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Abstract

At ASIACRYPT’14 Hanser and Slamanig proposed a new primitive called structure-preserving signa-
tures on equivalence classes (SPS-EQ) and used it to construct very efficient attribute-based anonymous
credentials. They also presented a candidate construction of an SPS-EQ scheme and claimed that the
scheme was existentially unforgeable under adaptive chosen message attacks (EUF-CMA). Fuchsbauer
has however recently shown that the construction is insecure under adaptive queries and consequently
the security claim is invalid. We fix this issue by providing an EUF-CMA-secure construction of an
SPS-EQ, which is also more efficient than the original construction in every respect. We prove our
scheme secure in the generic group model for Type-3 bilinear groups.

1 Introduction

At ASIACRYPT’14 Hanser and Slamanig [HS14] proposed a new type of structure-preserving signature
[AFG+10], which does not sign group-element vectors as such, but projective equivalence classes defined
on the corresponding vector space. This allows efficient re-randomization of message-signature pairs by
switching to another representative. In particular, message vectors can be re-randomized by scalar multi-
plication and signatures on them can be updated consistently (and randomized themselves) in the public.
A re-randomized message-signature pair is then indistinguishable from a signed random message. This en-
ables, for instance, new, efficient constructions of attribute-based multi-show anonymous credential (ABC)
systems when combined with re-randomizable polynomial commitments, as shown in [HS14].

The authors also proposed a candidate construction of an SPS-EQ scheme and claimed that the scheme
was existentially unforgeable under adaptive chosen-message attacks (EUF-CMA-secure). Recently, Fuchs-
bauer [Fuc14] however showed an attack using adaptive message queries, meaning that the claim of EUF-
CMA security in [HS14] is invalid. This is due to an erroneous generic-group-model proof which considers
the adversary solely in a non-adaptive way, that is, the proof neglects to take into account adaptive message
queries.

In this paper we present a new construction of an SPS-EQ scheme, which we prove EUF-CMA-secure in
the generic group model. Our construction is even more efficient than the one from [HS14] (in terms of key
size, signature size, as well as the number of pairing-product equations required for signature verification).
This shows the existence of EUF-CMA-secure SPS-EQ schemes with respect to the generic group model
and therefore the construction of an ABC system given in [HS14], which is black-box from any EUF-CMA-
secure SPS-EQ scheme, can be efficiently instantiated. It moreover benefits from the improved efficiency
of our signature scheme.

†Part of this work has been done while visiting IST Austria.
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2 Preliminaries

Definition 1 (Bilinear map). Let G1, G2 and GT be cyclic groups of prime order p where we denote G1

and G2 additively and GT multiplicatively. We write G∗i for Gi \ {0Gi} where i ∈ {1, 2}. Let P and P̂ be
generators of G1 and G2, respectively. We call e : G1×G2 → GT a bilinear map or pairing if it is efficiently
computable and the following holds:

Bilinearity: e(aP, bP̂ ) = e(P, P̂ )ab ∀ a, b ∈ Zp .

Non-degeneracy: e(P, P̂ ) 6= 1GT
, i.e., e(P, P̂ ) generates GT .

If G1 = G2 then e is called symmetric (Type-1) and asymmetric (Type-2 or Type-3) otherwise. For
Type-2 pairings there is an efficiently computable isomorphism Ψ: G2 → G1, whereas for Type-3 pairings
no such efficient isomorphism is assumed to exist. Note that Type-3 pairings are currently the optimal
choice [CM11] with respect to efficiency and security trade-off.

Definition 2 (Decisional Diffie-Hellman assumption (DDH)). Let p be a prime of bitlength κ and G be a
group of order p generated by P . Then, for every PPT adversaryA distinguishing between (P, aP, bP, abP ) ∈
G4 and (P, aP, bP, cP ) ∈ G4 for a, b, c←R Z∗p (i.e., uniformly random) is infeasible, i.e., there is a negligible
function ε(·) such that∣∣Pr

[
true← A(P, aP, bP, abP )

]
− Pr

[
true← A(P, aP, bP, cP )

]∣∣ ≤ ε(κ) .

Definition 3 (Bilinear group generator). A PPT algorithm BGGen is a bilinear-group generator if on
input a security parameter κ (in unary representation) it generates BG = (p,G1,G2,GT , e, P, P̂ ) where the
common group order p of the groups G1,G2 and GT is a prime of bitlength κ, e is a pairing, and P and P̂
are generators of G1 and G2, respectively.

Definition 4 (Symmetric external Diffie-Hellman assumption (SXDH) [BGdMM05]). The SXDH assump-
tion holds for BGGen if the DDH assumption holds for both groups G1 and G2 output by BGGen.

3 Structure-Preserving Signatures on Equivalence Classes

In a structure-preserving signature scheme [AFG+10] public keys, messages and signatures consist only
of group elements of two groups G1 and G2 that are equipped with a bilinear map. Furthermore, the
verification algorithm evaluates a signature by verifying group membership and evaluating pairing-product
equations.

An SPS-EQ-R scheme is a structure-preserving signature scheme that is defined either on the message
space (G∗1)` or (G∗2)`, where ` > 1 and G1 and G2 have prime order. Additionally, the following equivalence
relation

R =
{

(M,N) ∈ (G∗i )` × (G∗i )`
∣∣ ∃ s ∈ Z∗p such that N = s ·M

}
⊆ (G∗i )2`

partitions the message space (G∗i )` for i ∈ {1, 2} into equivalence classes. An SPS-EQ-R scheme now signs
equivalence classes defined by equivalence relationR by signing an arbitrary representative of the respective
class. Given a message-signature pair, one can later obtain a valid signature for every other representative
of this class without having access to the secret key. This is done by multiplying each component of the
message vector with the same scalar and consistently updating the corresponding signature. Unforgeabil-
ity for an SPS-EQ-R scheme is then defined with respect to equivalence classes, that is, after querying
signatures for messages Mi, no adversary should be able to produce a valid signature for a message M∗

from a different class than the Mi’s. Additionally, it is required that two representatives of the same class
with corresponding signatures are unlinkable, a notion called class-hiding.

Below, we restate the syntax and the security properties of structure-preserving signatures on equiv-
alence classes from [HS14]. We strengthen their definition of class-hiding by letting the adversary sign
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a message and requiring that he is not able to distinguish a re-randomization of the message-signature
pair from a random one. Since we also let the adversary choose the signature key pair, we introduce an
additional algorithm VKeyR that checks whether a key pair is valid.

Definition 5 (Structure-preserving signature scheme for equivalence relation R (SPS-EQ-R)). An SPS-
EQ-R scheme on (G∗i )` consists of the following polynomial-time algorithms:

BGGenR(1κ) is a probabilistic bilinear-group generation algorithm, which on input a security parameter κ
outputs a bilinear group BG.

KeyGenR(BG, `) is a probabilistic algorithm, which on input a bilinear group BG and a vector length ` > 1
outputs a key pair (sk, pk).

SignR(M, sk) is a probabilistic algorithm, which on input a representative M ∈ (G∗i )` of an equivalence
class [M ]R and a secret key sk outputs a signature σ for the equivalence class [M ]R.

ChgRepR(M,σ, µ, pk) is a probabilistic algorithm, which on input a representative M ∈ (G∗i )` of an equiv-
alence class [M ]R, a signature σ for M , a scalar µ and a public key pk returns an updated message-
signature pair (M ′, σ′), where M ′ = µ ·M is the new representative and σ′ its updated signature.

VerifyR(M,σ, pk) is a deterministic algorithm, which given a representative M ∈ (G∗i )`, a signature σ and
a public key pk outputs true if σ is valid for M under pk and false otherwise.

VKeyR(sk, pk) is a deterministic algorithm, which given a secret key sk and a public key pk checks both
keys for consistency and returns true on success and false otherwise.

Definition 6 (Correctness). An SPS-EQ-R scheme (BGGenR,KeyGenR,SignR,ChgRepR,VerifyR,VKeyR)
on (G∗i )` is called correct if for all security parameters κ ∈ N, for all ` > 1, all bilinear groups BG ←
BGGenR(1κ), all key pairs (sk, pk)← KeyGenR(BG, `), all messages M ∈ (G∗i )` and all µ ∈ Z∗p we have:

VKeyR(sk, pk) = true and

Pr
[
VerifyR(M,SignR(M, sk), pk) = true

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), µ, pk), pk) = true

]
= 1 .

Definition 7 (EUF-CMA). An SPS-EQ-R scheme (BGGenR,KeyGenR,SignR,ChgRepR,VerifyR,VKeyR)
on (G∗i )` is called existentially unforgeable under adaptively chosen-message attacks, if for all PPT algo-
rithms A having access to a signing oracle O(sk,M), there is a negligible function ε(·) such that:

Pr

[
BG← BGGenR(1κ), (sk, pk)← KeyGenR(BG, `),

(M∗, σ∗)← AO(sk,·)(pk)
:

[M∗]R 6= [M ]R ∀M ∈ Q ∧
VerifyR(M∗, σ∗, pk) = true

]
≤ ε(κ) ,

where Q is the set of queries that A has issued to the signing oracle O.

In order to define the second security notion, we subsequently let Q be a list for keeping track of queried
messages M and make use of the following oracles:

ORM (`): A random-message oracle, which on input a message vector length ` picks a message M ←R (G∗i )`,
appends M to Q and returns it.

ORoR(sk, pk, b,M, σ): A real-or-random oracle taking input a key pair sk, pk, a bit b, a message M and
a signature σ. If M 6∈ Q or VerifyR(M,σ, pk) = false, it returns ⊥. On the first valid call, it
records (M,σ); if later called on a different message-signature pair, it returns ⊥. Otherwise, it picks
R←R (G∗i )` and µ←R Z∗p, sets (M0, σ0)← ChgRepR(M,σ, µ, pk) and (M1, σ1)← (R,SignR(R, sk)) and
returns (Mb, σb).
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Definition 8 (Class-hiding). An SPS-EQ-R scheme (BGGenR,KeyGenR,SignR,ChgRepR,VerifyR,VKeyR)
on (G∗i )` is called class-hiding if for all ` > 1 and PPT adversaries A with oracle access to ORM and ORoR
there is a negligible function ε(·) such that

Pr

[
BG← BGGenR(1κ), b←R {0, 1}, (state, sk, pk)← A(BG, `),
O ← {ORM (`),ORoR(sk, pk, b, ·, ·)}, b∗ ← AO(state, sk, pk)

:
b∗ = b ∧
VKeyR(sk, pk) = true

]
− 1

2
≤ ε(κ) .

4 An EUF-CMA Secure SPS-EQ-R Construction

In Scheme 1 we present our new SPS-EQ-R construction with message space (G∗1)`. Its signatures are
comprised of two G1 elements and one G2 element and public keys consist of ` elements of group G2.
Moreover, verification is defined via only two pairing-product equations. Analogously, one can construct a
scheme for message space (G∗2)` by swapping the group memberships of all involved elements and adapting
all computations accordingly. We first state the security of the signature scheme; the proofs will be given
subsequently.

BGGenR(1κ): Given a security parameter κ, output BG← BGGen(1κ).

KeyGenR(BG, `): Given a bilinear-group description BG and vector length ` > 1, choose (xi)i∈[`]←R (Z∗p)`,
set the secret key as sk ← (xi)i∈[`], compute the public key pk ← (X̂i)i∈[`] = (xiP̂ )i∈[`] and output
(sk, pk).

SignR(M, sk): On input a representative M = (Mi)i∈[`] ∈ (G∗1)` of equivalence class [M ]R and a secret key

sk = (xi)i∈[`], choose y←R Z∗p and output σ = (Z, Y, Ŷ ) with

Z ← y
∑
i∈[`]

xiMi Y ← 1
yP Ŷ ← 1

y P̂

VerifyR(M,σ, pk): Given a representative M = (Mi)i∈[`] ∈ (G∗1)` of equivalence class [M ]R, a signature

σ = (Z, Y, Ŷ ) ∈ G1 ×G∗1 ×G∗2 and public key pk = (X̂i)i∈[`], check whether∏
i∈[`]

e(Mi, X̂i)
?
= e(Z, Ŷ ) ∧ e(Y, P̂ )

?
= e(P, Ŷ )

and if this holds output true and false otherwise.

ChgRepR(M,σ, µ, pk): On input a representative M = (Mi)i∈[`] ∈ (G∗1)` of equivalence class [M ]R, a

signature σ = (Z, Y, Ŷ ), µ ∈ Z∗p and public key pk, return ⊥ if false← VerifyR(M,σ, pk). Otherwise

pick ψ←R Z∗p and return (µ ·M,σ′) with σ′ ← (ψµZ, 1
ψY,

1
ψ Ŷ ).

VKeyR(sk, pk): Given sk = (xi)i∈[`] ∈ (Z∗p)` and pk = (X̂i)i∈[`] ∈ (G∗2)`, output true if xiP̂
?
= X̂i ∀i ∈ [`]

and false otherwise.

Scheme 1: An EUF-CMA Secure Construction of an SPS-EQ-R Scheme.

Theorem 1. The SPS-EQ-R scheme in Scheme 1 is correct.

Theorem 2. In the generic group model for Type-3 groups Scheme 1 is EUF-CMA-secure.

Theorem 3. If the DDH assumption holds in G1 then Scheme 1 is class-hiding.
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4.1 Proof of Theorem 1 (Correctness)

We have to show that for all κ ∈ N, all ` > 1, all bilinear groups BG← BGGenR(1κ), key pairs (sk, pk)←
KeyGenR(BG, `), all M ∈ (G∗1)` and all µ ∈ Z∗p the following holds (where for a probabilistic algorithm A
we denote running A on input x with randomness r by A(x; r)):

VKeyR(sk, pk) = true ∧
VerifyR

(
M, SignR(M, sk), pk; y

)
= true ∀ y ∈ Z∗p ∧

VerifyR
(
ChgRepR(M,SignR(M, sk; y), µ, pk; ψ), pk

)
= true ∀ y, µ, ψ ∈ Z∗p .

KeyGenR(BG, `) returns sk← (xi)i∈[`]←R (Z∗p)` and pk← (xiP̂ )i∈[`], which shows the first equation.

SignR(M, sk; y) returns Z = y
∑

i∈[`] xiMi, Y = 1
yP and Ŷ = 1

y P̂ . Plugging this into the first relation
in VerifyR, we get

e(Z, Ŷ ) = e
(
y
∑

i∈[`] xiMi,
1
y P̂
)

= e
(∑

i∈[`] xiMi, P̂
)y· 1

y =
∏
i∈[`] e(xiMi, P̂ ) =

∏
i∈[`] e(Mi, X̂i) .

Since e(Y, P̂ ) = e( 1yP, P̂ ) = e(P, 1y P̂ ) = e(P, Ŷ ), the second verification equation is also satisfied.

Finally, ChgRepR
(
M, (Z = y

∑
i∈[`] xiMi, Y = 1

yP, Ŷ = 1
y P̂ ), µ, pk; ψ

)
outputs µM and

σ′ =
(
ψµZ, 1

ψY,
1
ψ Ŷ
)

=
(
ψy
∑

i∈[`] xiµMi,
1
ψ

1
yP,

1
ψ

1
y P̂
)
,

which is the same as SignR(µM, sk; (ψy)), and thus verifies by correctness of SignR.

4.2 Proof of Theorem 2 (Unforgeability)

In the generic group model an adversary only performs generic group operations (operations in G1, G2 and
GT , pairings and equality tests) by querying the respective group oracle.

We first consider the messages submitted to the signing oracle and the forgery output by the adversary
as formal multivariate Laurent polynomials whose variables correspond to the secret values chosen by the
challenger, and show that an adversary is unable to symbolically produce an existential forgery (even when
message elements are adaptively chosen). Then, in the second part we show that the probability for an
adversary to produce an existential forgery by incident is negligible.

The values chosen by the challenger in the unforgeability game, which are unknown to the adversary,
are x1, . . . , x` used in the public keys (X̂i)i∈[`] ∈ (G∗2)` and the values yj , j ∈ [q], picked for the j-th
signature, that is, when the j-th signing query for a message (Mj,i)i∈[`] is answered as

(Zj , Yj , Ŷj) = (yj
∑

i∈[`] xiMj,i,
1
yj
P, 1

yj
P̂ ) .

When outputting a forgery (Z∗, Y ∗, Ŷ ∗) for a message (M∗i )i∈[`], the elements the adversary has seen are

(Zj , Yj)j∈[q] in G1, and (Ŷj)j∈[q] as well as (X̂i)i∈[`] in G2. The forgery must thus have been computed by
choosing

πz, πy, πŷ, πm∗,i, ρz,j , ρy,j , ρm∗,i,j , ψy,j , ψŷ,j , ψm∗,i,j , χŷ,i ∈ Zp for j ∈ [q] and i ∈ [`]

and setting

Z∗ = πzP +
∑
j∈[q]

ρz,jZj +
∑
j∈[q]

ψz,jYj Y ∗ = πyP +
∑
j∈[q]

ρy,jZj +
∑
j∈[q]

ψy,jYj

Ŷ ∗ = πŷP̂ +
∑
i∈[`]

χŷ,iX̂i +
∑
j∈[q]

ψŷ,j Ŷj M∗i = πm∗,iP +
∑
j∈[q]

ρm∗,i,jZj +
∑
j∈[q]

ψm∗,i,jYj
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Similarly, for all j ∈ [q] the message (Mj,i)i∈[`] submitted in the j-th query is computed as a linear
combination of all the G1 elements the adversary has seen so far, that is,

P,Z1, Y1, . . . , Zj−1, Yj−1 .

By considering all these group elements and taking their discrete logarithms to the bases P and P̂ , respec-
tively, we obtain the following linear combinations:

z∗ = πz +
∑
j∈[q]

ρz,jzj +
∑
j∈[q]

ψz,j
1

yj

y∗ = πy +
∑
j∈[q]

ρy,jzj +
∑
j∈[q]

ψy,j
1

yj

ŷ∗ = πŷ +
∑
i∈[`]

χŷ,ixi +
∑
j∈[q]

ψŷ,j
1

yj

m∗i = πm∗,i +
∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

mj,i = πm,j,i +
∑

k∈[j−1]

ρm,j,i,kzk +
∑

k∈[j−1]

ψm,j,i,k
1

yk

Observe that all message elements as well as the elements Y ∗, Ŷ ∗ of the forgery must be different from 0G1

and 0G2 , respectively, by definition. Plugging the forgery into the verification relations yields:∏
i∈[`]

e(M∗i , X̂i) = e(Z∗, Ŷ ∗) ∧ e(Y ∗, P̂ ) = e(P, Ŷ ∗)

and taking discrete logarithms to the basis e(P, P̂ ) in GT , we obtain the following equations:∑
i∈[`]

m∗ixi = z∗ŷ∗ (1)

y∗ = ŷ∗ (2)

The values m∗i , z
∗, ŷ∗, y∗ are multivariate Laurent polynomials of total degree O(q) in x1, . . . , x`, y1, . . . ,

yq. Our further analysis will be simplified by the following fact.

Claim 1. For all n ≥ 1, the monomials that constitute zn have the form

1

ybs

∏
k∈[t]

yjk
∏
k∈[t]

xik (3)

with 1 ≤ t ≤ n; for all k1 6= k2: jk1 6= jk2; for all k: jk ≤ n ∧ s < jk; jt = n; and b ∈ {0, 1}.

Proof. We prove the claim by induction.

n = 1: As before the first signing query, the only element from G1 available to the adversary is P , we have
m1,i = πm,1,i and therefore

z1 =
∑
i∈[`]

πm,1,iy1xi ,

which proves the base case.

6



n→ n+ 1: Assume for all k ∈ [n] the monomials of all zk are of the form in (3). Since

mn+1,i = πm,n+1,i +
∑

k∈[n] ρm,n+1,i,kzk +
∑

k∈[n] ψm,n+1,i,k
1
yk

,

by the definition of SignR we have

zn+1 =
∑
i∈[`]

πm,n+1,i yn+1xi +
∑
i∈[`]

∑
k∈[n]

ρm,n+1,i,k yn+1zkxi +
∑
i∈[`]

∑
k∈[n]

ψm,n+1,i,k yn+1
1

yk
xi . (4)

The monomials in the first and the last sum are as claimed in the statement. By the induction
hypothesis any monomial contained in any zk is of the form 1

ybs

∏
p∈[t] yjp

∏
p∈[t] xip , with t ≤ n, jt = k

and s < jp for all jp as well as jp < k, for all jp with p < t (which are all different). Each such monomial
leads thus to a monomial in the 2nd sum in (4) of the form 1

ybs

(
yn+1

∏
p∈[t] yjp

)(
xi
∏
p∈[t] xip

)
=

1
ybs

∏
p∈[t′] yjp

∏
p∈[t′] xip , with t′ := t + 1 ≤ n + 1, jt′ := n + 1, it+1 := i. Moreover t′ ≤ n + 1, all jp

are still different and ≤ n and s < jp for all jp, which proves the induction step.

Together this proves the claim.

We will in particular use that by Claim 1 in any monomial in zk there are always exactly as many y’s
as x’s in the numerator and there are at least one y and one x; moreover there is at most one y in the
denominator (and which does not cancel down). Moreover, we have:

Corollary 1. Any monomial can only occur in one unique zn.

Proof. This is implied by Claim 1 as follows: for any monomial, let i∗ be maximal such that the monomial
contains yi∗ . Then the monomial does not occur in zn with n > i∗, since zn contains yn contradicting
maximality. It does not occur in zn with n < i∗ either, since all yj contained in zn have j ≤ n, meaning
yi∗ does not occur in zn; a contradiction.

We start by investigating Equation (2):

y∗ = ŷ∗

πy +
∑
j∈[q]

ρy,jzj +
∑
j∈[q]

ψy,j
1

yj
= πŷ +

∑
i∈[`]

χŷ,ixi +
∑
j∈[q]

ψŷ,j
1

yj

By equating coefficients, and taking into account that by Claim 1 no zj contains monomials of the form
1, xi, or 1

yj
, we obtain ρy,j = 0 for all j ∈ [q] and

(i) πŷ = πy

(ii) χŷ,i = 0 ∀i ∈ [`]

(iii) ψŷ,j = ψy,j ∀j ∈ [q]

Let us now investigate Equation (1) (where in ŷ∗ we replace πŷ, χŷ,i and ψŷ,j as per (i), (ii) and (iii),
respectively): ∑

i∈[`]

m∗ixi = z∗ŷ∗

∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

(
πz +

∑
j∈[q]

ρz,jzj +
∑
j∈[q]

ψz,j
1

yj

)(
πy +

∑
k∈[q]

ψy,k
1

yk

)
=

= πzπy +
∑
j∈[q]

ρz,jπy zj +
∑
j∈[q]

(
ψz,jπy + πzψy,j

) 1

yj
+
∑
j∈[q]

∑
k∈[q]

ρz,jψy,k
1

yk
zj +

∑
j∈[q]

∑
k∈[q]

ψz,jψy,k
1

yjyk
.

Equating coefficients for 1, we get:
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(iv) πzπy = 0

Since by Claim 1, no terms in zjxi, zj and 1
yk
zj are of the form 1

yj
or 1

yjyk
, equating coefficients for 1

yj
and

1
yjyk

yields:

(v) ψz,jπy + πzψy,j = 0 ∀j ∈ [q]

(vi) ψz,jψy,k = 0 ∀j, k ∈ [q]

By (iv)–(vi), we have simplified Equation (1) to the following:∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

∑
j∈[q]

ρz,jπy zj +
∑
j∈[q]

∑
k∈[q]

ρz,jψy,k
1

yk
zj . (5)

Let us analyze the monomials contained in the zj ’s. By (3) in Claim 1, there is an equal number of y’s and
x’s in numerators of such monomials. Therefore, on the LHS the number of x’s in all monomials is always
greater than that of y’s, meaning monomials of type (3) only occur on the RHS of (5).

We now show that ρz,nπy zn = 0 for all n ∈ [q]. Assume that for some n ∈ [q] this is not the case. Since
none of the monomials in zn can appear on the LHS and by Corollary 1, they do not appear in any other
zi, i 6= n, zn must be subtracted by a term contained in 1

yk
zj for some j, k ∈ [q]. The term in this zj must

not have yk in the numerator, as otherwise it would cancel down and the number of y’s and x’s would be
different, meaning it would not correspond to any monomial in zn (which are of the form (3)). This also
means that any monomial contained in zn (in the first sum on the RHS) must have yk in the denominator
if it is to be equal to a term in 1

yk
zj .

Next, we observe that monomials in zn can only be equal to terms in 1
yk
zj if j = n. This is because the

maximal i∗ with yi∗ appearing in zn would be different for any other zj , j 6= n (cf. the proof of Corollary 1).
But this means that any monomial in zn, which by the above must have yk in the denominator, also occurs
in the zn in the double sum, yielding a term with y 2

k in the denominator. Since this cannot occur anywhere
else in the equation by Corollary 1, we arrived at a contradiction. We have thus:

(vii) ρz,jπy zn = 0 ∀j ∈ [q]

Equation (1) has now the following, simplified representation:∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

∑
j∈[q]

∑
k∈[q]

ρz,jψy,k
1

yk
zj (6)

From Claim 1 we have that every monomial of zj has an equal number of y’s and x’s in the numerator; for
all monomials of the LHS we thus have: (number of y’s) = (number of x’s)− 1. For such a term to occur
on the RHS, this has to be a monomial N in zj that has yk in the numerator, so it cancels down and leads
to a term with more x’s than y’s. We show that this must be zk, that is, we show that ρz,jψy,k = 0 for all
j 6= k.

First this holds for k > j, since the “largest” y contained in zj is yj and thus yk does not cancel. Second
for k < j, let us assume that there is at least one pair of coefficients ρz,jψy,k 6= 0 with k < j. Observe that
1
yk
zj on the RHS still contains yj as “largest” y-value (by Claim 1). The monomials composing 1

yk
zj do

thus only occur in zj on the LHS, thus ρm∗,i,j 6= 0 for some i ∈ [`]. Thus the monomial N from zj on the
RHS which contains yk also occurs on the LHS. However, as by Claim 1 every y occurs only once in every
monomial, after canceling out yk from zj no yk remains in N on the RHS. As however, yk is present in the
corresponding monomial in zj on the LHS, there is no corresponding term on the RHS. A contradiction.
We thus obtain:

(viii) ρz,jψy,k = 0 ∀j, k ∈ [q], j 6= k
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Since the RHS of (6) cannot be 0 (otherwise all m∗i on the LHS would be 0, which is not a valid forgery),
we have:

(ix) ∃ k ∈ [q] : ρz,kψy,k 6= 0

We now argue that there exists exactly one such k, which follows from the following basic fact:

Claim 2. Let a, b ∈ Zqp be two non-zero vectors. If C = a · b> is a diagonal matrix then at most one
element in C is non-zero.

Proof. Since C is diagonal, we have rank(C) = #(non-zero rows in C) = #(non-zero elements in C). From
basic linear algebra we have rank(a) = rank(b>) = 1 and rank(C) ≤ min{rank(a), rank(b>)} = 1.

Applying this to C := (ρz,j)j∈[q] · (ψy,k)>k∈[q], which by (viii) and (ix) is a non-zero diagonal matrix, we

get that all but one element of the diagonal (ρz,kψy,k)k∈[q] are zero, that is:

(x) ∃!n ∈ [q] : ρz,nψy,n 6= 0

By (viii) and (x), Equation (1) simplifies to∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi = ρz,nψy,n

1

yn
zn

= ρz,nψy,n
∑
i∈[`]

mn,ixi

= ρz,nψy,n
∑
i∈[`]

(
πm,n,i +

∑
j∈[n−1]

ρm,n,i,jzj +
∑

j∈[n−1]

ψm,n,i,j
1

yj

)
xi ,

where in the 2nd line we substituted zn by its definition, namely yn
∑

k∈[`]mn,kxk, and in the 3rd line we

replaced mn,i by its definition. Since by Claim 1, xi, zjxi and 1
yj
xi, for all i ∈ [`], j ∈ [q], do not have

common monomials, equating coefficients yields (with α := ρz,nψy,n):

πm∗,i = απm,n,i ρm∗,i,j = αρm,n,i,j ψm∗,i,j = αψm,n,i,j

This finally means that the message for the forgery is just a multiple of the previously queried message
Mn, which completes the first part of the proof.

It remains to show that the probability for an adversary to produce an existential forgery by “incident”,
i.e., that two formally different polynomials collide by evaluating to the same value (or, equivalently, that
the difference polynomial evaluates to zero), is negligible. Suppose that the adversary makes q queries to
the signing oracle and O(q) queries to the group oracles. Then, all involved formal polynomials resulting
from querying the group oracles are of degree O(q) and overall there are O(

(
q
2

)
) = O(q2) polynomials that

could collide (i.e. whose difference polynomial evaluates to zero). Then, by the Schwartz-Zippel lemma

and the collision argument, the probability of such an error in the simulation of the generic group is O( q
3

p )
and is, therefore negligible in the security parameter.

4.3 Proof of Theorem 3 (Class-Hiding)

Let us define Gamereal as the experiment in Definition 8 with b set to 0, that is, where the real-or-random
oracle ORoR returns randomizations of messages-signature pairs, and let Gamerandom be the game where
ORoR returns fresh random pairs (i.e. when b = 1). More precisely, in Gamereal when ORoR receives (Mi)i∈[`]
from Q (that is, (Mi) was previously drawn by ORM ) and a valid signature σ on it, it picks µ←R Z∗p and

returns ChgRepR
(
(Mi)i∈[`], σ, µ, pk

)
. In Gamerandom, when queried on a message in Q, the ORoR oracle
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returns (Ri)i∈[`]←R (G∗1)` together with σ ← SignR((Ri)i∈[`], sk). In order to prove class-hiding, we must
show that under the DDH assumption Gamereal and Gamerandom are indistinguishable.

We first define a game Game′real in which the ORoR oracle, on input M ∈ Q and a valid signature on M ,
returns (µM,SignR(µM, sk)), for µ←R Z∗p, and show that Game′real is distributed equivalently to Gamereal.

Let sk = (xi)i∈[`], pk = (X̂i)i∈[`] be the adversary’s output in the first phase. If VKeyR(sk, pk) = true then

X̂i = xiP̂ ∀ i ∈ [`] . (7)

Let
(
(Mi)i∈[`], σ = (Z, Y, Ŷ )

)
be the adversary’s first valid input to ORoR. If VerifyR(M,σ, pk) = true then∏

i∈[`] e(Mi, X̂i) = e(Z, Ŷ ) (8)

e(Y, P̂ ) = e(P, Ŷ ) (9)

and Y 6= 0G1 , Ŷ 6= 0G2 . By this and (9) there exists some ϕ ∈ Z∗p such that Y = ϕP and Ŷ = ϕP̂ ; we

let y := 1
ϕ . By (7), the LHS of (8) equals e(

∑
i∈[`] xiMi, P̂ ); moreover, the RHS equals e( 1yZ, P̂ ). Thus,

Z = y
∑

i∈[`] xiMi, and σ = SignR(M, sk; y).

ChgRepR, according to its definition, applied to (M,σ, µ, pk) returns (µM, σ′), where σ′ is a signature
on µM with randomness ψy (where ψ is chosen uniformly from Z∗p by ChgRepR). The output signature
σ′ is thus distributed equivalently to a freshly generated signature on µM ; meaning that Gamereal and
Game′real are distributed equivalently.

We next define a game Gamej , for all j ∈ [`], where the ORoR oracle, when queried on (M1, . . . ,M`) ∈ Q,
chooses µ←R Z∗p and Rj+1, . . . , R`←R G∗1 and returns(

M ′ := (µM1, . . . , µMj , Rj+1, . . . , R`), SignR(M ′, sk)
)
.

Note that by definition Game1 = Gamerandom and Game` = Game′real (≈ Gamereal).
Thus, if there exists an adversary that distinguishes Gamereal from Gamerandom with probability ε(κ)

then there must exist an index j ∈ [`] such that the adversary distinguishes Gamej−1 from Gamej with
probability 1

`−1ε(κ), which is non-negligible if ε(κ) is non-negligible. We show how to construct a DDH
distinguisher from a distinguisher between Gamej−1 and Gamej .

Given a DDH instance (P, aP, bP, cP ), we simulate the following game for the adversary. For k = 1, . . .,
at the k-th call the ORM oracle samples mk,i←R Z∗p, for all i ∈ [`], appends(

mk,1P, . . . ,mk,j−1P,mk,j(aP ),mk,j+1P, . . . ,mk,`P
)

(10)

to Q and returns it. The ORoR oracle, on input the k-th message in Q, samples Rj+1, . . . , R`←R G∗1 and
returns

M ′ =
(
mk,1(bP ), . . . ,mk,j−1(bP ),mk,j(cP ), Rj+1, . . . , R`

)
(11)

and σ ← SignR(M ′, sk). If (P, aP, bP, cP ) is a real DDH instance (i.e. c = ab) then the first j elements in
(11) are b-multiples of the first j elements in (10), and we have thus simulated Gamej . If c is random then
so is the j-th element in (11) and we have simulated Gamej−1. Any adversary distinguishing Gamej−1 from
Gamej thus breaks the DDH assumption.
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