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Over the past decade, Hardware Trojans (HTs) research community has made significant
progress towards developing effective countermeasures for various types of HTs, yet these coun-
termeasures are shown to be circumvented by sophisticated HTs designed subsequently. Therefore,
instead of guaranteeing a certain (low) false negative rate for a small constant set of publicly known
HTs, a rigorous security framework of HTs should provide an effective algorithm to detect any HT
from an exponentially large class (exponential in number of wires in IP core) of HTs with negligible
false negative rate.

In this work, we present HaTCh, the first rigorous algorithm of HT detection within the
paradigm of pre-silicon logic testing based tools. HaTCh detects any HT from HD, a huge class
of deterministic HTs which is orders of magnitude larger than the small subclass (e.g. TrustHub)
considered in the current literature. We prove that HaTCh offers negligible false negative rate and
controllable false positive rate for the class HD. Given certain global characteristics regarding the
stealthiness of the HT within HD, the computational complexity of HaTCh for practical HTs scales
polynomially with the number of wires in the IP core. We implement and test HaTCh on TrustHub
and other sophisticated HTs.
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1 Introduction
System on Chip (SoC) designers frequently use third party IP cores as black boxes instead of
building these logic blocks from scratch, in order to save the valuable time and other resources.
However, these third party IP cores can contain Hardware Trojans (HTs) which could potentially
harm the normal functionality of the SoC (i.e. denial of service attack) or cause privacy leakage [2–
5]. These Trojans must be detected in pre-silicon phase, otherwise an adversary can infect millions
of ICs through a Trojan affected IP core.

The IP core vendors generally do not offer the RTL level source code of the IP cores because of
the proprietary reasons. Therefore, digital IP cores are typically offered in the form of a netlist of
common digital logic gates and memory elements. Such IP cores are termed as ‘closed source’ IP
cores. Even if the RTL source code of the IP core is available, it might not be feasible in case of
large IP cores to manually inspect the source code for possible HTs. Hence, closed source IP cores
impose totally new challenges of identifying potentially malicious logic gate(s) from a netlist of
hundreds of thousands of gates, without any knowledge of the RTL source code. This is analogous
to finding a needle in a haystack.

Although Hardware Trojans research community has put in tremendous efforts to develop ef-
fective countermeasures to detect several kinds of HTs, however still, the HT design research has
always been one step ahead of the HT detection research. State of the art HT detection schemes
namely Unused Circuit Identification (UCI) [6], VeriTrust [7], and FANCI [8] have shown that they
can detect all HTs from the TrustHub [9] benchmark suite. On the other hand, researchers have
also shown that these schemes can still be circumvented by carefully designing new HTs [10], [11].
A recent work, DeTrust [12], in fact introduces a systematic methodology of designing Trojans that
can evade both VeriTrust and FANCI.

We notice that the fundamental reason behind the possibility of circumventing these HT de-
tection techniques is the lack of rigorous analysis about the coverage of these techniques at their
design time. Typically, HT detection techniques offer guaranteed coverage for a small constant
set of publicly known HT benchmarks such as TrustHub. However, later on, one may design a
HT which is slightly different than previously known HTs such that it can bypass the detection
schemes. Therefore, clearly the HT detection techniques must target and provide security guaran-
tees against certain behavioral traits resulting in a larger class of HTs instead of targeting specific
known HTs. We limit our discussions in this paper about digital IP cores and trigger activated
digital HTs which have digital payloads. Also, since we want to detect any HTs inside the SoC
before it gets fabricated, we restrict ourselves to the tools and algorithms which can detect HTs in
pre-silicon phase. Hardware Trojans that are always active and/or exploit side channels for their
payloads [13] [14] [15] are out of scope of this paper.

Recent work [1] discovers several advanced properties (i.e. d, t, α, l) of trigger based deter-
ministic HTs resulting in a large group called HD. These properties characterize the stealthiness
of the HTs, and hence introduce the design principles that an adversary might follow to design
sophisticated HTs in order to bypass the current HT countermeasures.

In this paper, we present a powerful HT detection algorithm called Hardware Trojan Catcher
(HaTCh) that offers complete coverage and transparent security guarantees for the above mentioned
large and complex class HD of deterministic HTs. Figure 1 compares the coverages offered by
different HT detection schemes for the HT class HD. Although VeriTrust and FANCI can detect
publicly known TrustHub HTs, it is unclear what security guarantees they offer outside TrustHub.
HaTCh, on the other hand, is capable of detecting any HT from HD, whether the HT is publicly
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Figure 1: Class of Deterministic Hardware Trojans HD, and detection coverages of existing Hard-
ware Trojan countermeasures.

known or unknown. We prove that HaTCh offers negligible (in 2−λ) false negative rate and a
controllable false positive rate ρ.

Our proposed HT detection tool HaTCh works in two phases; a learning phase and a tagging
phase. The learning phase performs logic testing on the IP core and produces a blacklist of all
the unactivated (and potentially untrusted) transitions of internal wires. The tagging phase adds
additional logic to the IP core to track these untrusted transitions. If these untrusted transitions
– that are potentially related to a HT trigger circuit – ever occur in the lifetime of the circuit,
an exception is raised that shows the activation of a HT. We have implemented HaTCh and our
experimental as well as theoretical results demonstrate that:

• HaTCh detects all HD trojans in poly(n) time where n is number of circuit wires and the
degree of the polynomial corresponds to the stealthiness of the HT embedded in the circuit.
In particular, all HD trojans from TrustHub are detected in linear time.

• HaTCh incurs low area overhead (on average 4.18% for a set of tested HT benchmarks).

• In cases where state of the art HT detection tools have a worst case exponential complexity
in the number of circuit inputs, HaTCh offers orders of magnitude lower complexity.

The rest of this paper is organized as follows. Section 2 provides necessary background of HTs,
briefly explains the HT class HD w.r.t. its advanced properties followed by our threat model.
Sections 3 and 4 present the basic algorithm and the detailed methodology of HaTCh, respectively.
We rigorously analyze the security guarantees of HaTCh in section 5 and prove bounds on false
negatives and false positives rates. In section 6 we compare HaTCh with state of the art HT
detection schemes. Section 7 shows the experimental evaluation and we finally conclude in section
8.

2 Background & Threat Model
We first provide the necessary background and define various terminologies upon which we build
our further discussions in this paper. In particular, we briefly review the characteristics of the HT
class HD presented in [1] which play a crucial role in the development of our detection algorithm
called HaTCh .
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2.1 Basic Terminologies

Some important terminologies used in [1] are as follows:

Definition 1. A Hardware Trojan (HT) can be defined as malicious redundant circuitry embed-
ded inside a larger circuit, which results in data leakage or harm to the normal functionality of the
circuit once activated.

A trigger activated HT activates upon some special event, whereas an always active HT remains
active all the time to deliver the intended payload. Once activated, a HT can deliver its payload
either through standard I/O channels and/or through the side channels.

Definition 2. Trigger condition is an event, manifested in the form of a particular boolean value
of certain internal/external wires of the circuit, which activates the HT trigger circuitry.

Definition 3. Trigger signal or Trigger State is a collection of physical wire(s) which the HT
trigger circuitry asserts in order to activate the payload circuitry once a trigger condition occurs.

Definition 4. Explicit malicious behavior refers to a behavior of a HT where the HT generated
output is distinguishable from a normal output.

Definition 5. Implicit malicious behavior refers to a behavior of a HT where the HT generated
output is indistinguishable from a normal output.

Definition 6. A set T of trigger states represents a HT if the HT always passes through one
of the states in T in order to express implicit of explicit malicious behavior.

Definition 7. False Negative is a scenario when a HT detection tool identifies a circuit containing
a HT as a Trojan-free circuit or transforms a circuit containing a HT into a circuit which still allows
the HT to express implicit or explicit malicious behavior.

Definition 8. False Positive is a scenario when a HT detection tool identifies a Trojan-free
circuit to be a Hardware Trojan-infected circuit.

2.2 Properties of HD Hardware Trojans

A Hardware Trojan detection scheme without a well defined scope on the landscape of HTs fails
to provide concrete security guarantees. For this reason, we first define the scope of our detection
algorithm by restricting it to the class of trigger based deterministic Hardware Trojans, namely the
class HD introduced in [1]. HD represents the HTs which are embedded in a digital IP core whose
output is a function of only its input, and the algorithmic specification of the IP core can exactly
predict the IP core behavior. Four crucial properties (d, t, α, l) of this class are also introduced
in [1] which determine the stealthiness of a HD HT having a set of trigger states T . A brief highlight
of these properties is as follows.

Trigger Signal Dimension d(T ) represents the number of wires used by HT trigger cir-
cuitry to activate the payload circuitry in order to exhibit malicious behavior. A large d shows a
complicated trigger signal, hence it is harder to detect.

Payload Propagation Delay t(T ) is the number of cycles required to propagate malicious
behavior to the output port after the HT is triggered. A large t means it takes a long time after
triggering until the malicious behavior is seen, hence less likely to be detected during testing.
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Implicit Behavior Factor α(T ) represents the probability that given a HT gets triggered,
it will not (explicitly) manifest malicious behavior; this behavior is termed as implicit malicious
behavior. Higher probability of implicit malicious behavior means higher stealthiness during testing
phase.

Trigger Signal Locality l(T ) shows the spread of trigger signal wires of the HT across the
IP core. Small l shows that these wires are in the close vicinity of each other. Large l means that
these wires are spread out in the circuit, and hence the HT is harder to detect.

A Hardware Trojan can be represented by multiple sets of trigger states T , each having their
own d, t, α, and l values. The collection of corresponding quadruples (d, t, α, l) is defined as the
achievable region of the Hardware Trojan. This allows us to define Hd,t,α,l as follows:

Definition 9. Hd,t,α,l is defined as all HD type Trojans which can be represented by a set of trigger
states T with parameters d(T ) ≤ d, t(T ) ≤ t, α(T ) ≤ α and l(T ) ≤ l.

In the remainder of this paper we develop HaTCh which takes parameters d, t, α and l as input
in order to detect HTs from Hd,t,α,l.1

2.3 Threat Model

A third party IP core is provided in the form of a synthesized netlist which obfuscates the HDL
source code. The IP core vendor has embedded a trigger based HT in the IP core which delivers
its payload via standard IO channels of the IP core. The HT could have been inserted directly
by maliciously modifying the source code or by using some malicious tools to synthesize the RTL.
This IP core is used in a larger design whose millions of chips are fabricated. The adversary wants
to exploit this scalability to infect millions of fabricated chips by supplying an infected IP core. To
prevent this, we test the IP core for potential HTs in pre-silicon phase, i.e. before integrating it
into a larger design and fabricating it. Logic or functional testing, used by Design for Test (DFT)
community for testing basic manufacturing defects, is one of the simplest methods to test the IP
core for basic HTs which can be easily implemented using the existing simulation/testing tools.
For the above reasons we restrict ourselves to analyzing logic testing based tools used in pre-silicon
phase for HT detection.

3 HaTCh Algorithm
In this section, we present the basic HT detection algorithm of HaTCh which uses whitelisting
approach to discriminate the trustworthy circuitry of an IP core from its potentially malicious
parts.2 In order to detect any HT in a Core ∈ Hd,t,α,l ⊆ HD, HaTCh takes the following parameters
as input:

1Hd,t,α,l ⊆ Hd,t,α where Hd,t,α represents the group of HTs which are not constrained by a certain value of the
locality parameter l.

2The English word Hatch means an opening of restricted size allowing for passage from one area to another.
Our HaTCh framework provides this functionality by allowing certain parts of the circuit to operate normally while
restricting the operation of others.
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Core: The IP core under test.
U : A user distribution with a ppt sampling algorithm Sample where

each User ←Sample(U) is a pt-algorithm.
d, t, α, l: Parameters characterizing the Hardware Trojan.
λ: False negative rate ≤ 2−λ.
ρ: Maximum acceptable false positive rate.

Algorithm 1 shows the operation of HaTCh which processes Core in two phases; a Learning
phase and a Tagging phase.

3.1 Learning Phase

The learning phase performs k iterations of functional testing on Core using input test patterns
generated by k users from a user distribution U and learns k independent blacklists B1, B2, . . . , Bk
of unused wire combinations. Here k depends upon the desired security level and is a function of
α and λ.

If Core is found manifesting any explicit malicious behavior during the learning phase then
the learning phase is immediately terminated. This produces an error condition and as a result,
HaTCh does not execute its tagging phase and simply returns “Trojan-Detected” which indicates
that the IP core contains a Hardware Trojan, and is rejected straightaway in the pre-silicon phase.

On the other hand, if no explicit malicious behavior is observed during the learning phase,
a union of all individual blacklists Bi produces a final blacklist B. Having a union of multiple
independent blacklists minimizes the probability of incorrectly whitelisting (due to the implicit
malicious behavior) a trigger wire(s) since the trigger wire(s) need to be whitelisted in all k learning
phases in order for the Trojan to remain undetected.

3.2 Tagging Phase

Once the final blacklist B is available, the tagging phase starts. It transforms Core to CoreProtected
by adding extra logic for each entry in the blacklist such that whenever any of these wire combi-
nations is activated, a special flag will be raised to indicate the activation of a potential Hardware
Trojan.

In particular, a new output signal called TrojanDetected is added to the Core. A tree of
logic gates is added to Core such that a logic 1 is propagated to TrojanDetected output whenever
any wire combination from B takes a ‘blacklisted’ value. The area overhead of tagging circuitry
is O(|B|d) where d represents the parameter passed to HaTCh. Notice that the added logic can
be pipelined to keep it off the critical path and hence it would not affect the design timing. The
pipeline registers may delay the detection of the HT by O(log2(|B|d)) cycles, however for average
sized IP cores, HaTCh can produce a significantly small B with reasonable run time. Consequently,
the detection delay because of pipeline registers is only a few cycles.

We notice that logic testing based approach for Trojan detection is generally pretty straight-
forward, and has already been proposed in [16]. However, the main edge of HaTCh over existing
schemes is that it can detect a much larger class HD of HTs which, to say the least, cannot be
efficiently detected by the existing schemes.
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Algorithm 1 HaTCh Algorithm
1: procedure HaTCh(Core,U , d, t, α, l, λ, ρ)
2: k = d λ

log2(1/α)e, B = ∅
3: for all 1 ≤ i ≤ k do
4: Bi ← Learn(Core,U , d, t, l, ρ)
5: if Bi = “Trojan-Detected” then
6: return “Trojan-Detected”
7: else
8: B = B ∪Bi
9: end if

10: end for
11: CoreProtected = Tag(Core,B)
12: return CoreProtected
13: end procedure

4 Detailed Methodology of HaTCh
In order to formally model and define Hardware Trojans, and to present a detailed implementation
of HaTCh, we first provide a relaxed model for the input and output behavior of the IP cores.

4.1 IP Core

An IP core ‘Core’ given as a gate-level netlist represents a circuit module M = MCore (with feed-
back loops, internal registers with dynamically evolving content, etc.) that receives inputs (over a
set of input wires) and produces outputs (over a set of output wires). We define the state ofM at a
specific moment in time (measured in cycles) as the vector of binary values on each wire inside M
together with the values stored in each register/flip-flop. Here, the definition of state goes beyond
just the values stored in the registers inside M : M itself may not even have registers that store
state, M ’s state is a snapshot in time of M ’s combinatorial logic (which evolves over time). By Si
we denote M ’s state at clock cycle i.

4.1.1 User-Core Interaction

We model a user as a polynomial time (pt) algorithm3 User which, based on previously generated
inputs and received outputs, constructs new input that is received by the IP core in the form of a
new value. We assume (malicious) users who, due to (network) latencies, cannot observe detailed
timing information (a remote adversary can covertly leak privacy over the timing channel if detailed
timing information can be observed, which is out of scope of this model). In our model, we only
consider trojans that can only deliver a malicious payload over the standard I/O channels in order
to violate the functional specification of the core. This implies that only the message contents and
the order in which messages are exchanged between the core and user are of importance.

We model this by restricting User to a pt algorithm with two alternating modes; an input
generating mode and a listening mode. During the jth input generating mode, some input message

3Any random coin flips necessary are stored as a common reference string in the algorithm itself.
Note that user is a deterministic algorithm.
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Xj is generated which is translated to a sequence (xk, xk+1, . . . , xn) of input vectors for each clock
cycle to the circuit module M which defines the IP core. During the jth listening mode of say ∆j

clock cycles, User collects an output message Yj that efficiently represents the sequence of output
vectors (yg, yg+1, . . . , yk, yk+1, . . . , yn, . . . , yn+∆j

) as generated by M during clock cycles from the
end of the last input generating mode at clock cycle g onwards, i.e., the output generated during
clock cycles g, g + 1, . . . , n + ∆j (here, we write xi = ε or yi = ε if no input vector is given, i.e.
input wires are undriven, or no output vector is produced). In other words, User simply produces
an input message Xj , waits to receive an output message Yj , produces a new input message Xj+1
and waits for the new output message Yj+1 etc. The Xj are produced as semantic units of input
that arrive over several clock cycles at the IP core. Yj concatenates all the meaningful (6= ε) output
vectors that were generated by the IP core since the transmission of Xj . This means that the
view of the user is simply an ordered sequence of values devoid of any fine grained clock cycle
information.

4.2 Functional Specifications

We assume that the IP core has an algorithmic functional specification consisting of two algorithms:
CoreSim and OutSpec. CoreSim is an algorithm that simulates the IP core at the coarse grain
level of semantic output and input units:

• CoreSim starts in an initial state S′0
• (Y ′j , S′j ,∆j)←− CoreSim(Xj , S

′
j−1)

CoreSim should be such that it does not reveal any information about how the IP core implements
its functionality. It protects the intellectual property (implementation and algorithmic tricks etc.)
of the IP core and only provides a specification of its functional behavior. States S′j are not related
to the states Si that are snapshots of the circuit module M as represented by Core. States S′j
represent the working memory of the algorithm CoreSim. Notice that CoreSim also outputs ∆j ,
the listening time needed to receive Yj if a user would interact with MCore instead of CoreSim.

The output specification OutSpec specifies which standard output channels should be used and
how they should be used. Standard output channels are defined as those which can be configured
by the hardware itself (by programming reserved registers etc.). E.g., a hardware trojan doubling
the Baud rate (by overwriting the register that defines the UART channel) or a hardware trojan
which unexpectedly uses the LED channel (by overwriting the register that programs LEDs), as
implemented in [17], would violate OutSpec. Notice that side channel attacks are defined as attacks
which use non-standard output channels and these attacks are not covered by OutSpec.

4.2.1 Emulation of MCore

We assume that the Core’s gate-level netlist allows the user of the IP core to emulate its fine
grained behavior (the state transition and output vector for each clock cycle), i.e., we assume an
algorithm Emulate:

• Emulate[Core] starts in an initial state S0.

• (yi, Si)←− Emulate[Core](xi, Si−1).
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Algorithm 2 User interacts with Emulate[Core] and verifies functional correctness and outputs
the list of all the emulated states of MCore.
1: procedure Simulate(Core, User)
2: g, Y0, j, States = 1, ε, 1, [ ]
3: S0, S

′
0 = ResetStateCore,ResetStateSim

4: while (Xj , Uj)← User(Yj−1, Uj−1) do
5: (Y ′j , S′j ,∆j)← CoreSim(Xj , S

′
j−1)

6: (xk, . . . , xk+n)← Send(Xj)
7: (xg, . . . , xk−1) = (ε, . . . , ε)
8: (xk+n+1, . . . , xk+n+∆j

) = (ε, . . . , ε)
9: for i← g, k + n+ ∆j do . Emulate
10: (yi, Si)← Emulate[Core](xi, Si−1)
11: if yi 6= ε then Yj = Yj ||yi
12: end if
13: Append(States, Si) . Update States
14: end for
15: j, g = j + 1, k + n+ ∆j + 1
16: if Y ′j 6= Yj then . Verification
17: return (“Trojan-Detected”, ·)
18: end if
19: end while
20: return (“OK”, States) . All emulated states
21: end procedure

Emulate[Core] behaves exactly as the circuit moduleM corresponding to Core, i.e. Emulate[Core]
and M are functionally the same. The main difference is that Emulate[Core] parses the language
in which Core is written: In practice, one can think of Emulate[Core] as any post-synthesis
simulation tool, such as Mentor Graphic’s ModelSim [18] simulator, which can be used to simulate
the provided IP core netlist Core. Notice the following properties of such a simulator tool; firstly it
does not leak any information about the IP other than described by Core itself and secondly, it is
inefficient in terms of (completion time) performance since it performs software based simulation,
however it provides fine grained information about the internal state of the IP core at every clock
cycle.

4.2.2 Simulation of User-Core Interaction

The user of the IP core is in a unique position to use Emulate[Core] and verify whether its
I/O behavior (over standard I/O channels) matches the specification (CoreSim,OutSpec). The
verification can be done automatically without human interaction: This will lead to the proposed
HaTCh tool which uses (during a learning phase) Emulate[Core] to simulate the actual IP core
MCore and verifies whether the sequence (X1, Y1, X2, Y2, . . .) of input/output messages to/from
User matches the output sequence (Y ′1 , Y ′2 , . . .) of CoreSim on input (X1, X2, . . .). Algorithm 2
shows a detailed description of this process (Ui indicates the current state or working memory of
User).

Notice that User in algorithm 2 can be considered as a meta user which runs several test patterns
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from different individual users one after another to test MCore. This implies that Simulate is
generic and can be applied to both a non-pipelined as well as a pipelined MCore.

4.2.3 Functional Spec Violation

We consider HD trojans, therefore, CoreSim is a non-probabilistic algorithm. This means that the
output sequence (Y ′1 , Y ′2 , . . .) of CoreSim is uniquely defined (and next definitions make sense): We
define the input sequence X1, X2, . . . , XN to not violate the functional spec if it verifies properly
in algorithm 2, i.e., if the emulated output (by Emulate[Core]) correctly corresponds to the sim-
ulated output (by CoreSim). If it does not verify properly, then we say that the input sequence
X1, X2, . . . , XN violates the functional spec.

4.3 Legitimate States & Projections

We first present a technical definition of t-legitimate states and d-dimensional projections which
will help in explaining the process of whitelisting in the learning phase:

Definition 10. t-Legitimate States: Let (w, States)← Simulate(Core, User). Assuming Core
is fixed, we define W (User) = w and the set of t-legitimate states of User as:

Lt(User) = {States[1], . . . , States[|States| − t]}

(Since Simulate is deterministic, Lt(User) and W (User) are well-defined.)

Definition 11. Projections: We define a vector z projected to index set P as z|P =
(zi1 , zi2 , . . . , zid) where P = {i1, i2, . . . , id} and i1 < i2 < · · · < id. We call d the dimension of
projection P and we define Pd to be the set of all projections of dimension d. We define a “set Z
projected to Pd” as

Z|Pd = {(P, z|P ) : z ∈ Z,P ∈ Pd}.

Formally, a trigger state is a labelled binary vector, i.e., it is a pair (P,x) where P denotes
a projection and x is a binary vector; if Core is in state z and z|P = x then the trojan gets
triggered. Now let T be a set of trigger states/signals which represents the hardware trojan, i.e.,
MCore manifests malicious behavior if and only if it has passed through a state in T . Let T have
dimension d and payload propagation delay t, i.e., the trojan always manifests malicious behavior
within t clock cycles after “it gets triggered” by a trigger signal in T (cf. section 2.2). Then we
know that a state in Lt(User)|Pd can only correspond to a trigger signal in T if the trigger signal
produced implicit malicious behavior, i.e., W (User) = “OK”. In the next subsection, we use this
notion of t-legitimate states to learn a blacklist of suspicious wires in the IP core.

4.4 Learning Phase Algorithm

Algorithm 3 describes the operation of a single iteration in HaTCh learning phase4 (lines 3-10 in
Algorithm 1). First a User is sampled from U and at least 1/ρ test patterns generated by User
are tested on Core. All those internal states (wires) which are reached by Core during these tests
are whitelisted and the rest of the states (wires) are considered to be the part of blacklist. This

4In our complexity analysis we assume white listing happens as soon as possible so that double work in lines 14-16
is avoided.
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Algorithm 3 Learning Scheme
1: procedure Learn(Core,U , d, t, l, ρ)
2: if I/O register does not match OutSpec then
3: return “Trojan-Detected”
4: else
5: B = Pd × {0, 1}d, User ← Sample(U)
6: repeat
7: Bold = B
8: Steps from Algorithm 2 from line 2-3
9: for m = 1 to 1/ρ do

10: (Xj , Uj)← User(Yj−1, Uj−1)
11: Steps from Algorithm 2 from line 5-18
12: end for . If not aborted, this yields States
13: for all P ∈ Pd do . Perform Whitelisting
14: for all 1 ≤ i ≤ |States| − t do
15: B = B \ {(P, States[i]|P )}
16: end for
17: end for
18: until |B| 6= |Bold| . Until no change in B
19: return B . The Blacklist
20: end if
21: end procedure

process is repeated until the blacklist size does not reduce any further, i.e. until 1/ρ consecutive
user interactions (and their resulting states) do not reduce the blacklist anymore. This means that
neither a false nor a true positive would have been generated if this blacklist was used for the
tagging phase. For this reason ρ becomes, statistically, the estimated upper bound on the false
positive rate. A detailed proof of this bound is presented in section 5.2.

The blacklist B generated by algorithm 3 is equal to

(Pd × {0, 1}d) \ (Lt(User)|Pd) (1)

for the sampled User (line 5 in algorithm 3).
Notice that B may contain two types of wires; first the wires specifically related to the Hardware

Trojan circuitry, and second some redundant wires which did not excite during the learning phase
either because of insufficient user interactions or because of logical constraints of the design. The
second type of wires in the blacklist would lead to false positives. However, the controlled nature
of the HaTCh algorithm allows the user to control the false positives rate by trading off with the
learning phase run time.

4.5 Security Guarantees of HaTCh

If HaTCh does not detect a functional spec violation during its learning phase, then the blacklist
produced by HaTCh is the union of k independent blacklists corresponding to k independent
users User with W (User) = “OK”, see (1). If the set of trigger states T is not a subset of this
union, then each of the k blacklists must exclude at least one trigger signal from T and therefore
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(Lt(User)|Pd) ∩ T 6= ∅ for each of the corresponding k users User. The probability that both
W (User) = “OK” as well as (Lt(User)|Pd) ∩ T 6= ∅ is at most α (by Bayes’ rule) for a Ht,α,d

trojan. We conclude that the probability that the set of trigger states T is not a subset of the
blacklist produced by HaTCh is at most αk ≤ 2−λ. So, the probability that the tagging circuitry
will detect all triggers from T is at least 1 − 2−λ. A detailed proof of this bound is presented in
section 5.1.

4.6 Computational Complexity of HaTCh

The computational complexity of HaTCh depends upon λ, α, d, ρ, and n = |Core|. HaTCh
performs k iterations in total during the learning phase in algorithm 1, where k = dλ/ log2(1/α)e.
The length of each iteration is determined by the number |Pd×{0, 1}d| =

(n
d

)
2d ≤ (2n)d of possible

triggers of dimension d, and the desired false positive rate ρ: in the worst case every 1/ρ user
interactions in an iteration may only reduce the blacklist by one possible trigger, hence, the length
of each iteration is O((2n)d/ρ). Whereas, in each iteration, the search space to find and whitelist
the projections from is |Pd| =

(n
d

)
≤ nd. Therefore the overall computational complexity of HaTCh

is given by:

O

(
λ

log2(1/α) ·
(2n2)d

ρ

)
(2)

We conclude that HaTCh runs in poly(n) time where the degree of the polynomial corresponds
to the maximum value of the trigger signal dimension d of the HT that can be detected in this
much time. Notice that in general, the degree of this polynomial is much smaller than the total
number of wires that define the HT itself.

In order to reduce the computational complexity, we exploit the locality in gate level circuits (cf.
section 2.2). Let nl denote the maximum number of wires in the locality of any of the n wires of the
circuit for parameter l, then the projections search space drastically reduces to n ·

( nl
d−1
)
≤ n · nd−1

l

since nl � n Hence, the overall complexity from (2) is reduced to:

O

(
λ

log2(1/α) ·
n2(2n2

l )d−1

ρ

)

5 Rigorous Security Analysis of HaTCh
For medium to large sized practical circuits, it becomes almost impossible to precisely calculate the
probability of implicit malicious behavior, i.e. α (cf. section 2.2). However, α can be experimentally
analyzed and approximated by experimentally observed implicit behavior factor α′. We define α′
as follows:

Core ∈ HSample
d,t,α′ if and only if it is represented by a set of trigger states T with t(T ) ≤ t and

d(T ) ≤ d such that

C1) There exists a User and a state S in the set of all reachable states of MCore interacting with
User such that S ∈ T . I.e., Core is indeed capable of manifesting malicious behavior.

C2) For all User, Simulate(Core, User) outputs W (User) such that:

Prob
(
W (User) = “OK”

∣∣∣(Lt(User)|Pd) ∩ T 6= ∅) ≤ α′
13



where the probability is over User ← Sample(U).
Depending upon the sampling algorithm Sample, α′ ≥ α (bad for detection) or α′ ≤ α (good for

detection). However, we assume that Sample algorithm samples close to the actual distribution: If
the distributions Sample(U) and U are equal and t = 0 in C2, then α′ becomes the actual implicit
behavior factor α.

Notice that reducing t to 0 in C2 allows a trigger signal to manifest also during the last t states
produced by Simulate(Core, User). For such a trigger signal the payload will less likely manifest
in malicious behavior as it will have less than t cycles to progress to the output, hence, for such
trigger signals W (User) = “OK” is more likely. This means that the overall probability in C2
(calculated as a weighted average over trigger signals which manifest during the last t cycles and
trigger signals which manifest before the last t cycles) increases as t reduces to 0. So, if distribution
Sample(U) equals U , then Hd,t,α′ ⊆ HSample

d,t,α′ .
The next section proves an upper bound of false negative probability forHSample

d,t,α′ . So, if Sample
algorithm samples close to the actual distribution then this result holds for Hd,t,α′ .

5.1 False Negatives

As discussed in the previous section, if Sample algorithm samples close to the actual distribution,
then the theorem below also holds for Hd,t,α with α interpreted as the implicit behavior factor:
Theorem 1. For an IP core in HSample

d,t,α analyzed by HaTCh(Core,U , d, t, α, l, λ, ρ), the probability
of a false negative is upper bounded by αk, where α is the experimentally observed implicit behavior
factor of the IP core and k is the number of iterations in HaTCh learning phase.
Proof. The final blacklist B is a union of the k blacklists B1, B2, . . . , Bk learned by HaTCh, i.e.
B = B1 ∪B2 ∪ · · · ∪Bk. Each blacklist Bi initially includes all d-dimensional projections of wires,
i.e. Bi = Pd×{0, 1}d. The projections that activate are then whitelisted from Bi one by one during
the functional testing.

Let a HT be represented by a set of trigger states T . A false negative under HaTCh is only
possible if:

1. The IP core passes the functional testing during the learning phase, and

2. The tagging circuitry cannot flag a malicious behavior, i.e. ∃T∈T T 6∈ B
Since the blacklist B = B1 ∪ B2 ∪ · · · ∪ Bk, therefore for a false negative the trigger state

T ∈ T must be whitelisted from all sub-blacklists Bi for 1 ≤ i ≤ k. For Ui ← Sample(U) and
(W (Ui), Statesi)← Simulate(Core, Ui), this probability is given by:

Prob(FN) = Prob

(
∀

1≤i≤k
W (Ui) = “OK” ∧ ∀

1≤i≤k
T 6∈ Bi

)
By definition of t-Legitimate states, the probability that ∃T∈T T 6∈ Bi is the same as the

probability that Lt(Ui) ∩ T 6= ∅. Therefore, Prob(FN) is:

=
∏

1≤i≤k
Prob

(
W (Ui) = “OK” ∧ Lt(Ui) ∩ T 6= ∅

)
≤

∏
1≤i≤k

Prob
(
W (Ui) = “OK”

∣∣∣ Lt(Ui) ∩ T 6= ∅)
≤ αk
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by definition of experimentally observed implicit behavior factor α.

5.2 False Positives

Consider a user distribution U and a user U ← U which interacts with the IP core Core, i.e.,

(w, States)← Simulate(Core, U).

In the following discussion, a subscript ‘s’ of Prob represents the scenario when Prob is over users
U sampled by Sample algorithm, i.e., U ← Sample(U). No subscript ‘s’ represents the scenario
when Prob is over users U drawn from U .

In order to do a precise analysis of false positives, we make the following assumptions:
Significance Assumption: Algorithm Learn outputs a blacklist B = B1 ∪B2 ∪ · · · ∪Bk where
(1) the complement of Bj equals the set

B̄j = ∪
1≤i≤Lj

States[i] (3)

for some index Lj and (2) Bj is not decreased for another p∆ cycles after Lj (parameters p and ∆
will be chosen when we describe our statistical assumptions), i.e.

∀
1<i≤p∆

States[Lj + i] 6∈ Bj . (4)

By (4)j and (3)j we denote properties (4) and (3) for Bj .
We assume that there is significance to the event that each iteration of Learn produces a

Lj and Bj for which it is likely that for a period of another p∆ states, no decrease in the Bj is
observed. I.e., if one would look for another multiple of p∆ states, we assume that again with
significant probability no decrease in Bj will be observed. In mathematical notation we assume
that

Probs

(
∀

1≤j≤k
(4)j

∣∣∣ ∀
1≤j≤k

(3)j
)
≥ 1− β (5)

where 1− β represents the significance.
Statistical Assumptions:

(a) We assume that ∆ is sufficiently large such that, for all i, the following relation holds:

Prob
(
States[i] = S1 ∧ States[i+ ∆] = S2

)
= Prob

(
States[i] = S1

)
· Prob

(
States[i+ ∆] = S2

)
In other words, ∆ is large enough such that if the IP core is interacting with U then any two states
in the resulting sequence of state transitions of the IP core that are ∆ transitions away from each
other are uncorrelated.

For practical circuits, this is a valid assumption. E.g. for a pipelined AES circuit, if the pipeline
takes less than ∆ cycles, then the internal states of the IP core ∆ cycles apart correspond to different
independent plain texts input to the AES circuit and therefore the internal states that are ∆ cycles
apart correspond to independent identical distributed values on the internal wires/registers (hence,
independent states).
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(b) We assume that sampling of the user U by Sample(U) algorithm is done close to the real
distribution U , i.e., for all i, Probs(States[i] = S) ≈ Prob(States[i] = S).

(c) Finally, we assume that Prob(States[i] = S) is independent of i. Continuing the AES
example above, this is a valid assumption; the states resulting from independent identical dis-
tributed plain texts being input consecutively to an AES circuit, each have the same indi-
vidual distribution (even though they may be correlated if they are less than ∆ transitions
away from each other). For completeness, we notice that if we only assume periodic behavior
(Prob(States[i0] = S) = Prob(States[i1] = S) if i0 equals i1 modulo a period), then the results
below generalize.

Given this assumption, we can define

ρ(B) = Prob(States[i] ∈ B)

for sets B.
Analysis: Let (6)j denote the property

∀
1<i≤p

States[Lj + i∆] 6∈ Bj . (6)

By the significance assumption,

1− β ≤ Probs
(
∀

1≤j≤k
(4)j

∣∣∣ ∀
1≤j≤k

(3)j
)

which, since (4)j implies (6)j , is at most

Probs

(
∀

1≤j≤k
(6)j

∣∣∣ ∀
1≤j≤k

(3)j
)
. (7)

Notice that all Uj are sampled independently, therefore (7) is equal to the product

k∏
j=1

Probs((6)j |(3)j).

We derive
Probs((6)j |(3)j)

= Probs

(
∀

1<i≤p
States[Lj + i∆] 6∈ Bj

)
(by (a))

=
∏
i Probs

(
States[Lj + i∆] 6∈ Bj

)
(by (a))

≈
∏
i Prob

(
States[Lj + i∆] 6∈ Bj

)
(by (b))

=
∏
i

(
1− ρ(Bj)

)
(by assumption (c))

=
(
1− ρ(Bj)

)p
The above derivations prove

1− β ≤
(∏

j

(1− ρ(Bj))
)p
.
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Since a product of real numbers in [0,1] is at most the product of their averages,

1− β ≤
((∑

j

(
1− ρ(Bj)

)
/k
)k)p

=
(
1−

∑
j

ρ(Bj)/k
)kp

.

After reordering terms we obtain∑
j

ρ(Bj) ≤ k
(
1− (1− β)1/(kp)) (8)

By using 1− (1− x)y ≤ y(x+ (1/(1− x)− 1)2/2) for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, the right hand side
of (8) is at most

k(β + (β/(1− β))2/2)/(kp) = (β + (β/(1− β))2/2)/p

and we conclude ∑
j

ρ(Bj) ≤ (β + (β/(1− β))2/2)/p. (9)

A state leads to a false positive if it is in the blacklist B (which means that it is being flagged)
while it is not one of the trigger states of a set of trigger states T representing a potential hardware
Trojan. By using (9) we get

Prob(State leads to a FP)
≤ Prob(State ∈ B \ T )
≤ Prob(State ∈ B)
= Probs(State ∈ B) (by assumption (b))
≤
∑
j Probs(State ∈ Bj) (by the union bound)

=
∑
j ρ(Bj)

≤ (β + (β/(1− β))2/2)/p

By choosing p = 1/ρ and significance 1− β = 1/2 we get:

Theorem 2. For statistical assumptions (a), (b), and (c), and significance 1/2,
HaTCh(Core,U , d, t, α, l, λ, ρ) leads to a tagging circuitry which flags non Hardware Trojan
trigger events (i.e., false positives) with probability at most ρ.

We notice that the analysis leading to the above theorem states that the more likely our obser-
vations in HaTCh, i.e., significance 1 − β is closer to 1, then the more we believe a tighter upper
bound β(1 + (β/(1− β)2)/2)ρ ≈ βρ on the probability of false positives.

6 Comparison with Existing Techniques
State of the art HT detection schemes are typically based on trust verification with the intuition
that a HT almost always remains inactive in the circuit to pass the functional verification. Unused
Circuit Identification (UCI) [6] is one of the first such techniques which distinguishes minimally
used logic from the other parts of the circuit. However, due to functional verification constraints,
the whole designs cannot be activated and analyzed in optimal time, and hence the scheme identifies

17



𝑡2

𝑓

𝑡1

𝑑2

𝐹𝐹1

𝑑1

𝐹𝐹2

𝐹𝐹3

𝐹𝐹4

1 Sequential Stage

(a) HT detectable by VeriTrust

𝑡1

𝑓

𝑑2
𝐹𝐹1

𝐹𝐹2
𝑑1
𝑡2

 𝑡1

𝑑2

𝐹𝐹3𝑑1

ℎ1

ℎ2

ℎ3

2 Sequential Stages

(b) HT undetectable by VeriTrust

0 0 1 0

0 0 1 0

0 1 1 0

0 0 1 0

𝑑1𝑑2
𝑡1𝑡2 00 01 11 10

00

01

11

10

(c) Simplified form of f

Figure 2: DeTrust defeating VeriTrust: Normal function f = d1d2, Trojan affected function f =
d1d2 + t1t2d2, Trigger condition (t1, t2) = (1, 1).

large portions of the design to be ‘unused’ and consider them as potential HTs. This results in a
high false positive rate, and recent works have even succeeded in defeating this scheme [10], [11].
Later techniques have improved over UCI both in terms of security and performance.

VeriTrust: Veritrust [7] proposed by Zhang et al. detects HTs by identifying the inputs in
the combinational logic cone that seem redundant for the normal functionality of the output wire
under non-trigger condition. In order to detect the redundant inputs, it first performs functional
testing and records the activation history of the inputs in the form of sums-of-products (SOP) and
product-of-sums (POS). Then it further analyzes these unactivated SOPs and POSs to find the
redundant inputs. However, because of the functional verification constraints, VeriTrust can see
several unactivated SOPs and POSs and thus regard the circuit to be potentially infected resulting
in false positives.

FANCI: Waksman et al. presents FANCI [8] which applies boolean function analysis to flag
suspicious wires in a design which have weak input-to-output dependency. A control value (CV),
which represents the percentage impact of changing an input on the output, is computed for each
input in the combinational logic cone of an output wire. If the mean of all the CVs is lower than
a threshold, then the resulting output wire is considered malicious This is a probabilistic method
where the threshold is computed with some heuristic to achieve a balance between security and
the false positive rate. A very low threshold may result in a high false positive rate by considering
most of the wires (even non-malicious ones) as malicious, whereas a high threshold may actually
result in false negatives by considering a HT related (malicious) wire to be ‘not’ malicious.

DeTrust: One of the most recent works DeTrust [12] presents a systematic way to design
new HTs which cannot be detected by either FANCI or VeriTrust. Notice that, at any time,
both VeriTrust and FANCI only monitor the combinational logic between two registers (i.e. one
sequential stage). In other words, to decide whether an input to a flipflop (FF) is malicious or
not, VeriTrust and FANCI consider the combinational logic cone (i.e. circuitry starting from the
outputs of the previous FF stage) driving this wire to be a standalone circuit and then run their
respective checks on it. DeTrust exploits this limitation and designs new HTs whose circuitries
are intermixed with the normal design and distributed over multiple sequential stages such that
FANCI/VeriTrust, while observing a single sequential stage, would consider them non-malicious.

Figure 2 shows an example HT design that DeTrust presents to defeat VeriTrust. DeTrust
splits the combinational logic cone of the original (less stealthy) HT design (Figure 2a) into two
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Figure 3: DeTrust defeating FANCI: A 4-to-1 MUX is transformed into a malicious MUX with 64
additional inputs where trigger condition is one out of 264 possible input patterns.

sequential stages by inserting flipflops (Figure 2b). Since VeriTrust will now consider f to be only a
function of h1, h2 and h3; and as none of these inputs are redundant to define f , therefore VeriTrust
will identify f to be a non-malicious output. Similarly Figure 3 shows another example HT design
by DeTrust which defeats FANCI by spreading the 64 trigger inputs of the original HT design
(Figure 3a) over multiple sequential stages (Figure 3b). Hence, even though FANCI/VeriTrust can
detect all TrustHub HT benchmarks, DeTrust shows how an adversary can design new HTs to
defeat the existing countermeasures.

Extended VeriTrust & FANCI: In order to detect its newly designed HTs, DeTrust proposes
extensions of VeriTrust and FANCI. In this paper, we refer to the extended versions of VeriTrust
and FANCI as VeriTrustX and FANCIX respectively. The key idea behind these extended
techniques is that the circuits should be monitored up to multiple sequential stages at a time, while
ignoring any FFs in between, instead of just one sequential stage at a time. Notice that in the worst
case, one may need to monitor all the sequential stages of the design starting from the external
inputs. However, if one has some knowledge about the number of sequential stages that a HT can
be spread over, VeriTrustX or FANCIX only need to monitor that many number of stages at a
time.

For example, VeriTrustX and FANCIX will consider the HTs from Figure 2b and Figure 3b
respectively to be one big combinational logic block. Therefore the added stealthiness by the FFs
is eliminated and hence both the techniques will be able to detect the respective HTs.

6.1 Security Loophole in Existing Techniques

Since VeriTrustX works on the simplified SOP/POS forms of the circuit, both HT designs from
Figure 2a and Figure 2b can be represented by the simplified SOP representation shown in Figure 2c.
VeriTrust methodology implicitly assumes that a HT is never triggered during the functional testing
phase, otherwise it would already be detected because of generating the incorrect output. This
assumption allows VeriTrust to monitor the activation history of SOPs/POSs rather than each
entry in the truth table, resulting in a lower computational complexity. However, it is crucial to
note that this assumption is not always correct and it could lead to serious security flaws. Consider
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the SOP form resulting from Figure 2c, i.e. f = d1d2 + t1t2d2, the OR of the AND terms d1d2 and
t1t2d2. The possible output values of f which this circuit can produce under the trigger condition
(t1, t2) = (1, 1) are shaded in gray in Figure 2c. Out of these four ‘infected’ outputs, the only output
which deviates from the ‘normal’ or ‘expected’ behavior of the circuit occurs when (d1, d2) = (0, 1),
and is shaded with horizontal lines in Figure 2c. Rest of the three infected outputs adhere to the
design specification of the trojan-free circuit (i.e. corresponding to function f = d1d2) and therefore
can pass the functional testing phase.

If an input pattern (t1, t2, d1, d2) = (1, 1, 1, 1) is tested on this trojan-affected circuit during the
functional testing phase, the resulting output will be f = 1. This input does activate the HT yet
the functional verifier does not detect any incorrect behavior since f = 1 is the expected output
corresponding to the trojan-free circuit (i.e. f = d1d2). Notice, however, that this activation causes
the term t1t2d2 to be removed from the list of unactivated terms from the SOP form of f , causing
the HT to remain undetected by VeriTrust/VeriTrustX. We refer to such behavior of a HT as
implicit malicious behavior.

Once the trojan-affected circuit successfully passes the functional testing phase, it is accepted
as a Trojan-free circuit which can then freely produce incorrect outputs (i.e. explicit malicious
behavior) and harm the normal function of the system or leak sensitive information.

Notice how implicit malicious behavior may misguide the detection tools to consider an infected
circuit as a non-infected one, i.e. it leads to a false negative. Clearly, all existing dynamic analysis
(i.e. functional testing) based approaches which assume that a HT is never triggered during the
functional testing phase can suffer from false negatives because of the implicit malicious behavior.
Neglecting the implicit malicious behavior could lead to devastating consequences in a security
critical application, e.g. if an adversary designs a HT to significantly increase the probability of
implicit malicious behavior and thus alleviates the existing HT detection techniques. Our proposed
algorithm HaTCh, on the other hand, does take the implicit malicious behavior of a potential HT
into account and eliminates false negatives with overwhelming probability5.

6.2 Computational Complexity Comparison

In this subsection, we compare the computational complexities of existing state of the art trojan
detection schemes, namely VeriTrustX and FANCIX, with the complexity of HaTCh.

In order to analyze the worst case complexities of different HT detection techniques, we consider
a simple circuit shown in Figure 4a as our “test subject”, i.e., as if this is the HT circuit that needs
to be detected6. This circuit implements a m-input pipelined AND gate using a tree of 2-input
AND gates and registers, where the tree has log2(m) levels (i.e. sequential stages). Since without
any knowledge of the HT, both VeriTrustX and FANCIX will need to monitor all the sequential
stages of the design, therefore it will be considered a purely combinational logic block as shown in
Figure 4b.

As explained earlier, in order to avoid any false negatives caused by the implicit malicious
behavior, VeriTrustX must monitor the activation history of each entry in the truth table instead
of the terms in SOP/POS form of the boolean function. This leads to an exponential computational
complexity i.e. Ω(2m) as the truth table has 2m entries in total.

5Since we add tagging circuitry, therefore even if we don’t catch the HT during learning phase, and if the final
circuit expresses malicious behavior, the tagging circuitry detects it with overwhelming probability.

6Notice that, for real, this circuit is not meant to implement a hardware trojan functionality. The sole purpose of
selecting this simple circuit is to conduct the worst case complexity analysis.
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Similarly FANCIX also needs to go through each entry of the truth table to compute the control
value (CV) of a single input, and this process is repeated for each of the m inputs. This leads to
a computational complexity Ω(m2m). We do notice that the basic version of FANCI suggests to
reduce the complexity by randomly selecting a reasonable number of entries in the large truth table
to compute the control values. This method can also be used in FANCIX to reduce the complexity.
However, this optimization can potentially lead to a higher probability of false negatives. Therefore,
for maximum security, we consider a full scaled version of FANCIX which is a fair comparison with
HaTCh.

Since there are only log2(m) sequential stages over which this type of HT can be spread, HaTCh
can detect this HT by using d = log2(m) in the worst case. Therefore, if n represents the total
number of wires in the circuit then HaTCh needs to monitor a search space of nd wire combinations
(i.e. projections). Hence HaTCh can detect the HT with a complexity O(nlog2(m)) or O(2d log2(n))
as compared to Ω(2m) = O(22d) offered by existing techniques. In other words, the worst case
complexity of HaTCh is orders of magnitude lower than that of VeriTrustX and FANCIX.
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This exponential vs. double exponential behavior (in d) is depicted in Figure 5 which shows
computational complexities of different countermeasures against the number of inputsm = 2d of the
circuit from Figure 4. Notice that both horizontal and vertical axes in this plot show a logarithmic
scale. For this particular circuit, n is given by n = 2m−1, i.e. the sum of all internal nodes (wires)
and the leafs of the tree. As it can be seen, HaTCh offers orders of magnitude lower complexity,
particularly for circuits with number of inputs m > 32. Therefore for practical circuits, such as
encryption engines which have 128 or more inputs, HaTCh is more feasible as it scales better with
the number of inputs (i.e. circuit size) whereas the complexities of both VeriTrustX and FANCIX
shoot up rapidly.

Although in practice, the HT is a part of a larger circuitry, we notice that the complexities of
HaTCh and the other techniques scale in the same fashion since the additional wires of the larger
circuit increase the search space for all these detection techniques.

7 Evaluation
In this section, we evaluate our HaTCh tool for Trusthub [9] benchmarks, Trojan designs proposed
by DeTrust which defeat VeriTrust and FANCI, and also for a newly designed k-XOR-LFSR Trojan.
We first analyze the Trusthub benchmarks w.r.t. HaTCh framework. Then we briefly describe our
experimental setup and methodology including some crucial optimizations implemented in HaTCh
to minimize the area overhead. Finally we present and discuss the experimental results.

7.1 Characterization of TrustHub Benchmarks

The definitional framework introduced by [1] provides a concrete characterization of the
TrustHub [9] Hardware Trojans benchmark suite. We revisit that analysis here briefly, which
helps us to pick concrete parameter settings for HaTCh in order to detect these HTs. Since HaTCh
is a tool to be used in pre-silicon phase, we are only interested in the class of deterministic HTs
which use standard I/O channels to deliver their payloads, i.e. the class HD as per the terminology
used in [1].

Table 1 presents this class with subclassifications based on the specific properties of the HTs,
namely d, t, and α. In our experiments, we set the input parameters to HaTCh according to the
values listed in this table. All these Trojans happen to have the simplest trigger signal having a
dimension d = 1, whereas the t and α values are observed estimated values. The methodology
adapted by [1] to estimate t and α values is summarized as follows. To determine t values, simply
the minimum number of registers between the trigger signal wires(s) and the output port of the IP
core is computed. In order to estimate α values, first the smallest chain of logic gates starting from
the trigger signal wire(s) till the output port of the IP core (ignoring any registers in the path) is
found. Then for each individual logic gate, the probability of propagating a logic 1 (considering
that the trigger wire(s) get a logic 1 upon a trigger event) is computed. Finally an aggregate
probability of propagation is computed by multiplying all the probabilities of each logic gate in the
chain, which gives the value 1−α. This estimated α relates to the experimentally observed implicit
behavior factor α′ in our security analysis (cf. section 5).
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Table 1: Classification of Trusthub Benchmarks w.r.t. the definitional framework of [1]
H

ar
dw

ar
e

T
ro

ja
ns

C
la

ss
H
D

d t α Benchmarks

1

0

1/232 BasicRSA-T{100, 300}
0.5 s15850-T100, s38584-T{200, 300}

0-0.25 wb_conmax-T{100, 200, 300}

0-0.87 RS232-T{100, 800, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
1900, 2000}

1
0.5 b15-T{300,400}

0.5-0.75 s35932-T{100, 200}
0-0.06 RS232-T{400, 500, 600, 700, 900, 901}

2
0.5 vga-lcd-T100, b15-T{100, 200}
0.87 s38584-T100

3
1/232 BasicRSA-T{200, 400}
0.5 s38417-T100

5 0.99 s38417-T200
7 0.5 RS232-T300
8 0.5 s35932-T300

7.2 Experimental Setup & Methodology

We first test five different benchmarks from RS232 and seven from s-Series (i.e., s15850, s35932 and
s38417) benchmark groups (all of which together form a diverse collection) using the parameters t
and α as listed in Table 1. Since these trojans have the dimension d = 1, we also set the parameter
d = 1 for HaTCh. For all our experiments, we set the maximum acceptable false positive rate ρ
to be 10−5. HaTCh detects all tested benchmarks, and the resulting area overheads of tagging
circuitries are presented in the results section. Notice that s38417-T300 is a side channel based HT,
but since it does not get triggered in the learning phase, HaTCh is still able to detect it.

Even though these benchmarks have a maximum dimension d = 1 which means that they can
be detected already by using d = 1 in HaTCh, we test certain RS232 benchmarks with parameters
d = 2 and locality l = 1 in order to estimate the area overhead for these parameter settings. These
results are also presented later in this section.

HaTCh tool works on a synthesized gate level netlist of the IP core. We use Synopsys Design
Compiler [19] to synthesize the RTL design. Next, we perform post-synthesis simulations with self
checking testbenches using Mentor Graphic’s ModelSim [18] simulator. The benchmark is given
random test patterns as inputs (ATPG tools can also be used to generate patterns) and the self
checking testbench verifies the correct behavior, and the simulation trace of each wire is dumped
into a file upon successful verification. HaTCh parses the simulation dump file using an automated
script to generate a blacklist. Initially all possible transitions of all the wires of the circuit are
blacklisted. Then, every transition read by the script from the simulation file is removed from
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Figure 6: Blacklist size of s-Series with d = 1

the blacklist which eventually leads to a final blacklist containing only the untrusted transitions
of certain wires. Based on the final blacklist, additional logic is added to flag the blacklisted
transitions.

HaTCh tool also performs certain optimizations to remove as much redundant wires from the
blacklist as possible. The key idea behind these optimizations is that if the input(s) and output
of a logic element coexist in the blacklist, then the output wire can be removed from the blacklist
provided that changing the corresponding blacklisted input will affect the output. For example,
inverters and logic buffers can benefit from such optimizations. These optimizations lead to a
significant reduction in the size of blacklist which in turn reduces the area overhead.

7.3 Experimental Results

7.3.1 TrustHub s-Series Benchmarks

Figure 6 shows the size of the blacklists sampled after different numbers of input patterns for s-
Series benchmarks. For each benchmark, the blacklist size decreases rapidly with the number of
input patterns until it reaches a state when most of the wires in the design are already whitelisted
and no more wires are eliminated from the blacklist by further testing. E.g. the blacklists for the
s35932 group become stable already after only 100 input patterns. Whereas s38417 group achieves
the stable state after 10,000 input patterns. Only s15850 group takes longer to become stable.

Table 2 shows the area overhead incurred by HaTCh for s-Series benchmarks both for non-
pipelined and pipelined tagging circuitries. The size of benchmarks (gates+registers) is shown
under Size. On average, we see an overhead of 8.34% and 4.18% for pipelined and non-pipelined
circuitries respectively. For some benchmarks, we see significantly high overhead than others which
is most likely because of the fact that the random input test patterns do not provide enough
coverage for some of the benchmarks. We observe that the optimizations performed by HaTCh
reduce the overheads by ≈ 4.5 times as compared to the un-optimized tagging circuitries.
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Table 2: Area Overhead for s-Series with d = 1

Benchmark Size
Area Overhead

Pipelined Non-Pipelined
s15850-T100 2180 4.17% 2.11%
s35932-T200 5442 0.02% 0.02%
s35932-T300 5460 0.16% 0.09%
s38417-T100 5341 15.22% 7.62%
s38417-T200 5344 15.21% 7.62%
s38417-T300 5372 15.25% 7.63%

Average 8.34% 4.18%

Table 3: Area Overhead for RS232 with d = 2, l = 1
Benchmark Size Area Overhead (non-pipelined)
RS232-T300 280 2.50%
RS232-T1200 273 0.73%
RS232-T1300 267 0.75%

7.3.2 TrustHub RS232 Benchmarks

We first test five RS232 benchmarks (namely RS232-T{100, 300, 500, 600, 700}) which have di-
mension d = 1. The blacklists produced by HaTCh for these benchmarks only contains a single
wire, i.e. the trigger signal. Hence, these benchmarks do not incur any additional area overhead.

We also test some RS232 benchmarks (i.e. RS232-T{300, 1200, 1300}) using parameters d = 2
and locality l = 1 just to get a real estimate of HaTCh overheads for higher dimensions, even
though these benchmarks belong to d = 1 HT subclass. Table 3 shows the area overheads of these
benchmarks. We see that even with d = 2, the overheads for these benchmarks are reasonably
small. Since the computed blacklists for these benchmarks are very small, the tagging circuitry
would only consist of only 2 to 3 logic levels. Therefore we do not need a pipelined tagging circuitry
for these benchmarks.

7.3.3 New Trojans by DeTrust

As TrustHub benchmarks are quite simple and also outdated, therefore in order to demonstrate
the strength of HaTCh tool, we implement the trojans proposed by DeTrust [12] (which defeat
VeriTrust and FANCI) and test them with our HaTCh tool.

After synthesis on a standard ASIC library, the FANCI-defeating trojan from Figure 3b results
in a trojan with trigger dimension d = 1. Hence, it is very straightforward to detect this trojan
using the parameter d = 1 for HaTCh. In our experiment, after a learning phase of only 100, 000
random unique input patterns, the blacklist produced by HaTCh contains only one wire which is
the trigger signal of this trojan.

The trojan defeating VeriTrust as depicted in 2b can be detected by HaTCh using the parameter
d = 2 under the assumption that the implicit malicious behavior does not occur during the learning
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Figure 7: k-XOR-LFSR Hardware Trojan [1].

phase. Whereas without this assumption, HaTCh is still able to detect this trojan with d = 3 even
if the implicit malicious behavior occurs.

7.3.4 k-XOR-LFSR Trojan [1]

HaTCh can also detect the HD Trojan, shown in Figure 7, designed by [1] which is called k-XOR-
LFSR Trojan. As an example, we implemented the k-XOR-LFSR trojan for k = 4 which leads to
a trigger dimension d = 2. Therefore, HaTCh requires the parameter d = 2 in order to detect it.
The corresponding area overhead for this HT in our experiment is negligible as for now we tested it
as a standalone circuit. However, depending upon the IP core in which this HT is embedded, the
area overhead will vary in proportion to the IP core size. Notice that if frequency dividers are used
to carefully slow down the clock frequency driving the k-XOR-LFSR HT, even a small k value can
take several cycles before the HT is actually triggered.

8 Conclusion
We provide a powerful Hardware Trojan detection algorithm called HaTCh which detects any
Hardware Trojan from HD, a large and complex the class of “deterministic Hardware Trojans”.
HaTCh detects all HD Trojans with a time complexity that is polynomial in number of circuit
wires, where the degree of the polynomial corresponds to the stealthiness of the Hardware Trojan
embedded in the circuit. In particular, all HD Trojans from the TrustHub benchmark suite are
detected in linear time. We conclude that our work opens up new avenues for the Hardware
Trojans research community to come up with other and possibly more efficient algorithms and
methodologies to detect complex Trojans that are still publicly unknown.
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