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Abstract

With the growing trend of repeated reuse of existing design components, use of third party
IP cores has become a common practice in Electronic Design Automation (EDA) industry.
However third party IP cores are known to have potential malwares or hardware trojans which
could compromise the security of the whole system.

We provide a formal classification of possible hardware trojans according to their different
properties and analyze in detail the class coined XX-St-D-F, which is the collection of trojans
that (1) use Standard I/O channels to deliver malicious payload, (2) are embedded in an IP core
with Deterministic functionality, and (3) are designed to violate the Functional specification. We
provide a hierarchy of subclasses Ht,1 ⊆ Ht,2 ⊆ . . . ⊆ Ht,d ⊆ . . . ⊆ ∪

d≥1
Ht,d = Ht ⊆ ∪

t≥0
Ht =XX-

St-D-F, where t indicates the number of clock cycles between “activating/triggering” the trojan
and the moment a malicious payload is delivered and where d stands for the number of wires
involved in the “trigger signal”.

We show that most of XX-St-D-F trojans benchmarked by Trusthub [1] belong to Ht,d for
small d where the d wires are a mix of trojan related wires and the normal core wires. We
design new trojans that belong to each of the classes Ht,d where the d wires all belong to the
hardware trojan itself: the new hardware trojan design universally applies to cores that include
the computation of an XOR over ≈ 2d inputs. This analysis demonstrates that the currently
found/benchmarked trojans are very likely only the tip of the iceberg.

By using the synthesized netlist description of an IP core as input, we introduce a new
tool called HaTCh which learns in a precomputation or “learning” phase how to add additional
“tagging” circuitry to the IP core such that, as soon as an embedded XX-St-D-F trojan is trig-
gered, the tagging circuitry raises an exception to prevent the trojan from manifesting malicious
behavior. We show that HaTCh parameterized for Ht,d has zero false negatives among trojans
in Ht,d and depending on the duration of the precomputation (learning phase) the probability
of a non-zero false positive rate can be designed to approach zero. For a sample among the
Trusthub [1] benchmarks in XX-St-D-F, we show a non-zero false positive rate of at most 10−5

(for d = 1).
The learning phase of HaTCh has a complexity of O(|Core|d(τ + d ln |Core|)) where |Core|

is the number of wires in the IP core and e−τ is the probability of non-zero false positive rate.
We show how this complexity can potentially be reduced by considering “interesting” subsets
of Ht,d, one of which leads to O(|Core|3) complexity independent of d. The tagging circuitry
for our sample of benchmarks has area overhead from 0.02% to 7.63% for non-pipelined tagging
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circuitry, and from 0.02% to 15.25% for pipelined tagging circuitry which is useful for designs
having strict timing constraints.
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1 Introduction
Modern electronic systems heavily use third party IP (intellectual property) cores as their basic
building blocks [2]. An IP core is a reusable block of logic, tailored to perform a particular operation
in an efficient manner, that is an intellectual property of one party. Optimized for area and
performance, the IP cores are essential elements of design reuse in electronic design automation
(EDA) industry and save a lot of resources to redesign the components from scratch. UARTs, DSP
units, Ethernet controllers and PCI interfaces etc. are some examples of the IP cores [3].

IP cores are broadly categorized in hard and soft IP cores. Hard IP cores are transistor level
representations of the core’s functionality. Soft IP cores are offered either in a hardware description
language, such as Verilog or VHDL, as synthesizable RTL or as generic gate-level netlists which is
a boolean function representation of core’s logic.

Both hard IP cores and soft IP cores offered as gate-level netlists are usually called ‘closed
source’, as their high level RTL source code is not provided. Such cores give their vendors signifi-
cant protection against reverse engineering of the cores by obfuscating algorithmic and implemen-
tation tricks. To even improve the strength of obfuscation in the near future, indistinguishability
obfuscators1 iO (for polynomial-size circuits), as recently developed in the crypto community, may
be used as soon as their constructions attain acceptable performance overheads [4] [5].

Even though (partially) obfuscated cores protect the intellectual property to certain extent,
they give rise to a critical security problem: how to make sure that a third party closed source IP
core does not embed a Hardware Trojan? The IP core vendor acting as an adversary could implant
a malicious circuitry in the IP core, through its source code or by using some malicious tools to

1For any two functionally equivalent circuits C1 and C2, the two distributions of iO(C1) and iO(C2) are compu-
tationally indistinguishable.
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generate the core netlist, for privacy leakage or denial of service attacks [6]. More specifically,
before using a closed source IP core, the following two questions must be addressed;

1. Is the IP core based on a trusted source code?

2. Has the IP core been generated using a trusted toolchain?

In order to address these questions, one needs to have a basic intuition about how does a
hardware trojan work. A hardware trojan usually consists of two parts: a trigger circuitry which
activates the trojan upon a rare condition or event called trigger condition, and a payload
circuitry which performs the malicious operation called ‘payload’ as intended by the adversary.
The trigger condition manifests itself in the form of a boolean value of certain wires. The trigger
circuitry is implemented semantically as a comparator which compares the values of these relevant
wires with the desired trigger condition and outputs the result in the form of a boolean value on
another wire Trig which we call the trigger signal (i.e. Trig = 1 upon trigger condition, Trig = 0
otherwise). The payload circuitry takes the trigger signal Trig as input and performs malicious
operation upon Trig = 1. The trigger signal must not be confused with trigger condition; trigger
condition is an event which causes the trojan activation, whereas trigger signal is the output of
trigger circuitry which signals the payload circuit to show malicious behavior. Notice that Trig
remains 0 until the trigger condition occurs, which is a very rare event, i.e. it remains an “unused”
input to the next combinational logic to which it is connected. This leads to the basic principle of
hardware trojans detection i.e. identifying the unused wires (i.e. the trigger signal) in the design.

We notice that here |Trig| = d = 1, i.e. the trigger signal consists of only one wire which takes
a certain value (e.g. Trig = 1) only upon the trigger condition. We call d the dimension of the
trojan which shows the width of the trigger signal. A trojan with d = 1 is relatively easy to detect
since one out of 2d = 21 = 2 possible logic values of the trigger signal could be the result of a
trigger condition. However, if for example d = 2, i.e. the trigger signal is a certain combination
of two wires, then one out of 2d = 22 = 4 possible combinations could be the result of a trigger
condition. For larger d it is even harder to detect trojans because of the exponentially increased
computational complexity.

This key observation leads to one of the major contributions of this paper: We introduce a
hierarchical model of hardware trojans, along with design examples, based on the number of wires
involved (dimension d) in the trojan trigger signal. This model helps quantifying the complexity of
the hardware trojans to better understand the required properties of future techniques and tools
for hardware trojan detection.

There exist several different trojan detection schemes in the literature which try to detect a
potentially malicious circuit module in the IP core by identifying its trigger wire(s). Some of
these state of the art techniques include UCI [7], VeriTrust [8] and FANCI [9]. These techniques,
particularly VeriTrust and FANCI, were known to detect all benchmarked trojans with significant
false positive rates until a most recent work called DeTrust [10] which showed a trojan design
methodology to bypass these detection schemes.

The key idea behind the trojan design methodology of DeTrust is that the trojan trigger circuit
logic should be intermixed with the normal circuitry and spread over multiple sequential levels so
that it appears to be a part of “normal circuitry”. We notice that, in some cases, this leads to
hardware trojans for which the trigger signal does not boil down to only one wire, i.e. they have
dimension d > 1. The existing techniques which only consider trojans with a trigger signal consist-
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ing of one wire (i.e. d = 1) cannot detect a trojan whose trigger signal is a certain combination of
more than one wires (d > 1) with negligible zero false negatives.

To bridge this gap, we introduce a powerful hardware trojan detection tool called Hardware
Trojan Catcher (HaTCh) which takes a parameter d′ and detects all the trojans with 0 < d ≤ d′

with zero false negatives. HaTCh works in two phases; a learning phase and a tagging phase.
In the learning phase, the IP core goes through functional testing and for each passed test (i.e.
no I/O spec violation), all those transitions of internal wires (or combination of wires) which are
observed during the test are whitelisted i.e. considered trusted. This process filters out a blacklist of
untrusted transitions of wires (or combination of wires) which are potentially related to the trojan
trigger and hence any activity on these wires needs to be tracked. This is done in the tagging phase
by adding additional logic to the IP core.

We prove HaTCh to have a zero false negative rate. Experimental results show a significantly
low (1/105) false positive rate and an area overhead between 0.02% to 7.63% (non-pipelined) and
15.25% (pipelined) for a sample of Trusthub [1] benchmarks.

1.1 Contributions

Following are the main contributions of this paper:

1. A formal classification of hardware trojans, referred to as {TA/AA}-{St/Si}-{D/ND}-{F/NF},
based on their four different properties: activation mechanism, payload channels, determinism
and payload functionality. We show how XX-Si-XX-XX, XX-St-XX-NF and XX-St-ND-XX
can manifest malicious behavior without being detected, i.e. for which no tool with negligible
zero false negative rate exists.

2. We categorize TA-St-D-F into a hierarchy of hardware trojans Ht,d based on dimension d
which shows the number of wires in the trigger signal and depicts the stealthiness of the
trojan, and t which shows the latency between trigger condition and malicious behavior.

3. We show that most TA-St-D-F trojan benchmarks are in Ht,d for small d in our hierarchy,
which means that the currently found/benchmarked trojans are very likely only the tip of
the iceberg: trojan designs can be improved for more stealthiness and so can the tools to
detect them. In fact we introduce a new trojan design for trojans in H0,d where the d wires
all belong to the hardware trojan itself: the new hardware trojan design universally applies
to cores that include the computation of an XOR over ≈ 2d inputs.

4. We present a tool HaTCh to detect Ht,d ∈ XX-St-D-F with the following properties:

• Zero false negatives
• e−τ probability of a non-zero false positive rate that can be made to approach zero
• Learning complexity O(|Core|d(τ + d ln |Core|))
• Produces tagging circuitry with small overhead

5. Our experimental results on a certain benchmark group show that HaTCh has a false positive
rate of 10−5. Optimizations implemented in HaTCh for reducing area overhead lead to
4.5 times reduced area overhead leading to 4.18% (non-pipelined) and 8.34% (pipelined)
overheads on average.
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6. We discuss techniques to reduce the learning complexity of HaTCh e.g. by using linear
invariant checking.

The rest of the paper is organized as follows; section 2 talks about existing techniques for
hardware trojan detection along with their limitations. Section 3 provides some basic background
of hardware trojans. Section 4 presents a thorough classification of hardware trojans based on their
activation mechanisms, payload channels and behavior of the IP core in which they are embedded.
Section 5 provides a formal mathematical framework for a particular class of HW trojans, whereas
section 6 introduces a new hierarchical model of this specific class. The details of the HaTCh tool
and its experimental evaluation are in sections 7 and 8 respectively and we conclude in section 9.

2 Related Work
Hardware trojans have recently gained significant interest in the security community [11], [12], [13].
The works [12] and [13] showed how malicious entities can exist in hardware, while Skorobogatov
et al. [14] showed evidence of such backdoors in military grade devices. Nefarious designs have also
been deployed and detected in wireless communications devices [15]. Recent works have mostly
focused on detection [16] and identification schemes [17], which assess to what extent the pieces of
hardware may be vulnerable, and how related trojans can be classified.

Hicks et al. [7] proposed to detect hardware trojans through unused circuit identification (UCI).
Their solution centers on the fact that the hardware trojan circuitry will not be used within a design,
and hence such minimally used logic can be distinguished from the design specification. However,
due to functional verification constraints, whole designs cannot be analyzed in optimal time, and
hence the scheme identifies large portions of the design as a potential hardware trojan. This results
in a high false positive rate, and recent works by some papers have even succeeded in breaking this
scheme [18], [19].

Veritrust [8] is another scheme proposed by Zhang et al. that identifies suspicious wires that
seem redundant in comparison with the design. The scheme uses Karnaugh-maps, and excites
portions of the circuit using the design specification, given the fact that the design spec will not
activate the hardware trojan. However, the design spec may not activate all circuitry in the design,
and the remaining wires are all classified as potential hardware trojans, and contribute heavily to
the false positive rate.

Waksman et al. designed methods to apply boolean function based heuristics to flag suspicious
wires in a design [9], stemming ideas from their previous work on hardware obfuscation [20]. This
solution may be suitable for cases where backdoors are evident as wires in the design. However, the
admitted weakness of this solution is that the scheme suffers from false positives, and is recently
broken along with VeriTrust by DeTrust [10]. Moreover, this method is a probabilistic method
which uses a threshold and some heuristics to determine if a wire should be considered suspicious.
This could lead to a false negative where a trojan related wire is regarded as ‘not’ suspicious because
of using a low threshold to reduce false positives.

DeTrust [10] is the most recent scheme targeting hardware trojans. It develops several new
stealthy hardware trojans whose circuitries are intermixed with the normal design. Therefore, by
having trojan circuits being part of the normal design, previous schemes would designate them as
non-malicious, resulting in a false negative rate. However, they only discuss on how to improve the
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Figure 1: IP Core Design Space: An IP core violating the specifications and having an extra
circuitry contains a Hardware Trojan whereas a core violating the specifications without having
any extra circuitry contains an Exploit. Note that a core having extra circuitry and not violating
the specifications is not applicable.

current works (FANCI and VeriTrust) to detect their trojans. The paper also shows that FANCI
exhibits a much higher false positive rate than expected.

Further works construct and detect hardware trojans through side channels [21], [22], [23]. Such
hardware trojans remain implicitly on, and have no effect on the functionality of the circuit [24].
Side channels include power based channels [25], [26], as well as heat based channels [27] [28]. Power
based trojans force the circuit to dissipate more and more power to either damage the circuit, or
simply waste energy [29]. Heat based trojans leak important information via heat maps [30], where
highs and lows in heat dissipation can be interpreted as 1’s and 0’s.

The above works use trojans from the TrustHub hardware trojan benchmarks suite, in which
all trojans are explicitly triggered. This explicitness forgoes the lack of implicitness, due to which
all the above schemes are able to detect the benchmarked trojans. These works do not cater for
implicit higher dimensional (d > 1) trojans, and also do not provide a theoretical basis for their
methods. This paper fills this gap by unifying trojan taxonomy, and providing a framework for
hardware trojan detection.

3 Background & Adversarial Model

3.1 IP Core Design Space

An IP core can fall under one of the following three categories, as shown in Figure 1, based on
its level of conformity to the design specifications; (1) containing A Hardware Trojan, or (2) An
Exploit, or (3) exhibiting Normal Behavior. We define extra circuitry as redundant logic added to
the IP core without which the core can still meet its design specifications.

3.1.1 Hardware Trojan

A hardware trojan is a malicious logic embedded inside a larger circuit resulting in data leakage or
harm to the normal functionality of the circuit once activated. A Trigger Activated trojan is one
which activates upon some special internal or external event termed as Trigger. Whereas an Always
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Active trojan is one which remains active all the time to deliver the payload. Once activated, a
trojan can deliver its payload either through standard I/O channels or through side channels (also
called covert channels). Denial of service, performance degradation, privacy leakage, reducing the
reliability of the device, weakening of the security mechanisms e.g. bypassing the side channel
protection circuitry, discarding counter measures etc. are some examples of possible payloads of a
hardware trojan.

Figure 2 shows an example of a simple hardware trojan embedded in a half adder circuit. The
trojan free circuit is shown in Figure 2a which, under normal behavior, generates a sum S = A⊕B
and a carry C = A ·B. The trojan circuitry, highlighted in red in Figure 2b, triggers when A = B.
Note that this trigger condition becomes less probable if A and B are several bits wide vectors.
The payload of this trojan is to generate incorrect results i.e. S = B for A = B and S = A⊕B for
A 6= B. Once the trigger condition occurs, the select line Sel of the multiplexer becomes 1 and the
output S is produced by taking a different branch through the multiplexer. This is a very naïve
example of a hardware trojan as it is easily detectable through functional testing (i.e. if S = A⊕B
and C = A · B for A, B ∈ {0, 1}) since its trigger condition is not rare. However this example
gives the general intuition about complex and sophisticated trojans which also get triggered from
branches due to rarely occurring events.

Notice the following properties of this circuit with a hardware trojan;

1. Occurrence of trigger condition: There exists a wire (Sel in this example) in the circuit that
only toggles when the trojan gets triggered.

2. Activation of payload circuit: Occurrence of a trigger condition activates a payload circuit to
deliver the payload.

3. Manifestation of malicious behavior: Depending upon the trojan and the core, an activated
payload circuit may behave in the following ways:

• Explicit malicious behavior: It causes the core to violates its specifications and this
incorrect behavior can be captured at the output channels of the core.
• Implicit malicious behavior: It forwards such data to the output channels of the core
which cannot be distinguished from otherwise ‘normal’ data and hence the activation of
the trojan is not detected.

Property 3 plays an important role in the stealthiness of a hardware trojan after activation.
E.g. the circuit in the above example produces S = 1 for trigger condition A = B = 1 which is
an explicit malicious behavior since it is distinguishable from otherwise normal output (S = 0).
However the same circuit produces S = 0 for trigger condition A = B = 0 which is the same as
otherwise normal output and cannot be distinguished, hence leading to implicit malicious behavior.

In this example, implicit malicious behavior itself does not harm the core since the normal
functionality is not disrupted. However in HaTCh, or other frameworks which depend on functional
testing, it may cause some or all of the trigger related wires to get whitelisted during the learning
phase, because the core produces the output as expected. Consequently the trojan trigger circuitry
could be left untracked since it becomes out of scope of the tagging phase. As a result, the implicit
malicious behavior may cause the explicit malicious behavior to go undetected by HaTCh.

Moreover, the implicit malicious behavior becomes very powerful for privacy leakage type of
attacks since the adversary knows that the data coming out at the output channels is some secret
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Figure 2: Example of a simple Hardware Trojan: Figure 2a shows the circuit without the hard-
ware trojan. Figure 2b shows the circuit with the hardware trojan where the trojan circuitry is
highlighted in red. The trojan gets activated when A = B and produces incorrect output S.

information, whereas it looks totally normal to a security administrator who is only monitoring
the output channels. Since HaTCh is based on functional testing which only detects functional
incorrectness or the explicit malicious behavior, when we use ‘malicious behavior’ in the remainder
of this paper we refer to explicit malicious behavior unless specified otherwise.

In order to detect the trojan trigger leading to explicit malicious behavior in the example circuit
of Figure 2 with zero false negatives, HaTCh needs to monitor at least two-wire combinations of
internal wires during the learning phase. One wire combinations lead to trojan detection with zero
false negatives only if implicit malicious behavior does not occur in the learning phase, e.g. in the
learning phase Sel is always 0 if implicit malicious behavior does not occur and hence the transition
Sel = 0 → 1 can be considered as trigger event. However, this transition does occur in case of
implicit malicious behavior which is indistinguishable from the normal behavior. Therefore if this
happens in the learning phase, it causes the transition Sel = 0 → 1 to be whitelisted and hence
useless to detect the trojan.

Two wire combinations, on the other hand, can guarantee 100% detection even if implicit
malicious behavior occurs during the learning phase. Consider the MUX in Figure 2b. Explicit
malicious behavior occurs when Sel = 1 and (A + B) 6= B (i.e. A = 1). The combination
(Sel, A) = (1, 1) only occurs in case of explicit malicious behavior and hence it is never whitelisted
which leads to 100% detection.

For a trojan which requires d-wire combinations to be monitored for 100% detection, we refer
to d as the dimension of the trojan. Notice that in Figure 2b, the input A+B of MUX is dependent
on the other input B and hence the equation (A + B) 6= B can be simplified leading to d = 2 for
this trojan. In general, if the data inputs of an n-input MUX of a payload circuit are independent
then d = n+ 1 for that trojan.

We will define Ht,d to be the class of hardware trojans with the property that a particular
combination of boolean values of d wires only occur upon trigger condition which always leads to
manifestation of malicious behavior. We formally define malicious behavior and hardware trojan
classes based on the dimension d in sections 5 and 6 respectively.
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3.1.2 An Exploit

An exploit refers to a loophole in the specifications or implementation of an IP core which allows an
adversary to manipulate it beyond its intended specifications. Notice that an exploitable IP core
does not have extra circuitry like a hardware trojan. Depending upon the nature of the exploits,
they can also deliver the same payloads as hardware trojans such as privacy leakage or denial of
service etc. Some examples of exploits are: a wireless connection that can be overloaded may lead
to a denial of service, a broken AES module due to a predictable key, OpenSSL Heartbleed bug
etc.

This paper focusses on providing a formal framework for rigorous reasoning about hardware
trojans (not exploits).

3.2 IP Core Design Flow & Adversarial Model

Digital ASIC design process starting from the high level design specifications to the final chip
fabrication involves several design phases as shown in Figure 3a. First, high level design specifica-
tions are captured and modeled using some system specification language e.g. C, C++, SystemC
or SystemVerilog. This system level design is transformed to RTL design where the system level
specifications are modeled using a hardware description language (HDL) such as Verilog or VHDL.
After verifying the functionality through simulations, RTL synthesis is performed which generates
a generic gate level description, usually called synthesized netlist, from RTL description and also
performs logic optimization for speed and area. The synthesized netlist is passed through fur-
ther design phases (e.g. physical synthesis, floorplanning, place and route etc.) and eventually
transformed into a chip.

The IP core vendors provide their IP cores typically after the RTL synthesis phase which
obfuscates the HDL source code. Therefore in our model we only consider RTL synthesis and
earlier design phases as vulnerable to inclusion of a hardware trojan. Rest of the design phases are
considered trusted since the user is in control of the additional added logic around the IP core (if
any) to produce a larger design.

Notice that up to the RTL synthesis phase, the design flow for FPGAs is also pretty similar to
that of ASICs as shown in Figure 3b. The only major difference is that for FPGAs, the synthesis
process maps the design to the device specific components such as LUTs, flipflops and DSP units etc.
rather than the generic logic gates. Therefore our framework applies to the FPGAs as well, although
the computational complexity is increased due to the limitation of device specific components in
synthesized netlists for FPGAs.

4 Classification of Hardware Trojans
Based on their activation mechanism and payload delivery channels, hardware trojans can be
broadly classified into four types as shown in Figure 4. TA-Xx and AA-Xx refer to Trigger
Activated and Always Active trojans respectively. XX-St and XX-Si refer to the trojans using
standard I/O channels and side/covert channels respectively to deliver the payload. I/O channels
are generally used to communicate binary payloads bj at certain times tj for the duration of the
execution of the IP core. In this sense the view of an I/O channel can be represented as a sequence
(b1, t1), (b2, t2), . . . , (bN , tN ). Its information is decomposed in three channels: the binary channel
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Figure 4: Classification of Hardware Trojans from Figure 1 based on their activation mechanism
and payload delivery channels.

corresponding to (b1, b2, . . . , bN ), the timing channel corresponding to (t1, t2, . . . , tN ), and the ter-
mination channel N which reveals information about the duration of the execution of the IP core.
If a trojan delivers some of its payload over the timing covert channel (or other side channels),
then we define it to be in XX-Si. If a trojan delivers all of its payload using the standard usage
of I/O channels (the binary and termination channels), then we define it to be in XX-St. E.g., a
hardware trojan causing performance degradation in terms of slower response/termination times
due to slower computation (denial of service in the most extreme case) is in XX-St.

In Figure 5, we further refine our description of XX-St trojans by distinguishing those trojans
that are embedded in an IP core which output is a function of its input, i.e. the logical functionality
of the IP core is deterministic, and those trojans whose malicious payload changes the logical
functionality of the IP core. We denote these properties by D and F respectively, and ND and NF
denote their negations. E.g., a trojan which degrades performance in that it slows down the response
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times over the standard I/O channels up to the worst-case acceptable by the logical functional
specification of (user interaction with) the IP core, does therefore not violate the specified logical
functionality and is in class XX-St-X-NF. If performance is degraded to the extreme of a denial of
service, then logical functionality does change since an answer is expected within a reasonable time
frame. Such trojans as well as trojans that change logical functionality in general are in XX-St-X-F.
The reason for differentiating deterministic versus non-deterministic IP cores is that we can show
that HaTCh guarantees a zero-false negative rate for XX-St-D-F trojans which we cannot expect to
achieve for trojans that are not XX-St-D-F. We note however that any trojan that uses triggering
mechanisms as employed by XX-St-D-F trojans will be detected by HaTCh. Our evaluation section
considers all known benchmarked trojans and most of them happen to have this property. This
shows the relevance of creating a formal framework around XX-St-D-F trojans only in section 5.

5 Formal Hardware Trojan Framework
In order to model and define hardware trojans, we will first provide a relaxed model for the input
and output behavior of IP cores in sections 5.1 and 5.2. We will explain how XX-Si trojans
can abuse the probabilistic nature of side channels to remain undetected. Similarly, XX-St-ND-X
trojans, which use standard I/O channels to covertly embed malicious payload, remain undetected
by exploiting any non-deterministic behavior of the IP core. Finally, we notice that a XX-St-X-NF
trojan cannot be detected using a logical specification alone. For the remaining class of XX-St-D-F
trojans we will set up a rigorous framework in this section and section 6.

5.1 IP Core

An IP core ‘Core’ written in a higher language (such as Verilog, VHDL) represents a circuit module
M = MCore (with feed-back loops, internal registers with dynamically evolving content, etc.) that
receives inputs (over a set of input wires) and produces outputs (over a set of output wires). We
define the state of M at a specific moment in time (measured in cycles) as the vector of binary
values on each wire inside M together with the values stored in each register/flip-flop. Here, the
definition of state goes beyond just the values stored in the registers inside M : M itself may not
even have registers that store state, M ’s state is a snapshot in time of M ’s combinatorial logic
(which evolves over time). By Si we denote M ’s state at clock cycle i.
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To complete the picture, we define xi as the input crafted by a user of the IP core which is
received by M over its input wires at clock cycle i (this excludes default input wire values during
clock cycles when input is not given by the user, i.e. input wires are undriven). Similarly, we define
yi as the output of the IP core which is destined for the user and is generated by M over its output
wires at clock cycle i. We write xi = ε or yi = ε if no input is given or output is produced. Triples
(xi, yi, Si) model the evolving state of M assuming an influx of inputs xi coming from a user:

1. The IP Core starts in an initial state S0.

2. During the i-th clock cycle, i ≥ 1, the IP core generates on input xi

(yi, Si)←−MCore(xi, Si−1).

In a first attempt, we model the user as a polynomial time (pt) algorithm2 User which, based
on previously generated inputs and received outputs, constructs new input that is received by the
IP core in the form of a new value xi:

(xi+1, Ui+1)← User(yi, Ui),

where Ui indicates the current state of the algorithm (which is derived from the history of input
and output pairs (xj , yj), j ≤ i) and where algorithm User computes (based on a newly received
output yi) a new state Ui+1 and a new input xi+1 for the IP core. In this model the user interacts
with the IP core from cycle to cycle. A malicious user in this model is therefore able to monitor
precise timing information: it is in his interest to embed a hardware trojan that makes optimal
use of this timing (side) channel by sometimes delaying an output for just a single cycle in order
to covertly transmit private information to the malicious user. Clearly, an ordinary user does
not have such fine-grained interaction and cannot (and does not want to have to) verify precise
timing specifications of a fine-grained functional specification of the IP core. For this reason we will
relax the user interaction with the IP core leading to a more coarse-grained functional specification
where not individual transmitted bits per clock cycle are considered but only semantical units of
transmitted information over longer periods of time.

We assume (malicious) users who, due to (network) latencies, cannot observe detailed timing
information. Even stronger, we assume an adversarial model in which the attacker cannot observe
any side channels such as the timing channel, power channel, heat map, etc. I.e., in our analysis
we exclude XX-Si trojans. Due to the probabilistic nature of side channels, a XX-Si trojan can
always embed some minimal malicious payload without being detected by an external observer who
considers it normal to see small probabilistic fluctuations (allowing a trojan to embed information
which looks like acceptable probabilistic fluctuations over the side channel). The probabilistic
nature of side channels prohibits the development of a tool which recognizes malicious behavior
based on a functional specification to detect XX-Si trojans with zero false negatives. The presence
of a non-zero false negative rate in an adversarial model that allows XX-Si trojans implies a
constant rate of privacy leakage.3 It is outside the scope of this paper to analyze side-channel
models/frameworks in existing literature that may lead to tools that can detect XX-Si trojans

2Any random coin flips necessary are stored as a common reference string in the algorithm itself.
3Therefore, as a design principle, IP cores that need to protect against (maliciously engineered) leakage over side

channels must implement leakage resilient key renewal, e.g., as described in [31].
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with small false negative rates or obfuscate (by adding extra circuitry) the effect of XX-Si trojans
leading to reduced privacy leakage rates.

In this paper we assume adversaries who do not have access to side channels. I.e., no physical
access to the power pins, or having the possibility to capture a heat map etc.; and only (remote)
access to the I/O pins such that (network) latencies obfuscate the timing channel. See algorithm
1, we model this by restricting User to a pt algorithm with two alternating modes; an input
generating mode and a listening mode. During the input generating mode, some input message
Xj is generated which is translated to a sequence (xk, xk+1, . . . , xn) of input vectors for each clock
cycle to the circuit module M which defines the IP core. Whereas in the listening mode, which is
∆j clock cycles long, User collects an output message Yj that efficiently represents the sequence
of output vectors (yg, yg+1, . . . , yk, yk+1, . . . , yn, . . . , yn+∆j

) as generated by M during clock cycles
from the end of the last input generating mode at clock cycle g onwards, i.e., the output generated
during clock cycles g, g+ 1, . . . , n+ ∆. In other words, User simply produces an input message Xj ,
waits to receive an output message Yj , produces a new input message Xj+1 etc. (the duration of
the input generating and listening modes may vary over time):

(∆j+1, Xj+1, Uj+1)← User(Yj , Uj),

where U0 denotes a fixed initial state of User. I.e., the view of an (adversarial) user is the sequence
(∆1, X1, Y1,∆2, X2, Y2, . . .), where Xj+1 depends on Xh and Yh, 1 ≤ h ≤ j, and Yj depends on Xh

and Yh−1, 1 ≤ h ≤ j (with Y0 = ε). The Xj are produced as semantic units of input that arrive
over several clock cycles at the IP core. Yj concatenates all the meaningful (6= ε) outputs that were
generated by the IP core since the transmission of Xj . This means that the view of the user is
simply an ordered sequence of values devoid of any fine grained clock cycle information. Therefore,
in this model only XX-St trojans (which make use of standard I/O channels) can be used in an
effective way by an adversary.

Algorithm 1 Algorithmic description of the interaction between MCore and User.
1: procedure Interaction
2: g, Y0, j = 1, ε, 1
3: while (∆j , Xj , Uj)← User(Yj−1, Uj−1) do
4: (xk, . . . , xk+n)← Send(Xj)
5: (xg, . . . , xk−1) = (ε, . . . , ε)
6: (xk+n+1, . . . , xk+n+∆j

) = (ε, . . . , ε)
7: for i← g, k + n+ ∆j do
8: (yi, Si)←MCore(xi, Si−1)
9: if yi 6= ε then Yj = Yj ||yi
10: end if
11: end for
12: j, g = j + 1, k + n+ ∆j + 1
13: end while
14: end procedure
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5.2 Specification

In the interaction depicted in algorithm 1 an “ideal” user can verify the correctness of the received
output Y with respect to its input X according to a functional specification. Here we assume that
the listening mode lasts for a sufficient number of clock cycles ∆ such that a semantic unit of output
can be received in time. Note that ∆ can be considered as part of the specifications that takes into
account worst-case transmission latencies to the user, the pipeline depth of the core, etc.

In order for an ideal user to be able to verify functional correctness we assume that the IP core
has an algorithmic functional specification consisting of two algorithms: CoreSim and OutSpec.

5.2.1 CoreSim

An algorithm that simulates the IP core at the coarse grain level of semantic output and input
units:

• CoreSim starts in an initial state S′0

• (Y ′j , S′j ,∆j)←− CoreSim(Xj , S
′
j−1)

CoreSim should be such that it does not reveal any information about how the IP core implements
its functionality. It protects the intellectual property (implementation and algorithmic tricks etc.)
of the IP core and only provides a specification of its functional behavior. States S′j are not related
to the states Si that are snapshots of the circuit module M as represented by Core. States S′j
represent the working memory of the algorithm CoreSim.

Notice that CoreSim also outputs ∆j , the listening time needed in algorithm 1 to receive Yj if
a user would interact with MCore instead of CoreSim. Since CoreSim is public knowledge, User
can execute CoreSim as a subroutine to compute its ∆j values.

5.2.2 OutSpec

The output specification OutSpec specifies which standard output channels should be used and
how they should be used. Standard output channels are defined as those which can be configured
by the hardware itself (by programming reserved registers etc.). E.g., a hardware trojan doubling
the Baud rate (by overwriting the register that defines the UART channel) or a hardware trojan
which unexpectedly uses the LED channel (by overwriting the register that programs LEDs), as
implemented in [32], would violate OutSpec. As discussed previously, side channel attacks are
defined as attacks which use non-standard output channels (which are not covered by OutSpec).

At this point, a couple of remarks are in place:
First, an “ideal” user who can verify the correctness of received output may not exist since

the initial state S′0 may not be known because it should encode private information of the IP core,
e.g., a private key which ought not be exposed outside the IP core. In general, a user may become
in possession of an IP core which already evolved towards an unknown state Si. In our model,
however, we assume that IP cores can be (reset to a known default state S0 and) programmed
(through the input channel) with an initial state. This implies that a user of the IP core can (after
a reset) know the initial state S0 and its corresponding state S′0 in CoreSim, and can be considered
an “ideal” user.
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Second, we assume that the language (e.g. Verilog, VHDL) used by the vendor to describe the
provided IP core netlist Core allows the user of the IP core to emulate its fine grained behavior,
i.e., we assume an algorithm Emulate:

• Emulate[Core] starts in an initial state S0.

• (yi, Si)←− Emulate[Core](xi, Si−1).

Emulate[Core] behaves exactly as the circuit moduleM corresponding to Core, i.e. Emulate[Core]
and M are functionally the same. The main difference is that Emulate[Core] parses the language
in which Core is written: If programmed in software, this leads to a huge performance overhead. If
implemented in hardware, Emulate[Core] needs to explicitly output the states Si and this means
that extra circuitry (logic and registers) needs to be added toM (to some extent the extra circuitry
can be thought of as a standard testing circuit). Notice that Emulate[Core] is solely based on Core
and cannot leak more information about the intellectually property of the IP core than described
by Core itself.

In practice, one can think of Emulate[Core] as any post-synthesis simulation tool, such as
ModelSim, which can be used to simulate the provided IP core netlist Core. Notice the following
properties of such a simulator tool; firstly it does not leak any information about the IP other than
described by Core itself and secondly, it is inefficient in terms of (completion time) performance
since it performs software based simulation, however it provides fine grained information to the
user about the internal state of the IP core at every clock cycle.

Algorithm 2 User interacts with Emulate[Core] and verifies functional correctness and outputs
the list of all the emulated states of MCore.
1: procedure Simulate(Core, User)
2: g, Y0, j, States = 1, ε, 1, [ ]
3: S0, S

′
0 = ResetStateCore,ResetStateSim

4: while (Xj , Uj)← User(Yj−1, Uj−1) do . No output ∆j

5: (Y ′j , S′j ,∆j)← CoreSim(Xj , S
′
j−1) . Spec.

6: (xk, . . . , xk+n)← Send(Xj)
7: (xg, . . . , xk−1) = (ε, . . . , ε)
8: (xk+n+1, . . . , xk+n+∆j

) = (ε, . . . , ε)
9: for i← g, k + n+ ∆j do . Emulate
10: (yi, Si)← Emulate[Core](xi, Si−1)
11: if yi 6= ε then Yj = Yj ||yi
12: end if
13: Append(States, Si) . Update States
14: end for
15: j, g = j + 1, k + n+ ∆j + 1
16: if Y ′j 6= Yj then . Verification
17: return (“Trojan-Detected”, States)
18: end if
19: end while
20: return (“OK”, States) . All emulated states
21: end procedure
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To summarize the discussion, the user of the IP core is in a unique position to use Emulate[Core]
and verify whether its I/O behavior (over standard channels) matches the specification

(CoreSim,OutSpec).

The verification can be done automatically without human interaction: This leads to our HaTCh
tool which uses (during a learning phase) Emulate[Core] to simulate the actual IP coreMCore from
algorithm 1 and which verifies whether the sequence (X1, Y1, X2, Y2, . . .) computed by algorithm 1
matches the output sequence (Y ′1 , Y ′2 , . . .) of CoreSim on input (X1, X2, . . .), where we assume User
to output the same listening times ∆j as CoreSim. Algorithm 2 shows a detailed description of
this process. After this simulation based verification, HaTCh will create (during a tagging phase)
additional circuitry which will (1) test the register settings of the standard output channels as
defined in OutSpec and (2) flag unexpected behavior which HaTCh had not seen in one of the
states Si in States during the execution of algorithm 2.

Notice that User in algorithm 2 can be considered as a meta user which runs several test
patterns from different individual users one after another to test MCore. Clearly, the internal
states of MCore are maintained during subsequent tests and affect the next states and outputs as
it can be seen that for each next output yi, the input xi is applied at the previous state Si−1.
Therefore Simulate is generic and can be applied to both non-pipelined and pipelined MCore.

For a pipelined MCore, the current form of algorithm 2 is straightforward where each next test
for input xi starts in the previous state Si−1 where the last test finished. Depending upon the
throughput of MCore, a new test input xi may be issued to MCore after every clock cycle or after
several clock cycles.

In case of a non-pipelined MCore the meta user User can be thought of as a sequence of user
interactions for different users. It should be noticed that depending upon its design, any hardware
trojan embedded in MCore may not return to its initial state after each individual user interaction.
E.g. a counter based hardware trojan may not reset itself after every test and it may continue to
progress towards its trigger condition.

The detailed methodology of HaTCh is explained in section 7.

5.3 XX-St Trojan Behavior

We first observe that CoreSim may not be able to exactly match the output (as in Y ′j = Yj in
algorithm 2) of a non-deterministic MCore, which generates and uses true random bits. Since
CoreSim cannot generate (pseudo) random bits that are the same as the true random bits in
MCore, the output of CoreSim may slightly differ from that of MCore. In this case verification
is based on some similarity measure. As explained in section 5.1 for the timing channel, since
verification based on a similarity measure allows small probabilistic fluctuations in the output of
MCore, a hardware trojan can be designed that uses this artifact to leak privacy at a non-zero rate.
We will therefore not be able to offer strong security guarantees for our HaTCh tool in case of non-
deterministic IP cores. Even though HaTCh can be applied to non-deterministic IP cores, we will
assume in the remainder of this paper deterministic IP cores, i.e., CoreSim is a non-probabilistic
algorithm. This means that the output sequence (Y ′1 , Y ′2 , . . .) of CoreSim is uniquely defined (and
next definitions make sense).

We define the input sequence X1, X2, . . . , XN to elicit normal behavior if it verifies properly in
algorithm 2, i.e., if the emulated output (by Emulate[Core]) correctly corresponds to the simulated

17



output (by CoreSim). An input sequence X1, X2, . . . , XN manifests malicious behavior if it does
not elicit normal behavior.

6 Hardware Trojan Class Ht,d

A XX-St-D-F trojan that manifests malicious behavior must have transitioned through a state of
“no return” (also called a trigger state) after which malicious behavior manifests itself in the form of
a payload that violates the functional specification (XX-St-D-F trojans are defined to only exhibit
this kind of malicious behavior) regardless of the other subsequent user interactions. Clearly, since
the number of possible states is finite, there must be some upper bound t on the number of cycles
within which malicious behavior manifests after a state of “no return”. We (informally) define Ht

as the set of XX-St-D-F trojans that meet upper bound t. A formal definition of Ht is as follows:

Definition 1. Core ∈ Ht if and only if the following conditions hold:

C1) There exists a User such that Simulate(Core, User) outputs “Trojan-Detected”. I.e., Core
is indeed capable of malicious behavior in the form of a violation of the functional spec.

C2) For all User with the property that Simulate(Core, User) returns (“Trojan-Detected”, States),
there exists a state S = States[j] for some 1 ≤ j ≤ |States| such that for all j′ and User′[

(“OK”, States′)← Simulate(Core, User′)
S = States′[j′]

]
=⇒
|States′| < j′ + t

(1)

Here, S represents a trigger state after which, independent of any User′, either the IP core
manifests malicious behavior or the IP core aborts/terminates in < t clock cycles without
eliciting malicious behavior.

In order to understand how this relates to algorithm 2, we define the concept of t-legitimate
states.

Definition 2. Let (w, States) ← Simulate(Core, User). Assuming Core is fixed, we define
W (User) = w. We define the set Lt(User) of t-legitimate states of User as the set

{States[1], . . . , States[|States| − t]}

(Since Simulate is deterministic, Lt(User) and W (User) are well-defined.) We define

Lt =
⋃

W (User)=“OK”
Lt(User)

If a hardware trojan has the property that it always manifests malicious behavior within t clock
cycles after “it gets triggered”, then we know that the states in Lt do not show the “trigger signal”.
This means that we can use the states in Lt to whitelist certain wires or combinations of wires from
the IP core. The following lemma formalizes this insight and simplifies Ht’s definition.

Lemma 1. Core ∈ Ht if and only if
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C1*) (C1) holds.

C2*) For all User with W (User) 6= “OK”, there exists a state S ∈ L0(User) such that S 6∈ Lt.

Proof. Suppose (C2) holds. Let W (User) 6= “OK”. From (C2) we infer that there exists a state
S ∈ L0(User) such that (1) holds for all User′ and j′. If S ∈ Lt, then by its definition there
exists a User′ with W (User′) = “OK” such that Simulate(Core, User′) outputs States′ with
S = States′[j′] for some 1 ≤ j′ ≤ |States′| − t. From (C2) we infer that |States′| < j′ + t, a
contradiction, hence, S 6∈ Lt implying (C2*).

Suppose (C2*) holds. Suppose the negation of (C2), i.e., there exists a User with W (User) 6=
“OK” such that for all S ∈ L0(User), there exists a User′ and j′ such that (“OK”, States′) ←
Simulate(Core, User′) with S = States′[j′] and 1 ≤ j′ ≤ |States′| − t. I.e. S ∈ Lt(User′) ⊆ Lt.
This proves there exists a User with W (User) 6= “OK” such that S ∈ Lt for all S ∈ L0(User)
which contradicts (C2*).

Since hardware trojans may have trigger signals that involve a small number, say d, wires, it is
useful to define projections:

Definition 3 (Projections). We define a vector z projected to index set P as z|P = (zi1 , zi2 , . . . , zid)
where P = {i1, i2, . . . , id} and i1 < i2 < · · · < id. We call d the dimension of projection P and we
define Pd to be the set of all projections of dimension d. We define a set Z projected to index set
P as Z|P = {z|P : z ∈ Z}

Now we define the whitelist Wt,d and its corresponding blacklist Bt,d. We remind the reader
that S represents a state vector, not a set.

Definition 4 (Wt,d and Bt,d).

Wt,d = {(P, S|P ) : P ∈ Pd , S ∈ Lt}
Bt,d = (Pd × {0, 1}d) \Wt,d

We observe that S 6∈ Lt is equivalent to

∃d∃P∈Pd
S|P 6∈ Lt|P

I.e. S 6∈ Lt implies S|P 6∈ Lt|P for the identity projection which leaves states unchanged; if
S|P 6∈ Lt|P then S 6∈ Lt by the definition of projection Lt|P . For this reason it makes sense to
define the subclass Ht,d.

Definition 5. Ht,d consists of Core ∈ Ht such that for all User with W (User) 6= “OK”, there
exists a state S ∈ L0(User) and a projection P ∈ Pd such that S|P 6∈ Lt|P . I.e., (P, S|P ) 6∈ Wt,d

or equivalently (P, S|P ) ∈ Bt,d.

If Core ∈ Ht,d, then trigger states S manifest themselves in d of its wires in a way that cannot
be observed for normal behavior. Notice that Ht,1 ⊆ Ht,2 ⊆ . . . ⊆ Ht.
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Figure 6: A H0,2 trojan embedded in summation function of a Half Adder: Figure 6a shows the
trojan from Figure 2b implemented in a way that the trojan circuitry cannot be distinguished from
the normal circuitry, i.e. there is no single wire which only toggles under trigger condition. This
can be seen in the truth table of Figure 6b.

6.1 H0,2 Class Trojan Example

In section 3, we have shown an example of a simple H0,2 hardware trojan in Figure 2b. In this
circuitry, one can only distinguish between the normal behavior and a trigger event with 100%
guarantee by observing the boolean values of 2-wire combinations, hence it has d = 2. Specifically
(Sel, A) = (1, 1) never occurs during the normal operation. As this trojan exhibits its malicious
behavior immediately after the trigger event occurs it has t = 0.

Figure 6 shows another implementation of the same trojan, having the trigger condition {A,B} =
{1, 1}, from the previous example. Here, the circuitry from Figure 2b is optimized in a way that
trojan circuitry is merged into the normal circuitry. Therefore all the internal wires are part of
producing the normal results as well as is evident from the table in Figure 6b. Hence one cannot
distinguish the trigger condition by observing individual wires or 1-wire combinations. However,
certain 2-wire combinations in this design only occur upon the trigger condition, for example
{A,B} = {1, 1}, {B,A′} = {1, 0} and {B,A′B} = {1, 0}. Since one can only distinguish between
the normal behavior and the trigger event of this trojan by observing 2-wire combinations, and
since it shows malicious behavior immediately after the trigger condition, it is also a H0,2 trojan.

For completeness, we mention that DeTrust in their recent paper (section 3.3 in [10]) created a
trojan design which turns out to be in H1,2 according to our hierarchical model.

We also show another example of a counter based H0,2 trojan in Appendix B.

6.2 H0,d Class Trojan Example

Figure 7 depicts k-XOR-LFSR, a counter based trojan with the counter implemented as an LFSR
(with a primitive feedback polynomial) of size k. Let ri ∈ {0, 1}k denote its register content at
clock cycle i represented as a binary vector of length k. Suppose that u is the maximum index
for which the linear space L generated by vectors r0, . . . , ru−1 (modulo 2) has dimension k − 1.
Since dim(L) = k − 1 < k = dim({0, 1}k), there exists a vector v ∈ {0, 1}k such that (1) the inner
products 〈v, ri〉 = 0 (modulo 2) for all 0 ≤ i ≤ u − 1 and (2) 〈v, ru〉 = 1 (modulo 2). Only the
register cells corresponding to vj = 1 are being XORed with inputs Aj . The expected Hamming
weight of v is k/2, which is the number of XORs of register cells with the Aj as depicted in figure
7.
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Figure 7: k-XOR-LFSR: A general Ht,d hardware trojan.

Since the Aj are all XORed together in the specified logical functionality to produce the sum∑
j Aj , the trojan changes this sum to∑

j

Aj ⊕
∑
j:vj=1

rij =
∑
j

Aj ⊕ 〈v, ri〉.

I.e., the sum remains unchanged until the u-th clock cycle when it is maliciously inverted. Notice
that the dimension d of this trojan, according to our definitional framework, is independent of the
inputs Aj . Therefore in this sense, the k-XOR-LFSR trojan is universally applicable to cores that
implement an XOR over k inputs.

For the proof of the following lemma, see appendix A.1.

Lemma 2. Suppose that all vectors ri behave like random vectors from a uniform distribution.
Then k-XOR-LFSR has register size k and triggers after u ≈ k clock cycles. Furthermore, k-XOR-
LFSR is 6∈ H0,≈log k−2 log log k but is in ∈ H0,d for some larger d.

7 HaTCh Framework
We propose a guaranteed hardware trojan disabler tool calledHardware Trojan Catcher (HaTCh).
The key idea which makes the HaTCh tool really powerful is based on whitelisting. In general, a
whitelist refers to a list of those entities which are provided a particular privilege, service or recog-
nition. Whitelists limit the trusted base to a finite number of trustworthy entities. HaTCh adapts
the same approach to discriminate the trustworthy circuitry of the IP core from its potentially
malicious parts.4

Algorithm 3 shows the operation of HaTCh. In order to disable any Ht,d type hardware trojan
in Core, HaTCh processes Core in two phases; a Learning phase and a Tagging phase. The learning
phase puts Core through functional testing and returns a blacklist B of unused wire combinations
as explained in section 6. Notice that this blacklist is different from a conventional blacklist which is
created by blacklisting the untrusted entities. This blacklist is created by taking the complement of

4The English word Hatch means an opening of restricted size allowing for passage from one area to another.
Our HaTCh framework provides this functionality by allowing certain parts of the circuit to operate normally while
restricting the operation of others.
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the corresponding whitelist W and therefore it contains ‘everything’ other than the trusted entities
(wire combinations in this case), which eliminates the possibility of a false negative. If no malicious
behavior is observed during the learning phase, then the tagging phase starts. It transforms Core
to CoreProtected by adding extra logic for each entry in the blacklist such that whenever any of these
wires is activated, a special warning signal will be asserted to indicate the activation of a potential
hardware trojan. Otherwise if Core is found manifesting any malicious behavior during the learning
phase then the learning phase is immediately terminated. This produces an error condition and as
a result, HaTCh does not execute its tagging phase and simply returns “Trojan-Detected” which
indicates that the IP core contains a hardware trojan and is rejected straightaway.

Algorithm 3 HaTCh Algorithm
1: procedure HaTCh(Core, t, d)
2: B ← Learn(Core, t, d)
3: if B 6= “Trojan-Detected” then . B represents the blacklist
4: CoreProtected ← Tag(Core,B)
5: return CoreProtected . The Protected Core
6: else
7: return “Trojan-Detected”
8: end if
9: end procedure

7.1 Learning Phase

Algorithm 4 describes the operation of learning phase in which HaTCh runs several test patterns
encoded in User on Core and whitelists all those internal states (wires) which are reached by Core
during these tests. Rest of the states (wires) are considered to be the part of a blacklist.

In algorithm 4, if Learn does not output “Trojan-Detected”

L = {States[1], States[2], . . . , States[|States| − t]} ⊆ Lt

by the definition of Lt. Blacklist B is constructed as the complement B = (Pd×{0, 1}d) \W of W
representing the whitelist

W = ∪S∈L ∪P∈Pd
{(P, S|P )}

Combining both equations proves that W ⊆Wt,d by the definition of whitelist Wt,d, hence:

Lemma 3. If Learn(Core, t, d) outputs a blacklist B, then

Bt,d ⊆ B ⊆ Pd × {0, 1}d

7.1.1 Zero False Negatives

Notice that Bt,d contains two types of wires (or wire combinations for d > 1); first the wires
specifically related to the hardware trojan circuitry, and second some redundant wires which did
not excite during the learning phase either because of insufficient user interactions or because
of logical constraints of the design. This has two consequences: first, since HaTCh will tag all
its learned blacklisted wire combinations in B in a subsequent tagging phase (see section 7.2),
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Algorithm 4 Learning Scheme
1: procedure Learn(Core, t, d)
2: if I/O register does not match OutSpec then
3: return “Trojan-Detected”
4: else
5: B ← Pd × {0, 1}d
6: Get user User
7: (w, States)← Simulate(Core, User) . Functional Testing
8: if w = “Trojan-Detected” then
9: return “Trojan-Detected”

10: else
11: for all P ∈ Pd do
12: for all 1 ≤ i ≤ |States| − t do
13: B = B \ {(P, States[i]|P )}
14: end for
15: end for
16: end if
17: return B . The Blacklist
18: end if
19: end procedure

unnecessary tagging circuitry for detecting redundantly blacklisted wire combinations will cause
unnecessary area overhead (we will discuss optimizations that deal with this effect). Second, since
HaTCh uses Learn(Core, t, d) to learn a superset B of Bt,d:

Theorem 1. HaTCh(Core, t, d) will detect all Core ∈ Ht,d with zero false negatives.

7.1.2 Non-Zero False Positives

Since HaTCh learns a superset of Bt,d, HaTCh may (likely?) have a non-zero false positive rate:

Definition 6. The tagging circuitry on top ofMCore produced by HaTCh(Core, t, d) causes a false
positive for User if it incorrectly claims that Core ∈ Ht,d at some moment during the execution of
the tagged MCore when it interacts with User.

HaTCh tests user interactions during the learning phase. The probability that another input
tested after the learning phase gives rise to a false positive detection by the tagged circuitry is what
is defined above. In the evaluation section we show that the false positive rate, measured/estimated
by one over the number of emulated clock cycles during which the black list B is not further reduced
(hence, a tagged circuitry corresponding to B would not generate false or true positives during these
interactions), can be made as small as 1/105 depending on the duration of HaTCh’s learning phase.

We notice that, interestingly, false positives related to the normal functioning of circuitry that
has not yet passed through a “point of no return” trigger state can in fact prevent trojan cir-
cuitry to evolve its state to a point of no return. This demonstrates that the blacklist B learned
by HaTCh(Core, t, d) potentially detects trojans outside Ht,d in Ht as a false positive. E.g., the
k-XOR-LFSR trojan in H0,≥log k−2 log log k of section 6.2 needs a learning phase up to clock cy-
cle u ≈ k (when it triggers) in order to have the blacklist sufficiently reduced; if the learning
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phase is up to
√
k, then we need to replace u by

√
k in formula (5) of appendix A showing that

HaTCh(Core, 0, (log k)/2− 2 log log k) likely detects the trojan as a false positive.
In order to analyze false positives we need to understand where they come from: A false

positive is possible if HaTCh produces a black list B which contains more than just those pairs
(P, S|P ) ∈ Bt,d that lead to malicious behavior, i.e., B \Bt,d 6= ∅. In other words, if there exists a
state S ∈ Lt and a projection P ∈ Pd such that s = S|P is in blacklist B, then a false positive is
possible. Then, for a User → U drawn from some distribution U in HaTCh, the probability of a
non-zero false positive rate is equal to

Pr(False Positive is possible) = Pr
(
∃(P,s)∈B s ∈ (Lt|P )

)
(2)

The following definition defines a class of user distributions parameterized by ρ which measures
into some extent how user interactions lead to a succession of ‘uniformly distributed’ states. We
will argue that such distributions intuitively define all possible user interactions that exhibit normal
behavior and we will prove that given such a distribution the probability of a non-zero false positive
rate can be made to approach zero.

Definition 7. Let U be a user distribution. Suppose that there exists a c ≥ 1 and an ε > 0 such
that for all d-dimensional projections P ∈ Pd and projected states s ∈ Lt|P there exists a sequence
{cj} with cj/j ≤ c and

Pr({s 6= (xi|P )}li=0) ≤ (1− ε)l

where the probability is over x = (x1, x2, . . . )← Sample({cj}), see algorithm 5. Then we call U a
(d, ρ) user distribution where ρ = c/ε.

Algorithm 5 Sampling Algorithm
1: procedure Sample({cj})
2: q ← “Not-OK”
3: while q 6= “OK” do
4: User ← U
5: (q, States)← Simulate(Core, User)
6: end while
7: x = (States[cj ])cj≤|States|
8: return x
9: end procedure

Notice that if U is a (d, ρ) user distribution used in HaTCh, then for all P ∈ Pd and s ∈ Lt|P ,
there exists a sequence {cj} with cj/j ≤ c such that

Pr(∀1≤i≤C s 6= (States[i]|P ))
≤ Pr(∀cj≤C s 6= (States[cj ]|P ))
≤ (1− ε)#{j:cj≤C}

≤ (1− ε)C/c ≤ e−Cε/c = e−C/ρ. (3)

In other words the probability that s has not been “seen” during the first C clock cycles is expo-
nentially decreasing in C. The rate 1/ρ at which the probability is decreasing indicates into what
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extent user interactions add new random input to the core and into what extent the core forgets
its past. In particular, parameter c indicates how far apart (in number of clock cycles) states must
be in order to be mostly uncorrelated. Parameter ε indicates the average probability of producing
s in one of these states. Unaffected cores (without hardware trojan) have a limited memory and
for this reason it makes sense that c is relatively small and corresponds to the pipeline depth, and
ε is designed not to be too much smaller than 1/|(Lt|P )| ≤ 2−d.

We notice that when analyzing false positives, we do not mind a false positive if the false positive
corresponds to a set of wires which belong to a hardware trojan. E.g., circuitry that implements
a hardware trojan counter may be detected through a false positive if the learning phase was too
short to white list counter values that do not trigger a malicious payload. For this reason it makes
sense in the definition of a (d, ρ) distributed distribution to exclude projections P to wires that do
not contribute to the expression of normal behavior. Even though we have not developed a formal
language that can express this without ambiguity, the argument intuitively makes clear that by
excluding such projections P we do not need to consider the hardware trojan internal state/memory
(such as a counter) in determining parameters c and ε. If we would have to take hardware trojan
internal state into account, then due to the hardware trojan’s long term memory parameter ρ would
have to be very large.

We are now ready to prove the following theorem about false positives:

Theorem 2. Suppose all user interactions correspond to a (d, ρ) user distribution U . Then

1. The probability that there can be a false positive is upper bounded by e−τ for a learning phase
of C = ρ(τ + d ln(2|Core|)) clock cycles.

2. If a false positive is possible then we will see it with significant probability within ρ time
steps/clock cycles.

for HaTCh(Core, t, d) where |Core| denotes the size of state vectors (i.e., number of encoded
wires).

For each emulated state in the learning phase, all d-dimensional projections of the state need to
be added to the white list. In combination with the theorem (for ρ = c/ε = O(2d)) this shows that
increasing d exponentially increases the complexity of the learning phase measured as C · |Core|d,
which is

O(|Core|d(τ + d ln |Core|)).

As a second consequence of our discussion and theorem, we may assume that the (malicious) IP
core vendor provides parameter ρ. First, if ρ is too large with respect to the functional specification,
then this should raise suspicion (does a long term memory of a hardware trojan needs to be hidden?).
Second, if we believe the core satisfies (3) (which is what we use in the proof of the theorem), then
the theorem can be applied to verify that the vendor is not lying about ρ: The supplied ρ informs
the number of clock cycles that need to be emulated by the learning phase in order to reduce the
probability of a non-zero false positive rate down to a very small e−τ . If false positives do start
occurring at a rate which does not correspond to ≤ 1/ρ, then the vendor is cheating since the
observation contradicts the theorem. (Therefore, we notice that regardless whether (3) is true or
not, given the above verification strategy, the vendor is motivated to be honest about supplying a
ρ which leads to a long enough learning phase with corresponding false positive rate ≤ 1/ρ.)
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Proof. We continue our derivation in (2):

Pr(False Positive Possible) = Pr
(
∃(P,s)∈B s ∈ (Lt|P )

)
,

which is by the union bound at most

≤
∑
P∈Pd

Pr (∃s (P, s) ∈ B ∧ s ∈ (Lt|P )) =
∑
P∈Pd

Pr
(
∃s∈Lt|P (P, s) ∈ B

)
.

We apply the union bound once more and obtain the upper bound

≤
∑
P∈Pd

∑
s∈Lt|P

Pr ((P, s) ∈ B)

=
∑
P∈Pd

∑
s∈Lt|P

Pr (s 6= States[i]|P ∀1≤i≤C)

≤
∑
P∈Pd

∑
s∈Lt|P

e−C/ρ ≤ |Core|d · 2d · e−C/ρ,

which is at most e−τ for C = ρ(τ + d ln(2|Core|)).
The probability of seeing a false positive, given that a false positive is possible, during next T

clock cycles is given by
Pr
(
FP | ∃(P,s)∈Bs ∈ Lt|P

)
In the worst case this probability is lower bounded by conditioning on exactly one (P, s) ∈ B with
s ∈ Lt|P . Then

Pr
(
FP | ∃(P,s)∈Bs ∈ (Lt|P )

)
≥ Pr (∃1≤i≤T s = (States[i]|P )) = 1− Pr (∀1≤i≤T s 6= (States[i]|P )) ≥ 1− e−T/ρ.

In order to reduce the complexity of the learning phase, HaTCh may use specific knowledge
about the type of trojans it wants to detect. E.g., appendix A.2 proves that the k-XOR-LFSR trojan
of section 6.2 can be detected by a modified HaTCh*(Core, t) which learns all linear invariants
(vectors whose inner product with states in Lt is always 0):
Lemma 4. HaTCh*(Core, 0) creates tagging circuitry which detects k-XOR-LFSR with zero false
negatives and zero false positives. Its learning phase has complexity O(|Core|3).

7.2 Tagging Phase

The tagging phase implements precautionary measures against the potentially malicious circuitry of
the IP core identified in the learning phase. It takes an untrusted Core along with a blacklist B and
adds additional logic to the Core to keep track of these suspicious wires. This process is explained
in algorithm 6. A new output signal called TrojanDetected is added to the Core. This output
is asserted whenever any wire from B takes a ‘blacklisted’ value. To achieve this functionality, a
tree of logic gates is added to Core such that the logic 1 is propagated to TrojanDetected output
whenever a ‘blacklisted’ value is taken by a suspicious wire. All gates in the logic tree are 4-input
gates (i.e. a quad tree) hence there are log4(|B| · d) levels in the quad tree where |B| shows the
number of entries in the blacklist B and d shows the dimension of the trojan. Note that this quad
tree consists of only combinational logic, i.e. non-pipelined tagging circuitry.
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Algorithm 6 Tagging Scheme
1: procedure Tag(Core,B)
2: Add TrojanDetected output port to Core
3: for all (P, S|P ) ∈ B do
4: TrojanDetected = 1
5: end for
6: TrojanDetected = 0 otherwise
7: return Core . The protected Core
8: end procedure

7.2.1 Pipelined Logic

Since the added quad tree has log4(|B| ·d) combinational logic levels, it could end up on the critical
path and hurt the timing of the IP core for large B. To avoid this problem, the tagging phase can
also add pipeline registers at every level of the tree which leads to a pipelined tagging circuitry.
The pipeline resisters may delay the detection of hardware trojan by log4(|B| · d) cycles. However
we show in our evaluation section that for average sized IP cores, HaTCh produces a significantly
small B in reasonable amount of computational time. Consequently, the detection delay because
of pipeline registers is also not too large and may still be acceptable. Additionally, for a particular
IP core the HaTCh computation needs to be done only once for millions of its instances to be
fabricated. Hence, even for larger IP cores, it is worth investing a computational time of several
hours to achieve a significantly small blacklist B and to produce millions of trustworthy chips.

7.2.2 Area Overhead

We discussed false negatives and false positives in section 7.1. Another metric of crucial importance
is the area overhead caused by the additional tagging circuitry. The added quad tree has |B| · d
leafs. Therefore the number of its internal nodes Nint is given by (4|B|·d−1

3 − |B| · d). For a non-
pipelined tree, the required number of gates is equal to Nint. For a pipelined tree, considering
that the outputs of all the added gates except the root node are sampled in a pipeline register, the
number of required registers is equal to Nint − 1. Putting everything together, the non-pipelined
area overhead OnP and pipelined area overhead OP are given by:

OnP = (Nint) 4-input gates
OP = (Nint) 4-input gates + (Nint − 1) flipflops

(4)

Theorem 3. Suppose HaTCh(Core, t, d) tags all wire combinations in a blacklist B, then the
tagging circuitry has an area overhead given by (4).

This result shows that it is important to research optimization techniques that can reduce |B|
by eliminating the redundant blacklisted wire combinations that can never occur (e.g., the input
wires and output wire of a simple NAND gate have wire combinations that can never occur given
its truth table). We discuss such optimizations implemented by HaTCh in section 8.
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Figure 8: Example of HaTCh operation on a real circuit: A counter based trojan trigger has
a trigger condition Counter = 255. If HaTCh learning phase runs from Counter = 0 to 127
then only Q7 and its dependent wires are blacklisted and corresponding tagging circuitry is added
accordingly.

7.3 HaTCh Process Example

In order to further clarify the operation of HaTCh, we show an example of how HaTCh works
on a real circuit. Figure 8 shows a generic IP core with a counter based trojan. The trojan
consists of a trigger circuitry and a payload circuitry and gets triggered when the counter is full,
i.e. Counter = 255. Once this IP core is passed through the learning phase of HaTCh such that
the range 0 ≤ Counter ≤ 127 is covered, all other wires of the trigger circuitry except b1, b2, b3
and b4 are whitelisted. These four wires remain stuck at 0 during the learning phase and hence
get blacklisted. The blacklisted wires result in added circuitry ‘HaTCh Tagging Circuitry’ by the
tagging phase which generates the TrojanDetected signal. Notice that in this example, ‘HaTCh
Tagging Circuitry’ is a pipelined tree which is based on the raw blacklist, i.e. without performing
any optimizations on it which are discussed in the next section.

8 Evaluation
In this section, we present the experimental results of certain hardware trojan benchmark groups
from Trusthub [1] benchmark suite evaluated under HaTCh. We first analyze the Trusthub bench-
marks w.r.t. the hardware trojan classification introduced in section 3.1. Then we briefly describe
our experimental setup and HaTCh methodology from a more practical standpoint, including some
crucial optimizations implemented to reduce the number of the blacklisted wires. Next we present
and discuss the experimental results and finally we propose some other optimizations in order to
reduce HaTCh complexity and its area overhead.

8.1 Trusthub Benchmark Suite

In order to provide concrete guarantees about which trojans can be detected by HaTCh under all
circumstances and which ones can be detected under certain conditions, we categorize the relevant
benchmarks from Trusthub [1] benchmark suite in Table 1 according to our formal hardware trojans
classification presented in section 4.
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8.1.1 XX-St-D-F Trojans

HaTCh detects all XX-St-D-F trojans with 100% guarantee. This includes TA-St-D-F and AA-St-
D-F trojans. As explained in earlier sections, the main focus of HaTCh is TA-St-D-F trojans, i.e.
trigger activated trojans which manifest malicious behavior in terms of change in normal function-
ality of deterministic IP cores. However it also detects AA-St-D-F trojans always in the learning
phase because such trojans are meant to always exhibit malicious behavior over the standard I/O
channels which can be easily detected by functional testing during the learning phase. Notice that
AA-St-D-F is a weak class of trojans and it is practically not useful for an adversary to design such
trojans as they have no stealthiness.

8.1.2 TA-Si and TA-St-D-NF Trojans

HaTCh detects all TA-Si and TA-St-D-NF trojans as well provided that these trojans do not
get triggered during the HaTCh learning phase. TA-Si trojans exploit side channels to deliver
the malicious payload and do not affect the normal functionality over standard I/O channels.
Therefore during the learning phase, even if such a trojan gets activated, HaTCh will not observe
any malicious behavior and whitelist the trigger related wires. On the other hand, if it does not get
activated during the learning phase, only the non-malicious wires will be whitelisted and the trigger
related wires would still remain in the blacklist leading to trojan detection. The same reasoning is
applicable to TA-St-D-NF trojans.

8.1.3 AA-Si and AA-St-D-NF Trojans

These types of trojans are out of the scope of HaTCh and cannot be detected. Since these trojans
are not trigger-based, therefore they are always active during the learning phase. However such
trojans always show malicious behavior in a way that does not harm the normal functionality of
the IP core and hence HaTCh considers the circuitry as ‘normal’ and whitelists it.

We evaluate HaTCh using three benchmark groups, s15850, s35932 and s38417. In the rest of
this section, we refer to these benchmarks as s-Series benchmarks. These three groups contain seven
different benchmarks in total which are of different nature based on their activation mechanism
and payload channels. Since we know the trigger signal wire(s) for all these benchmarks from their
documentation and since these benchmarks have one-wire trigger signals, in our experiments we
consider d = 1 or equivalently Ht,1 class for all of them. If these trojans get triggered we can detect
them just by monitoring individual wires (hence d = 1). However, in practice (i.e. if we did not
know the exact trigger signal wire) for zero false negatives, these benchmarks may have d > 1.
Notice that s38417-T300 belongs to TA-Si but since it does not get triggered in the learning phase,
HaTCh is still able to detect it.

8.2 Experimental Setup & Methodology

8.2.1 RTL Synthesis

HaTCh works on a gate level netlist with a flat hierarchy. Therefore first the RTL design needs to
be synthesized. We use the Synopsys logic synthesis tool Design Compiler [33] for this purpose.
However the s-Series benchmarks are already provided as synthesized netlists therefore we skip this
step.
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Table 1: Classification of Trusthub Benchmarks w.r.t. HaTCh framework
Classification Benchmarks

X
X
-S
t

T
A
-S
t TA-St-D-F

BasicRSA-T {100, 200, 300, 400}
EthernetMAC10GE-T700-T{700, 710, 720, 730}
vga-lcd-T100
wb_conmax-T{100, 200, 300}
b15-T{100, 200, 300, 400}
s15850-T100
s35932-T{100,200,300}
s38417-T{100, 200}
s38584-T{100, 200, 300}
RS232-T{100, 300, 400, 500, 600, 700, 800, 900, 901, 1000, 1100,
1200, 1300, 1400, 1500, 1600, 1700, 1900, 2000}

TA-St-D-NF AES-T{500, 1800, 1900} RS232-T{200, 1800}

A
A
-S
t AA-St-D-F N/A

AA-St-D-NF
EthernetMAC10GE-T{100, 200, 300, 400, 500, 600}
MultPyramid-T100-T{100, 200}

X
X
-S
i TA-Si AES-T{400, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500,

1600, 1700, 2000, 2100} s38417-T300
AA-Si AES-T{100, 200, 300}

8.2.2 Simulation

Next step is to perform post-synthesis simulations using self checking testbenches for which we use
Mentor Graphic’s ModelSim [34] simulator. The benchmarks are given random test patterns as
inputs and the output is compared with the expected output in the self-checking testbench. If the
output is different than expected, the simulation is aborted indicating the activation of a hardware
trojan.

Obviously, Automatic Test Pattern Generator (ATPG) tools are very popular to generate the
test patterns which provide significantly higher coverage compared to random test patterns. How-
ever ATPG tools do not fit the HaTCh settings because the internal state of the design reached
by an ATPG test pattern may not be reachable by the normal inputs given at the standard input
ports. Therefore, the self checking testbench will not be able to compute an expected output for
this ATPG test pattern to compare with the output generated by the design. Consequently, the
simulator will not be able to distinguish a ‘normal’ output from a malicious output to abort the
simulation if a trojan gets triggered by an ATPG test pattern during the simulation.

The documentation of s-Series benchmarks does not provide any information about the normal
functionality of these cores therefore we cannot compute an expected output to compare with the
generated output in the self-checking testbenches. As a workaround to this problem, we use a trick
in our experiments. Since the trojan design and documentation is available to us, we know which
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wire is the trigger signal. This information essentially reduces the dimension d of the trojan to d = 1
(which could actually be higher than 1 in a practical scenario where no additional information is
provided) since we can detect the trojan activation by just monitoring this single trigger wire.
We design the testbenches which monitor this signal during the simulation, and the simulation is
aborted if the trigger signal is activated. If not, the simulation finishes ‘normally’ and the whole
simulation data is dumped into a VCD file which contains the simulation trace of each wire.

8.2.3 HaTCh Learning and Tagging Phases

In the next phase a HaTCh-script parses the VCD file, generated during the simulation phase, in
order to learn and blacklist the unused wires of the circuit. Initially all the wires of the circuit are
put in the blacklist. Then the transitions of each wire is read by the script, and an internal data
structure is updated which eventually leads to a blacklist of wires (or combinations of wires for
d > 1) which do not show any transition. Based on the blacklist, additional logic is added to flag
the blacklisted wires.

8.2.4 HaTCh Optimizations

The blacklist generated in the learning phase contains three different types of wires. First, those
which constitute a true blacklist and are part of the hardware trojan trigger circuitry. These wires,
once activated, are going to trigger the hardware trojan. Second, the wires which are in the
blacklist because of the low coverage of the input test patterns. Third, the redundant wires in the
blacklist which are not necessary to guarantee 100% detection rate. For example if the input(s) and
the output of certain logic elements (gates, buffers) exist in the blacklist at the same time, then
it is sufficient to keep only the input in the blacklist provided that changing this input will affect
the output, e.g. in case of logic buffers and inverters etc. Redundancy is also caused by certain
wire combinations which are logically not possible, e.g. for d = 2, the combination of the input
and output wire of an inverter is never going to have a value of 00 or 11. The first type of wires
generates true positives whereas second and third types of wires generate false positives and lead
to unnecessary area overhead.

The third type of wires, however, can be avoided by careful optimizations based on the logical
constraints of the design. Our HaTCh tool performs these optimizations in order to remove the
redundant wires form the blacklist. The key idea behind these optimizations is that if the input(s)
and output of a logic element coexist in the blacklist, then the output wire can be removed from
the blacklist provided that changing this input will affect the output. HaTCh performs these opti-
mizations, wherever possible, for all buffers, logic gates and flipflops in the design. Our experiments
show that these optimizations lead to a significant reduction in the size of blacklist which in turn
reduces the area overhead.

8.3 Experimental Results

8.3.1 s-Series Benchmarks

We ran HaTCh on seven different benchmarks from three different groups of s-Series, i.e. s15850-
T100, s35932-{T100, T200, T300} and s38417-{T100, T200, T300} and HaTCh detected all of
them. The trojan in one of the benchmarks, i.e. s35932-T100 was detected already during the
learning phase as it got triggered and caused the simulation to be aborted. For the rest of the

31



2
1

9
6

1
8

7

1
5

5

1
3

9

1
3

4

1
3

3

1
3

2

5
8

6
0

2
1

4

1 1 1 1 1

5
8

8
6

2
2

3

1
5

1
5

1
5

1
5

1
5

5
4

7
4

1
4

6
5

1
2

2
6

1
2

1
9

1
2

1
5

1
2

1
5

1
2

1
5

5
4

7
7

1
3

3
9

1
2

2
6

1
2

1
9

1
2

1
5

1
2

1
5

1
2

1
5

5
5

0
6

1
3

4
3

1
2

3
0

1
2

2
3

1
2

1
9

1
2

1
9

1
2

1
9

0 10 100 1,000 10,000 100,000 200,000

# 
o

f 
B

la
ck

lis
te

d
 W

ir
es

# of Input Test Patterns

HaTCh Evaluation on S-series Benchmarks

s15850-T100 s35932-T200 s35932-T300 s38417-T100 s38417-T200 s38417-T300

Figure 9: The experimental results for s-Series benchmarks: the absolute size of the blacklist for
different number of test patterns.

benchmarks, we ran up to 2× 105 input test patterns. Figure 9 shows the size of blacklist sampled
at seven different numbers of input patterns. The size of the blacklist decreases rapidly with the
number of input patterns until it reaches a state when most of the wires in the design are already
whitelisted and no more wires are eliminated from the blacklist by further testing. It can be seen
that the sizes for the s35932 group already become stable after 100 input patterns. Whereas the
s38417 group achieves the stable state after 10,000 input patterns. Only the s15850 group takes
longer to become stable where only one wire is reduced between 100,000 and 200,000 input patterns.

This leads to an important result about the false positives of HaTCh. Since only one wire is
eliminated from the blacklist while going from 100,000 to 200,000 input patterns, therefore it would
cause at most one false positive for the next 105 inputs if the blacklist obtained by running 100,000
inputs is used to generate the tagging circuitry. Hence the false positive rate is 1/105.

8.3.2 Other benchmarks

We have analyzed the source code/netlists of other TA-St-D-F benchmarks from Table 1 and we
have concluded that all these benchmarks reside in Ht,1 in our hierarchical model and therefore
HaTCh will detect all of them.

In Appendix B, we also show how HaTCh can detect H0,2 trojans given the parameter d = 2.

8.4 Area Overhead

Table 2 shows the area overhead incurred by HaTCh for each of s-Series benchmarks both for non-
pipelined and pipelined tagging circuitry. The overheads caused by the raw unoptimized blacklists
obtained after the learning phase are shown under Un-Opt whereas the overheads after performing
optimizations introduced in section 8.2.4 are shown under Opt. The size of benchmarks in terms
of total number of gates and registers is shown under Size. On average, we see an overhead of 38%
and 19% for unoptimized pipelined and non-pipelined circuitries respectively. The overhead drops
down to 8.34% and 4.18% for optimized pipelined and non-pipelined circuitries respectively. This
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Table 2: Area Overhead for s-Series Benchmarks

Benchmark Size
Area Overhead

Pipelined Non-Pipelined
Un-Opt Opt Un-Opt Opt

s15850-T100 2180 33.44% 4.17% 16.74% 2.11%
s35932-T200 5442 9.83% 0.02% 4.92% 0.02%
s35932-T300 5460 10.27% 0.16% 5.15% 0.09%
s38417-T100 5341 57.27% 15.22% 28.65% 7.62%
s38417-T200 5344 57.24% 15.21% 28.63% 7.62%
s38417-T300 5372 57.41% 15.25% 28.70% 7.63%

Average 37.58% 8.34% 18.80% 4.18%

shows the significant impact of the optimizations performed by HaTCh which reduce the overhead
by ≈ 4.5 times.

8.5 Techniques to reduce HaTCh Complexity

In order to further reduce the computational complexity of HaTCh, we propose the following
techniques:

8.5.1 Golden Input Patterns

Since the high level RTL design of the core is not available to us, the test patterns we use for
simulations are randomly generated which may not provide good coverage. In order to achieve a
good coverage and a higher efficiency during the learning phase, the manufacturer could provide
the golden input patterns, which are designed based on the high level RTL, to the user or verifier
keeping the high level RTL design secret.

8.5.2 Modular Approach for IP cores

Unsurprisingly, a larger design needs huge number of test patterns to excite all the paths in the
circuit. These large designs are typically composed of small modules, where some of the modules
maybe instantiated several times. Therefore, verifying these small modules independently rather
than a large design composed of these modules would be much more efficient. Also, after verification,
the users must integrate these small modules by themselves or be able to verify the integration
process done by untrusted parties. Notice that this technique assumes that all the trigger related
wires of the trojan are contained within one module, i.e. the trigger circuit does not consist of
cross-modular wires.
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8.6 Techniques to reduce HaTCh Area Overhead

8.6.1 Formal Proofs to reduce the blacklist

As explained earlier, some of the wires in the blacklist are the result of poor coverage of functional
test patterns and may not be relevant to the hardware trojan in any way, but since they remain
unused during the simulations they are blacklisted. By using formal methods, if one can prove that
these wires will either never flip in future or if they do, they are not going to exhibit malicious
behavior, then these wires can be removed from the blacklist.

8.6.2 Clustering approach for high level HaTCh

Another approach to reduce the blacklist size and the computational complexity for higher level
HaTCh (i.e. for d > 1) is to only investigating the combinations of wires with other wires within
a predefined maximum distance. This technique relies on the fact that the trigger related wires of
a practical high dimension hardware will be in the close vicinity of each other due to the limited
hardware overhead budget and the complexity involved due to the wire delays with higher distance.

9 Conclusion
We have provided a hierarchical model for a certain class of trojans with increasing complexity.
We have introduced HaTCh, a powerful hardware detection tool, which detects all existing trojans
belonging to a certain class of hardware trojans that change logical functionality based on a trigger
signal with zero false negatives, significantly low false positives and low area overhead. Finally we
have proposed techniques for future work in order to reduce the computational complexity and area
overhead of HaTCh.
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A Analysis of k-XOR-LFSR
A.1 Classification

The k-XOR-LFSR trojan uses an LFSR to generate register values ri ∈ {0, 1}k for each clock cycle
i. Suppose that all vectors ri behave like random vectors from a uniform distribution. Then, (1)
it is unlikely that u is more than a small constant larger than k (since every new vector ri has
at least probability 1/2 to increase the dimension by one). Therefore, u ≈ k, hence, the register
size of the trojan is comparable to the number of clock cycles before the trojan is triggered to
deliver its malicious payload. This makes the trojan somewhat contrived (since it can possibly
be detected by its suspiciously large area overhead). (2) By our definition of L0, all vectors ri,
0 ≤ i ≤ u − 1, are part of states in L0. Consider a projection P to a subset of d register cells. If
ru|P ∈ {ri|P : 0 ≤ i < u}, then the wire combination of the d wires corresponding to ru|P is not
black listed: if this is the case for all d dimensional P , then the trojan is 6∈ H0,d. The probability
that ru|P ∈ {ri|P : 0 ≤ i < u} is at least equal to the probability that {ri|P : 0 ≤ i < u} = {0, 1}d,
which is (by the union bound)

≥ 1−
∑

w∈{0,1}d

Prob({ri|P : 0 ≤ i < u} ⊆ {0, 1}d \ {w})

= 1−
∑

w∈{0,1}d

(1− 1/2d)u ≈ 1− 2de−u/2d
.

Since there are
(k
d

)
≤ kd/d! projections, the trojan is 6∈ H0,d with probability (taken over all random

ri)
≥ (1− 2de−u/2d)kd/d!. (5)

For u ≈ k, this lower bound is about ≥ 1/e for kd/d! ≤ 2−dek/2d , e.g, d ≈ log k − 2 log log k. This
shows that k-XOR-LFSR is 6∈ H0,≈log k−2 log log k but is in ∈ H0,d for some larger d.
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A.2 Improving HaTCh

The k-XOR-LFSR trojan has the property that 〈v, ri〉 = 0 for 0 ≤ i < u until the trojan gets
triggered. This implies that, for states S of MCore, there exists a vector V corresponding to v
such that 〈V, S〉 = 0 until the trojan is triggered. So, if HaTCh could enumerate all vectors V
with 〈V, S〉 = 0 for all states S ∈ Lt generated during Simulate in the learning phase, then a
tagging circuitry can be added that checks for these invariants. We notice that these vectors V
have the property that they are orthogonal to the linear space Lt spanned by Lt ⊆ {0, 1}|Core|. It
takes O(|Core|) random samples S ∈ Lt to generate Lt. Once these samples are gathered a simple
Gaussian elimination process will discover all vectors V in O(|Core|3) time. The complexity of the
learning phase for this modified HaTCh is independent of d (at the cost of only having zero false
negatives for the subset of all Ht trojans with a “linear trigger” signal).

B A Counter-Based H0,2 Trojan Example
The example trojan shown in Figure 10a can leak Secret via Out port instead of Data upon the
trigger condition W1 6= W2. The trigger condition is generated by a counter, when reached to
(1101), which is implemented as a 4-bit maximal LFSR in order to have maximum possible time
before the trojan gets triggered. The LFSR is initialized to (Q3, Q2, Q1, Q0) = (1010) and it can
be seen in Figure 10b that if given the parameter d = 1, HaTCh will whitelist all the wires related
to trigger circuitry only after a few clock cycles since all these wires show transitions. At 14th clock
cycle, the value of the LFSR becomes (1101) and W1 6= W2, which activates the Trojan to leak
the secret.

B.1 Detection by HaTCh with d = 2
As it is clear from Figure 10b that, given the parameter d = 1, this trojan cannot by detected by
HaTCh since all the wires show transitions and get whitelisted after 4th clock cycle. Therefore we
run HaTCh with a parameter d = 2 in order to show that HaTCh is still able to detect this trojan.
With d = 2, HaTCh exhaustively monitors all possible 2-wire combinations of all the wires in the
design. It starts with a blacklist of all possible 2-wire combinations (e.g. {00, 01, 10, 11}) of all the
wires in the design and those combinations which are seen during the simulation are removed from
the blacklist provided that the output Out matches the expected output for every input.

If the learning phase is run for 13 clock cycles, then after the optimizations of HaTCh, we only
see one combination of W1 and W3 in the final blacklist i.e. (W1,W3) = (0, 1) which only occurs
upon the trigger condition. All other redundant combinations are optimized away from the blacklist
because the logical constraints of the design never allow these combinations to occur in the future,
e.g. (W1,W2) = (1, 0) is never possible (unless a stuck at 0 fault for W2). Hence HaTCh is able
to detect this trojan. Notice that if the learning phase is run for fewer clock cycles, then HaTCh
will produce a larger blacklist with more blacklisted combinations.
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(a) Trojan Circuitry

Cycle Q3 Q2 Q1 Q0 W1 W2 W3
0 1 0 1 0 1 1 0
1 0 1 0 1 0 0 0
2 1 0 1 1 1 1 0
3 0 1 1 1 1 1 0
4 1 1 1 1 1 1 1
5 1 1 1 0 1 1 0
6 1 1 0 0 0 0 0
7 1 0 0 0 0 0 0
8 0 0 0 1 0 0 0
9 0 0 1 0 1 1 0
10 0 1 0 0 0 0 0
11 1 0 0 1 0 0 0
12 0 0 1 1 1 1 0
13 0 1 1 0 1 1 0
14 1 1 0 1 0 1 1

(b) Truth Table of the Trojan affected circuit. Trigger: W 1 6=
W 2

Figure 10: A Counter-Based H0,2 Trojan to enable the secret leakage
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