vanilla” scheme
for authentication where responses are returned in the clear
when challenges are applied. However, all the controlled
PUF (CPUF) protocols of [25] with small modifications are
enabled by our construction. Briefly, the verifier obtains a
single challenge-response pair securely, i.e., no eavesdroppers,
as before. When the PUF receives a challenge, it does not
return the response, but merely generates it internally and bit-
exactly. Now, the verifier who knows the response, can use
it as a shared secret for repeated nonce-based authentication
or secure communication. Other verifiers can use completely
different shared secrets.

VIII. STATELESS PUF SECURITY ANALYSIS AND
ASSUMPTIONS

In the Stateless PUF construction, GenPOK is run multiple
times with roughly the same noise term e = econst + enoise.
This deviates from the LPN problem, where the noise term
for each equation is required to be independent. Therefore,
we will need additional assumptions. We begin by showing
a reduction from our construction to LPN, assume that the
confidence information (i.e., bias of enoise) is independent of
the actual measurement of the constant component econst.
This assumption is equivalent to requiring the POK have
independent noise. As discussed in Section III, this assumption
is strong, and not necessarily representative of actual POK
behavior. Therefore, we then relax this assumption in Section
VIII-B on the POK distribution and show that our construction

12

can be reduced to a new conjecture we call Partial-Error-Reuse
LPN (PER LPN, cf. Conjecture VIII.4), which says informally
that LPN is hard even when part of the error bits are reused.

A. Reduction to LPN Assuming Independence Between Con-
fidence and econst

We start by noting that in order for the construction to
reduce to LPN, GenPOK must use the same matrix A on
every query to it. Otherwise, an adversary receives two sets
of equations with the same e (we do not want to rely on the
small noise enoise in POK output for security),

b = A · s + e mod 2

b′ = A′ · s′ + e mod 2

The adversary can add up the equations mod 2, thereby
canceling out the e terms, and trivially recovers both s and s′.
However, we will show in Lemma VIII.2 that if the A matrix
is the same for the different secrets, discovering any individual
secret requires breaking standard LPN. Intuitively, this means
access to GenPOK does not help the adversary.

Next we show that access to VerPOK does not help an
adversary.

Lemma VIII.1. Given an adversary A that has non-negligible
Advs−uprd

PUF (A), there exists an algorithm B that makes no
queries to VerPOK and still has non-negligible Advs−uprd

PUF (B).

Proof. Let algorithm B run A, simulating calls to GenPOK,
VerPOK with the following GenB,POK and VerB,POK: Re-
sponses of GenPOK are faithfully relayed to A after being
recorded. Queries to VerPOK are simulated by always return-
ing ⊥ (unless the query is made with an output of GenB,POK,
in which case the recorded value is returned).

1: procedure {{b,Db},Ds} ← GenB,POK(1k)
2: Run {{b,Db},Ds} ← GenPOK(1k).
3: Store {{b,Db},Ds} to table T .
4: return {{b,Db},Ds}.
5: end procedure
6: procedure Ds ← VerB,POK({b,Db})
7: if {b,Db} ∈ T then return Ds.
8: else return ⊥.
9: end if

10: end procedure

By definition, A generates with non-negligible probability
a query for which VerPOK would not return ⊥. Therefore, A
can distinguish VerB,POK from VerPOK. However, regardless
of this fact, A must always emit at least one query to VerB,POK

for which VerPOK would not return ⊥.3
Given that A makes at most a polynomial number of queries

to VerB,POK, B may choose any of the queries made by A
to VerPOK at random and have a non-negligible advantage
of returning the “correct” query that would be accepted by
VerPOK. Therefore, B has non-negligible Advs−uprd

PUF (B).

Now we present the security reduction to LPN.

3After this query, A may have “distinguished” that it is querying VerB,POK
instead of VerPOK, so the behavior of A is undefined.

Lemma VIII.2. Let k be a security parameter, n = poly(k),
and m ≥ n. If Conjecture II.1 is true, there is no PPT A that
has advantage Advs−uprd

PUF (A) non-negligible in k.

Proof. Assume that a PPT algorithm A has non-negligible
advantage in the experiment in Definition VII.2. According
to Lemma VIII.1, there exists a PPT algorithm B that has
non-negligible advantage in the experiment without making
queries to VerPOK. Using B, we will construct an algorithm
C that violates the hardness Conjecture II.1.

Algorithm C takes as input a random LPN problem (b,A),
where A ∈ {0, 1}m×n, b ∈ {0, 1}m, and b = A ·s+e, where
s ∈ {0, 1}n is uniformly random, and e is chosen according
to distribution χ. While in standard LPN, χ represents an i.i.d.
distribution of m bits, the reduction here also applies to the
correlated LPN in Lemma VI.2.

When B makes calls H(·), C faithfully returns the output
of H(·), but records all queries to and responses from H(·).
When B makes calls to GenPOK, C responds using the
following simulated version GenC,POK:

1: procedure {{b′,D′b},D′s} ← GenC,POK(1k)
2: Generate uniformly random ∆s.
3: b′ = b + A ·∆s + enoise = A(s + ∆s) + e + enoise

4: Uniformly generate U1, U2 ∈ {0, 1}l.
5: Insert {{b′, U1}, U2} into a local table T .
6: return {{b′, U1}, U2}.
7: end procedure

The output b′ by GenC,POK corresponds to the LPN prob-
lem with the random secret (s+ ∆s), and is indistinguishable
from the output of GenPOK. Note that the added enoise models
the noisy POK output.4 Assume enoise does not depend on
the constant component of the noise term (e here), so C can
sample the confidence information from N(0, σINTER), and
then sample enoise from N(c, σINTRA) on its own according
to the distributions in Figure 3. Note that this implies that the
POK noise is i.i.d.

Furthermore, since H(·) is a random oracle, the output
U1, U2 by GenC,POK are computationally indistinguishable
from Db,Ds by GenPOK. Therefore, C precisely mimics the
behavior of GenPOK for B, and with non-negligible probabil-
ity, B outputs {{b′,D′b},D′s} that is not in table T and makes
VerPOK accept.

b′ = A · s′ + e′

D′b = H(s′,b′)

D′s = H(s′)

Since H(·) is a random oracle, B must have queried H(·)
with s′ before; otherwise, the probability of D′s = H(s′) must
be negligible. C has recorded all the queries to and responses
from H(·), and thus can retrieve s′ and compute e′.

In order for VerPOK to accept B’s output, e′ must be
distributed according to the confidence information C sampled.
C can then recover e in the same way Recovery does, and

4A POK with i.i.d. noise (assumed in this reduction) is modeled by a
constant set of bits (e in the algorithm) plus some i.i.d. “noise” (enoise in
the algorithm) with some Bernoulli parameter τ . Therefore, the summation
of e + enoise accurately models if the Bernoulli parameter of enoise is τ .

13

then solve for s. If VerPOK accepts B’s output with non-
negligible probability, then C recovers e and s with non-
negligible probability. This contradicts Conjecture II.1.

B. Reduction to PER LPN

The above security proof requires the confidence informa-
tion and enoise be independent of econst. Consider a joint
distribution for m bits, where a subset of m′ bits are always
0, and the remaining m − m′ bits are i.i.d. These m′ bits
correspond to the set of stable bits T from Section V, and
there is perfect correlation between the confidence of a bit
and its value. In this case, the above reduction cannot hold,
since enoise is not independent of e. In this section, we relax
the above requirement to allow dependence between enoise and
econst.

Let us use the intuition from Section V that GenPOK and
VerPOK are able to detect a bit’s confidence information.
Specifically, let us abstract the notion of “stability” and require
that a POK be of the form in Definition VIII.3.

Definition VIII.3. A “(ε2)-threshold POK” is a function
{S0, T0, S1, T1} ← POK such that |e| = m, T0 ⊂ S0 ⊂ [m],
T1 ⊂ S1 ⊂ [m] with the following properties:
• There exist disjoint sets S0, S1 with S0 ∪ S1 = [m] that

may be different upon each measurement of POK.
• There exist subsets T0 ⊂ S0, T1 ⊂ S1 such that Pr(i ∈
S′1|i ∈ T0) < ε2 and Pr(i ∈ S′0|i ∈ T1) < ε2. Define
S′1 and S′0 respectively as the sets S1 and S0 during a
different measurement of POK.

Finally, require that |T0| = θ(m) and |T1| = θ(m), and ε2 ∈
neg(k).5

In previous sections of this paper, we set bits in S0 to
‘0’ and bits in S1 to ‘1’. T0 and T1 were then “stable ‘0”’
and “stable ‘1”’ respectively. Instead, consider that for each
measurement of POK, bits in S0 are assigned to ‘0’, and bits
in S1 are assigned to uniformly random values (cf. GEN Noisy
in Algorithm 2). The set T1 now corresponds to bits that are
uniformly random with high probability on each measurement.
This is illustrated in Figure 4a using rnoise.

Consider Gen NoisyPOK and Ver NoisyPOK, modified ac-
cording to the discussion above. For technical reasons pertain-
ing the proof of Lemma VIII.5, we require that Gen Noisy
and Ver Noisy generate/verify a polynomial number of
{{b, H(s,b)}, H(s)}. The reason for this will become appar-
ent in the proof. Further, we modify Ver NoisyPOK to check
that the stable bits of the POK (the set T0) are not too different
from the bits that are stable in the provided samples (computed
as T̂0, cf. lines 14-17 of Algorithm 2). Namely, Recovery must
succeed when using either T0 or T̂0.

With this modification, many of the bits are thrown away,
so we can ignore their distribution. We require only that a
large enough subset of the bits are replaced with random bits.
We conjecture the following modified LPN problem to be hard,
and name it “Partial Error Reuse LPN” problem, or PER LPN.

Conjecture VIII.4 (PER LPNn,m,u,L). Consider L LPN
problems {bj = A · sj + ej}Lj=1, where L is polynomial in

5ε2 has the same interpretation as in Section V. However, in Section V,
ε2 = 1/n. This is not sufficient for this proof, and we must set ε2 = neg(k).

n. Let sj ∈ {0, 1}n, ej ∈ {0, 1}m, A ∈ {0, 1}m×n, and let
{ej}j follow the joint distribution χU below:

1) Randomly select U ⊂ [m] of size u;
2) Select eji with i 6∈ U according to some joint distribution

χ for each j.
3) Select eji with i ∈ U uniformly from {0, 1} for each j.

There does not exist a PPT algorithm for any χ that runs in
Poly(n, u).

It is important to note that a polynomial number of out-
puts from Gen Noisy concatenated is a PER LPN problem
with overwhelming probability. The bits in T1 for a certain
measurement will remain in S1 across measurements and are
thus made i.i.d. uniform random except with ε2 ∈ neg(k)
probability. This will be the set U in the PER LPN conjecture.
The remaining bits can be arbitrarily distributed according to
the conjecture.

We now are ready to show that PUF Noisy =
{Gen Noisy,Ver Noisy} comprises a Stateless PUF according
to Definition VII.1.

Algorithm 2 Noisy Generate and Verify
1: procedure {{b,Db},Ds} ← Gen NoisyPOK(1k)
2: for i from 1 to L do
3: Query {S0, T0, S1, T1} ← POK.
4: Generate si ∈ {0, 1}n uniformly at random.
5: Set eij to ‘0’ for all j ∈ S0.
6: Set eij to uniform random {0, 1} for all j ∈ S1.
7: Compute bi = A · si + ei.
8: Store {{bi, H(si,bi)}, H(si)} into Tab.
9: end for

10: return Tab.
11: end procedure
1: procedure Ds ← Ver NoisyPOK(Tab)
2: Set L = Length(Tab).
3: Initialize ErrSum = {0}m.
4: Query {S0, T0, S1, T1} ← POK.
5: for each {b,Db} in Tab do
6: Run Recovery (Section IV) to extract s from b

using T0.
7: if Db 6= H(s,b) then
8: return ⊥.
9: end if

10: Add H(s) to HsTab.
11: emeas = A · s− b mod 2.
12: ErrSum = ErrSum + emeas.
13: end for
14: Set eAvgi = 1 for all i : ErrSumi > L/2 and 0

otherwise.
15: Set PrErri = 1/2− |1/2− ErrSumi/L|.
16: Set T̂0 to be the set of indices corresponding to the

m′ minimum PrErri.
17: Run Recovery on T̂0 to recover ŝ.
18: if ŝ 6= s then
19: return ⊥.
20: else
21: return HsTab.
22: end if
23: end procedure

14

Lemma VIII.5. Let k be a security parameter, n = poly(k),
and m ≥ n. If Conjecture VIII.4 is true, there is no PPT A
that has advantage Advs−uprd

PUF Noisy(A) non-negligible in k.

Proof. Given A, we construct B that takes a PER LPN
problem as an argument (PerLPNTab) and returns the secret
vectors of all members in this set.

Algorithm 3 PER LPN Reduction Algorithm B

1: procedure B(PerLPNTab)
2: Tab← A(PerLPNTab)
3: Initialize ErrSum = 0m.
4: for each b′ ∈ Tab do
5: Find s′ from recorded queries by A to H(·).
6: Compute e′ = b′ −A · s′ mod 2
7: ErrSum = ErrSum + e′.
8: end for
9: Set PrErri = 1/2− |1/2− ErrSumi/L|.

10: Set T̂0 to be the set of indices corresponding to the
m′ minimum PrErri.

11: Run Recovery on each instance in PerLPNTab using
T̂0 as the set of stable bits, and return the solutions.

12: end procedure

Whenever A queries Gen Noisy, B answers with a batch of
size L in PerLPNTab (so we write PerLPNTab as A’s input
in Line 2). Since A makes a polynomial number of queries to
Gen Noisy, PerLPNTab has polynomial instances.

Recognize that Lemma VIII.1 still applies, so we do not
need to give A access to Ver Noisy. B also records A’s
calls to H(·) (and can therefore extract each s from each
{H(s,b), H(s)} returned by A).

As mentioned earlier, there exists a PerLPNTab that pre-
cisely mimics outputs of Gen Noisy. Therefore, A finally
produces Tab that will make Ver Noisy accept with non-
negligible probability. Similar to the proof of Lemma VIII.2,
B can then use the recorded queries to H(·) to recover the
error vectors in A’s output.

Next, B recovers the secret subset T̂0 ⊂ [m], i.e., the
stable bits in PerLPNTab, by looking at the distribution of
these errors vectors in A’s output and estimating Pr(e′i = 1)
(Line 9,10 in Algorithm 3). This explains why the protocol
was modified earlier to incorporate a polynomial number of
challenge/response pairs: they are needed in this reduction
to accurately characterize the distribution of each bit. Since
A makes Ver Noisy accept with non-negligible probabil-
ity, Recovery when called with T̂0 will succeed with non-
negligible probability, in which case B solves each instance
in PerLPNTab. This contradicts Conjecture VIII.4.

Lemma Remarks: The above lemma proves security of the
scheme. This proof does not directly rely on the distribution of
the bits in e. However, the correctness of the protocol does rely
on the distribution. I.e., if T̂0 does not approximate T0 (and
therefore, Recovery fails when called with T̂0, then Ver Noisy
does not accept with high probability.

In the case of an i.i.d. Gaussian distribution of e (as
in Section VIII-A), one may prove correctness by showing
explicitly that T̂0 will with high probability cause Recovery to
succeed. We omit this proof here, as it is straightforward.

Further, in the case of the Gaussian distribution (cf. Section
V), we may set ε2 = neg(k). For example, set ε2 =

2−Θ(log2(m)) = neg(k). From Section V-D, this implies
σr = Θ(1/ log(n)), and therefore the number of correctable
errors is O(m/ log(m)) = Õ(m). Further, from Section V-D,
the number of stable bits (i.e., |T1|) is m′ = θ(m). This meets
Definition VIII.3.

Now, it may at first seem as though this approach requires
the same assumption of i.i.d. POK bits as in Section VIII!
This is technically true if one desires a mathematical proof
of correctness. However, the key difference is that both of
the above requirements are empirically verifiable for unknown
distributions.

To see the importance of this distinction, we first point out
that all POKs that the authors are aware of have unknown
distributions, as they are derived from physical systems with
complex internal behavior, which is subsequently affected by
environmental parameters and noise. There has been signifi-
cant effort (especially in the silicon POK case [27], [57], [42],
[40], [49]) to make the POK distribution as close to i.i.d. as
possible. However, it is not possible to prove through empirical
measurements that a POK distribution is i.i.d.

Any mathematical proof of correctness must assume a prop-
erty of the POK distribution, and therefore will ultimately have
to be empirically verified. For example, information theoretic
approaches typically have a min-entropy requirement on the
distribution of the POK bits. This requirement is empirically
verified through measurement of large samples of POKs [48].

In the case of the above stateless PUF construction, we
require first that |T1| = θ(m), ε2 = neg(k). This can be
verified by studying the stability of bits. For example, in
Section IX, we provide evidence that the Gaussian distribution
of bits is correct, and therefore that this is indeed the case.
Further, in Section IX, we observe that 76% of the ring
oscillator bits do not flip across all measurement parameters.
Therefore, we do not believe that the above requirement is
unreasonable.

Second, we require that T̂0 ≈ T0, so that Ver Noisy
accepts with high probability. Again, data in Section IX show
that the independent Gaussian model reasonably approximates
the behavior of the ring oscillator POK, so Ver Noisy will
accept with high probability. However, we note that even if
the POK distribution differs slightly from Gaussian, such a
difference only affects extraction efficiency, not the security
of the construction. Ultimately, in the practical setting, the
true extraction efficiency will be measured and optimized
empirically for a given POK architecture.

C. Stateless PUF Theorem

We are now ready to state the security theorem for the
stateless PUF constructions. For i.i.d. POK outputs (Theorem
VIII.6), the theorem holds under Conjecture II.1. For more
complex distributions (Theorem VIII.7), we use Conjecture
VIII.4.

Theorem VIII.6. Let k be a security parameter, and n =
poly(k). There exists a choice of n, m ≥ n, χ such that
Construction VII.3 is a (m,χ) stateless PUF that is ε-secure
with error δ, with ε = neg(k), δ = neg(k) under either
Conjecture II.1 or Conjecture VIII.4 depending on χ.

Proof. First, recognize that Construction VII.3 is efficient.
Clearly, GenPOK runs in polynomial time. Section V-B shows

15

Temp. Bias
−40◦C 54%
25◦C 52%
105◦C 53%

Temp. σINTRA

−40◦C 24.3 ± 1.3
0◦C 8.9 ± 0.40
70◦C 17.4 ± 0.64
85◦C 24.0 ± 1.0
105◦C 33.7 ± 1.4

TABLE II: (Left) Measured bias of 320 RO pairs at varying
temperatures. (Right) Measured σINTRA for varying tempera-
tures.

VerPOK runs in polynomial time. Second, under either Conjec-
ture II.1, there does not exist any PPT A that gains advantage
Advs−uprd

PUF (A) > ε, where ε = neg(k).

Theorem VIII.7. If POK makes Ver Noisy accept with
probability 1 − δ and has distribution χ obeying Definition
VIII.3, then there exists a choice of n, m ≥ n, such that
{Gen NoisyPOK,Ver NoisyPOK} is a (m, l, χ) stateless PUF
that is ε-secure with error δ, with ε = neg(k) under Conjecture
VIII.4.

Proof. By the statement of the Theorem, the construction
is efficient. Second, Lemma VIII.5 shows that if Conjecture
VIII.4 is true, then there does not exist a PPT A that gains
advantage Advs−uprd

PUF (A) > ε, where ε = neg(k).

IX. CASE STUDY USING A RING OSCILLATOR POK

We will use Ring Oscillator POKs as a case study because
of the easy availability of confidence information (cf. Figure
1). In the case of the RO POK, the differential counts between
the ring oscillators is the confidence information c′i, and the
output bit e′i = Sign(c′i) described in Section II-A.

We have provided a theory explaining the resilience of
the LPN construction to noise and environmental parameters
using this confidence information in Section V. Now, we
use this theory and collected data from a set of 320 pairs
of ring oscillators measured across temperature and voltage
ranges to demonstrate the efficiency of the LPN fuzzy ex-
tractor construction in a concrete fashion. Experiments were
conducted on a Xilinx Virtex 7 Series Field Programmable
Gate Array (FPGA). We measured the differential counts of a
set of 320 ring oscillator pairs in a wide (beyond industrial)
range of temperature and voltage. Three interesting points
are −40◦C@0.95V , 25◦C@1.00V , and 105◦C@1.05V . Other
ranges that we will use are the differential count values at
commercial (0◦C to 70◦C) and extended industrial (−40◦C
to 85◦C). The σINTRA/σINTER ratios improve as the temper-
ature range is reduced.

We note that 24% of the ring oscillator pairs produce
different responses in the environmental range; this is the
typical O(m) error case for such circuits under environmental
stresses in the ranges shown.

We first measured the bias of the RO counts across tem-
perature as shown in Table II. Therefore, our pessimistic
estimate of bias ignoring correlation effects as 45% (or 55%
equivalently) is correct.

These differential count values are distributed according to
the distribution discussed in Section V with variance σ2

INTER.
We verified for each of these temperatures that the distri-
bution of differential counts was Gaussian, as we assumed
in Section V. Each of the fits from which parameters are
derived has a reduced χ2 ≈ 1, indicating that the Gaussian

σINTER= 85.1±2.4

μINTER= 5.7±3.2

-
43
0

-
39
0

-
35
0

-
31
0

-
27
0

-
23
0

-
19
0

-
15
0

-
11
0

-
70

-
30 10 50 90 13
0

17
0

21
0

25
00

20

40

60

80

100

Diff. Counts

#
O
cc
ur
re
nc
es

Measurement of σINTER

σINTRA= 33.7±1.4

μINTRA= 0.2±1.8

-
11
0

-
10
0

-
90

-
80

-
70

-
60

-
50

-
40

-
30

-
20

-
10 0 10 20 30 40 50 60 70 80 90 10
00

5

10

15

20

25

30

Diff. Counts

#
O
cc
ur
re
nc
es

Measurement of σINTRA (T=105°C)

Fig. 5: (Top) Measurement of σINTER through the es-
timation of the distribution of differential counts across
320 RO pairs across room temperature and the fast and
slow voltage/temperature corners. (Bottom) Measurement of
σINTRA by subtracting differential counts at 25◦C@1V from
105◦C@1.05V .

model is a good fit to the data within experimental error.
Moreover, neither the mean nor variance of the distribution
changed significantly over temperature or voltage. Therefore,
we describe the distribution in terms of a single mean, variance
(µINTER, σINTER) shown in Figure 5. To measure µINTRA

and σINTRA, one must measure the distribution of how these
differential counts change regardless of the differential count
measured at provisioning. This distribution is Pr(c′i−ci). We
can calculate this distribution by using data from different ring
oscillators. We then recognize that the standard deviation of
this distribution is σINTRA.

To accomplish this, we used room temperature as a baseline
(this would be the condition in which the challenge-response
pairs would be initially generated), and measured how the
differential counts change as temperature/voltage vary for
each of the 320 ring oscillator pairs. These data provide a
statistical distribution of how much the differential count value
will change with a change in environmental parameters (the
distribution described by σINTRA, µINTRA in Section V).

The distribution at 105◦C is shown in Figure 5. The
measurements at various temperatures are shown in Table
II. It is important to note that although in Section V we
did not present any theoretical justification for the reason
why the distribution of counts of a single ring oscillator pair
over relevant environmental conditions would be Gaussian,
this does turn out to be the case within experimental error
as demonstrated in Figure 5. Using these measurements, we
calculate the ratio σINTRA

σINTER
for commercial (0◦C to 70◦C) as

0.20, extended industrial (−40◦C to 85◦C) as 0.29, and the

16

Temp. Erroneous
Bits

σINTRA
σINTER

Ring Osc.
Pairs (= m)

0◦C − 70◦C 9% 0.20 450
−40◦C − 85◦C 21% 0.29 770
−40◦C − 105◦C 24% 0.40 1870

TABLE III: Summary of σINTRA

σINTER
and resources required for an

LPN fuzzy extractor over the specified temperature range. The
percentage of erroneous bits over environmental conditions
and associated ratio is displayed. Extraction succeeds with
error probability < 10−6 and a security parameter of 128.

maximum temperature range our experiment could support
(−40◦C to 105◦C) as 0.40. This is summarized in Table III.

We now present an analysis of the resource requirements
(number of RO pairs) of our LPN fuzzy extractor scheme with
a security parameter of 128, and probability of error 10−6 over
the above temperature ranges.

First, we remark that our theoretical construction in Section
IV is far too conservative for practical purposes. In practice,
we simply choose the most stable m′ = n bits, and most likely
there are at most t′ ≤ 1 error bits in them. For example, if
ε2 = 3× 10−6, a simple binomial distribution analysis shows
that Pr(t′ > 1) < 10−6. Therefore, an exhaustive search over
the error bit with a Gaussian elimination operations for each
will suffice.

Plugging ε1 = 10−6, ε2 = 3×10−6, m′ = n = 128 (giving
a security parameter of 128) and σINTRA

σINTER
values into Equations

3, 4, we compute m (the total number of RO pairs) for various
temperature ranges, also shown in Table III.

Note that the bits of the extracted bitstring are not all
simultaneously pseudorandom with security parameter 128. In
order to obtain a pseudorandom bitstring for use as a key, one
must use a hash function that approximates a random oracle.
To avoid the use of such a function, one may also double
the LPN secret size to n = 256 and then select an arbitrary
subset of 128 bits. These 128 bits would be pseudorandom by
the result from [1].

Note that our analysis is still pessimistic (e.g., assuming
that all stable bits have error probability ε2 even though most
bits have much lower error probability) and our construction is
unoptimized. Even with an unoptimized implementation, these
results compare very well with the works described in Section
III. For example, PUFKY [48] requires 2052 helper data bits
for a 10◦C − 80◦C temperature range, compared to our 450
helper data bits for a comparable 0◦C − 70◦C temperature
range, and 770 helper data bits for a much wider temperature
range -40◦C − 85◦C. Moreover, unlike most prior work on
information theoretic extractors, our LPN fuzzy extractor can
be scaled to higher noise settings simply by increasing m
without affecting the security argument.

X. CONCLUSION

We have presented a computationally secure construction of
a stateless Physical Unclonable Function in this paper based on
precise hardness assumptions. This has been an open problem
for over thirteen years since silicon PUFs were introduced in
2002 [26].

Our construction is secure in the random oracle model under
the difficulty of standard Learning Parity with Noise (LPN)
and a variant LPN problem. Our construction is noise-free; the
responses during challenge-response generation and successful

verification match exactly. This means that an entity with a
single challenge-response pair can authenticate the PUF any
number of times by treating the response as a shared secret. All
the protocols described in [25] are enabled by our construction.

In order to construct a noise-free PUF, we presented the
first construction of a computational fuzzy extractor with a
trapdoor in this paper, using the standard LPN problem as
the hard problem. The trapdoor allows our construction to
correct Θ(m) errors in polynomial time. We relaxed the i.i.d.
assumptions on the POK outputs showing that if correlation
can be estimated, the only change to the fuzzy extractor
construction is in the selection of parameters.

We show how error profiles obtained from a Field Pro-
grammable Gate Array implementation of PUFs subject to
wide environmental variation can be efficiently corrected using
helper data sizes that are substantially smaller than prior art.

Lastly, we remark that certain human biometrics may also
produce confidence information. Ongoing work includes test-
ing our constructions on biometrics.

Acknowledgement: This research was partially supported
by the National Science Foundation. Marten van Dijk was
supported in part by AFOSR MURI under award number
FA9550-14-1-0351.

REFERENCES

[1] AKAVIA, A., GOLDWASSER, S., AND VAIKUNTANATHAN, V. Simulta-
neous hardcore bits and cryptography against memory attacks. In Theory
of Cryptography. Springer, 2009, pp. 474–495.

[2] APPLEBAUM, B., BARAK, B., AND WIGDERSON, A. Public-key
cryptography from different assumptions. In Proceedings of the forty-
second ACM symposium on Theory of computing (2010), ACM, pp. 171–
180.

[3] APPLEBAUM, B., CASH, D., PEIKERT, C., AND SAHAI, A. Fast
Cryptographic Primitives and Circular-Secure Encryption Based on Hard
Learning Problems. In Advances in Cryptology - CRYPTO 2009,
S. Halevi, Ed., vol. 5677 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2009, pp. 595–618.

[4] ARMKNECHT, F., MAES, R., SADEGHI, A., STANDAERT, O.-X., AND
WACHSMANN, C. A Formalization of the Security Features of Physical
Functions. In IEEE Symposium on Security and Privacy (S&P) (2011),
pp. 397–412.

[5] ARORA, S., AND GE, R. New algorithms for learning in presence
of errors. In Automata, Languages and Programming. Springer, 2011,
pp. 403–415.

[6] BECKER, G. T. The Gap Between Promise and Reality: On the
Insecurity of XOR Arbiter PUFs. In Cryptographic Hardware and
Embedded Systems 2015 (CHES 2015) (2015).

[7] BECKER, G. T., WILD, A., AND GÜNEYSU, T. Security Analysis of
Index-Based Syndrome Coding for PUF-Based Key Generation. In IEEE
International Symposium on Hardware Oriented Security and Trust,
HOST 2015 (May 2015).

[8] BERNSTEIN, D. J., AND LANGE, T. Never trust a bunny. In Radio
Frequency Identification. Security and Privacy Issues. Springer, 2013,
pp. 137–148.

[9] BLUM, A., FURST, M., KEARNS, M., AND LIPTON, R. Cryptographic
Primitives Based on Hard Learning Problems. In Advances in Cryptology
- CRYPTO 93, D. Stinson, Ed., vol. 773 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1994, pp. 278–291.

[10] BLUM, A., KALAI, A., AND WASSERMAN, H. Noise-tolerant learning,
the parity problem, and the statistical query model. Journal of the ACM
(JACM) 50, 4 (2003), 506–519.

[11] BOGDANOV, A., KNEŽEVIĆ, M., LEANDER, G., TOZ, D., VARICI, K.,
AND VERBAUWHEDE, I. SPONGENT: A Lightweight Hash Function.
In Cryptographic Hardware and Embedded Systems - CHES 2011,
vol. 6917 of Lecture Notes in Computer Science. 2011, pp. 312–325.

[12] BOGOS, S., TRAMER, F., AND VAUDENAY, S. On solving lpn using bkw
and variants. Tech. rep., Cryptology ePrint Archive, Report 2015/049,
2015.

[13] BOWYER, K. W., HOLLINGSWORTH, K., AND FLYNN, P. J. Image
understanding for iris biometrics: A survey. Computer vision and image
understanding 110, 2 (2008), 281–307.

[14] BOYEN, X., DODIS, Y., KATZ, J., OSTROVSKY, R., AND SMITH,
A. Secure Remote Authentication Using Biometric Data. In EURO-
CRYPT’05 (2005), pp. 147–163.

17

[15] BRINGER, J., CHABANNE, H., COHEN, G., KINDARJI, B., AND
ZÉMOR, G. Optimal iris fuzzy sketches. In Biometrics: Theory,
Applications, and Systems, 2007. BTAS 2007. First IEEE International
Conference on (2007), IEEE, pp. 1–6.

[16] CHIANI, M., AND DARDARI, D. Improved exponential bounds and
approximation for the q-function with application to average error
probability computation. In Global Telecommunications Conference,
2002. GLOBECOM’02. IEEE (2002), vol. 2, IEEE, pp. 1399–1402.

[17] DAMGÅRD, I., AND PARK, S. Is Public-Key Encryption Based on LPN
Practical? IACR Cryptology ePrint Archive 2012 (2012), 699.

[18] DELVAUX, J., AND VERBAUWHEDE, I. Side Channel Modeling Attacks
on 65nm Arbiter PUFs Exploiting CMOS Device Noise. In 6th IEEE
International Symposium on Hardware-Oriented Security and Trust -
HOST 2013 (2013), pp. 137 – 142.

[19] DELVAUX, J., AND VERBAUWHEDE, I. Attacking PUF-Based Pattern
Matching Key Generators via Helper Data Manipulation. In Topics in
Cryptology - CT-RSA 2014, vol. 8366 of Lecture Notes in Computer
Science. 2014, pp. 106–131.

[20] DODIS, Y., KANUKURTHI, B., KATZ, J., REYZIN, L., AND SMITH, A.
Robust Fuzzy Extractors and Authenticated Key Agreement From Close
Secrets. Information Theory, IEEE Transactions on 58, 9 (Sept 2012),
6207–6222.

[21] DODIS, Y., REYZIN, L., AND SMITH, A. Fuzzy extractors: how to
generate strong keys from biometrics and other noisy data. In Advances
in Cryptology - Eurocrypt 2004 (2004).

[22] FULLER, B., MENG, X., AND REYZIN, L. Computational fuzzy
extractors. In Advances in Cryptology-ASIACRYPT 2013. Springer,
2013, pp. 174–193.

[23] GAO, M., LAI, K., AND QU, G. A Highly Flexible Ring Oscillator
PUF. In The 51st Annual Design Automation Conference 2014, DAC
’14 (2014), pp. 89:1–89:6.

[24] GASSEND, B. Physical random functions. Master’s thesis, Mas-
sachusetts Institute of Technology. Dept. of Electrical Engineering and
Computer Science., Jan. 2003.

[25] GASSEND, B., CLARKE, D., VAN DIJK, M., AND DEVADAS, S. Con-
trolled Physical Random Functions . In Proceedings of 18th Annual
Computer Security Applications Conference (Silver Spring, MD, De-
cember 2002), Applied Computer Security Associates (ACSA).

[26] GASSEND, B., CLARKE, D., VAN DIJK, M., AND DEVADAS, S. Silicon
physical random functions. In Proceedings of the 9th ACM conference
on Computer and communications security (CCS) (2002).

[27] GASSEND, B., CLARKE, D., VAN DIJK, M., AND DEVADAS, S. Delay-
based circuit authentication and applications. In Proceedings of the
2003 ACM Symposium on Applied Computing (March 2003). Extended
version in Concurrency and Computation: Practice and Experience.

[28] GRAYBEAL, S., AND MCFATE, P. Getting out of the STARTing block.
Scientific American 261, 6 (1989).

[29] GUIN, U., HUANG, K., DIMASE, D., CARULLI, J. M., TEHRANIPOOR,
M., AND MAKRIS, Y. Counterfeit Integrated Circuits: A Rising Threat
in the Global Semiconductor Supply Chain. Proceedings of the IEEE
102, 8 (2014), 1207–1228.

[30] GUO, Q., JOHANSSON, T., AND LÖNDAHL, C. Solving lpn using
covering codes. In Advances in Cryptology–ASIACRYPT 2014. Springer,
2014, pp. 1–20.

[31] HILLER, M., MERLI, D., STUMPF, F., AND SIGL, G. Complementary
IBS: Application Specific Error Correction for PUFs. In IEEE Int.
Symposium on Hardware-Oriented Security and Trust (2012), IEEE.

[32] HILLER, M., WEINER, M., RODRIGUES LIMA, L., BIRKNER, M.,
AND SIGL, G. Breaking Through Fixed PUF Block Limitations with
Differential Sequence Coding and Convolutional Codes. In Proceedings
of the 3rd International Workshop on Trustworthy Embedded Devices
(2013), TrustED ’13, pp. 43–54.

[33] HOLCOMB, D., BURLESON, W., AND FU, K. Power-up SRAM State as
an Identifying Fingerprint and Source of True Random Numbers. IEEE
Transactions on Computers 58, 9 (September 2009), 1198–1210.

[34] HOPPER, N. J., AND BLUM, M. Secure human identification protocols.
In Advances in cryptology: ASIACRYPT 2001. Springer, 2001, pp. 52–
66.

[35] HOSPODAR, G., MAES, R., AND VERBAUWHEDE, I. Machine Learning
Attacks on 65nm Arbiter PUFs: Accurate Modeling poses strict Bounds
on Usability. In 4th IEEE International Workshop on Information
Forensics and Security (WIFS 2012) (2012), pp. 37 – 42.

[36] KARAKOYUNLU, D., AND SUNAR, B. Differential template attacks
on PUF enabled cryptographic devices. In Information Forensics and
Security (WIFS), 2010 IEEE International Workshop on (Dec 2010),
pp. 1–6.

[37] KIROVSKI, D. Anti-counterfeiting: Mixing the physical and the ditigal
world. In Towards Hardware-Intrinsic Security (2010), A.-R. Sadeghi
and D. Naccache, Eds., Springer, pp. 223–233.

[38] KOEBERL, P., LI, J., RAJAN, A., AND WU, W. Entropy loss in PUF-
based key generation schemes: The repetition code pitfall. In Hardware-

Oriented Security and Trust (HOST), 2014 IEEE International Sympo-
sium on (May 2014), pp. 44–49.

[39] KRAWCZYK, H., BELLARE, M., AND CANETTI, R. HMAC: Keyed-
Hashing for Message Authentication.

[40] KUMAR, R., AND BURLESON, W. On design of a highly secure
PUF based on non-linear current mirrors. In 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust, HOST 2014,
Arlington, VA, USA, May 6-7, 2014 (2014), pp. 38–43.

[41] LEVIEIL, É., AND FOUQUE, P.-A. An improved lpn algorithm. In
Security and Cryptography for Networks. Springer, 2006, pp. 348–359.

[42] LIM, D. Extracting secret keys from integrated circuits. Master’s thesis,
Massachusetts Institute of Technology. Dept. of Electrical Engineering
and Computer Science., May 2004.

[43] LIM, D., LEE, J. W., GASSEND, B., SUH, G. E., VAN DIJK, M., AND
DEVADAS, S. Extracting secret keys from integrated circuits. IEEE
Trans. VLSI Syst. 13, 10 (2005), 1200–1205.

[44] LOFSTROM, K., DAASCH, W. R., AND TAYLOR, D. IC Identification
Circuit Using Device Mismatch. In Proceedings of ISSCC 2000
(February 2000), pp. 372–373.

[45] LYUBASHEVSKY, V. The parity problem in the presence of noise,
decoding random linear codes, and the subset sum problem. In Approx-
imation, Randomization and Combinatorial Optimization. Algorithms
and Techniques. Springer, 2005, pp. 378–389.

[46] MAES, R., TUYLS, P., AND VERBAUWHEDE, I. Low-Overhead Im-
plementation of a Soft Decision Helper Data Algorithm for SRAM
PUFs. In Cryptographic Hardware and Embedded Systems (CHES)
(2009), pp. 332–347.

[47] MAES, R., TUYLS, P., AND VERBAUWHEDE, I. Soft Decision Helper
Data Algorithm for SRAM PUFs. In Proceedings of the 2009 IEEE
International Conference on Symposium on Information Theory - Volume
3 (2009), ISIT’09, pp. 2101–2105.

[48] MAES, R., VAN HERREWEGE, A., AND VERBAUWHEDE, I. PUFKY: A
Fully Functional PUF-based Cryptographic Key Generator. In Proceed-
ings of the 14th International Conference on Cryptographic Hardware
and Embedded Systems (2012), CHES’12, pp. 302–319.

[49] ORSHANSKY, M. Physically unclonable functions based on non-
linearity of sub-threshold operation, 2015. US Patent 8,938,069.

[50] PAPPU, R. Physical One-Way Functions. PhD thesis, Massachusetts
Institute of Technology, 2001.

[51] PARAL, Z., AND DEVADAS, S. Reliable and efficient PUF-based key
generation using pattern matching. In IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST) (2011), pp. 128–133.

[52] REGEV, O. On lattices, learning with errors, random linear codes, and
cryptography. Journal of the ACM (JACM) 56, 6 (2009), 34.

[53] RÜHRMAIR, U., DEVADAS, S., AND KOUSHANFAR, F. Security based
on Physical Unclonability and Disorder. In Introduction to Hardware
Security and Trust, M. Tehranipoor and C. Wang, Eds. Springer, 2012,
ch. 4, pp. 65–102.

[54] RÜHRMAIR, U., SEHNKE, F., SÖLTER, J., DROR, G., DEVADAS, S.,
AND SCHMIDHUBER, J. Modeling attacks on physical unclonable
functions. In Proceedings of the 17th ACM conference on Computer
and communications security (CCS) (2010), ACM, pp. 237–249.

[55] RÜHRMAIR, U., SÖLTER, J., SEHNKE, F., XU, X., MAHMOUD, A.,
STOYANOVA, V., DROR, G., SCHMIDHUBER, J., BURLESON, W., AND
DEVADAS, S. PUF Modeling Attacks on Simulated and Silicon Data.
Information Forensics and Security, IEEE Transactions on 8, 11 (Nov
2013), 1876–1891.

[56] SUH, G. E. AEGIS: A Single-Chip Secure Processor. PhD thesis,
Massachusetts Institute of Technology. Dept. of Electrical Engineering
and Computer Science., Aug. 2005.

[57] SUH, G. E., AND DEVADAS, S. Physical unclonable functions for
device authentication and secret key generation. In ACM/IEEE Design
Automation Conference (DAC) (2007).

[58] TOBISCH, J., AND BECKER, G. T. On the Scaling of Machine Learning
Attacks on PUFs with Application to Noise Bifurcation. In Proceedings
of RFIDSec 2015 (2015).

[59] YU, M.-D. M., AND DEVADAS, S. Secure and robust error correction
for physical unclonable functions. IEEE Design and Test of Computers
27 (2010), 48–65.

[60] YU, M.-D. M., M’RAÏHI, D., SOWELL, R., AND DEVADAS, S.
Lightweight and Secure PUF Key Storage Using Limits of Machine
Learning. In Cryptographic Hardware and Embedded Systems (CHES).
2011, pp. 358–373.

[61] YU, M. M., HILLER, M., AND DEVADAS, S. Maximum-likelihood
decoding of device-specific multi-bit symbols for reliable key generation.
In IEEE International Symposium on Hardware Oriented Security and
Trust, HOST 2015 (2015), pp. 38–43.

	Introduction
	Background and Motivation
	Physically Obfuscated Keys
	Overview of our Approach
	Our Contributions
	Organization

	Background
	Ring Oscillator POK
	Learning Parity with Noise

	Related Work
	PUF/POK Proposals
	Error Correction for Silicon POKs
	Fuzzy Extractors for Silicon POKs
	Computational Fuzzy Extractors
	Helper Data Manipulation

	Fuzzy Extractor Using LPN
	Intuitive Description
	Detailed Construction

	Noise-Avoiding Trapdoors
	Fabrication/Provisioning
	Projection/Extraction and Showing the ``Trapdoor''
	Setting m
	Improving on the Trapdoor

	LPN Fuzzy Extractor Security Analysis and Assumptions
	Assumptions on POK Outputs
	Security Parameter Derivation

	Stateless PUF Construction
	Stateless PUF Definition
	Our Construction
	Remarks
	Blocking Malicious Challenges
	Hash Function Requirements
	Controlled PUF

	Stateless PUF Security Analysis and Assumptions
	Reduction to LPN Assuming Independence Between Confidence and econst
	Reduction to PER_LPN
	Stateless PUF Theorem

	Case Study using a Ring Oscillator POK
	Conclusion
	References

