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Abstract

Use of third party ‘closed source’ IP cores has become a common practice in Electronic
Design Automation (EDA) industry. However, these closed source IP cores can potentially
contain hardware trojans. Since a closed source IP core is usually provided as a generic gate level
netlist which is then instantiated in millions of chips, the adversary can exploit this scalability
to infect millions of chips. Therefore, the first observation is that the trojans must be detected
in pre-silicon phase; typically done through logic testing.

Moreover, existing tools for hardware trojan detection claim to have a certain level of security
by guaranteeing a certain (small) false negative rate for publicly available benchmarks. This
implies that only this small constant set of benchmarks can be detected with zero (or small) false
negative rate. Since an adversary can always create a new trojan which bypasses the detection
tool tested on the small constant set of trojan benchmarks, a rigorous security framework of
hardware trojans should characterize the potentially exponentially large class of hardware trojans
that a tool can detect with negligible false negative rate.

We present HaTCh, a first rigorous framework of hardware trojan design and detection within
the paradigm of pre-silicon logic testing based tools. We first notice that for the group of non-
deterministic hardware trojans/IP cores, no (logic testing based) tool exists that, given a security
parameter λ, can detect all trojans in this group with overwhelming probability 1 − negl(λ).
Then we propose, for the other (exponentially large) group of deterministic trojans/IP cores,
a detection algorithm which detects any hardware trojan from that group with overwhelming
probability 1 − negl(λ). If certain global characteristics regarding the stealthiness of such a
hardware trojan are known, then detection becomes polynomial in the number of wires of the
IP core. We implemented this algorithm and tested it on existing trojan benchmarks and also
on a newly designed advanced trojan.
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1 Introduction
Modern electronic systems heavily use third party IP (intellectual property) cores as their basic
building blocks. Optimized for area and performance, the IP cores are essential elements of design
reuse in electronic design automation (EDA) industry; compared to redesigning components from
scratch, this saves a lot of resources.

IP cores are broadly categorized as hard IPs which are transistor level representations of the
core, and soft IPs that are offered either in a hardware description language (e.g., Verilog or VHDL)
as synthesizable RTL or as generic gate-level netlists. Soft IP cores offered as gate-level netlists
are usually called ‘closed source’, as their high level RTL source code is not provided. Such cores
give their vendors significant protection against reverse engineering of the cores as they obfuscate
algorithmic and implementation tricks.1

Threat of Hardware Trojans: Third party closed source IP cores give rise to a critical
security problem: how to make sure that the IP core does not contain a Hardware Trojan? A
(compromised) IP core vendor acting as an adversary could implant a malicious circuitry in the IP
core for privacy leakage or denial of service attacks [3].

The IP core netlists are used as black box modules in larger designs based on which millions of
chips are then fabricated. This scalability motivates the adversary to supply an infected IP core
resulting in millions of infected chips. Therefore, IP cores should be tested for hardware trojans in
pre-silicon phase, i.e. before integration into a larger design and fabricating it. Logic or functional
testing, used by Design for Test (DFT) community for testing basic manufacturing defects, is one of
the simplest methods to test the IP core for basic hardware trojans which can be easily implemented
using the existing simulation/testing tools. For the above reasons we restrict ourselves to analyzing
logic testing based tools used in pre-silicon phase for trojan detection.

Software vs. Hardware Trojans: Hardware trojans can be thought of as analogous to
software trojans or malwares which infect software applications for similar malicious purposes as
hardware trojans [4]. Software trojans can be dynamically injected into the application code and
can change their software footprint on the fly, and hence they are difficult to detect. One may
think that hardware trojans are also hard to detect like software trojans; however, this is not true.
Hardware trojans are static in nature because they are built into the hardware and therefore cannot
be ‘injected’ into the IP core on the fly.

False Negatives – A Misleading Metric: A significant amount of research has been done to
design efficient tools for hardware trojan detection. These tools are tested on a small constant set
of publicly available benchmarked hardware trojans such as TrustHub [5]. The level of security of
these tools is reported in terms of the false negative rate observed for the tested benchmarks, where
a false negative represents a scenario when a benchmarked trojan is not detected by the tool. Such
false negative rate provides misleading information about the effectiveness of the detection tool.
Even a 0% false negative rate would provide guaranteed detection only for the small set of tested
benchmarked trojans (e.g. TrustHub has only less than 100 benchmarks in total). Whereas in the
real world, an adversary may design a new trojan which is different from the tested benchmarks in
that it bypasses the detection tool. Therefore, a rigorous security framework of hardware trojans
should characterize the potentially exponentially large class of hardware trojans from which trojans
can be detected (with possibly an exponential amount of work) with negligible false negative rate;

1To even improve the strength of obfuscation in the near future, indistinguishability obfuscators iO (for polynomial-
size circuits), as recently developed in the crypto community, may be used as soon as their constructions attain
acceptable performance overheads [1] [2].
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detection tools should be evaluated based on the subclass of hardware trojans that they can detect
with acceptable performance overhead.

A Rigorous Framework – HaTCh: In this paper, we present a rigorous framework called
Hardware Trojan Catcher (HaTCh) for hardware trojan design and detection. We assume a model
where the IP core is closed source; hence, the IP core vendor only provides the generic gate level
netlist of the IP core, and its functional specifications in the form of a polynomial time algorithm
which can be used to verify the I/O behavior of the core. A precise definition of the hardware
trojan detection problem for a group of hardware trojans H is as follows:

Definition 1. We define the trojan detection problem for H as the problem of designing a detection
algorithm (tool) which satisfies the following input/output requirements:
Inputs:

• IP core netlist & functional specifications (i.e. the algorithm is a logic testing based tool)
• Security parameter λ
• Maximum acceptable false positive rate ρ

Output:

• Description of additional (tagging) circuitry (to be added to the IP core in pre-silicon phase)
which:
– Detects explicit malicious behavior with probability 1− negl(λ)
– Offers a false positive rate ≤ ρ
– Has area overhead polynomial in the IP core size

In order for an adversary to be able to access embedded hardware trojans in millions of fabri-
cated chips, we assume in this paper only remote adversaries who do not have physical access to
exploitable side channels.2

In order to solve the hardware trojan detection problem, we first differentiate two groups of IP
cores with hardware trojans that do not exploit side channels; HD and HND. For trojans ∈ HD the
IP core expresses deterministic (non-probabilistic) functionality and the IP core spec can be used
to verify this functionality. We note, if an IP core ∈ HND, i.e. its specification allows probabilistic
fluctuations in the output (a covert channel is possible), then a logic testing based tool cannot detect
a hardware trojan which embeds information at a non-negligible rate within those fluctuations (e.g.
by using watermarking techniques). This implies that the trojan detection problem for HND has
no solution.

For the deterministic groupHD, we introduce in section 2.2 certain crucial parameters (t, α, d) of
trojans which are related to the stealthiness of hardware trojan functionality. We demonstrate that
logic testing based traditional detection tools can be bypassed by trojans that are very “stealthy”
(e.g., because of a large d value) and we show that currently benchmarked hardware trojans (having
small d) are the simplest ones at the huge trojans landscape, and hence represent just the tip of
the iceberg. In particular we introduce a new stealthy trojan, coined the XOR-LFSR trojan, which

2First, physical presence is not a scalable option for being able to attack (a large subset out of) millions of chips.
Second, the timing side channel is the only side channel accessible by a remote adversary: we assume that internet
connections add too much timing noise to make use of such channels. Hardware trojans in processors may make use
of the cache side channel, which we regard in our framework as a covert channel that can be detected by a logic
testing based tool (in Definition 1) as a spec violation of execution times.
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cannot be efficiently detected by ordinary means (design knowledge of the trojan itself needs to be
incorporated in the detection tool).

We show in section 4 that the trojan detection problem for HD can be solved: Let n be the
number of wires in an IP core (which is potentially infected by a hardware trojan), and let ρ be
the maximum acceptable false positive rate of a trojan detection tool. Then

Theorem 1. There exists a tool, coined HaTCh, that solves the trojan detection problem for the
set of trojans ∈ HD corresponding to fixed parameters (t, α, d). The computational complexity of
HaTCh is O

(
λ

log2(1/α) ·
(2n2)d

ρ

)
(polynomial in the IP core size n).

Since d can be as large as n, if d is unknown and we need to use HaTCh for all possible d, then
the aggregate computational complexity of HaTCh is exponential in n. Also, if d is only known
to be upper bounded by a large constant, the complexity may become impractical: even though
HaTCh needs to be used only once during the pre-silicon phase in order to protect millions of chips,
a distributed computation of HaTCh may still take too long and can be costly. Understanding the
HaTCh framework can be used to design very stealthy hardware trojans; in this paper we design
and analyse one such example, called the XOR-LFSR trojan.

We have implemented HaTCh and our experimental results demonstrate that:

• HaTCh can detect all publicly available HD trojans from TrustHub as well as (with large
complexity) our own very stealthy XOR-LFSR trojan.
• It has low area overhead (on average 4.18% for non-pipelined tagging circuitry for a set of
tested benchmarks).
• We introduce another parameter l called locality: knowledge of small l can be used to reduce
the complexity of HaTCh.
• We note that HaTCh is also useful in detecting any side channel based or HND trojan that
uses HD triggering characteristics.

The rest of this paper is organized as follows; Section 2 provides a thorough characterization of
hardware trojans based on their different properties, which leads to a clear distinction between two
trojan groups HD and HND. Section 3 formally defines the IP core and its functional specifications
which is used in section 4 to present a detailed implementation of HaTCh. Section 5 shows its
experimental evaluation. In order to maintain a smooth flow of the paper for the readers, the
existing related work for hardware trojan detection along with its limitations has been presented
towards the end of the paper in section 6, and we finally conclude in section 7.

2 Characterization of Trojans
A digital IP core can fall under one of the following three categories based on its level of conformity
to the design specifications. It can either contain a hardware trojan, or have an exploit, or it exhibits
normal behavior.

A hardware trojan is a malicious extra circuitry embedded inside a larger circuit, which results
in data leakage or harm to the normal functionality of the circuit once activated. We define extra
circuitry as redundant logic added to the IP core without which the core can still meet its design
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specifications3. A Trigger Activated trojan activates upon some special internal or external event,
whereas an Always Active trojan remains active all the time to deliver the payload. Once activated,
a trojan can deliver its payload either through standard I/O channels or through side channels.

2.0.1 Trigger Condition vs. Trigger Signal

A trigger based hardware trojan usually consists of two parts: a trigger circuitry which activates
the trojan upon a rare condition or event called trigger condition, and a payload circuitry which
performs the malicious operation called ‘payload’ as intended by the adversary. The trigger con-
dition manifests itself in the form of a boolean value of certain wires. The trigger circuitry is
implemented semantically as a comparator which compares the values of these relevant wires with
the desired trigger condition and outputs the result in the form of a boolean value on another wire
Trig which we call the trigger signal (i.e. Trig = 1 upon trigger condition, Trig = 0 otherwise).
The payload circuitry takes the trigger signal Trig as input and performs malicious operation once
Trig is asserted. The trigger signal must not be confused with trigger condition; trigger condition is
an event which causes the trojan activation, whereas trigger signal is the output of trigger circuitry
which signals the payload circuit to show malicious behavior.

Typically, a malicious activity by a trigger based trojan is a result of the following sequence of
events:

1. Occurrence of trigger condition
2. Activation of payload circuit
3. Manifestation of malicious behavior

2.0.2 Explicit vs. Implicit Malicious Behavior

Depending upon the trojan and the IP core, an activated payload circuit behaves in one of the
following ways:

1. It causes the core to violate its specifications and this incorrect behavior can be captured at
the output channels of the core through logic testing.

2. It forwards such data to the output channels of the core which cannot be distinguished from
otherwise ‘normal’ data and hence the activation of the trojan is not detected through logic
testing.

We call these two behaviors as Explicit and Implicit malicious behaviors respectively. Our
proposed detection tool verifies the I/O behavior of the core in a ‘learning’ phase and if no spec
violation (i.e. explicit malicious behavior) is detected, it whitelists the internal states reached by
the core. The implicit malicious behavior itself does not harm the normal functionality of the
core, however in our model, it may cause some or all of the trigger related wires to get whitelisted
during the learning phase because the core does not violate the specs. Consequently the trojan
trigger circuitry could be left untracked and as a result, the implicit malicious behavior may help
the explicit malicious behavior to go undetected by HaTCh.

Figure 1 shows an example of a simple hardware trojan embedded in a half adder circuit. The
trojan free circuit in Figure 1a generates a sum S = A ⊕ B and a carry C = A · B. The trojan

3Design specifications can also cover the performance requirements of the core, and hence pipeline registers etc.
added to the core only for performance reasons can also be considered as ‘necessary’ to meet the design specifications
and will not be counted towards ‘extra’ circuitry.

6



A
B S

C

(a) Half Adder

A
B

S

C

1

0

B

A

A+B

B

Sel

(b) Half Adder with Trojan: S = B when A = B

Figure 1: Example of a simple Hardware Trojan

circuitry, highlighted in red in Figure 1b, triggers when A = B and produces incorrect results i.e.
S = B for A = B and S = A ⊕ B for A 6= B. Notice the difference between the trigger condition
A = B, and the trigger signal Sel which only becomes 1 when the trigger condition occurs. Also
notice that, the trojan affected circuit produces S = 1 for trigger condition A = B = 1 which is
an explicit malicious behavior since it is distinguishable from otherwise normal output (S = 0),
however the same circuit produces S = 0 for trigger condition A = B = 0 which is the same as
otherwise normal output and cannot be distinguished, hence leading to implicit malicious behavior.

2.0.3 Hardware Trojans Taxonomy

Now that we have explained some important terminologies related to hardware trojans which we
will be using frequently in the rest of the paper, we characterize the hardware trojans based on
their fundamental characteristics, which leads to a clear distinction between the deterministic HD

and non-deterministic HND types.
Hardware trojans are first grouped based on the payload channels they use once activated

as shown in the Figure 2. St refers to the trojans using only standard I/O channels whereas
Si represents the trojans which also use side channels to deliver the payload. I/O channels are
generally used to communicate binary payloads bj at certain times tj for the duration of the exe-
cution of the IP core. In this sense the view of an I/O channel can be represented as a sequence
(b1, t1), (b2, t2), . . . , (bN , tN ). Its information is decomposed in three channels: the binary channel
corresponding to (b1, b2, . . . , bN ), the timing channel corresponding to (t1, t2, . . . , tN ), and the ter-
mination channel N which reveals information about the duration of the execution of the IP core.
If a trojan delivers some of its payload over the timing channel (or other side channels), then we
define it to be in Si. If a trojan delivers all of its payload using the standard usage of I/O channels
(the binary and termination channels), then we define it to be in St. E.g., a hardware trojan causing
performance degradation in terms of slower response/termination times due to slower computation
(denial of service in the most extreme case) is in St.

As shown in Figure 2, we further refine our description of St trojans by subdividing them in St-D
and St-ND groups based on the IP core behavior in which they are embedded and their algorithmic
specifications. St-D trojans are the ones which are, (1) embedded in an IP core whose output is a
function of only its input – i.e. the logical functionality of the IP core is deterministic, and (2) the

7



Non-Deterministic
Core & Spec (St-ND)

Hardware 
Trojans

Use Standard I/O 
Channels (St)

Use Side 
Channels (Si)

Deterministic 
Core & Spec (St-D)

𝒕, 𝜶, 𝒅
𝐻𝐷

𝐻𝑁𝐷

Figure 2: Classification of Hardware Trojans

algorithmic specification of the IP core can exactly predict the IP core behavior. If any of the two
above mentioned conditions are not satisfied then we consider the trojan to be in St-ND. A true
random number generator (TRNG), for example, is a non-deterministic IP core since its output
cannot be predicted and verified by logic testing against an expected output.4 Any St trojan in
such a core is considered St-ND. A pseudo random number generator (PRNG), on the other hand,
is considered a deterministic IP core as its output depends upon the initial seed and is therefore
predictable by a logic based testing tool (hence St-D). Similarly, if the algorithmic specification
allows coin flips generated by a TRNG then we consider the trojan to be St-ND. On the other
hand, if the coin flips are generated by a PRNG then we regard the trojan as St-D.

2.1 Non-Deterministic Trojans HND

We consider all St-ND trojans to be the group of non-deterministic trojans HND. The non-
deterministic behavior of IP cores and/or their functional specification which accepts small prob-
abilistic fluctuations within some acceptable range allows a covert channel for St-ND trojans to
embed some minimal malicious payload in the standard output without being detected by an ex-
ternal observer. The external observer considers these small fluctuations as part of the functional
specification. Hence, the non-deterministic nature of HND trojans prohibits the development of a
logic testing based tool to detect these trojans with overwhelming probability.

E.g., the probabilistic ElGamal signature scheme produces signatures of the form s = (H(m)−
x · (gk mod p))k−1 mod (p − 1), where k ∈ {1, . . . , p − 1} is random with gcd(k, p − 1) = 1, can
be exploited by a hardware trojan in HND if k is extracted from a TRNG. The secret key x can
be leaked as follows. The trojan implements a secret pseudo random permutation R only known
to the adversary. The trojan keeps a counter and for the i-th encryption it simply produces a
random k with gcd(k, p− 1) = 1 among those k for which the least significant bit in R(s) is equal
to the (i mod |x|)-th bit in the binary representation of x, hence, an adversary who eavesdrops a
consecutive sequence of signatures is able to extract x. A legitimate user cannot see any deviation
form ElGamal’s functional specification (and even if the user suspects an attack of this kind, it
cannot be detected by using the signature and secret key because of the pseudo random permutation
R). If k is generated by a PRNG, then its seed can be set/programmed and logic testing (as done
in HaTCh) can verify produced signatures to correspond to correct pseudo random numbers (which
are not generated by a trojan).

4Any IP core which contains a TRNG as a module, yet the I/O behavior of the core can still be predicted is
considered St-D.
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2.2 Deterministic Hardware Trojans HD

We refer to St-D trojans as the deterministic group HD of hardware trojans. In following discus-
sion, we introduce some crucial properties of HD trojans that characterize their complexity and
stealthiness, and explain these properties w.r.t. an advanced HD trojan example.

2.2.1 Trigger Signal Dimension ‘d’

As explained in section 2.0.1, a trigger signal Trig of a trojan takes a certain value only when
its corresponding trigger condition occurs. Once a trigger signal occurs, regardless of the other
subsequent user interactions, the trojan manifests malicious behavior in the form of a payload that
violates the functional specification (HD trojans are defined to only exhibit this kind of malicious
behavior). A trigger signal/state Trig is represented as a labeled binary vector representing one
or more wires/registers/flip-flops (each carrying a 0 or 1). A set of trigger states T represents the
trojan if any of its malicious behavior must have (at some clock cycle) passed through a state in
T . The dimension of a set of trigger states T is defined as d(T ) = maxTrig∈T |Trig|.

Clearly, it becomes difficult to detect trojans which are only represented by sets of trigger states
with high dimension d because the set of values that a given trigger signal Trig with |Trig| = d
can possibly take grows exponentially in d and only one value out of this set can be related to
the occurrence of the corresponding trigger condition and hence used for trojan trigger detection.
Clearly, since in theory d can be as large as the number of wires n in the IP core, HD represents
an exponentially (in n) large class of possible hardware trojans.

2.2.2 Payload Propagation Delay ‘t’

For a set T which represents a trojan, we know that if the trojan manifests malicious behavior,
then it must have transitioned through a trigger state Trig ∈ T at some previous clock cycle.
Therefore, for sets of trigger states T , we define t(T ) as the maximum number of clock cycles taken
to propagate the malicious behavior after entering a trigger state in T , i.e. from the moment when
a trigger condition occurs till the moment when its resulting malicious behavior shows up at the
output port.

E.g., consider a counter-based trojan where malicious behavior immediately (during the same
clock cycle) appears at the output as soon as a counter reaches a specific value. Then, t({Trig}) = 0
for the trigger signal Trig which represents this specific counter value. However, notice that any
counter value j clock cycles before reaching the ‘specific value’ can also be considered as a trigger
signal Trig with t({Trig}) = j, because eventually after j cycles this Trig manifests the malicious
behavior. For any hardware trojan, typically there exists a set of trigger signals which represents
the trojan and which has a very small t because of a small number of register(s) between the trigger
signal and the output port.

An Advanced HD Trojan: Figure 3 depicts k-XOR-LFSR, a counter based trojan with the
counter implemented as an LFSR of size k. The trojan is merged with the circuitry of an IP core
which outputs the XOR of k inputs Aj .

Let ri ∈ {0, 1}k denote the LFSR register content at clock cycle i represented as a binary vector
of length k. Suppose that u is the maximum index for which the linear space L generated by vectors
r0, . . . , ru−1 (modulo 2) has dimension k−1. Since dim(L) = k−1 < k = dim({0, 1}k), there exists
a vector v ∈ {0, 1}k such that, (1) the inner products 〈v, ri〉 = 0 (modulo 2) for all 0 ≤ i ≤ u− 1,
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Figure 3: k-XOR-LFSR: A general HD trojan.

and (2) 〈v, ru〉 = 1 (modulo 2). Only the register cells corresponding to vj = 1 are being XORed
with inputs Aj .

Since the Aj are all XORed together in the specified logical functionality to produce the sum∑
j Aj , the trojan changes this sum to∑

j

Aj ⊕
∑

j:vj=1
rij =

∑
j

Aj ⊕ 〈v, ri〉.

I.e., the sum remains unchanged until the u-th clock cycle when it is maliciously inverted.
The trojan uses an LFSR to generate register values ri ∈ {0, 1}k for each clock cycle i and we

assume in our analysis that all vectors ri behave like random vectors from a uniform distribution.
Then, it is unlikely that u is more than a small constant larger than k (since every new vector
ri has at least probability 1/2 to increase the dimension by one). Therefore, u ≈ k, hence, the
register size of the trojan is comparable to the number of clock cycles before the trojan is triggered
to deliver its malicious payload. This makes the trojan somewhat contrived (since it can possibly
be detected by its suspiciously large area overhead).

Since inputs Aj can take on any values, any trigger signal Trig must represent a subset of the
LFSR register content. Suppose t({Trig}) = j. Then Trig must represent a subset of ru−j . We
will proceed with showing a lower bound on d({Trig}). Consider a projection P to a subset of
d register cells; by r|P we denote the projection of r under P , and we call P d-dimensional. If
ru−j |P ∈ {ri|P : 0 ≤ i < u− j}, then the wire combination of the d wires corresponding to ru−j |P
cannot represent Trig (otherwise t({Trig}) > j): if this is the case for all d dimensional P , then
Trig cannot represent a subset of ru−j . The probability that ru−j |P ∈ {ri|P : 0 ≤ i < u− j} is at
least equal to the probability that {ri|P : 0 ≤ i < u− j} = {0, 1}d, which is (by the union bound)

≥ 1−
∑

w∈{0,1}d

Prob({ri|P : 0 ≤ i < u− j} ⊆ {0, 1}d \ {w})

= 1−
∑

w∈{0,1}d

(1− 1/2d)u−j ≈ 1− 2de−(u−j)/2d
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Since there are
(k
d

)
≤ kd/d! projections, Trig cannot represent a subset of ru−j with probability

≥ (1− 2de−(u−j)/2d)kd/d! (1)

For d ≥ log(u− j)− log(log(u− j) log k + log log k), this lower bound is about ≥ 1/e. Since u ≈ k
and after neglecting the term log log k, this shows an approximate lower bound

d({Trig}) ≥ log(k − t({Trig}))− log(log(k − t({Trig})) log k).

This characterizes the stealthiness of the k-XOR-LFSR trojan.

2.2.3 Stealthiness Factor ‘α’

In addition to previously discussed hardware trojan properties, the IP core in which the trojan
is embedded plays a critical role in the stealthiness of the trojan. As discussed in section 2.0.2,
depending upon the IP core under consideration it may not always be possible to distinguish a
malicious behavior from a normal behavior just by monitoring the outputs, i.e. in case of implicit
malicious behavior. For example, consider a trojan being a malicious 2-to-1 MUX, with one of
its inputs connected to a malicious wire and the other one to a normal wire (as in Figure 1).
Suppose the trojan triggers and selects as a result the malicious wire as the MUX output instead
of the normal wire. If the normal and malicious input have the same value, then the‘malicious’
output value is indistinguishable from the normal output value. The effect of the IP core on the
stealthiness of a hardware trojan (which is embedded into it) against logic testing techniques can
be represented by the stealthiness factor α: For a trigger state Trig we define α(Trig) as the
probability given that Trig occurs, this will lead to implicit malicious behavior. We define α(T ) as
the maximum of α(Trig) over Trig ∈ T . We notice that the higher the value of α, the lower the
chance of its detection by logic testing and hence the higher the stealthiness and vice versa. (For
our k-XOR-LFSR trojan, clearly α(Trig) = 0 since it always produces incorrect output once the
trojan gets triggered.)

2.2.4 Achievable Triples (t, α, d)

A hardware trojan can be represented by multiple sets of trigger states T , each having their own t,
α, and d values. The collection of corresponding triples (t, α, d) is defined as the achievable region
of the hardware trojan. We denote by Ht,α,d all HD type trojans which can be represented by a set
of trigger states T with parameters t(T ) ≤ t, α(T ) ≤ α and d(T ) ≤ d.

In the remainder of this paper we develop HaTCh which takes parameters t, α and d as input in
order to detect hardware trojans from Ht,α,d. E.g., by taking t = 0 we can detect a simple counter-
based hardware trojan for small d (as we have seen there exist a trigger state Trig for t = 0 in a
simple counter-based hardware trojan; HaTCh for t = 0 will characterize Trig so that malicious
behavior can be prevented). However, for our more complex k-XOR-LFSR trojan, HaTCh for t = 0
only detects this trojan if d is taken ≥ log k − 2 log log k which may make HaTCh’s computational
complexity prohibitive (see Theorem 1).

The choice of parameters t and d significantly affects the stealthiness α of the hardware trojan.
Figure 4 shows the effects of changing t and d on the minimum possibkle α in the achievable region
of a hardware trojan. Reducing t means that explicit behavior may not have had the chance to
occur, hence, the probability α that no explicit behavior is seen increases. Similarly, reducing d
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Figure 4: Effects of changing t and d on α.

can increase α since as a result of smaller d, there may not exist a set of trigger signals T that
represents the hardware trojan and satisfies d(T ) ≤ d. Increasing t or d only decreases α down to
a certain level; the remaining component of α represents the inherent implicit malicious behavior
of the core.

3 IP Core & Functional Specs
In order to formally model and define hardware trojans, we will first provide a relaxed model for
the input and output behavior of the IP cores.

3.1 IP Core

An IP core ‘Core’ given as a gate-level netlist represents a circuit module M = MCore (with feed-
back loops, internal registers with dynamically evolving content, etc.) that receives inputs (over a
set of input wires) and produces outputs (over a set of output wires). We define the state ofM at a
specific moment in time (measured in cycles) as the vector of binary values on each wire inside M
together with the values stored in each register/flip-flop. Here, the definition of state goes beyond
just the values stored in the registers inside M : M itself may not even have registers that store
state, M ’s state is a snapshot in time of M ’s combinatorial logic (which evolves over time). By Si
we denote M ’s state at clock cycle i.

User-Core Interaction: We model a user as a polynomial time (pt) algorithm5 User which,
based on previously generated inputs and received outputs, constructs new input that is received
by the IP core in the form of a new value. We assume (malicious) users who, due to (network)
latencies, cannot observe detailed timing information (a remote adversary can covertly leak privacy
over the timing channel if detailed timing information can be observed, which is out of scope of
this model). In our model, we only consider trojans that can only deliver a malicious payload over
the standard I/O channels in order to violate the functional specification of the core. This implies
that only the message contents and the order in which messages are exchanged between the core
and user are of importance.

5Any random coin flips necessary are stored as a common reference string in the algorithm itself.
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We model this by restricting User to a pt algorithm with two alternating modes; an input
generating mode and a listening mode. During the jth input generating mode, some input message
Xj is generated which is translated to a sequence (xk, xk+1, . . . , xn) of input vectors for each clock
cycle to the circuit module M which defines the IP core. During the jth listening mode of say ∆j

clock cycles, User collects an output message Yj that efficiently represents the sequence of output
vectors (yg, yg+1, . . . , yk, yk+1, . . . , yn, . . . , yn+∆j

) as generated by M during clock cycles from the
end of the last input generating mode at clock cycle g onwards, i.e., the output generated during
clock cycles g, g + 1, . . . , n + ∆j (here, we write xi = ε or yi = ε if no input vector is given, i.e.
input wires are undriven, or no output vector is produced). In other words, User simply produces
an input message Xj , waits to receive an output message Yj , produces a new input message Xj+1
and waits for the new output message Yj+1 etc. The Xj are produced as semantic units of input
that arrive over several clock cycles at the IP core. Yj concatenates all the meaningful (6= ε) output
vectors that were generated by the IP core since the transmission of Xj . This means that the
view of the user is simply an ordered sequence of values devoid of any fine grained clock cycle
information.

3.2 Functional Specifications

We assume that the IP core has an algorithmic functional specification consisting of two algorithms:
CoreSim and OutSpec. CoreSim is an algorithm that simulates the IP core at the coarse grain
level of semantic output and input units:
• CoreSim starts in an initial state S′0
• (Y ′j , S′j ,∆j)←− CoreSim(Xj , S

′
j−1)

CoreSim should be such that it does not reveal any information about how the IP core implements
its functionality. It protects the intellectual property (implementation and algorithmic tricks etc.)
of the IP core and only provides a specification of its functional behavior. States S′j are not related
to the states Si that are snapshots of the circuit module M as represented by Core. States S′j
represent the working memory of the algorithm CoreSim. Notice that CoreSim also outputs ∆j ,
the listening time needed to receive Yj if a user would interact with MCore instead of CoreSim.

The output specification OutSpec specifies which standard output channels should be used and
how they should be used. Standard output channels are defined as those which can be configured
by the hardware itself (by programming reserved registers etc.). E.g., a hardware trojan doubling
the Baud rate (by overwriting the register that defines the UART channel) or a hardware trojan
which unexpectedly uses the LED channel (by overwriting the register that programs LEDs), as
implemented in [6], would violate OutSpec. Notice that side channel attacks are defined as attacks
which use non-standard output channels and these attacks are not covered by OutSpec.

Emulation of MCore: We assume that the Core’s gate-level netlist allows the user of the
IP core to emulate its fine grained behavior (the state transition and output vector for each clock
cycle), i.e., we assume an algorithm Emulate:

• Emulate[Core] starts in an initial state S0.
• (yi, Si)←− Emulate[Core](xi, Si−1).

Emulate[Core] behaves exactly as the circuit moduleM corresponding to Core, i.e. Emulate[Core]
andM are functionally the same. The main difference is that Emulate[Core] parses the language in
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Algorithm 1 User interacts with Emulate[Core] and verifies functional correctness and outputs
the list of all the emulated states of MCore.
1: procedure Simulate(Core, User)
2: g, Y0, j, States = 1, ε, 1, [ ]
3: S0, S

′
0 = ResetStateCore,ResetStateSim

4: while (Xj , Uj)← User(Yj−1, Uj−1) do
5: (Y ′j , S′j ,∆j)← CoreSim(Xj , S

′
j−1)

6: (xk, . . . , xk+n)← Send(Xj)
7: (xg, . . . , xk−1) = (ε, . . . , ε)
8: (xk+n+1, . . . , xk+n+∆j

) = (ε, . . . , ε)
9: for i← g, k + n+ ∆j do . Emulate
10: (yi, Si)← Emulate[Core](xi, Si−1)
11: if yi 6= ε then Yj = Yj ||yi
12: end if
13: Append(States, Si) . Update States
14: end for
15: j, g = j + 1, k + n+ ∆j + 1
16: if Y ′j 6= Yj then . Verification
17: return (“Trojan-Detected”, ·)
18: end if
19: end while
20: return (“OK”, States) . All emulated states
21: end procedure

which Core is written: In practice, one can think of Emulate[Core] as any post-synthesis simulation
tool, such as Mentor Graphic’s ModelSim [7] simulator, which can be used to simulate the provided
IP core netlist Core. Notice the following properties of such a simulator tool; firstly it does not
leak any information about the IP other than described by Core itself and secondly, it is inefficient
in terms of (completion time) performance since it performs software based simulation, however it
provides fine grained information about the internal state of the IP core at every clock cycle.

Simulation of User-Core Interaction: The user of the IP core is in a unique posi-
tion to use Emulate[Core] and verify whether its I/O behavior (over standard I/O channels)
matches the specification (CoreSim,OutSpec). The verification can be done automatically with-
out human interaction: This will lead to the proposed HaTCh tool which uses (during a learn-
ing phase) Emulate[Core] to simulate the actual IP core MCore and verifies whether the se-
quence (X1, Y1, X2, Y2, . . .) of input/output messages to/from User matches the output sequence
(Y ′1 , Y ′2 , . . .) of CoreSim on input (X1, X2, . . .). Algorithm 1 shows a detailed description of this
process (Ui indicates the current state or working memory of User).

Notice that User in algorithm 1 can be considered as a meta user which runs several test patterns
from different individual users one after another to test MCore. This implies that Simulate is
generic and can be applied to both a non-pipelined as well as a pipelined MCore.

Functional Spec Violation: We consider HD trojans, therefore, CoreSim is a non-
probabilistic algorithm. This means that the output sequence (Y ′1 , Y ′2 , . . .) of CoreSim is uniquely
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defined (and next definitions make sense): We define the input sequence X1, X2, . . . , XN to not
violate the functional spec if it verifies properly in algorithm 1, i.e., if the emulated output (by
Emulate[Core]) correctly corresponds to the simulated output (by CoreSim). If it does not verify
properly, then we say that the input sequence X1, X2, . . . , XN violates the functional spec.

4 Trojan Detection Tool
In order to prove Theorem 1 we present a powerful trojan detection tool, called HaTCh, which uses
a whitelisting approach to discriminate the trustworthy circuitry of an IP core from its potentially
malicious parts. Algorithm 2 shows the operation of HaTCh. In order to disable any trojan in a
Core ∈ Ht,α,d ⊆ HD, HaTCh takes the following parameters as input:

1. Core: The IP core under test.
2. U : A user distribution with a pt sampling algorithm Sample where each User ←Sample(U)

is a pt-algorithm.
3. t, d, α: Parameters characterizing the hardware trojan.
4. λ: A security parameter.
5. ρ: Maximum acceptable false positive rate.

HaTCh processes Core in two phases; a Learning phase and a Tagging phase. The learning
phase performs k iterations of functional testing on Core using input test patterns generated by
k users from U and learns k independent blacklists B1, B2, . . . , Bk of unused wire combinations,
where k depends upon the desired security level and is a function of α and λ. If Core is found
manifesting any explicit malicious behavior during the learning phase then the learning phase is
immediately terminated. This produces an error condition and as a result, HaTCh does not execute
its tagging phase and simply returns “Trojan-Detected” which indicates that the IP core contains
a hardware trojan, and is rejected straightaway in the pre-silicon phase. On the other hand, if no
explicit malicious behavior is observed during the learning phase, a union of all individual blacklists
Bi produces a final blacklist B. Having a union of multiple independent blacklists minimizes
the probability of incorrectly whitelisting (due to implicit malicious behavior) a trigger wire(s)
since the trigger wire(s) need to be whitelisted in all k learning phases in order for the trojan to
remain undetected. Once the final blacklist B is available, the tagging phase starts. It transforms
Core to CoreProtected by adding extra logic for each entry in the blacklist such that whenever any
of these wires is activated, a special flag will be raised to indicate the activation of a potential
hardware trojan. We notice that logic testing based approach for trojan detection is generally
pretty straightforward, and has already been proposed in [8]. Here we use such an approach as our
proof methodology for HaTCh.

4.1 Learning Phase

We first present a technical definition of t-legitimate states and d-dimensional projections which
will help in explaining the process of whitelisting in the learning phase:

Definition 2. Let (w, States) ← Simulate(Core, User). Assuming Core is fixed, we define
W (User) = w and the set of t-legitimate states of User as:

Lt(User) = {States[1], . . . , States[|States| − t]}

(Since Simulate is deterministic, Lt(User) and W (User) are well-defined.)
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Algorithm 2 HaTCh Algorithm
1: procedure HaTCh(Core,U , t, d, α, λ, ρ)
2: k = d λ

log2(1/α)e, B = ∅
3: for all 1 ≤ i ≤ k do
4: Bi ← Learn(Core,U , t, d, ρ)
5: if Bi = “Trojan-Detected” then
6: return “Trojan-Detected”
7: else
8: B = B ∪Bi
9: end if

10: end for
11: CoreProtected = Tag(Core,B)
12: return CoreProtected
13: end procedure

Definition 3. We define a vector z projected to index set P as z|P = (zi1 , zi2 , . . . , zid) where
P = {i1, i2, . . . , id} and i1 < i2 < · · · < id. We call d the dimension of projection P and we define
Pd to be the set of all projections of dimension d. We define a “set Z projected to Pd” as

Z|Pd = {(P, z|P ) : z ∈ Z,P ∈ Pd}.

Formally, a trigger state is a labelled binary vector, i.e., it is a pair (P,x) where P denotes
a projection and x is a binary vector; if Core is in state z and z|P = x then the trojan gets
triggered. Now let T be a set of trigger states/signals which represents the hardware trojan, i.e.,
MCore manifests malicious behavior if and only if it has passed through a state in T . Let T have
dimension d and payload propagation delay t, i.e., the trojan always manifests malicious behavior
within t clock cycles after “it gets triggered” by a trigger signal in T . Then we know that a state
in Lt(User)|Pd can only correspond to a trigger signal in T if the trigger signal produced implicit
malicious behavior, i.e., W (User) = “OK”. Now we are ready to define Ht,α,d:

Definition 4. Core ∈ Ht,α,d if and only if it is represented by a set of trigger states T with t(T ) ≤ t
and d(T ) ≤ d such that

C1) There exists a User and a state S in the set of all reachable states of MCore such that S ∈ T .
I.e., Core is indeed capable of manifesting malicious behavior.

C2) For all User, Simulate(Core, User) outputs W (User) such that:

Prob (W (User) = “OK” | (Lt(User)|Pd) ∩ T 6= ∅) ≤ α

We refer to the minimum α that satisfies C2 for T as the stealthiness factor α(T ) of the hardware
trojan (cf. section 2.2.3).

Algorithm6 3 describes the operation of a single iteration in HaTCh learning phase (lines 3-10
in Algorithm 2). First a User is sampled from U and at least 1/ρ test patterns generated by User

6In our complexity analysis we assume white listing happens as soon as possible so that double work in lines 14-16
is avoided.
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Algorithm 3 Learning Scheme
1: procedure Learn(Core,U , t, d, ρ)
2: if I/O register does not match OutSpec then
3: return “Trojan-Detected”
4: else
5: B = Pd × {0, 1}d, User ← Sample(U)
6: repeat
7: Bold = B
8: Steps from Algorithm 1 from line 2-3
9: for m = 1 to 1/ρ do

10: (Xj , Uj)← User(Yj−1, Uj−1)
11: Steps from Algorithm 1 from line 5-18
12: end for . If not aborted, this yields States
13: for all P ∈ Pd do . Perform Whitelisting
14: for all 1 ≤ i ≤ |States| − t do
15: B = B \ {(P, States[i]|P )}
16: end for
17: end for
18: until |B| 6= |Bold| . Until no change in blacklist
19: return B . The Blacklist
20: end if
21: end procedure

are tested on Core. All those internal states (wires) which are reached by Core during these tests
are whitelisted and the rest of the states (wires) are considered to be the part of blacklist. This
process is repeated until the blacklist size does not reduce any further, i.e. until 1/ρ consecutive test
patterns do not reduce the blacklist anymore. This means that neither a false nor a true positive
would have been generated if this blacklist were used for the tagging phase. For this reason ρ
becomes, statistically, an upper bound on the false positive rate, i.e. if this blacklist is used for the
tagging phase, the mean time between false positives is at least 1/ρ inputs.

The final blacklist B generated by the learning phase in algorithm 2 is equal to

(Pd × {0, 1}d) \ (Lt(User)|Pd) (2)

for the sampled User in line 5. B contains two types of wire combinations: First the wires
specifically related to the hardware trojan circuitry, and second some redundant wires which did
not excite during the learning phase either because of insufficient user interactions or because of
logical constraints of the design.

4.1.1 Security Guarantees of HaTCh

If HaTCh does not detect a functional spec violation during its learning phase, then the blacklist
produced by HaTCh is the union of k independent blacklists corresponding to k independent
users User with W (User) = “OK”, see (2). If the set of trigger states T is not a subset of this
union, then each of the k blacklists must exclude at least one trigger signal from T and therefore
(Lt(User)|Pd) ∩ T 6= ∅ for each of the corresponding k users User. The probability that both
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W (User) = “OK” as well as (Lt(User)|Pd) ∩ T 6= ∅ is at most α (by Bayes’ rule) for a Ht,α,d

trojan. We conclude that the probability that the set of trigger states T is not a subset of the
blacklist produced by HaTCh is at most αk ≤ 2−λ. So, the probability that the tagging circuitry
will detect all triggers from T is at least 1− 2−λ.

4.1.2 Computational Complexity of HaTCh

The computational complexity of HaTCh depends upon λ, α, d, ρ, and n = |Core|. HaTCh
performs k iterations in total during the learning phase in algorithm 2, where k = dλ/ log2(1/α)e.
The length of each iteration is determined by the number |Pd×{0, 1}d| =

(n
d

)
2d ≤ (2n)d of possible

triggers of dimension d, where size of the IP core n = |Core|, and the desired false positive rate ρ:
in the worst case every 1/ρ user interactions in an iteration may only reduce the blacklist by one
possible trigger, hence, the length of each iteration is O((2n)d/ρ). Whereas, in each iteration, the
search space to find and whitelist the projections from is |Pd| =

(n
d

)
≤ nd. Therefore the overall

computational complexity of HaTCh is given by:

O

(
λ

log2(1/α) ·
(2n2)d

ρ

)
(3)

In order to reduce the computational complexity, we introduce the idea of locality in gate
level circuits, similar to the region based approach in [8]. We define locality l between two wires
as the minimum distance between them in the gate level netlist in terms of basic combinational
or sequential logic levels (e.g. logic gates and/or flipflops). A low value of l shows that the
corresponding wires are in the close vicinity of each other and vice versa.

Consider the simple combinational circuit from Figure 5a. Based on this circuit, we draw a
locality graph shown in Figure 5b whose nodes represent the wires of the circuit and each edge
between any two nodes represents connectivity of the corresponding two wires through a combina-
tional logic level. In other words, each logic gate of the circuit is replaced by multiple edges (three
in this case) in the graph which connect together the nodes corresponding to its inputs and the
output. One can easily find the locality of any two wires in the circuit through its locality graph,
e.g. E has locality l = 1 with B, C, D and F whereas O has locality l = 1 with A and F . On the
other hand, E has l = 2 with A and O.

Let nl denotes the maximum number of wires in the locality of any of the n wires of the circuit
for parameter l, then the projections search space drastically reduces to |Pd,l| = n ·

( nl
d−1
)
≤ n ·nd−1

l

since nl � n Hence, the overall complexity from (3) is reduced to:

O

(
λ

log2(1/α) ·
2n2(2n2

l )d−1

ρ

)

4.2 Tagging Phase

The tagging phase (i.e. Tag in algorithm 2) takes an untrusted Core along with a blacklist
B as inputs and adds additional logic to the Core to keep track of the suspicious wires in the
blacklist. A new output signal called TrojanDetected is added to the Core. This output is
asserted whenever any wire from B takes a ‘blacklisted’ value. To achieve this functionality, a
tree of logic gates is added to Core such that the logic 1 is propagated to TrojanDetected output
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Figure 5: Example of Locality Graph

whenever a ‘blacklisted’ value is taken by a suspicious wire. The area overhead of tagging circuitry
is O(|B|d) where d represents the parameter passed to HaTCh.

Notice that the added logic can be pipelined to keep it off the critical path and hence it would
not affect the design timing. The pipeline resisters may delay the detection of the hardware trojan
by O(log2(|B|d)) cycles, however we show in our evaluation section that for average sized IP cores,
HaTCh produces a significantly small B. Consequently, the detection delay because of pipeline
registers is only a few cycles. Additionally, for a particular IP core the HaTCh computation needs
to be done only once for millions of its instances to be fabricated. Hence, even for larger IP cores, it
is worth investing the computational time of several hours to achieve a significantly small blacklist
B and to produce millions of trustworthy chips.

5 Evaluation
In this section, we evaluate our HaTCh tool for Trusthub [5] benchmarks. We first analyze the
Trusthub benchmarks w.r.t. HaTCh framework. Then we briefly describe our experimental setup
and methodology including some crucial optimizations implemented to minimize the area overhead.
Finally we present and discuss the experimental results.

5.1 Characterizing Trusthub Benchmarks

Table 1 shows the relevant benchmarks from Trusthub categorized according to the HaTCh frame-
work. St-D trojans (i.e. HD group) is further subdivided based on the properties (t,α,d). All these
trojans happen to be represented by a single trigger of dimension d = 1 (i.e., the trigger is a single
wire); their corresponding t and α values are listed in Table 1.7 For t values, we simply count the
minimum number of registers between the trigger signal wires(s) and the output port of the IP
core. In order to estimate α values, we first find the smallest chain of logic gates starting from the
trigger signal wire(s) till the output port of the IP core (ignoring any registers in the path). Then
for each individual logic gate, we compute the probability of propagating a logic 1 (considering that

7α values show estimated upper bounds on probabilities.
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Table 1: Classification of Trusthub Benchmarks w.r.t. HaTCh framework
Type t α Benchmarks

St
D

0

1/232 BasicRSA-T{100, 300}
0.5 s15850-T100, s38584-T{200, 300}

0-0.25 wb_conmax-T{100, 200, 300}

0-0.87 RS232-T{100, 800, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
1900, 2000}

1
0.5 b15-T{300,400}

0.5-0.75 s35932-T{100, 200}
0-0.06 RS232-T{400, 500, 600, 700, 900, 901}

2
0.5 vga-lcd-T100, b15-T{100, 200}
0.87 s38584-T100

3
1/232 BasicRSA-T{200, 400}
0.5 s38417-T100

5 0.99 s38417-T200
7 0.5 RS232-T300
8 0.5 s35932-T300

ND N/A MC8051-T{200, 300, 400, 500, 600, 700, 800}, PIC16F84-T{100, 200,
300, 400}

Si N/A AES-T{400, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500,
1600, 1700, 2000, 2100}, s38417-T300, AES-T{100, 200, 300}

the trigger wire(s) get a logic 1 upon a trigger event), e.g. an AND gate has the probability 1/4
of propagating a logic 1, whereas an XOR gate has the probability 1/2. Finally we compute an
aggregate probability of propagation by multiplying all the probabilities of each logic gate in the
chain, which gives the value 1− α. HaTCh is able to detect all these St-D trojans using d = 1.

Notice that all these St-D trojans have a very low value of d (particularly d = 1) which reflects
their low stealthiness, and hence the fact that these publicly available benchmarks represent only a
small subset consisting of simple trojans. Even though some of these benchmarks have high values
of α (e.g. s38584-T100 and s38417-T200), it is not useful for the adversary to have very high α.
Ideally, on one hand, the adversary wants the trojan to be triggered in the learning phase only
once, and remain undetected (i.e. by having high α) so that the trojan trigger is whitelisted. On
the other hand, after the learning phase, he wants the trojan to deliver the payload by disrupting
the normal output (i.e. by having low α), otherwise the trojan is not useful for him. Therefore,
the adversary would like to have a sweet spot between the high and low ends of α values. This
essentially increases the chances for HaTCh to detect the trojan, i.e. either it gets detected (if
triggered) in the learning phase (because α� 1), or it gets detected by the tagging circuitry later.

St-ND (i.e. HND group) and Si trojans are out of scope of HaTCh. Trigger activated Si trojans,
however, can still be detected by HaTCh provided that these trojans do not get triggered during
the HaTCh learning phase so that their trigger related wires remain blacklisted.
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5.2 Experimental Setup & Methodology

We first test five different benchmarks from RS232 and seven from s-Series (i.e., s15850, s35932 and
s38417) benchmark groups (all of which together form a diverse collection) using the parameters t
and α as listed in Table 1. Since these trojans have the dimension d = 1, we also set the parameter
d = 1 for HaTCh. For all our experiments, we set the maximum acceptable false positive rate ρ
to be 10−5. HaTCh detects all tested benchmarks, and the resulting area overheads of tagging
circuitries are presented in the results section. Notice that s38417-T300 belongs to Si type, but
since it does not get triggered in the learning phase, HaTCh is still able to detect it.

Even though these benchmarks have a maximum dimension d = 1 which means that they can
be detected already by using d = 1 in HaTCh, we test certain RS232 benchmarks with parameters
d = 2 and locality l = 1 in order to estimate the area overhead for these parameter settings. These
results are also presented later in this section.

HaTCh tool works on a synthesized gate level netlist of the IP core. We use Synopsys Design
Compiler [9] to synthesize the RTL design. Next, we perform post-synthesis simulations with self
checking testbenches using Mentor Graphic’s ModelSim [7] simulator. The benchmark is given
random test patterns as inputs (ATPG tools can also be used to generate patterns) and the self
checking testbench verifies the correct behavior, and the simulation trace of each wire is dumped
into a file upon successful verification. HaTCh parses the simulation dump file using an automated
script to generate a blacklist. Initially all possible transitions of all the wires of the circuit are
blacklisted. Then, every transition read by the script from the simulation file is removed from
the blacklist which eventually leads to a final blacklist containing only the untrusted transitions
of certain wires. Based on the final blacklist, additional logic is added to flag the blacklisted
transitions.

HaTCh tool also performs certain optimizations to remove as much redundant wires from the
blacklist as possible. The key idea behind these optimizations is that if the input(s) and output
of a logic element coexist in the blacklist, then the output wire can be removed from the blacklist
provided that changing the corresponding blacklisted input will affect the output. For example,
inverters and logic buffers can benefit from such optimizations. These optimizations lead to a
significant reduction in the size of blacklist which in turn reduces the area overhead.

5.3 Experimental Results

Figure 6 shows the size of the blacklists sampled after different numbers of input patterns for s-
Series benchmarks. For each benchmark, the blacklist size decreases rapidly with the number of
input patterns until it reaches a state when most of the wires in the design are already whitelisted
and no more wires are eliminated from the blacklist by further testing. E.g. the blacklists for the
s35932 group become stable already after only 100 input patterns. Whereas s38417 group achieves
the stable state after 10,000 input patterns. Only s15850 group takes longer to become stable.

Table 2 shows the area overhead incurred by HaTCh for s-Series benchmarks both for non-
pipelined and pipelined tagging circuitries. The size of benchmarks (gates+registers) is shown
under Size. On average, we see an overhead of 8.34% and 4.18% for pipelined and non-pipelined
circuitries respectively. For some benchmarks, we see significantly high overhead than others which
is most likely because of the fact that the random input test patterns do not provide enough
coverage for some of the benchmarks. We observe that the optimizations performed by HaTCh
reduce the overheads by ≈ 4.5 times as compared to the un-optimized tagging circuitries. The
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Figure 6: Blacklist size of s-Series with d = 1

Table 2: Area Overhead for s-Series with d = 1
Benchmark Size Area Overhead

Pipelined Non-Pipelined
s15850-T100 2180 4.17% 2.11%
s35932-T200 5442 0.02% 0.02%
s35932-T300 5460 0.16% 0.09%
s38417-T100 5341 15.22% 7.62%
s38417-T200 5344 15.21% 7.62%
s38417-T300 5372 15.25% 7.63%

Average 8.34% 4.18%

Table 3: Area Overhead for RS232 with d = 2, l = 1
Benchmark Size Area Overhead (non-pipelined)
RS232-T300 280 2.50%
RS232-T1200 273 0.73%
RS232-T1300 267 0.75%

RS232 benchmarks tested with d = 1 (i.e. RS232-T{100, 300, 500, 600, 700}) produce blacklists
containing only one wire, i.e. the trigger signal. Hence, these benchmarks do not incur any
additional area overhead.

Table 3 shows the area overheads of those RS232 benchmarks which we test with dimension
d = 2 and locality l = 1 (i.e. RS232-T{300, 1200, 1300}) in order to get a real estimate of HaTCh
overheads for higher dimensions. We see that even with the higher dimension d = 2, the overheads
for these benchmarks are reasonably small. Since the computed blacklists for these benchmarks
are very small, the tagging circuitry would only consist of only 2 to 3 logic levels. Therefore we do
not need a pipelined tagging circuitry for these benchmarks.

HaTCh also detects k-XOR-LFSR trojan; as an example we implemented it for k = 4, and it
was detected by using d = 2.
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6 Related Work
Hardware trojans have recently gained significant interest in the security community [10], [11], [12].
The works [11] and [12] showed how malicious entities can exist in hardware, while Skorobogatov
et al. [13] showed evidence of such backdoors in military grade devices. Nefarious designs have also
been deployed and detected in wireless communications devices [14]. Recent works have mostly
focused on detection [15] and identification schemes [16], which assess to what extent the pieces of
hardware may be vulnerable, and how related trojans can be classified.

Hicks et al. [17] proposed to detect hardware trojans through unused circuit identification (UCI).
Their solution centers on the fact that the hardware trojan circuitry will not be used within a design,
and hence such minimally used logic can be distinguished from the design specification. However,
due to functional verification constraints, whole designs cannot be analyzed in optimal time, and
hence the scheme identifies large portions of the design as a potential hardware trojan. This results
in a high false positive rate, and recent works by some papers have even succeeded in breaking this
scheme [18], [19].

Veritrust [20] is another scheme proposed by Zhang et al. that identifies suspicious wires that
seem redundant in comparison with the design. The scheme uses Karnaugh-maps, and excites
portions of the circuit using the design specification, given the fact that the design spec will not
activate the hardware trojan. However, the design spec may not activate all circuitry in the design,
and the remaining wires are all classified as potential hardware trojans, and contribute heavily to
the false positive rate.

Waksman et al. presents FANCI which applies boolean function based heuristics to flag suspi-
cious wires in a design [21], stemming ideas from their previous work on hardware obfuscation [22].
This solution may be suitable for cases where backdoors are evident as wires in the design. How-
ever, the admitted weakness of this solution is that the scheme suffers from false positives, and
is recently broken along with VeriTrust by DeTrust [23]. Moreover, this method is a probabilistic
method which uses a threshold and some heuristics to determine if a wire should be considered
suspicious. This could lead to a false negative where a trojan related wire is regarded as ‘not’
suspicious because of using a low threshold to reduce false positives.

DeTrust [23] develops new hardware trojans whose circuitries are intermixed with the normal
design. Therefore, by having trojan circuits being part of the normal design, previous schemes
would designate them as non-malicious, resulting in a false negative rate. However, they only
discuss on how to improve the current works (FANCI and VeriTrust) to detect their trojans. The
paper also shows that FANCI exhibits a much higher false positive rate than expected.

The above mentioned schemes use trojans from the TrustHub benchmarks suite, in which all
trojans are explicitly triggered. This explicitness forgoes the lack of implicitness, due to which all the
above schemes are able to detect the benchmarked trojans. These schemes, however, do not cater
for higher dimensional (d > 1) trojans or the added stealthiness because of the implicit behaviors
(i.e. α). DeTrust presents a trojan example which bypasses other existing countermeasures, and
interestingly it happens to have the dimension d = 2. However, this property has not been noticed
or analyzed in that paper. HaTCh fills this gap by providing a detailed and rigorous framework to
reason about hardware trojan characteristics and detection schemes.

Further works construct and detect hardware trojans through side channels [24], [25]. Such
hardware trojans remain implicitly on, and have no effect on the functionality of the circuit [26].
Side channels include power based channels [27], as well as heat based channels [28]. Power based
trojans force the circuit to dissipate more and more power to either damage the circuit, or simply
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waste energy [29]. Heat based trojans leak important information via heat maps [30], where highs
and lows in heat dissipation can be interpreted as 1’s and 0’s. The presence of a non-zero false
negative rate in an adversarial model that allows side channel trojans implies a constant rate of
privacy leakage. It is outside the scope of this paper to analyze side-channel models/frameworks
in existing literature that may lead to tools that can detect side channel trojans with small false
negative rates or obfuscate (by adding extra circuitry) the effect of such trojans leading to reduced
privacy leakage rates.

7 Conclusion
We provide the first rigorous framework within which “deterministic trojans”, the class HD, are
introduced and analyzed with respect to several stealthiness parameters. We show that currently
benchmarked hardware trojans are the simplest ones in terms of stealthiness, and hence represent
just the tip of the iceberg at the huge trojans landscape. Based on our framework we were able
to design the much more stealthy XOR-LFSR hardware trojan. This demonstrates that (1) our
framework can be used to understand how to design stealthy trojans that force a large complexity
overhead for our logic testing based HaTCh tool. This in turn (2) allows us to analyse what kind
of additional properties must be satisfied by such very stealthy trojans, and this leads to counter
measures. E.g., for the XOR-LFSR trojan there exists a vector which is orthogonal to the LFSR
register before the trojan delivers its payload that violates the functional spec, and also the trojan
needs a large register. Both properties can be used to enhance HaTCh in order to efficiently detect
an XOR-LFSR type trojan.

So far, our best solution of the trojan detection problem for HD is exponential in the size n of
the IP core. When we restrict ourselves to certain subclasses, the solution becomes polynomial in
n. Together with the above discussion, this raises the following question: (3) For some d̂, does there
exist a property, shared among all HD trojan designs that force HaTCh to have a computational
complexity ≥ nd̂, such that an enhanced HaTCh can be developed which uses this property to
detect all HD trojans with polynomial complexity O(nd̂)?

We conclude that our HaTCh framework allows the hardware trojan research community to
rigorously reason about the effectiveness of different hardware trojans and their existing counter-
measures, and also design new and even stronger countermeasures for highly stealthy advanced
trojans.
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Cycle Q3 Q2 Q1 Q0 W1 W2 W3
0 1 0 1 0 1 1 0
1 0 1 0 1 0 0 0
2 1 0 1 1 1 1 0
3 0 1 1 1 1 1 0
4 1 1 1 1 1 1 1
5 1 1 1 0 1 1 0
6 1 1 0 0 0 0 0
7 1 0 0 0 0 0 0
8 0 0 0 1 0 0 0
9 0 0 1 0 1 1 0
10 0 1 0 0 0 0 0
11 1 0 0 1 0 0 0
12 0 0 1 1 1 1 0
13 0 1 1 0 1 1 0
14 1 1 0 1 0 1 1

(b) Truth Table of the Trojan affected circuit. Trigger: W1 6=
W2

Figure 7: A Counter-Based H0,0.5,2 Trojan to enable the secret leakage

A A Counter-Based H0,0.5,2 Trojan Example
The example trojan shown in Figure 7a can leak Secret via Out port instead of Data upon the
trigger condition W1 6= W2. The trigger condition is generated by a counter, when reached to
(1101), which is implemented as a 4-bit maximal LFSR in order to have maximum possible time
before the trojan gets triggered. The LFSR is initialized to (Q3, Q2, Q1, Q0) = (1010) and it can
be seen in Figure 7b that if given the parameter d = 1, HaTCh will whitelist all the wires related to
trigger circuitry only after a few clock cycles since all these wires show transitions. At 14th clock
cycle, the value of the LFSR becomes (1101) and W1 6= W2, which activates the Trojan to leak
the secret.

A.1 Detection by HaTCh with d = 2
As it is clear from Figure 7b that, given the parameter d = 1, this trojan cannot by detected by
HaTCh since all the wires show transitions and get whitelisted after 4th clock cycle. Therefore we
run HaTCh with a parameter d = 2 in order to show that HaTCh is able to detect this trojan.
With d = 2, HaTCh exhaustively monitors all possible 2-wire combinations of all the wires in the
design. It starts with a blacklist of all possible 2-wire combinations (e.g. {00, 01, 10, 11}) of all the
wires in the design and those combinations which are seen during the simulation are removed from
the blacklist provided that the output Out matches the expected output for every input.

If the learning phase is run for 13 clock cycles, then after the optimizations of HaTCh, we only
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see one combination of W1 and W3 in the final blacklist i.e. (W1,W3) = (0, 1) which only occurs
upon the trigger condition. All other redundant combinations are optimized away from the blacklist
because the logical constraints of the design never allow these combinations to occur in the future,
e.g. (W1,W2) = (1, 0) is never possible (unless a stuck at 0 fault for W2). Hence HaTCh is able
to detect this trojan. Notice that if the learning phase is run for fewer clock cycles, then HaTCh
will produce a larger blacklist with more blacklisted combinations.
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