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Abstract

Differing inputs obfuscation (diO) is a strengthening of indistinguishability obfuscation (iO) that
has recently found applications to improving the efficiency and generality of obfuscation, functional
encryption, and related primitives. Roughly speaking, a diO scheme ensures that the obfuscations of
two efficiently generated programs are indistinguishable not only if the two programs are equivalent,
but also if it is hard to find an input on which their outputs differ. The above “indistinguishability”
and “hardness” conditions should hold even in the presence of an auxiliary input that is generated
together with the programs.

The recent works of Boyle and Pass (ePrint 2013) and Garg et al. (Crypto 2014) cast serious
doubt on the plausibility of general-purpose diO with respect to general auxiliary inputs. This
leaves open the existence of a variant of diO that is plausible, simple, and useful for applications.

We suggest such a diO variant that we call public-coin diO. A public-coin diO restricts the
original definition of diO by requiring the auxiliary input to be a public random string which is
given as input to all relevant algorithms. In contrast to standard diO, we argue that it remains
very plausible that current candidate constructions of iO for circuits satisfy the public-coin diO
requirement.

We demonstrate the usefulness of the new notion by showing that several applications of diO
can be obtained by relying on the public-coin variant instead. These include constructions of
succinct obfuscation and functional encryption schemes for Turing Machines, where the size of the
obfuscated code or keys is essentially independent of the input-length, running time and space.



1 Introduction

General-purpose obfuscation refers to the concept of transforming an arbitrary program so that
its functionality is preserved, but otherwise rendering the program “unintelligible.” This concept
has intrigued cryptographers for decades, and led to multiple attempts at formalization (most no-
tably [BGI+12]). A critical goal in obfuscation research has been to identify the strongest notions of
obfuscation that are plausible and have wide applicability. General-purpose obfuscation, however, has
proven to be perched precariously between possibility and impossibility.

On the one extreme, virtual black-box obfuscation (VBB) is an ideal form of obfuscation that cap-
tures the intuitive notion of obfuscation and often can be directly used in applications. Unfortunately,
this notion is impossible in the sense that it provably cannot be realized for certain contrived classes
of programs [BGI+12], or for quite large classes of programs under contrived auxiliary inputs [GK05].

On the other extreme, the most liberal notion of general-purpose obfuscation is indistinguishability
obfuscation (iO) [BGI+12, GR07]. An iO scheme for a class of “programs” is an efficient randomized
algorithm that maps any program P into a functionally equivalent obfuscated program P ′ such that
if P1 and P2 compute the same function then their obfuscations P ′1 and P ′2 are computationally
indistinguishable.

The first plausible construction of a general-purpose iO scheme was given in 2013 by Garg et
al. [GGH+13b]. This construction and similar ones from [BR14, BGK+14] render the existence of an
iO scheme a plausible assumption, since there are currently no attacks or other evidence suggesting
that these constructions fail to meet the iO requirements. In particular, no theoretical impossibility
results are known for iO schemes even for contrived classes of programs and auxiliary inputs.

On the downside, the security guarantee of iO appears to be too weak for most natural applica-
tions of obfuscation. A recent line of work, originating from [GGH+13b, SW14], has made impressive
progress on applying iO towards a wide array of cryptographic applications. However, these appli-
cations are still not as broad as one might expect, and the corresponding constructions and their
analysis are significantly more complex than those that could be obtained from an ideal obfuscation
primitive. Indeed, this may be the case because the definition of iO seems to capture only a quite
minimal property of obfuscation.

In search of the “strongest plausible assumption.” The above limitations of iO motivate the
search for stronger notions of obfuscation that support more applications and give rise to simpler con-
structions and security proofs. Such a stronger notion should be plausible, in the sense that current
candidate obfuscation constructions can be conjectured to satisfy the stronger requirements without
contradicting other theoretical or empirical evidence. Another important feature is succinct descrip-
tion, ruling out contrived notions whose security requirements refer separately to each application.
This leads to the following question, which is at the center of our work:

Is there a plausible, useful, and succinctly described notion of obfuscation that captures stronger
security requirements than indistinguishability obfuscation?

Differing inputs obfuscation. A seemingly promising positive answer to our question was given
by the notion of differing inputs obfuscation (diO). First proposed in [BGI+12] and recently revisited
in [ABG+13, BCP14], diO has found a diverse array of applications that do not seem to follow
from traditional iO (see below for more details). Roughly speaking, a diO scheme ensures that the
obfuscations of two efficiently generated programs P1 and P2 are indistinguishable not only if they
compute the same function, but also if it is hard for an adversary to find an input x on which the two
programs differ, namely x such that P1(x) 6= P2(x). The above “indistinguishability” and “hardness”
conditions should hold even in the presence of an auxiliary input aux that is generated together with
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the programs and is given as input both to the adversary trying to find an input x as above and
to the distinguisher who tries to distinguish between the two obfuscated programs. Indeed, different
applications give rise to different distributions of aux.

However, the recent works of [BP13, GGHW14] cast serious doubts on the plausibility of general-
purpose diO with respect to general auxiliary inputs. In particular, [GGHW14] showed that the
existence of diO with respect to arbitrary auxiliary inputs contradicts a certain “special-purpose
obfuscation” conjecture. At a high level, the impossibility result of [GGHW14] proceeds as follows:
Consider a pair of programs P1 and P2 that produce different one-bit outputs only on inputs x = (m,σ)
that consist of valid message-signature pairs with respect to a fixed unforgeable signature scheme
verification key. Now we consider another program D which takes a program P as input, and then
hashes P to compute m = h(P ) together with a signature σ on m. It then feeds x = (m,σ) as
input to P , and outputs the first bit of P (x). Now, the auxiliary input given to the adversary will
be a “special-purpose obfuscation” of this program D. The special-purpose obfuscation conjecture
of [GGHW14] is that even given this auxiliary input, it is still hard for the adversary to obtain any
valid message-signature pair. This assumption seems quite plausible, for instance if D is obfuscated
using the obfuscators of [GGH+13b, BR14, BGK+14]. Now, it is evident that the adversary can
distinguish between any obfuscations of P1 and P2 using the auxiliary input, and yet by the special-
purpose assumption, the adversary cannot compute any valid message-signature pair, and therefore
cannot find a differing input.

What causes impossibility for diO? If we would like to consider general notions of obfuscation
that capture security requirements beyond indistinguishability obfuscation, it is imperative that we
understand the roots of impossibility for diO. Indeed, it is not difficult to evade the impossibility
results of [BP13, GGHW14] by simply assuming that diO only holds with respect to specific auxiliary
input distributions, as has been suggested in [ABG+13, BCP14, BP13]. However, this approach would
yield disparate special-purpose variants of the diO assumption for each potential application scenario,
with little clarity on why any particular such assumption should be valid. This would defeat our
goal of obtaining a general and succinctly described assumption. Therefore, we seek to understand
the essential flaw that the works of [BP13, GGHW14], and others like it, can exploit using auxiliary
inputs.

Our starting point is the suggestion, made in several previous works [BCP14, BP13, BCCT13,
BCPR14], to specifically consider an auxiliary input that is uniformly random, since at least some
applications of diO and other suspect primitives seem to work with just uniformly random auxiliary
inputs. This certainly seems a great deal safer, and does avoid the specific impossibility results known.
However, our starting observation is that even a uniformly random auxiliary input could potentially
be problematic in that the auxiliary input could be chosen so that it is the output of a one-way
permutation – thus there would still be a secret about the auxiliary input that is hidden from the
adversary. Although we don’t currently see a way to exploit this to obtain an impossibility result,
could this eventually lead to trouble?

Indeed, in the negative results of [BP13, GGHW14], and similarly in other impossibility results
using auxiliary inputs (e.g. [GK05]), it is critical that the auxiliary input can contain trapdoor infor-
mation. In other words, secrets can be used to choose the auxiliary input, and these secrets are not
themselves revealed to the adversary. (In the case of [GGHW14], this trapdoor information includes
the secret signing key of the signature scheme, and the randomness used to obtain the obfuscation
of the program D.) Our objective, then, is to formulate a notion of diO that avoids this possibility
altogether.
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Public-coin differing inputs obfuscation. Building upon the observations above, we introduce
the notion of public-coin diO. A public-coin diO restricts the original definition of diO by requiring
the auxiliary input aux to be the actual random coins that were given to the program that sampled
P1 and P2. Thus, in public-coin diO, the auxiliary input is not chosen by a sampling algorithm, but
rather the auxiliary input is simply a set of public coins that are made available to all algorithms. In
particular, this means that it must be hard to find an input x such that P1(x) 6= P2(x) even given
all information about how P1 and P2 were generated. This rules out the possibility of planting a
trapdoor in the auxiliary input, an option that was critical for proving the negative evidence against
diO [BP13, GGHW14].

Indeed, we know of no evidence of impossibility for public-coin diO. The public coin restriction
appears to cut a wide path around the impossibility result of [GGHW14]. Intuitively, public-coin
diO requires that even “nature” – which is computationally bounded but all-seeing – cannot find any
inputs on which the two programs P1 and P2 will differ. This is important because not only [BP13,
GGHW14], but also all previous impossibility results on VBB obfuscation (e.g [BGI+12, GK05]) used
the input/output behavior of the program to plant hidden inputs on which the output of the program
is too revealing. But in public-coin diO, the existence of such planted inputs would automatically
rule out any security guarantee from diO, since given knowledge of these planted inputs it is easy
to find a differing input. Thus, intuitively speaking, this suggests that an impossibility result for
public-coin diO would need to find actual weaknesses in the obfuscation mechanism itself – some way
to distinguish obfuscations that does not use the input/output behavior of the underlying programs
in any way. Existing security proofs in generic1 models [BR14, BGK+14] offer strong evidence that
such an impossibility result is unlikely to exist.

We also view our public coin restriction as being a natural limitation to place on diO. Indeed,
while our notion is novel in the context of obfuscation, it is reminiscent of (but also quite different
from) other scenarios in cryptography where the public-coin restriction was introduced in order to
prevent the existence of trapdoor information. For example, in the context of trapdoor permutations,
it was observed that allowing the input sampler to use general auxiliary information can lead to
problematic constructions technically satisfying the definition of a trapdoor permutation but rendering
applications of trapdoor permutations insecure [GR13]. To prevent this, the notion of enhanced
trapdoor permutations limits the input samplers to be given only public coins as input. Separately,
in the context of collision-resistant hash functions, the distinction between secret-coin and public-coin
collision-resistant hash families was studied in [HR04], where it was noted that some applications of
collision-resistant hashing require public coins, since secret coins may enable the party picking the
key to know impermissible trapdoor information. While these other public-coin primitives are quite
different in nature from ours, we view our notion of public-coin diO to be as natural a variant as
enhanced trapdoor permutations or public-coin collision resistant hash functions.

Bellare, Stepanovs, and Tessaro [BST14] presented a definitional framework for diO where security
of obfuscation is parameterized by a class of samplers (instead of applying for all circuits). This allows
one to define and study restricted forms of diO by considering different types of samplers. The central
object in this framework is then to identify appropriate types of samplers (which, for example, do not
suffer from the negative results of [BP13, GGHW14]).

Our notion of public-coin diO can be cast in the framework of [BST14] by considering samplers
that are public-coin. We put forward the case of public-coin samplers as an important notion worthy
of further study. Our work demonstrates that the public-coin case is of general interest, evades the
implausibility results of [BP13, GGHW14] at a fundamental level, and yields several applications which
we discuss shortly.

1The idealized adversary model considered in [BR14, BGK+14] is a generic model for multilinear maps [GGH13a,
CLT13].
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On non-uniformity. Often, because auxiliary input can also capture non-uniformity, the issues of
auxiliary input and non-uniformity are treated jointly in definitions. However, since we are introducing
nontrivial constraints on auxiliary inputs, we deal with non-uniformity separately. We formulate our
definitions to separate out the contributions of auxiliary input (which is a public coin input to the
potentially non-uniform sampler), and non-uniform advice. Specifically, we take care to ensure that
no secrets can be embedded in the non-uniform advice provided to the sampler, by allowing the non-
uniform advice given to the differing-input finding algorithm to depend arbitrarily on the non-uniform
advice given to the sampler. Thus, in particular, the non-uniform advice given to the differing-input
finding algorithm can contain all secrets present in the non-uniform advice given to the sampler.

Applications of public-coin diO. While the public-coin limitation allows us to give a general
definition that avoids all known techniques for proving impossibility, one may wonder whether this
limitation also rules out known applications of diO. Indeed, at first glance, the situation may seem
quite problematic, since an auxiliary input is typically used to capture the partial progress of a security
reduction, which will almost always contain various secrets that must be kept from the adversary.
Indeed, existing security proofs for applications of diO [ABG+13, BCP14] proceed along these lines,
and therefore do not carry over for public-coin diO.

In order to make use of public-coin diO, we need to ensure that a stronger property is true in
the application scenario and throughout the hybrids in the security proof where the diO property is
being used: We need to ensure that whenever the diO property is used, the two programs P1 and P2

being considered have the property that it is infeasible to find a differing input between P1 and P2

even given all the randomness used in the entire description of the hybrid experiment (except for the
random coins of the obfuscation itself). This is sufficient: When using the diO property across two
hybrids, we need that the obfuscations are indistinguishable to an all-knowing adversary that is privy
to all randomness in these hybrids (except for the random coins of the obfuscation itself). But if the
obfuscations are indistinguishable to an all-knowing adversary, then they are also indistinguishable to
a more ignorant adversary. Thus, even if some secrets need to be hidden from the adversary in other
hybrid experiments, the proof of security can go through.

Despite the flexibility of the above approach, there are still applications of diO in the literature
where we do not know how to use public-coin diO in a similar way, because of the nature of the
programs being obfuscated. For example, in [BCP14], diO is used to obtain full security for functional
encryption by obfuscating programs that deal explicitly with signatures, where a secret verification key
of a signature scheme is hidden within obfuscated programs, and given the signing key it is possible to
discover differing inputs. Since trapdoors are crucial in this approach, we do not know how to apply
public-coin diO. The fact that public-coin diO does not generically replace diO for all applications
illustrates the nontrivial nature of our restriction.

Nevertheless, we can use public-coin diO to obtain several interesting applications, as we now detail.
Separate from the applications below, building on our work, public-coin diO has been used to replace
the need for diO to achieve constant-round concurrent zero knowledge based on obfuscation [PPS15].

Obfuscating Turing Machines / RAMs with unbounded inputs. Generally, obfuscation has
been studied in the context of circuits [BGI+12, GGH+13b]. Of course, given a bound on both (1) the
input length and (2) the running time, any Turing Machine or RAM program can be converted to an
equivalent circuit. However, if either or both of these variables can be unbounded, then obfuscating
Turing Machines presents new feasibility questions beyond obfuscating circuits.

Moreover, note that transforming the TM into an equivalent circuit results in a circuit whose size is
proportional to the worst case running time of the TM. This leads to severe inefficiency since one would
have to evaluate a rather large circuit for every input. Indeed, motivated by this issue, Goldwasser
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et al. [GKP+13a, GKP+13b] introduced and studied the notion of input-specific run time in the
context of several cryptographic primitives such as fully homomorphic encryption [Gen09], functional
encryption [SW05, BSW11], and attribute-based encryption [SW05, GPSW06].

Using indistinguishability obfuscation alone, there has recently been exciting progress towards
obfuscating Turing Machines directly (i.e., without first transforming it into a circuit). The recent
works of Lin and Pass [LP14], Canetti, Holmgren, Jain, and Vaikuntanathan [CHJV14], and Bitansky,
Garg, and Telang [BGT14], show how to obfuscate Turing machines or RAM programs directly when
both the input-length and the overall space of the computation is a-priori bounded. More specifically,
[LP14, CHJV14, BGT14] first construct garbling schemes for Turing machines (with bounded input-
length and space) and use them to obtain obfuscation for Turing machines under same constraints. The
size of the obfuscated program in these constructions only depends on the maximum input length and
space used by the computation (as opposed to worst case running time of the original TM). However,
obtaining obfuscation of TMs from garbling schemes introduces its own subtleties due to which current
constructions additionally require cryptographic assumptions of sub-exponential hardness.

The recent work of Koppula, Lewko, and Waters [KLW14] presents a novel construction of indistin-
guishability obfuscation for Turing Machines with bounded input length (and unbounded space), based
only on iO for circuits and standard assumptions. In other words, the size of the obfuscated TM in the
[KLW14] construction is polynomial in the maximum input length to be accepted by the obfuscated
TM, the description-size of the TM M to be obfuscated, and the security parameter. (Note that, in
particular, it is independent of the maximum space of the computation.) While this is a remarkable
result, the dependence upon the maximum input length is still a drawback of this work – a drawback
that our work does not encounter. In applications of iO for TMs such as non-black-box simulation
[PPS15], it is crucial that there is no a-priori polynomial upper bound on the input length of the
obfuscated TM. Furthermore, we note that our construction is significantly simpler than the iO-based
construction of [KLW14] and relies only on polynomial hardness assumptions; in contrast [KLW14] (as
well as [LP14, CHJV14, BGT14]) require sub-exponential hardness assumptions.

In [BCP14, ABG+13], diO for circuits, together with SNARKs [BCCT12, BCCT13, BCC+14], was
shown to imply diO for Turing Machines with unbounded inputs, running time, and space complexity
(we will refer to this setting as the setting of general Turing Machines). However, given the evidence of
impossibility for diO, prior to our work, there was no method known to bootstrap from obfuscation for
circuits to obfuscation for general Turing Machines based on a plausible and general obfuscation defini-
tion. We show that the construction and proofs of [BCP14, ABG+13] can be adapted to the setting of
public-coin diO: Specifically, we show that public-coin diO for NC1, together with fully homomorphic
encryption with decryption in NC1, and public-coin SNARKs, imply diO for general Turing Machines.
We note that our formulation of public-coin SNARK also avoids all known impossibility results for
SNARKs and other extractability assumptions [BCPR14].

Functional Encryption for Turing Machines with unbounded inputs. We next tackle the
problem of (selectively secure) functional encryption [SW05, BSW11] for Turing Machines with un-
bounded inputs. Here, we are able to show that public-coin diO for general Turing Machines together
with standard cryptographic assumptions, implies selectively secure functional encryption for general
Turing Machines. As mentioned above, the approach given in [BCP14] achieves full security for func-
tional encryption, but does not adapt to the setting of public-coin diO. The starting point for our
scheme is the functional encryption construction given by [ABG+13], however in the case of functional
encryption, we must make several adjustments to both the construction and the proof of security in
order to make use of public-coin diO, and avoid the need for security with respect to general auxiliary
inputs. We note that for the case of single-key functional encryption [SS10], the problem of support-
ing Turing machines and achieving input-specific runtimes was previously introduced and resolved by
Goldwasser et al. [GKP+13a] under cryptographic assumptions that are incomparable to our work,
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but nevertheless, subject to the same criticism as the existence of diO.
Functional encryption is strict strengthening of many cryptographic notions including garbling

schemes [Yao82, FKN94, BHR12] (also known as randomized encoding of functions [IK00, AIK06]).
Thus, our results for functional encryption imply results for garbling schemes (as well as other notions
that are implied by functional encryption) under the public-coin diO assumptions of only polynomial
hardness. In particular, this applies to several applications of garbling schemes discussed in recent
works of [LP14, CHJV14, BGT14] (under incomparable assumptions). We refer the reader to [App11]
for a survey of applications of garbling schemes in different areas of cryptography.

Other related works. Another general and plausible notion of obfuscation that strengthens iO
is virtual gray box (VGB) obfuscation [BC14, BCKP14]. While conceptually appealing, this notion
does not seem as useful as diO for natural applications.

As briefly discussed above, current iO obfuscation candidates can be backed by security proofs in
a generic multilinear model [BR14, BGK+14]. One can draw an analogy between the broad challenge
addressed in the present work and earlier works on instantiating random oracles. Similarly to the
practical use of the random oracle model [BR93], provable constructions in the generic multilinear
model can give rise to heuristic real-world constructions by plugging in multilinear map candidates
such as those from [GGH13a, CLT13]. This may be a reasonable heuristic leap of faith in the context
of concrete natural applications. However, similarly to the negative results on instantiating random
oracles [CGH04], this methodology is provably not sound in general. Thus, one is left with the
challenge of formulating a succinct and plausible assumption that can be satisfied by an explicit
random oracle instantiation and suffices for a wide array of applications. Despite some partial progress
(e.g., [Can97, BHK13]), this challenge is still quite far from being fully met.

2 Our Definitions

Notation. We denote by N the set of all natural numbers, and use n ∈ N to denote the security
parameter. An efficient non-uniform algorithm A is denoted by a family of circuits A = {An}n∈N and
an associated polynomial s such the size of An is at most s(n) for all n ∈ N.

We denote by C = {Cn}n∈N a parameterized collection of circuits such that Cn is the set of all
circuits of size at most n. Likewise, we denote byM = {Mn}n∈N a parameterized collection of Turing
machines (TM) such that Mn is the set of all TMs of size at most n which halt within polynomial
number steps on all inputs. For x ∈ {0, 1}∗, if M halts on input x, we denote by steps(M,x) the
number of steps M takes to output M(x). Following [ABG+13], we adopt the convention that the
output M(x) includes the number of steps M takes on x, in addition to the “official” output. When
clear from the context, we drop n ∈ N from the notation.

2.1 Circuits

We first define the notion of a public-coin differing-inputs sampler.

Definition 2.1 (Public-Coin Differing-Inputs Sampler for Circuits). An efficient non-uniform sam-
pling algorithm Sam = {Samn} is called a public-coin differing-inputs sampler for the parameterized
collection of circuits C = {Cn} if the output of Samn is distributed over Cn ×Cn and for every efficient
non-uniform algorithm A = {An} there exists a negligible function ε such that for all n ∈ N:

Pr
r

[C0(x) 6= C1(x) : (C0, C1)← Samn(r), x← An(r)] ≤ ε(n). �

The definition insists that the sampler and the attacker circuits both receive the same random coins
as input. Therefore, Sam cannot keep any “secret” from A. We now define the notion of public-coin
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differing-inputs obfuscator. The crucial change from existing diO definitions is that the distinguisher
now gets the actual coins of the sampler as the auxiliary input.

Definition 2.2 (Public-Coin Differing-Inputs Obfuscator for Circuits). A uniform PPT algorithm O
is a public-coin differing-inputs obfuscator for the parameterized collection of circuits C = {Cn} if the
following requirements hold:

• Correctness: ∀n, ∀C ∈ Cn, ∀x we have that Pr[C ′(x) = C(x) : C ′ ← O(1n, C)] = 1.

• Security: for every public-coin differing-inputs samplers Sam = {Samn} for the collection
C, every efficient non-uniform (distinguishing) algorithm D = {Dn}, there exists a negligible
function ε s.t. for all n:∣∣Pr[Dn(r, C ′) = 1 : (C0, C1)← Samn(r), C ′ ← O(1n, C0)]−

Pr[Dn(r, C ′) = 1 : (C0, C1)← Samn(r), C ′ ← O(1n, C1)]
∣∣ ≤ ε(n)

where the probability is taken over r and the coins of O. �

2.2 Turing machines

We now present our definitions for the case of Turing machines.

Definition 2.3 (Public-Coin Differing-Inputs Sampler for TMs). An efficient non-uniform sampling al-
gorithm Sam = {Samn} is called a public-coin differing-inputs sampler for the parameterized collection
of TMsM = {Mn} if the output of Samn is always a pair of Turing machines (M0,M1) ∈Mn ×Mn

such that |M0| = |M1| and for all efficient non-uniform (attacker) algorithms A = {An} there exists a
negligible function ε such that for all n ∈ N:

Pr
r

[
M0(x) 6= M1(x) ∧

steps(M0, x) = steps(M1, x) = t
:

(M0,M1)← Samn(r),
(x, 1t)← An(r)

]
≤ ε(n). �

Remark. By requiring An to output 1t, we rule out all inputs x for which M0,M1 may take more
than polynomial steps.

Definition 2.4 (Public-Coin Differing-Inputs Obfuscator for TMs). A uniform PPT algorithm O is
a public-coin differing-inputs obfuscator for the parameterized collection of TMs M = {Mn} if the
following requirements hold:

• Correctness: ∀n,∀M ∈Mn,∀x ∈ {0, 1}∗ we have Pr[M ′(x) = M(x) : M ′ ← O(1n,M)] = 1.

• Security: for every public-coin differing-inputs samplers Sam = {Samn} for the collection M,
for every efficient non-uniform (distinguishing) algorithm D = {Dn}, there exists a negligible
function ε s.t. for all n:∣∣Pr[Dn(r,M ′) = 1 : (M0,M1)← Samn(r),M ′ ← O(1n,M0)]−

Pr[Dn(r,M ′) = 1 : (M0,M1)← Samn(r),M ′ ← O(1n,M1)]
∣∣ ≤ ε(n)

where the probability is taken over r and the coins of O.

• Succinctness and input-specific running time: there exists a (global) polynomial s′ such
that for all n, for all M ∈ Mn, for all M ′ ← O(1n,M), and for all x ∈ {0, 1}∗, steps(M ′, x) ≤
s′(n, steps(M,x)). �
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Remark. The size of the obfuscated machine M ′ is always bounded by the running time of O which
is polynomial in n. More importantly, the size of M ′ is independent of the running time of M . This
holds even if we consider TMs which always run in polynomial time. This is because the polynomial
bounding the running time of O is independent of the collection M being obfuscated.

It is easy to obtain a uniform formulation from our current definitions.

3 Preliminaries

Succinct non-interactive arguments. The universal relation [BG02] is defined to be the set RU
of instance-witness pairs (y, w) such that y is of the form (M,x, t), |w| ≤ t, and M is a TM which
accepts (x,w) within t steps where t is an arbitrary number in N. For constant c ∈ N, we define Rc to
the subset of RU consisting of those pairs {(y, w) = ((M,x, t), w)} for which t ≤ |x|c. The language
corresponding to a relation R ⊆ RU will be denoted by LR.

We recall the definitions of succinct non-interactive arguments (SNARG) and succinct non-interactive
arguments of knowledge (SNARK) below. We require that these systems be publicly verifiable and
work in the common random string model where any uniformly random string of sufficient length can
act as the CRS. Our definition follows the standard formulations [BCCT12, BCP14].

Definition 3.1 (SNARG). A pair of algorithms (P, V ) is a (publicly verifiable) SNARG for a relation
R ⊆ RU in the common random string model if there exist polynomials p, q, ` (independent of R) such
that the following conditions are satisfied:

• Completeness: ∀(y, w) ∈ R, Pr
[
V (crs, y, π) = 1 : crs← {0, 1}poly(n), π ← P (crs, y, w)

]
= 1,

and for every crs, P (crs, y, w) halts within p(n, |y|, t) where y = (M,x, t).

• Succinctness: for every (crs, y, w) ∈ {0, 1}poly(n)×R the size of π ← P (crs, y, w) is bounded by
`(n, log t) and the running time of V (crs, y, π) is bounded by q(n+ |y|) = q(n+ |M |+ |x|+ log t).

• Adaptive soundness: for every polynomial-size prover P ∗ = {P ∗n}, there exists a negligible
function ε such that for all n:

Pr
[
V (crs, y, π) = 1 ∧ y /∈ LR : crs← {0, 1}poly(n), (y, π)← P ∗n(crs)

]
≤ ε(n). �

Observe that the soundness condition is not required to hold with respect to common auxiliary input of
any kind. This notion suffices for the restricted cases where obfuscation size grows with the maximum
supported input length (a.k.a. bounded-input case). To deal with inputs of unbounded polynomial
length, we need the following stronger notion.

Definition 3.2 (SNARK). A pair of algorithms (P, V ) is a (publicly verifiable) SNARK for the
relation R ⊆ RU in the common random string model if it satisfies the completeness and succinctness
conditions of definition 3.1 (above) and the following argument-of-knowledge property:

• Adaptive argument of knowledge: for every polynomial-size prover P ∗ = {P ∗n}, there exists
a polynomial-size extractor EP ∗ = {En} and a negligible function ε such that for all n:

Pr

[(
V (crs, y, π) = 1

)
∧
(
(y, w) /∈ R

)
:

{
crs← {0, 1}poly(n), z ← {0, 1}poly(n),
(y, π)← P ∗n(crs, z), (y, w)← En(crs, z)

} ]
≤ ε(n).�
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Observe that in this definition a uniformly distributed auxiliary input z is allowed. As noted in
[BCCT12], none of the existing implausibility results regarding the existence of SNARKs or extractable
one-way/collision-resistant-hash functions apply to the case where auxiliary input is a uniformly ran-
dom string. A candidate construction (and perhaps the only one at this time) for such SNARKs is
Micali’s CS proof system [Mic94].

We remark that the above definition requires the extraction to succeed with probability almost 1.
Our results do not require this strong form of extraction, and work with a weaker notion as well where
extraction probability is only required to be negligibly close to the success probability of the cheating
prover.

We shall also use fully homomorphic encryption and non-interactive strong witness indistinguish-
able proofs, e.g., [FLS99]. We discuss them in appendix A.

4 Bootstrapping Obfuscation from NC1 to Turing Machines

In this section, we show that given a public-coin differing-inputs obfuscator for the class NC1, we
can construct a public-coin differing-inputs obfuscator for the parameterized collection Mn of all
polynomial-time TMs. The construction is a slightly simplified version of [ABG+13] where we get rid
of the hash functions. We shall prove the following theorem.

Theorem 4.1. If there exists a public-coin differing-inputs obfuscator for circuits in the class NC1, a
fully homomorphic encryption scheme with decryption in NC1, and a public-coin SNARK for RU in
the common random string model, there exists a public-coin differing-inputs obfuscator for the class
of all polynomial-time Turing machines accepting inputs of unbounded polynomial length.

We first present the construction, and then prove the theorem. LetM = {Mn}n∈N be a parameterized
collection of polynomial-time TMs that accepts inputs of unbounded polynomial length, i.e., there
exists a constant c ∈ N such that every M ∈ Mn is of size n, takes inputs of length at most nc,
and halts within nc steps. We adopt the convention that c is included in the description of M . Let
FHE = (Gen,Enc,Dec,Eval) be a fully homomorphic encryption scheme with decryption in NC1 and
Π = (P, V ) be a SNARK for the relation RU defined earlier. The description of our obfuscator forM,
and its evaluation algorithm, are as follows.

Obfuscator O (1n,M ∈Mn): By convention, description of M includes a constant c bounding the
running time of M on all inputs by nc. Let Un be an oblivious universal TM which on input the
description of a TM B, and a string x executes B on x for no more than nc steps. The obfuscator
proceeds in the following steps:

1. Generate two FHE public-keys (pk1, sk1)← Gen(1n;u1) and (pk2, sk2)← Gen(1n;u2).

2. Encrypt M under both FHE public-keys: g1 ← Encpk1(M ; v1) and g2 ← Encpk2(M ; v2). Here M
is assumed to be encoded as a bit string of length n for use by the universal TM Un.

3. Uniformly sample crs← {0, 1}poly(n) of sufficient length (for the SNARK Π).

4. Generate an obfuscation of the NC1-program P1
crs

sk1,g1,g2
given in figure 1:

P ′ ← ONC1

(
1n, P1

crs

sk1,g1,g2

)
.

5. Output M ′ = (P ′, crs, pk1, pk2, g1, g2).

9



Program P1
crs

sk1,g1,g2
:

◦ Input: a tuple (e1, e2, t, π, φ), Constants: crs, sk1, g1, g2, pk1, pk2.

◦ Check that t ≤ 2n and φ is a valid low-depth proof for the NP-statement:

1 = V
(
crs,

(
M̃Eval, (e1, e2), t

)
, π
)

where M̃Eval is defined as follows. Let MEval be the computation that takes x as input,
has (pk1, pk2, g1, g2) hardcoded, and homomorphically evaluates Un(·, x) on g1 and g2 to
produce e1 and e2 respectively. I.e.,

e1 = Evalpk1(Un(·, x), g1) and e2 = Evalpk2(Un(·, x), g2).

M̃Eval takes as input an instance of the form (e1, e2) and a witness x; it accepts if and
only if MEval(x) outputs (e1, e2) within 2n steps.

◦ If the check fails, output ⊥; otherwise output Decsk1
(e1).

Program P2
crs

sk2,g1,g2
:

◦ Same as P1
crs

sk1,g1,g2
except that if the check is successful, it outputs Decsk2(e2).

Figure 1: The programs P1 and P2

Evaluation of M ′: Evaluate M ′ = (P ′, crs, pk1, pk2, g1, g2) on input x as follows:

1. Compute (e1, e2) = MEval(x). This takes at most n2c steps. See fig. 1 for MEval.

2. Compute a SNARK proof π using x as the witness and t = n4c as the time-bound:

π ← P
(
crs,

(
M̃Eval, (e1, e2), t

)
, x
)

3. Compute a low-depth proof φ for the NP-statement 1 = V
(
crs, (M̃Eval, (e1, e2), t), π

)
. This can

be done by providing the entire computation of V on these inputs.

4. Execute P ′(e1, e2, t, π, φ) and output the result.

The construction is now analyzed in the proof below. We denote by a‖b the concatenation of two bit
strings a and b.

Proof of theorem 4.1. The correctness and succinctness of this construction are relatively straight-
forward to verify, and in particular, closely follow the analyses in [ABG+13, BCP14]. We analyze its
security.

Security. Fix any public-coin differing-inputs sampler Sam = {Samn} for the family M and any
efficient distinguisher D = {Dn}. For a bit b, let Xn(b) denote the output of the following experiment
over a random choice of r and the coins of O:

Xn(b) :=
{

(M0,M1)← Samn(r),M ′ ← O(1n,Mb), output Dn(r,M ′)
}

We need to show that Xn(0) ≈c Xn(1). Consider the following sequence of hybrid experiments.

• H0: This hybrid corresponds to an honest sampling of Xn(0). In this case, M ′ creates two FHE
encryptions of M0, namely g1 and g2 (where M0 is the first output of Samn).
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• H1: Same as H0 except that the second FHE ciphertext is now generated as an encryption of
M1, i.e., g2 = Encpk2(M1) (where M1 is the second output of Samn).

• H2: Same as H1 except that the obfuscated program P ′ is now generated as an obfuscation of
P2

crs

sk2,g1,g2
which decrypts the second ciphertext using sk2, i.e., P ′ ← ONC1(1n, P2

crs

sk2,g1,g2
).

• H3: Same as H2 except that the first FHE ciphertext g1 is now also generated as an encryption
of M1, i.e., g1 ← Encpk1(M1).

• H4: Same as H3 except that the obfuscated program P ′ is once again generated as an obfuscation
of P1

crs

sk1,g1,g2
, i.e., P ′ ← ONC1(1n, P1

crs

sk1,g1,g2
). Note that H4 is identical to Xn(1).

We now prove that each hybrid in this sequence is indistinguishable from the previous one.

Step 1: H0 ≈c H1. This follows from the IND-CPA security of FHE. Formally, consider an adversary
AFHE, who receives a challenge public-key pk, then samples (M0,M1)← Samn(r) for a random r, and
receives an honestly generated ciphertext g to either M0 or M1 under pk. AFHE then generates an
obfuscation of M0 following the instruction of O except that it sets pk2 = pk and g2 = g. Note that
all instructions of O can indeed be performed efficiently knowing only (pk2, g2). Let M ′ denote the
resulting obfuscation which includes an NC1-obfuscation P ′ of program P1

crs

sk1,g1,g2=g
. AFHE outputs

whatever Dn(r,M ′) outputs. The output of AFHE is distributed identically to that of Hb when g is an
encryption of Mb where b ∈ {0, 1}. Because Samn and Dn are of polynomial-size, it follows that AFHE

is a polynomial-size circuit violating IND-CPA security of FHE unless H0 ≈c H1.

Step 2: H1 ≈c H2. We use the soundness of SNARK and diO-security of ONC1 to argue that
H1 ≈c H2. Suppose that H1 and H2 are not computationally indistinguishable. We use Samn and Dn
to construct a public-coin differing-inputs sampler SamNC1

n along with a distinguisher DNC1

n such that

SamNC1

n outputs circuits in NC1 and DNC1

n violates the security of ONC1 w.r.t. SamNC1

n . We start by

constructing SamNC1

n .

Sampler SamNC1

n (ρ).

1. Parse ρ as ρ = (r, ρ1, , u1, u2, v1, v2).

2. Sample (M0,M1)← Samn(r). // comment: this is the given sampler.

3. Set crs = ρ1, (pk1, sk1)← Gen(1n;u1), (pk2, sk2)← Gen(1n;u2).

4. Set g1 ← Encpk1(M0; v1) and g2 ← Encpk2(M1; v2).

5. Output (C0, C1) corresponding to the programs
(
P1

crs

sk1,g1,g2
, P2

crs

sk2,g1,g2

)
.

Note that input to the circuits C0, C1 above are of the form m = (e1, e2, t, π, φ).

Claim 4.2. ∀n ∈ N SamNC1

n is a public-coin differing-inputs sampler for a family C ∈ NC1.

Proof. We have to show that every non-uniform PPT attacker {ANC1

n } fails to find a differing-input

for circuits sampled by SamNC1

n . Given an attacker ANC1

n which succeeds against our sampler, we
construct an attacker An which will succeed against the given sampler Samn We shall rely on the
soundness of SNARK to prove this.

Formally, suppose that the claim is false, and there exists a polynomial-size attacker family {ANC1

n },
a polynomial p, and infinitely many n s.t.

Pr
ρ

[
C0(x) 6= C1(x) : (C0, C1)← SamNC1

n (ρ), x← ANC1

n (ρ)
]
≥ 1/p(n).
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We start by defining a prover family which receives a uniformly random auxiliary input, denoted by
z, and then use it to define an attacker Ãn which also receives a uniform auxiliary input. Later on,
this auxiliary input will be completely removed from Ãn.

Prover P
∗
n(crs, z): String z is of the form (r, u1, u2, v1, v2) and the circuit has adversary ANC1

n

hardcoded in it. The circuit proceeds as follows:

1. Define ρ := (r, crs, u1, u2, v1, v2) using z and crs.

2. Compute m ← ANC1

n (ρ) which is of the form m = (e1, e2, t, π, φ). Recall that ANC1

n (ρ)

defines a TM M̃Eval and π is a SNARK proof for the statement y := (M̃Eval, (e1, e2), t).

3. Output (y, π).

Let {E∗n} be a family of extractor circuits w.r.t. the prover family {P ∗n} defined above. Now we define
the following attacker circuit Ãn which receives a uniformly random auxiliary input z∗ and outputs a
differing input for the given sampler Samn. Later we will choose an appropriate z∗ and hardcode it as
part of the circuit description to achieve an attacker circuit without auxiliary input.

Circuit Ãn(r, z∗): String z∗ is of the form (ρ1, u1, u2, v1, v2) and extractor circuit E∗n is hardcoded
in this circuit. The circuit computes as follows:

1. Define crs = ρ1 and z = (r, u1, u2, v1, v2) using r and z∗.

2. Compute (y, w)← E∗n(crs, z) where y is of the form y := (M̃Eval, (e1, e2), t).

3. Output x = w as the differing input.

For any given r, z∗, the concatenation ρ = r‖z∗ is of the form (r, ρ1, u1, u2, v1, v2), and defines a
valid random string for ANC1

n . We say that a fixed string z∗ is good if, the success probability of
ANC1

n (ρ) is at least 1
2p over the choice of r. Formally, a string z∗ is good if for a randomly chosen r,

defining the tape ρ = r‖z∗, the probability that ANC1

n (ρ) outputs m such that C0(m) 6= C1(m) where

(C0, C1)← SamNC1

n (ρ) is at least 1/2p. By simple averaging, at least 1
2p fraction of z∗ are good.

Now let us define sound strings. Roughly speaking, we say that z∗ is sound if the probability that
the output of ANC1

n (ρ) contains a valid proof π but the output of the extractor (in step 2 above) is
not a valid witness, is less than 1/4p.

Formally, we say that a fixed string z∗ = (ρ1, u1, u2, v1, v2) is sound if for a randomly chosen r,
defining the tape ρ = r‖z∗, the probability of the following event, taken over r, is at most 1/4p: the
output of E∗(crs, z) (in step 2 of Ãn(r, z∗)) is (y, w) and output of ANC1

n (ρ) is m = (e1, e2, t, π, φ) such
that V accepts the proof π for the statement y but w is not a valid witness, i.e. (y, w) /∈ R2c.

A randomly chosen z∗ contains a uniformly distributed crs string; therefore, it follows that at least
1− ε′ fraction of z∗ are sound where ε′ is the soundness error of SNARK.

Therefore, at least 1
2p−ε

′ ≥ 1
4p fraction of z∗ are both good and sound. Fix such a z∗. By definition

of good it follows that w.r.t. this z∗, at least 1/2p fraction of inputs r are such that ANC1

n (r‖z∗) outputs
a differing-input for C0, C1. Further, by definition of sound, at most a 1/4p fraction of such inputs r
are such that the extractor E∗n (in step 2 above) will not output a valid witness w. Therefore, at least
1
2p −

1
4p ≥

1
4p of inputs r result in a differing-input where the extractor’s output is a valid witness. We

call such inputs nice.

By construction, for nice r, we have that:

C0(m) 6= C1(m) =⇒ P1
crs=ρ1

sk1,g1,g2(m) 6= P2
crs=ρ1

sk2,g1,g2(m) =⇒ M0(x) 6= M1(x)
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where x = w is the differing-input output by Ãn, and the last implication follows because x is a
valid witness, i.e. if m contains ciphertexts e1, e2 then the values in these ciphertexts will indeed
be M0(x) and M1(x) respectively. Here M0,M1 are the TMs sampled in (step 2 of) the execution

of SamNC1

n (r‖z∗). We now observe that, by construction, (M0,M1) are also the output of Samn(r).
Therefore, the output of Ãn outputs a differing input x for the outputs of Samn whenever z∗ is good
and sound and r is nice.

To have a deterministic attacker An which on input r outputs a differing-input x, we choose a z∗

that is good and sound, and hardcode it in the description of Ãn. It follows that, since the fraction
of nice strings r is at least 1/4p, An violates the public-coin differing-input property of Samn with

noticeable property. The proof is completed by observing that circuits output by SamNC1

n are indeed
in the complexity class NC1.

We now present distinguisher DNC1

n which violates the security of ONC1 w.r.t. sampler SamNC1

n .

Distinguisher DNC1

n (ρ, C ′). The input consists a string ρ and an obfuscated circuit C ′. C ′ is an

obfuscation of either C0 or C1 which are output by SamNC1

n (ρ). The distinguisher attempts to
create a valid obfuscation M ′ of the TM implicitly present in C ′. Since entire string ρ is available,
it can be efficiently done as follows.

1. Parse ρ as ρ = (r, ρ1, u1, u2, v1, v2), and set crs = ρ1, (pk1, sk1)← Gen(1n;u1), (pk2, sk2)←
Gen(1n;u2), g1 ← Encpk1(M0; v1) and g2 ← Encpk2(M1; v2), where (M0,M1)← Sam(1n; r).

2. Define M ′ = (C ′, crs, pk1, pk2, g1, g2), and output whatever Dn(r,M ′) outputs. (Recall that
Dn is the given distinguisher).

By construction of SamNC1

n , we can see that if C ′ is a correctly generated obfuscation of Cb, then M ′ is
distributed as in hybrid Hb+1. It follows that if outputs of H1 and H2 are distinguishable then DNC1

n

is a good distinguisher against ONC1 w.r.t. SamNC1

n .

Final step: H2 ≈c H3 and H3 ≈c H4. Proof for the claim H2 ≈c H3 is nearly identical to step 1.
The proof for H3 ≈c H4 is nearly identical to step 2. We omit the details.

5 Functional Encryption for Turing Machines

In this section, we shall construct a functional encryption scheme. The scheme can encrypt messages
of arbitrary polynomial length. The secret key SKM is given corresponding to a TMM of polynomial
size which can accept inputs of arbitrary polynomial length and halts in polynomial time. The holder
of SKM can learn the value of M(x) given an encryption of x. The size of the public-parameters of our
scheme is polynomial in the security parameter, and the size of secret-keys, say SKM , is polynomial
in the security parameter, |M |, and log t where t is an arbitrary polynomial bounding the worst case
running time of M .

We assume familiarity with the definition of functional encryption (FE) schemes. Our scheme will
satisfy indistinguishability based notion of security in the selective model of security which we recall
here. In this model, we consider the following experiment Expt between an attacker A and a challenger.
The experiment takes a bit b as input, and proceeds as follows:

Init A sends two messages x∗0, x
∗
1 such that |x∗0| = |x∗1|.

Phase 1 The challenger samples (pp,msk)← F.Setup(1n) and sends pp to A.

13



Phase 2 A adaptively asks polynomially secret-key queries where in each query it sends the
description of a TM M ∈ M such that M(x∗1) = M(x∗2).

2 The challenger responds with
SKM ← F.KeyGen(pp,msk,M).

Challenge The challenger sends an encryption e = F.Enc(pp, x∗b).

Phase 3 Phase 2 is repeated.

Output The output A is the output of the experiment, which is a bit without loss of generality.

The scheme is said to be selectively secure if AdvA is negligible in n where we define AdvA :=
|Pr [Expt(0) = 1]− Pr [Expt(1) = 1]|.

Our construction. Let O be a public-coin differing-inputs obfuscation for the class of polynomial-
size and polynomial-time TMs taking inputs of arbitrary polynomial length. Let Π = (CRSGen, P, V )
be a statistically sound, non-interactive, strong witness-indistinguishable proof system for NP where
CRSGen simply outputs its own random coins—therefore, we are in the common random string model
where any random string of sufficient length can act as the CRS. Let H = {Hn} be a family of
collision-resistant hash functions such that every h ∈ Hn maps strings from {0, 1}∗ to {0, 1}n.

Let PKE = (Gen,Enc,Dec) be an ordinary, semantically secure public-key encryption scheme, and
com be a statistically binding commitment scheme.3 We assume that PKE (resp., com) encrypts (resp.,
commits) to a string of unbounded polynomial length by individually encrypting (resp., committing)
to each bit. We assume w.l.o.g. that PKE (resp., com) uses randomness of length n to encrypt (resp.,
commit) to a single bit (and therefore sn random bits for a string of length s will be needed).

The algorithms of our functional encryption scheme are as follows. Recall that a‖b denotes the
concatenation of two bit strings a and b.

• F.Setup(1n): Generate (pk1, sk1) ← Gen(1n), (pk2, sk2) ← Gen(1n), and (pk3, sk3) ← Gen(1n).
Generate two commitments α1 = com(0n;u1) and α2 = com(0n;u2). Sample crs← CRSGen(1n)
and h← Hn. Output (pp,msk) where:

pp := (pk1, pk2, pk3, α1, α2, crs, h), msk := sk1.

• F.Enc(pp, x): On input a message x ∈ {0, 1}∗ of arbitrary polynomial length, generate two
ciphertexts c1 = Encpk1(x; r1) and c2 = Encpk2(x; r2). Define string a := x‖r1‖0n

2‖x‖r2‖0n
2

and encrypt it under the third public-key to get ciphertext c3 = Encpk3(a; r3). Finally, com-
pute a proof π for the statement that y ∈ Lfe using w = (a, r3) as the witness where y =
(c1, c2, c3, pk1, pk2, pk3, α1, α2): i.e., π ← P (crs, y, w).4 Here Lfe is is the language corresponding
to the relation Rfe defined below.

Relaton Rfe:
Instance: y′ = (c′1, c

′
2, c
′
3, pk

′
1, pk

′
2, pk

′
3, α
′
1, α
′
2)

Witness: w′ = (a′, r′3) where a′ = x′1‖r′1‖u′1‖x′2‖r′2‖u′2
Rfe(y′, w′) = 1 if and only if the following condition holds:

1. c′3 = Encpk3(a′; r′3); and

2Recall that according to our convention, the output of M on an input x includes its running time as well.
3We view com as a non-interactive algorithm; we can also use two-round schemes where the first message is fixed as

part of the public-parameters by the setup algorithm and then com is viewed w.r.t. such a fixed message.
4Observe that here no a-priori bound is known on |x|; any multi-theorem proof system such as [FLS99] is capable of

proving statements of unbounded polynomial length.
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2. The or of the following two statements is true:

(a) c′1, c
′
2 encrypt the same message which is one of x′1 or x′2, i.e.:(
c′1 = Encpk′1(x′1; r

′
1) and c′2 = Encpk′2(x′1; r

′
2)
)
; or(

c′1 = Encpk′1(x′2; r
′
1) and c′2 = Encpk′2(x′2; r

′
2)
)
;

(b) c′1, c
′
2 encrypt x′1, x

′
2 respectively, which may be different but then the hash of one

them is committed in α′1, α
′
2; i.e.,

i.
(
c′1 = Encpk′1(x′1; r

′
1) and c′2 = Encpk′2(x′2; r

′
2)
)
; and

ii.
(
α′1 = com(h(x′1);u

′
1) or α′1 = com(h(x′2);u

′
1)
)
; and

iii.
(
α′2 = com(h(x′1);u

′
2) or α′2 = com(h(x′2);u

′
2)
)
.

Proof π is computed for the and of statements 1 and 2(a) of Rfe. The algorithm outputs
e = (c1, c2, c3, π) as the ciphertext.

• F.KeyGen(pp,msk,M): The secret-key SKM corresponding to a TM M is an obfuscation of the
program ProgM,msk, i.e., SKM ← O

(
1n,ProgM,msk

)
, where ProgM,msk is the following program.

Program ProgM,msk:

◦ Input: a ciphertext e of the form e = (c1, c2, c3, π).

◦ Constants: msk = sk1 and pp = (pk1, pk2, pk3, α1, α2, crs, h).

◦ The program checks that 1 = V (crs, y, π) where y = (c1, c2, c3, pk1, pk2, pk3, α1, α2).

◦ If the check fails, output ⊥; otherwise output M (Decsk1(c1)).

• F.Dec(SKM , e): Evaluate the program SKM on input e and output whatever it outputs.

Theorem 5.1. Let M be the class of all polynomial-time Turing machines accepting inputs of un-
bounded polynomial length. If there exists a public-coin differing-inputs obfuscator for the class M, a
non-interactive zero-knowledge proof system (i.e., with statistical soundness) for NP in the common
random string model, a public-key encryption scheme, a non-interactive perfectly-binding commitment
scheme, and a family of collision-resistant hash functions with publicly samplable index, then there ex-
ists a selectively-secure functional encryption scheme with indistinguishability-based security for Turing
machines in the class M.

Proof of theorem 5.1. The correctness and succinctness of our scheme is easy to verify, and in
particular, is similar to analyses in [GGH+13b, ABG+13]. We shall provide this analysis in the
full version. We now analyze the security of this construction. We prove that the scheme satisfies
indistinguishability based security for FE in the selective security model. We prove this by considering
the following sequence of hybrid experiments:

• Hybrid H0 : This hybrid is identical to experiment Expt(0). The public-parameters pp in Phase 1
are of the form pp := (pk1, pk2, pk3, α1, α2, crs, h) where α1 = com(0n;u1) and α2 = com(0n;u2).

• Hybrid H1 : This hybrid is identical to H0 except that α1 and α2 are computed as commitments
to h(x∗0) and h(x∗1) respectively: α1 = com(h(x∗0);u1) and α2 = com(h(x∗1);u2). We recall that
the challenge ciphertext is of the form (c1, c2, c3, π) where both c1, c2 encrypt x∗0, c3 encrypts
a0 = x∗0‖r1‖0n

2‖x∗0‖r2‖0n
2

using randomness r3, and π is computed using w = (a0, r3) as the
witness. This is identical to how these values were computed in the previous hybrid.

• Hybrid H2 : Identical to H2 except that string a0 is now changed to a∗ = x∗0‖r1‖u1‖x∗1‖r2‖u2.
Consequently, ciphertext c3 is an encryption of a∗ which we denote by c∗3. Since a∗ has changed,
the witness used in computing the proof π has also changed, and we shall denote the new proof
by π∗. The challenge ciphertext is therefore (c1, c2, c

∗
3, π
∗) where both c1, c2 still encrypt x∗0.
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• Hybrid H3 : Same as H2 except that c2 now encrypts x∗1. Furthermore, π∗ is computed w.r.t. the
and of statements 1 and 2(b) (see the description of Rfe). That is, the witness corresponding
to condition 2(b.i) will now be (x∗0, r1, x

∗
1, r2), and for 2(b.ii) and 2(b.iii) it will be (x∗0, u1) and

(x∗1, u2) respectively. Note that a∗, c∗3 and everything else remains the same.

• Hybrid H4 : Same as H3 except that the keys are generated differently. The challenger sets
msk = sk2 and answers the secret-key queries corresponding to a TM M by obfuscating the
following program Prog∗M,msk:

Program Prog∗M,msk: The program is identical to ProgM,msk except that it decrypts the sec-
ond ciphertext using msk = sk2 if the check succeeds. That is, the input to the program is
a ciphertext e = (c1, c2, c3, π), the constants are (msk, pp). The program outputs ⊥ if π is
not a valid proof; otherwise it outputs M(Decsk2(c2)).

• Hybrid H5 Same as H4 except that c1 is now changed to encrypt x∗1. Furthermore, π∗ is computed
by using the witness corresponding to condition 2(a), i.e., using (x∗1, r1, r2).

• Hybrid H6 : Same as H5 except that all secret-key queries are now switched back to using
msk = sk1 and the key for TM M is an obfuscation of the program ProgM,msk.

• Hybrid H7: Same as H6 except that a∗ is changed to string a1 = x∗1‖r1‖0n
2‖x∗1‖r2‖0n

2
. The

witness corresponding to 2(a) does not change, but corresponding to statement in 1 changes (see
Rfe). Therefore, proof π also changes.

• Hybrid H8: Same as H7 except that α1, α2 are switched back to the commitments of 0n. Observe
that H8 is identical to the experiment Expt(1).

We now prove the indistinguishability of every two consecutive hybrids in this experiment.

Step 1: H0 ≈c H1. This follows from computational hiding of the commitment scheme. Formally,
we consider the following adversary Acom, which internally executes the hybrid H0 except that it does
not generate commitments (α1, α2) on its own. Instead, after receiving values (x∗1, x

∗
2) during Init

phase from A, it sends two sets of strings, namely (0n, 0n) and (h(x∗1), h(x∗2)), to the outside challenger
and receives in return two commitments (α1, α2) corresponding to either the first or the second set
of strings. It is clear that Acom is a polynomial time machine, and violates the hiding of com unless
H0 ≈c H1.

Step 2: H1 ≈c H2. The proof of this claim relies on the semantic security of PKE and the strong
witness indistinguishability of the proof system Π for polynomially many statements.5 Recall that
strong WI asserts the following: let D0 and D1 be distributions which output an instance-witness pair
for an NP-relation R and suppose that the first components of these distributions are computation-
ally indistinguishable, i.e., {y : (y, w) ← D0(1

n)} ≈c {y : (y, w) ← D1(1
n)}; then X0 ≈c X1 where

Xb : {(crs, y, π) : crs ← CRSGen(1n); (y, w) ← D0(1
n);π ← P (crs, y, w)} for b ∈ {0, 1}. Strong WI for

polynomially many statements is implied by any multi-theorem NIZK proof such as [FLS99].

Suppose that H1 and H2 can be distinguished with noticeable advantage δ. Observe that both distribu-
tion internally sample the following values in an identical manner: z := (h, pk1, pk2, pk3, c1, c2, α1, α2)

5Strictly speaking, we only need strong WI w.r.t. a single statement y of unbounded polynomial length. Any multi-
theorem NIZK proof system such as [FLS99] generically yields a strong WI proof system for unbounded polynomial
length statements.
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which is all but crs, c3 and π. By simple averaging, there are at least δ/2 fraction of string st s.t. the
two hybrids can be distinguished with advantage at least δ/2 when z = st. Call such a z good. Fix

one such z, and denote the resulting hybrids by H
(z)
1 , H

(z)
2 . Note that the hybrids have inbuilt into

them all other values used to sample z namely: (x∗0, x
∗
1) received from A, randomness u1, u2, r1, r2 for

(α1, α2, c1, c2) respectively, and msk = sk1.

Define distribution D(z)
0 as follows: set a0 = (x∗0‖r1‖0n

2‖x∗0‖r2‖0n
2
), compute c3 = Encpk3(a0; r3), and

let statement y = (c1, c2, c3, pk1, pk2, pk3, α1, α2), witness w0 = (a0, r3); output (y, w0). Note that y has
identical to z except that h has been removed and c3 has been added. Now define a second distribution

D(z)
1 which is identical to D(z)

0 except that instead of string a0, it uses string a∗ = (x∗0‖r1‖u1‖x∗0‖r2‖u2),
sets c3 = Encpk3(a∗; r3), and w = (a∗, r3). It follows from the security of the encryption scheme that

the distribution of y sampled by D(z)
0 is computationally indistinguishable from when it is sampled by

D(z)
1 . Therefore, we must have that X0 ≈ X1 w.r.t. these distributions. We show that this is not the

case unless H
(z)
1 ≈c H(z)

2 .

Consider an adversary for strong WI who incorporates A and z (along with sk1 and all values for

computing z described above), and receives a challenge (crs, y, π) distributed according to either D
(z)
0

or D
(z)
1 ; here y has a component c3 (and all other parts of y are identical to the respective parts of

z \ {h}). The adversary uses crs to completely define pp and feeds it to A; it uses sk1 to complete
phase 2 and 4, and (c3, π) to define the challenge ciphertext e = (c1, c2, c3). The adversary outputs

whatever A outputs. We observe that the output of this adversary is distributed according to H
(z)
1

(resp., H
(z)
2 ) when it receives a tuple from distribution X0 (resp., X1). A randomly sampled z is good

with probability at least δ/2, and therefore it follows that with probability at least δ2/4 the strong
WI property will be violated unless δ is negligible.

Step 3: H2 ≈c H3. The proof of this part follows exactly the same ideas as in step 2, and relies
on the semantic security of encryption and strong WI property of Π. Roughly speaking, changing c2
to encrypt x∗1 results in a computationally indistinguishable distribution over the statement (to be
proven by proof π). Due to this, although the resulting proof π will use a different witness, strong
WI guarantees that the joint distribution of statement and proof (present in the challenge ciphertext)
remains computationally indistinguishable in these two hybrids. The details are omitted.

Step 4: H3 ≈c H4. This is the key part of our proof where we shall rely on the indistinguishability
security of public-coin diO. Suppose that the claim is false and A’s output in H3 is noticeably different
from its output in H4. Suppose that A’s running time is bounded by a polynomial t so that there
are at most t secret-key queries it can make in phase 2 and 3 combined. We consider a sequence of t
hybrid experiments between H3 and H3 such that hybrid H i

3, for i ∈ [t] is as follows.

Hybrid H i
3 is identical to H3 except that it answers the secret-key queries as follows. For j ∈ [t],

if j ≤ i, the secret-key corresponding to the j-th query, denoted Mj , is an obfuscation of program
ProgMj ,sk1 ; otherwise, for j > i, it is an obfuscation of program Prog∗Mj ,sk2

. We define H0
3 to be

H3 and observe that Ht
3 is the same as H4.

By simple calculation, we see that if A’s advantage in distinguishing H3 and H4 is δ, then there exists
an i ∈ [t] such that A distinguishes between H i−1

3 and H i
3 with advantage at least δ/t. We show that

if δ is not negligible than we can us A to violate the indistinguishability of O. To do so, we define
a sampling algorithm Sami

A and a distinguishing algorithm DiA and prove that Sami
A is a public-coin
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differing-input sampler outputting a pair of differing-input TMs yet DiA can distinguish an obfuscation
of left TM from that of right output by Sami

A. The description of these two algorithms is as follows:

Sampler Sami
A(ρ):

1. Receive (x∗0, x
∗
1) from A.

2. Parse ρ as (crs, h, τ).

3. Proceed identically to H4 using τ as randomness for all tasks except for sampling the hash
function which is set to h, and the CRS, which is set to crs. This involves the following
steps:

(a) Parse τ = (τ1, τ2, τ3, r1, r2, r3, u1, u3).

(b) Use τi as randomness to generate (pki, ski)← Gen(1n; τi) for i ∈ [3], r1, r2 to generate
c1 = Encpk1(x∗0; r1), c2 = Encpk1(x∗1; r2), and u1, u2 to generate α1 = com(h(x∗0);u1), α2 =
com(h(x∗1);u2).

(c) Use a∗ = x∗0‖r1‖u1‖x∗1‖r2‖u2 and r3 to compute c∗3 = Encpk3(a∗; r3), and then use
w = (a∗, r3) to compute proof π∗ corresponding to conditions 1 and 2(b) in Rfe.

4. Define pp = (pk1, pk2, pk3, α1, α2, crs, h) and challenge e = (c1, c2, c
∗
3, π
∗).

5. Send pp to A and answer its secret-key queries as follows. For all queries Mj until j < i,
send an obfuscation of ProgM,sk1 .

6. If i-th secret-key query comes in phase 2, send ciphertext e in the challenge phase.

7. Upon receiving the i-th secret-key query Mi, output (M0,M1) and halt where:

M0 := ProgMi,sk1 , M1 := Prog∗Mi,sk2
.

Distinguisher DiA(ρ,M ′): on input a random tape ρ and an obfuscated TM M ′, the distin-
guisher simply executes all steps of the sampler Sami

A(ρ), answering secret-keys for all j < i,
as described above. The distinguisher, however, does not halt when i-th query is sent, and
continues the execution of A answering secret-key queries for Mj as follows:

– if j = i: send M ′ (which is an obfuscation of either M0 or M1)

– if j > i: send an obfuscation of Prog∗Mj ,sk2

The distinguisher outputs whatever A outputs.

It is straightforward to see that if M ′ is an obfuscation of M1, the output of DiA is identical to A’s
output in H i−1

3 ; and if M ′ is an obfuscation of M0, it is identical to A’s output in H i
3. We have that

DiA distinguishes H i−1
3 and H i

3 with at least δ/t advantage. All that remains to prove now is that
Sami

A is a public-coin differing-inputs sampler.

Claim 5.2. Sami
A is a public-coin differing-inputs sampler.

Proof. We show that if there exists an adversary B who can find differing-inputs to the pair of TMs
sampled by Sami

A with noticeable probability, say µ, we can use B and Sami
A to construct an efficient

algorithm CollFinderB,SamiA
which finds collisions in h with probability µ − negl(n). The algorithm

works as follows:

CollFinderB,SamiA
(h):

The algorithm incorporates B,Sami
A. On input a random hash function h← Hn, the algorithm

works as follows:
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• sample uniformly random strings (crs, τ) to define a random tape ρ := (crs, h, τ).

• sample (M0,M1)← Sami
A(ρ) and e← B(ρ).

• recall that e is of the form (c1, c2, c3, π) where c3 is an encryption under pk3 where (pk3, sk3)
are sampled using parts of the randomness τ .

• let x∗0 6= x∗1 be the strings output by A during the Init phase in the execution of Sami
A.

• if π is a valid proof, compute a = Decsk3(c3) and let a = x′1‖r′1‖u′1‖x′2‖r′2‖u′2.
• if h(x∗0) = h(x∗1), output (x∗0, x

∗
1) as the collisions; otherwise, if ∃ m1 ∈ {x′1, x′2} and ∃ m2 ∈

{x∗0, x∗1} s.t. m1 6= m2 and h(m1) = h(m2) output (m1,m2) as collisions; if none of the two
conditions hold, output ⊥.

Let us now analyze the success probability of this algorithm. Since h is uniformly sampled, ρ is a uni-
form random tape, and therefore with probability µ, B outputs an e such that M0(e) 6= M1(e). Recall
thatM0 = ProgMi,sk1 andM2 = Prog∗Mi,sk2

for some TMMi such thatMi(x
∗
0) = M∗i (x∗1). Furthermore,

both of these programs output ⊥ if proof π is not valid. Since the output these two programs differ
on e, it must be that π is a valid proof so that M0(e) = Mi(Decsk1(c1)) and M1(e) = Mi(Decsk2(c2)).
By construction, since π is a statistically sound proof, except with negligible probability it holds
that x′1 = Decsk1(c1)) and x′2 = decsk2(c2) where x′1, x

′
2 are part of the string a obtained by the

collision finding algorithm by decrypting c3 above. Therefore, we have that M0(e) = Mi(x
′
1) and

M1(e) = Mi(x
′
2). However, we also have that M0(e) 6= M1(e) =⇒ Mi(x

′
1) 6= Mi(x

′
2) =⇒ x′1 6= x′2.

Since Mi(x
∗
0) = Mi(x

∗
1) it holds that the sets {x′1, x′2} 6= {x∗0, x∗1}.

Since π is valid, and c1, c2 are encryptions of (unequal strings) x′1, x
′
2, from the statistical soundness

of π statements 2(b.ii) and 2(b.iii) must be true. That is, α1 (likewise α2) must be a commitment
to one of h(x′1) or h(x′2). But α1 is a commitment to h(x∗0) and α2 is a commitment to h(x∗1) and
commitment is statistically binding. Since at least one of x′1, x

′
2 is not equal to any of x∗0, x

∗
1 the

collision must occur on one of the four possible pairs of these strings.

Step 5: Indistinguishability of H4–H8. Hybrids H4 to H8 are applying changes very similar
to the first four hybrids except in the reverse order. The proof of their indistinguishability can be
obtained by following previous proofs in a near identical fashion. In particular we can prove H4 ≈c H5

by relying on the security of encryption and strong WI (following the proof in step 2 or 3), H5 ≈c H6

following the proof in step 4, H6 ≈c H7 following the proof in step 2, and H7 ≈c H8 following the
proof in step 1.

This completes the proof of security of our functional encryption scheme.
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A Other primitives

Fully homomorphic encryption with decryption in NC1. A fully homomorphic encryption
(FHE) scheme is a public-key encryption scheme with an additional evaluation algorithm Eval. For-
mally, given a public-key pk, ciphertexts c1, . . . , cm corresponding to the bits b1, . . . , bm (under pk),
and a circuit f : {0, 1}m → {0, 1}, algorithm Eval outputs a ciphertext c′ such that except with neg-
ligible probability over the randomness of all algorithms, the decryption of c′ is the bit f(b1, . . . , bm)
where m = m(n) is an arbitrary polynomial.

The encryption of a long message x ∈ {0, 1}n under pk consists of encrypting each bit of x under
pk, and will be denoted by c = Encpk(x). Given c, the homomorphic evaluation of an oblivious Turing
machine M with known running time t consists of t homomorphic evaluations of the the circuit
corresponding to the transition function of M where in the i-th iteration the transition function is
applied on the contents of the encrypted input/work tape (containing x at the start) and an encrypted
state; it results in a new encrypted state as well as new encrypted contents on the work tape.

A FHE scheme has decryption in NC1 if there exists a constant c ∈ N such that for all n ∈ N the
depth of the circuit corresponding to the decryption function Dec(1n, pk, ·) is at most c log n.

Strong non-interactive witness indistinguishable proofs for NP. As a tool for our functional
encryption application, we need non-interactive proofs for NP in the common random string model.
We require that the proof system be capable of proving statements of unbounded polynomial length.
In terms of soundness, we require the system to be a proof system where the soundness guarantee is
statistical: i.e., even unbounded provers cannot prove a false statement with noticeable probability. In
terms of prover security, we only require the proof system to satisfy strong witness indistinguishability
[Gol01] which is implied by the zero-knowledge property. The NIZK proof system of Feige, Lapidot,
and Shamir [FLS99] satisfies all of these requirements.

B Bounded-Input Case

In this section we consider the `-bounded-input case, in which we consider the class of TMs whose
input is bounded by a polynomial `, and the size of the obfuscation is allowed to depend on `; however
it does not depend on the running time of TMs in the class, which could be much larger than `. To
emphasize that a class is a bounded-input TM class, we will explicitly include ` in the notation.

Definition B.1 (Public-Coin Differing-Inputs Obfuscator for `-Bounded-Input TMs). For every poly-
nomial ` : N→ N, let M = {M`

n}n∈N denote the class of all TMs such that every M ∈ M`
n is of size

n, accepts inputs of length at most `(n), and halts within a polynomial, say t(n), number of steps
on all inputs. A uniform PPT algorithm O is a public-coin differing-inputs obfuscator for the class of
all bounded-input TMs if it satisfies the correctness and security conditions of definition 2.4 and the
following modified succinctness condition: there exists a (global) polynomial s′ : N→ N such that for
all n, for all M ∈ Mn, and for all M ′ ← O(1n,M), the size of M ′ is bounded by s′(n, `(n)) and its
running time is bounded by s′(n, t(n)) for all x ∈ {0, 1}≤`(n).

We show that given a public-coin differing-inputs obfuscator for the class NC1, we can construct a
public-coin differing-inputs obfuscator for bounded-input Turing machines’ class.

Theorem B.2. Suppose that there exists a public-coin differing-inputs obfuscator for circuits in the
class NC1. Then, assuming the existence of a fully homomorphic encryption scheme with decryption
in NC1 and a (publicly verifiable) SNARG system for P (alternatively, a P-certificate) in the common
random string model, there exists a public-coin differing-inputs obfuscator for bounded-input Turing
machines as defined in B.1.
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We first present the construction, and then prove the theorem. Let ` and t be polynomials, and let
M = {M`

n}n∈N be the family of bounded-input TMs where every M ∈M`
n is of size n, accepts inputs

of length at most `(n) and halts within t(n) steps on every x. Let FHE = (Gen,Enc,Dec,Eval) be a
fully homomorphic encryption scheme with decryption in NC1, and Π = (P, V ) be a SNARG for the
relation Rc defined earlier where c is a constant such that t(n) ≤ nc for all n. The description of our
obfuscator and its evaluation algorithm, are as follows.

Obfuscator O
(
1n,M ∈M`

n

)
: By convention, description of M includes the bounds t and `. Let Un

be an oblivious universal TM which on input the description of a TM B, and a string x ∈ {0, 1}≤`(n)
executes B on x for no more than t(n) steps. The obfuscator proceeds in the following steps:

1. Generate two FHE public-keys (pk1, sk1)← Gen(1n;u1) and (pk2, sk2)← Gen(1n;u2).

2. Encrypt M under both FHE public-keys: g1 ← Encpk1(M ; v1) and g2 ← Encpk2(M ; v2). Here M
is assumed to be encoded as a bit string of length n for use by the universal TM Un.

3. Uniformly sample crs← {0, 1}poly(n) of sufficient length for SNARG Π.

4. Generate an obfuscation of the NC1-program P1
crs

sk1,g1,g2
given in figure 2:

P ′ ← ONC1

(
1n, P1

crs

sk1,g1,g2

)
.

5. Output M ′ = (P ′, crs, pk1, pk2, g1, g2).

Program P1
crs

sk1,g1,g2
:

◦ Input: a tuple (x, e1, e2, π, φ), Constants: crs, sk1, g1, g2, pk1, pk2.

◦ Check that φ is a valid low-depth proof for the NP-statement:

1 = V
(
crs,

(
M̃Eval, 〈x, e1, e2〉, t2

)
, π
)

where M̃Eval simply checks that computation MEval(x) outputs (e1, e2) in ≤ 2t log t steps.
MEval(x) is defined as follows: it has (pk1, pk2, g1, g2) hardcoded, and homomorphically
evaluates Un(·, x) on g1 and g2 to produce e1 and e2 respectively.

I.e., e1 = Evalpk1
(Un(·, x), g1) and e2 = Evalpk2

(Un(·, x), g2).

◦ If the check fails, output ⊥; otherwise output Decsk1(e1).

Program P2
crs

sk2,g1,g2
:

◦ Same as P1
crs

sk1,g1,g2
except that if the check is successful, it outputs Decsk2(e2).

Figure 2: The programs P1 and P2

Evaluation of M ′. Evaluate M ′ = (P ′, crs, pk1, pk2, g1, g2) on input x as follows:

1. Let (e1, e2) = MEval(x). Recall that (fig. 1): e1 = Evalpk1(Un(·, x), g1), e2 = Evalpk2(Un(·, x), g2)

2. W.l.o.g, the running time of MEval(x) is at most 2t log t ≤ t2. Compute the proof π:6

π ← P
(
crs,

(
M̃Eval, 〈x, e1, e2〉, t2

)
, ⊥
)

6No witness is necessary as this is computation in P.
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3. Compute a low-depth proof φ that π is a valid SNARG, i.e., V (crs, (M̃Eval, 〈σ, e1, e2〉, t2), π) = 1.
This can be done by providing the entire computation of V on these inputs.

4. Execute P ′(x, e1, e2, π, φ) and output the result.

The construction is now analyzed in the proof below.

Proof of theorem B.2. The correctness and succinctness of this construction are relatively straight-
forward to verify, and in particular, are identical to the analyses in [ABG+13, BCP14].

Security. Fix any public-coin differing-inputs sampler Sam = {Samn} for the family M and any
efficient distinguisher D = {Dn}. For a bit b, let Xn(b) denote the output of the following experiment
over a random choice of r and the coins of O:

Xn(b) :=
{

(M0,M1)← Samn(r),M ′ ← O(1n,Mb), output Dn(r,M ′)
}

We need to show that Xn(0) ≈c Xn(1). Consider the following sequence of hybrid experiments.

• H0: This hybrid corresponds to an honest sampling of Xn(0). In this case, M ′ creates two FHE
encryptions of M0, namely g1 and g2 (where M0 is the first output of Samn).

• H1: Same as H0 except that the second FHE ciphertext is now generated as an encryption of
M1, i.e., g2 = Encpk2(M1) (where M1 is the second output of Samn).

• H2: Same as H1 except that the obfuscated program P ′ is now generated as an obfuscation of
P2

crs

sk2,g1,g2
which decrypts the second ciphertext using sk2, i.e., P ′ ← ONC1(1n, P2

crs

sk2,g1,g2
).

• H3: Same as H2 except that the first FHE ciphertext g1 is now also generated as an encryption
of M1, i.e., g1 ← Encpk1(M1).

• H4: Same as H3 except that the obfuscated program P ′ is once again generated as an obfuscation
of P1

crs

sk1,g1,g2
, i.e., P ′ ← ONC1(1n, P1

crs

sk1,g1,g2
). Note that H4 is identical to Xn(1).

We now prove that each hybrid in this sequence is indistinguishable from the previous one.

Step 1: H0 ≈c H1. This follows from the IND-CPA security of FHE. Formally, consider an adversary
AFHE, who receives a challenge public-key pk, then samples (M0,M1)← Samn(r) for a random r, and
receives an honestly generated ciphertext g to either M0 or M1 under pk. AFHE then generates an
obfuscation of M0 following the instruction of O except that it sets pk2 = pk and g2 = g. Note that
all instructions of O can indeed be performed efficiently knowing only (pk2, g2). Let M ′ denote the
resulting obfuscation which includes an NC1-obfuscation P ′ of program P1

crs

sk1,g1,g2=g
. AFHE outputs

whatever Dn(r,M ′) outputs. The output of AFHE is distributed identically to that of Hb when g is
an encryption of Mb where b ∈ {0, 1}. Because Samn and Dn are of polynomial-size, it follows that
AFHE is a polynomial-size circuit violating IND-CPA security of FHE unless H0 ≈c H1.

Step 2: H1 ≈c H2. We use the soundness of SNARG and diO-security of ONC1 to argue that
H1 ≈c H2. Suppose that H1 and H2 are not computationally indistinguishable. We use Samn and Dn
to construct a public-coin differing-inputs sampler SamNC1

n along with a distinguisher DNC1

n such that

SamNC1

n outputs circuits in NC1 and DNC1

n violates the security of ONC1 w.r.t. SamNC1

n . We start by

constructing SamNC1

n .

Sampler SamNC1

n (ρ).
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1. Parse ρ as ρ = (r, ρ1, , u1, u2, v1, v2).

2. Sample (M0,M1)← Samn(r). // comment: this is the given sampler.

3. Set crs = ρ1, (pk1, sk1)← Gen(1n;u1), (pk2, sk2)← Gen(1n;u2).

4. Set g1 ← Encpk1(M0; v1) and g2 ← Encpk2(M1; v2).

5. Output (C0, C1) corresponding to the programs
(
P1

crs

sk1,g1,g2
, P2

crs

sk2,g1,g2

)
.

Note that input to the circuits C0, C1 above are of the form m = (x, e1, e2, π, φ).

Claim B.3. ∀n ∈ N SamNC1

n is a public-coin differing-inputs sampler for a family C ∈ NC1.

Proof. We have to show that every non-uniform PPT attacker {ANC1

n } fails to find a differing-input

for circuits sampled by SamNC1

n . We prove this by using (any) given ANC1

n to construct an attacker-
family {An} against the given sampler {Samn}. We then use the soundness of SNARG to argue that
if ANC1

n “succeeds” against our sampler then An succeeds against the given sampler.
Formally, suppose that the claim is false, and there exists a polynomial-size attacker family {ANC1

n },
a polynomial p, and infinitely many n s.t.

Pr
ρ

[
C0(x) 6= C1(x) : (C0, C1)← SamNC1

n (ρ), x← ANC1

n (ρ)
]
≥ 1/p(n).

For every sufficiently large string zn = (ρ1, u1, u2, v1, v2) define the following circuit A(zn)
n :

Circuit A(zn)
n (r): String zn and adversary ANC1

n are hardcoded in this circuit.

1. Define ρ := r ◦ zn = (r, ρ1, u1, u2, v1, v2).

2. Compute m← ANC1

n (ρ) which is of the form m = (x, e1, e2, π, φ).

3. Output x.

We say that a (fixed) string zn is good if, the success probability of ANC1

n in step 2 above is at
least 1

2p (over the choice of r). I.e., in step 2, ANC1

n outputs m such that C0(m) 6= C1(m) where

(C0, C1)← SamNC1

n (ρ). By simple averaging, at least 1
2p fraction of zn are good.

Now let us define sound strings. Roughly speaking, we say that zn is sound if the the output of
ANC1

n (in step 2 above) results in a valid proof for a false statement with less than 1/4p probability
w.r.t. crs = ρ1 contained in zn. Formally, we say that a fixed string zn is sound if the probability that
ANC1

n outputs m = (x, e1, e2, π, φ) (in step 2 above) such that V accepts the proof π w.r.t. crs = ρ1
but (e1, e2) is not the output of computation MEval within 2t log t steps is at most 1/4p where the
probability is taken over r. Since a random choice of zn results in a uniformly distributed crs string,
it follows that at least 1− ε′ fraction of zn are sound where ε′ is the soundness error of SNARG.

Therefore, at least 1
2p−ε

′ ≥ 1
4p fraction of zn are both good and sound. Fix such a zn. By definition

of good it follows that w.r.t. such a fixed zn, at least 1/2p fraction of inputs r are such that a differing-
input will be found in step 2. Further, by definition of sound, at most a 1/4p fraction of such inputs r
can ever lead to a valid SNARG proof for a false statement. Therefore, at least 1

2p −
1
4p ≥

1
4p of inputs

r result in a differing-input where the statement for SNARG is actually true. We call such inputs nice.
By construction, for nice r, we have that: C0(m) 6= C1(m) =⇒ P1

crs=ρ1

sk1,g1,g2
(m) 6= P2

crs=ρ1

sk2,g1,g2
(m) =⇒

M0(x) 6= M1(x). Here M0,M1 are the TMs sampled in (step 2 of) the execution of SamNC1

n (on ran-
domness ρ = r ◦ zn). But, again by construction, (M0,M1) are also output of Samn(r). Therefore,

A(zn)
n outputs a differing input x for the outputs of Samn whenever zn is good and sound and r is nice.

This happens with probability at least 1/4p× 1/4p = 1/16p2 which is non-negligible.
Finally, observe that circuits output by SamNC1 are indeed in the complexity class NC.
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We now present distinguisher DNC1

n which violates the security of ONC1 w.r.t. sampler SamNC1

n .

Distinguisher DNC1

n (ρ, C ′). The input consists a string ρ and an obfuscated circuit C ′. C ′ is an

obfuscation of either C0 or C1 which are output by SamNC1

n (ρ). The distinguisher attempts to
create a valid obfuscation M ′ of the TM implicitly present in C ′. Since entire string ρ is available,
it can be efficiently done as follows.

1. Parse ρ as ρ = (r, ρ1, u1, u2, v1, v2), and set crs = ρ1, (pk1, sk1)← Gen(1n;u1), (pk2, sk2)←
Gen(1n;u2), g1 ← Encpk1(M0; v1) and g2 ← Encpk2(M1; v2), where (M0,M1)← Sam(1n; r).

2. Define M ′ = (C ′, crs, pk1, pk2, g1, g2), and output whatever Dn(r,M ′) outputs. (Recall that
Dn is the given distinguisher).

By construction of SamNC1

n , we can see that if C ′ is a correctly generated obfuscation of Cb, then M ′ is
distributed as in hybrid Hb+1. It follows that if outputs of H1 and H2 are distinguishable then DNC1

n

is a good distinguisher against ONC1 w.r.t. SamNC1

n .

Final step: H2 ≈c H3 and H3 ≈c H4. Proof for the claim H2 ≈c H3 is nearly identical to step 1.
The proof for H3 ≈c H4 is nearly identical to step 2. We omit the details.
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