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Abstract

At ASTACRYPT’14 Hanser and Slamanig proposed a new primitive called structure-preserving signa-
tures on equivalence classes (SPS-EQ) and used it to construct very efficient attribute-based anonymous
credentials. They also presented a candidate construction of an SPS-EQ scheme and claimed that the
scheme was existentially unforgeable under adaptive chosen message attacks (EUF-CMA). Fuchsbauer
has however recently shown that the construction is insecure under adaptive queries and consequently
the security claim is invalid. We fix this issue by providing an EUF-CMA-secure construction of an
SPS-EQ, which is also more efficient than the original construction in every respect. We prove our
scheme secure in the generic group model for Type-3 bilinear groups.

1 Introduction

At ASIACRYPT’14 Hanser and Slamanig [HS14] proposed a new type of structure-preserving signature
[AFG™10], which does not sign group-element vectors as such, but projective equivalence classes defined
on the corresponding vector space. This allows efficient re-randomization of message-signature pairs by
switching to another representative. In particular, message vectors can be re-randomized by scalar multi-
plication and signatures on them can be updated consistently (and randomized themselves) in the public.
A re-randomized message-signature pair is then indistinguishable from a signed random message. This en-
ables, for instance, new, efficient constructions of attribute-based multi-show anonymous credential (ABC)
systems when combined with re-randomizable polynomial commitments, as shown in [HS14].

The authors also proposed a candidate construction of an SPS-EQ scheme and claimed that the scheme
was existentially unforgeable under adaptive chosen-message attacks (EUF-CMA-secure). Recently, Fuchs-
bauer [Fucl4] however showed an attack using adaptive message queries, meaning that the claim of EUF-
CMA security in [HS14] is invalid. This is due to an erroneous generic-group-model proof which considers
the adversary solely in a non-adaptive way, that is, the proof neglects to take into account adaptive message
queries.

In this paper we present a new construction of an SPS-EQ scheme, which we prove EUF-CMA-secure in
the generic group model. Our construction is even more efficient than the one from [HS14] (in terms of key
size, signature size, as well as the number of pairing-product equations required for signature verification).
This shows the existence of EUF-CMA-secure SPS-EQ schemes with respect to the generic group model
and therefore the construction of an ABC system given in [HS14], which is black-box from any EUF-CMA-
secure SPS-EQ scheme, can be efficiently instantiated. It moreover benefits from the improved efficiency
of our signature scheme.

TPart of this work has been done while visiting IST Austria.



2 Preliminaries

Definition 1 (Bilinear map). Let Gy, G2 and Gp be cyclic groups of prime order p where we denote G
and Gy additively and Gy multiplicatively. We write G* for G; \ {Og,} where 7 € {1,2}. Let P and P be
generators of G and Gg, respectively. We call e: G X Go — G a bilinear map or pairing if it is efficiently
computable and the following holds:

Bilinearity: e(aP,bP) = e(P,P)* VYa,bec Z, .
Non-degeneracy: ¢(P, P) # 1g,, i.e., e(P, P) generates Gr .

If G; = Gg then e is called symmetric (Type-1) and asymmetric (Type-2 or Type-3) otherwise. For
Type-2 pairings there is an efficiently computable isomorphism ¥: Go — G, whereas for Type-3 pairings
no such efficient isomorphism is assumed to exist. Note that Type-3 pairings are currently the optimal
choice [CM11] with respect to efficiency and security trade-off.

Definition 2 (Decisional Diffie-Hellman assumption (DDH)). Let p be a prime of bitlength x and G be a
group of order p generated by P. Then, for every PPT adversary A distinguishing between (P, aP,bP, abP) €
G* and (P, aP,bP,cP) € G* for a,b,c <& Zy (i.e., uniformly random) is infeasible, i.e., there is a negligible
function €(-) such that

| Pr [true < A(P,aP,bP,abP)| — Pr [true < A(P,aP,bP,cP)|| < e(k) .

Definition 3 (Bilinear group generator). A PPT algorithm BGGen is a bilinear-group generator if on
input a security parameter £ (in unary representation) it generates BG = (p, G1, G2, G, e, P, P) where the
common group order p of the groups G1, Gy and Gy is a prime of bitlength k, e is a pairing, and P and P
are generators of G and Go, respectively.

Definition 4 (Symmetric external Diffie-Hellman assumption (SXDH) [BGAMMO05]). The SXDH assump-
tion holds for BGGen if the DDH assumption holds for both groups G; and Go output by BGGen.

3 Structure-Preserving Signatures on Equivalence Classes

In a structure-preserving signature scheme [AFG™10] public keys, messages and signatures consist only
of group elements of two groups G; and Go that are equipped with a bilinear map. Furthermore, the
verification algorithm evaluates a signature by verifying group membership and evaluating pairing-product
equations.

An SPS-EQ-R scheme is a structure-preserving signature scheme that is defined either on the message
space (G*)* or (G3)¢, where ¢ > 1 and G; and G have prime order. Additionally, the following equivalence
relation

R ={(M,N) € (G})" x (G))"| Is € Z such that N = s- M} C (G})**

partitions the message space (G?)g for i € {1,2} into equivalence classes. An SPS-EQ-R scheme now signs
equivalence classes defined by equivalence relation R by signing an arbitrary representative of the respective
class. Given a message-signature pair, one can later obtain a valid signature for every other representative
of this class without having access to the secret key. This is done by multiplying each component of the
message vector with the same scalar and consistently updating the corresponding signature. Unforgeabil-
ity for an SPS-EQ-R scheme is then defined with respect to equivalence classes, that is, after querying
signatures for messages M;, no adversary should be able to produce a valid signature for a message M*
from a different class than the M;’s. Additionally, it is required that two representatives of the same class
with corresponding signatures are unlinkable, a notion called class-hiding.

Below, we restate the syntax and the security properties of structure-preserving signatures on equiv-
alence classes from [HS14]. We strengthen their definition of class-hiding by letting the adversary sign



a message and requiring that he is not able to distinguish a re-randomization of the message-signature
pair from a random one. Since we also let the adversary choose the signature key pair, we introduce an
additional algorithm VKeyr that checks whether a key pair is valid.

Definition 5 (Structure-preserving signature scheme for equivalence relation R (SPS-EQ-R)). An SPS-
EQ-R scheme on ((G;?‘)Z consists of the following polynomial-time algorithms:

BGGeng (1%) is a probabilistic bilinear-group generation algorithm, which on input a security parameter x
outputs a bilinear group BG.

KeyGeng (BG, ¢) is a probabilistic algorithm, which on input a bilinear group BG and a vector length ¢ > 1
outputs a key pair (sk, pk).

Signg (M, sk) is a probabilistic algorithm, which on input a representative M € (G; )¢ of an equivalence
class [M]r and a secret key sk outputs a signature o for the equivalence class [M]g.

ChgRepg (M, o, i1, pk) is a probabilistic algorithm, which on input a representative M € (G})¢ of an equiv-
alence class [M]g, a signature o for M, a scalar p and a public key pk returns an updated message-
signature pair (M’ o’), where M’ = - M is the new representative and ¢’ its updated signature.

Verifyg (M, o, pk) is a deterministic algorithm, which given a representative M € (G; )¢, a signature ¢ and
a public key pk outputs true if ¢ is valid for M under pk and false otherwise.

VKeyr (sk, pk) is a deterministic algorithm, which given a secret key sk and a public key pk checks both
keys for consistency and returns true on success and false otherwise.

Definition 6 (Correctness). An SPS-EQ-R scheme (BGGeng, KeyGeng, Signg, ChgRepr, Verifyr, VKeyr)
on (Gf)e is called correct if for all security parameters k € N, for all £ > 1, all bilinear groups BG «+
BGGeng (1%), all key pairs (sk, pk) < KeyGeng (BG, ¢), all messages M € (G})* and all u € Z, we have:

VKeyr (sk, pk) = true and
Pr Verifyg (M, Signgr (M, sk), pk) = true] =1 and
Pr [VerifyR(CthepR(M, Signr (M, sk), u, pk), pk) = true] =1.

Definition 7 (EUF-CMA). An SPS-EQ-R scheme (BGGeng, KeyGeng, Signg, ChgRepg, Verifyr, VKeyr)
on ((G;?‘)Z is called existentially unforgeable under adaptively chosen-message attacks, if for all PPT algo-
rithms A having access to a signing oracle O(sk, M), there is a negligible function €(-) such that:

BG < BGGeng(17%), (sk,pk) < KeyGeny (BG,?),  [M*|g #[M]r YM €Q A

Pr (M*, 5*) « A9E) (pk) " Verifyg (M*,0*,pk) = true | — (k)

where () is the set of queries that A has issued to the signing oracle O.

In order to define the second security notion, we subsequently let Q be a list for keeping track of queried
messages M and make use of the following oracles:

ORM(¢): A random-message oracle, which on input a message vector length ¢ picks a message M <% (G})’,
appends M to ) and returns it.

OfoR(sk pk,b, M,c): A real-or-random oracle taking input a key pair sk, pk, a bit b, a message M and
a signature o. If M ¢ Q or Verifyp(M,o,pk) = false, it returns L. On the first valid call, it
records (M, o); if later called on a different message-signature pair, it returns L. Otherwise, it picks
R<® (G})" and pu <" Z3, sets (Mo, o) < ChgRepr (M, o, 1, pk) and (My,01) - (R, Signp (R, sk)) and
returns (My, o).



Definition 8 (Class-hiding). An SPS-EQ-R scheme (BGGeng, KeyGeng, Signg, ChgRepr, Verifyr, VKeyr )
on (G})* is called class-hiding if for all £ > 1 and PPT adversaries A with oracle access to O™ and OF°f
there is a negligible function €(-) such that

BG + BGGeng (1%), b+={0,1}, (state,sk,pk) «+ A(BG,¢), b*=b A

1
Pr O < {OBM (), OFeR(sk, pk,b,-,-)}, b* + AC(state,sk,pk) =~ VKeygp(sk,pk) = true | 2

<e€(k) .

4 An EUF-CMA Secure SPS-EQ-R Construction

In Scheme 1 we present our new SPS-EQ-R construction with message space (G*). Its signatures are
comprised of two G; elements and one Gg element and public keys consist of ¢ elements of group Go.
Moreover, verification is defined via only two pairing-product equations. Analogously, one can construct a
scheme for message space (GE)Z by swapping the group memberships of all involved elements and adapting
all computations accordingly. We first state the security of the signature scheme; the proofs will be given
subsequently.

BGGeng (1%): Given a security parameter s, output BG <— BGGen(1%).

KeyGeng (BG, £): Given a bilinear-group description BG and vector length £ > 1, choose (;);¢|g & (Z;‘,)e,
set the secret key as sk < (7);g|¢, compute the public key pk <« (Xi)ie[g] = (mip)iem and output
(sk, pk).
Signr (M, sk): On input a representative M = (M;);c[q € (G} ¢ of equivalence class [M]r and a secret key
sk = (;);e[g, choose y <% Z% and output o = (Z,Y, Y) 1th
Zenyz i Ye%P Y« 1p
i€[f]

< =

Verifyr (M, o, pk): Given a representative M = (M;);c[q € € (G})? of equivalence class [M]r, a signature
o= (Z,Y,Y) € Gy x G} x G} and public key pk = (X; )iele» check whether

[[ei,X)Ze(2,¥) A e¥.P)ZePY)
i€f]

and if this holds output true and false otherwise.
ChgRepgr (M, o, 1, pk): On input a representative M = (M;);cq € (G})* of equivalence class [M]g, a

signature o = (Z,Y, }A’), p € Z,, and public key pk, return L if false < Verifyg (M, o, pk). Otherwise

pick ¢ «* Z5 and return (u - M, o’) with o’ < (YuZ, wY wY)

VKeyr (sk, pk): Given sk = (z;);efq € (Z3)" and pk = (Xz‘)ie[g] € (G3%)¢, output true if z; P L X, vie 7]
and false otherwise.

Scheme 1: An EUF-CMA Secure Construction of an SPS-EQ-R Scheme.

Theorem 1. The SPS-EQ-R scheme in Scheme 1 is correct.
Theorem 2. In the generic group model for Type-3 groups Scheme 1 is EUF-CMA-secure.

Theorem 3. If the DDH assumption holds in Gy then Scheme 1 is class-hiding.




4.1 Proof of Theorem 1 (Correctness)

We have to show that for all Kk € N, all £ > 1, all bilinear groups BG «— BGGeng (1%), key pairs (sk, pk) «+
KeyGeng (BG, ), all M € (G%)* and all u € Zy, the following holds (where for a probabilistic algorithm A
we denote running A on input x with randomness r by A(x;7)):

VKeyr (sk, pk) = true A
VerifyR(M7 Signg (M, sk), pk; y) =true VyeZ, A
VerifYR (Cthep'R(Ma Slgn'R(M’ sk; y)7 H, PK; w)v pk) =true Vy,u,¢ € Z;; :

KeyGeng (BG, £) returns sk < (), ¢ (Z*) and pk < (xl-f?)iem, which shows the first equation.

Signr (M, sk; y) returns Z = ?/Zze g i, Y = %P and YV = %f’ Plugging this into the first relation
in Verifyr, we get

c\H

e(2,Y) = e(yXiei wiMi, 1 P) = e( X wiMi, P)'v = [Tig e(@iMi, P) = Tlicp e(Mi, Xi)
Since e(Y, P) = e(iP, P) = e(P, %Jf’) = ¢(P,Y), the second verification equation is also satisfied.
Finally, CthepR(M, (Z = yzz’e[@] oMY = %P,Y = ip),u, pk; @/)) outputs uM and

= (vnZ, 3Y. §Y) = 0y Xieyg 2anMi, 53, Pr 53 P)

which is the same as Signg (M, sk; (¢y)), and thus verifies by correctness of Signg. O]

4.2 Proof of Theorem 2 (Unforgeability)

In the generic group model an adversary only performs generic group operations (operations in G, Go and
Gr, pairings and equality tests) by querying the respective group oracle.

We first consider the messages submitted to the signing oracle and the forgery output by the adversary
as formal multivariate Laurent polynomials whose variables correspond to the secret values chosen by the
challenger, and show that an adversary is unable to symbolically produce an existential forgery (even when
message elements are adaptively chosen). Then, in the second part we show that the probability for an
adversary to produce an existential forgery by incident is negligible.

The values chosen by the challenger in the unforgeability game, which are unknown to the adversary,
are xy,...,2xy used in the public keys (Xi)ie[é} € (G3)" and the values y;, j € [g], picked for the j-th
signature, that is, when the j-th signing query for a message (M j,i)z‘e[f] is answered as

(Z),Y3,Y)) = (y Zie[é]xiMJwyPay]P)

When outputting a forgery (Z*, Y™, }7*) for a message (M );c[q, the elements the adversary has seen are

(Z;,Y})jelq in G1, and (ffj)je[q] as well as (Xi)ie[g] in Gy. The forgery must thus have been computed by
choosing

s Ty, T Tme i Pz Pygs Pt ivgs Vygs Vg Umeijs X € Zp for j € [q] and i € [{]

and setting

Z*:WZP+szijj+sz’j}/j —7TyP+Zpij +Z¢y]
j€lq] Jj€ld] JEld] J€ld]

Y =mP Y xgaXi+ ) 0yY) M = Tone P+ D pmeig Zy + D Yme i
ic[f] Jj€ld Jj€ld] Jj€ld



Similarly, for all j € [g] the message (Mji)ic[g submitted in the j-th query is computed as a linear
combination of all the Gy elements the adversary has seen so far, that is,

Pz Y1,..., 251, .

By considering all these group elements and taking their discrete logarithms to the bases P and P, respec-
tively, we obtain the following linear combinations:

2 fTrz—l—sz]zJ—i—Zzﬂzj

J€ld] Jj€ld]
yr=my + Z Pyi%j + Z wyuf
J€ld] J€ld] Yi
f‘)* =Ty + ZXyzxz + Z wy,]f
i€l¢] J€ld]
mi = Tonit Y pmraqdi+ D Vi
J€lq] J€ld]
1
Mji = Tmgi+ D Pmgik?k+ D Umjik—
ke[—1] kef—1 Yk

Observe that all message elements as well as the elements Y*,Y* of the forgery must be different from Og,
and Og,, respectively, by definition. Plugging the forgery into the verification relations yields:

[ e, X)) =e(z5,Y") A e(Y*,P)=e(P,Y")
i€[¢)

and taking discrete logarithms to the basis e(P, ]5) in G, we obtain the following equations:
Z mix; = 2*y" (1)

Yy =9 (2)

The values m}, z*, y*, y* are multivariate Laurent polynomials of total degree O(q) in z1,...,x¢, 41, ..,
Yq- Our further analysis will be simplified by the following fact.

Claim 1. For all n > 1, the monomials that constitute z, have the form

o T IT = 3)
kelt] kelt]
with 1 <t < mn; for all k1 # ko: jk, 7 Jkys for all k: jx <n A s < jg; je =n; and b € {0,1}.
Proof. We prove the claim by induction.
n = 1: As before the first signing query, the only element from G available to the adversary is P, we have

mi; = Tm,1,; and therefore
§ Tm,1,iY1%;

i€[f]

which proves the base case.



n — n + 1: Assume for all k£ € [n] the monomials of all z; are of the form in (3). Since

1
Mp+1,i = Tmn+ls T Zke[n} Pmn+1,ik?k + Zke[n] wm,nJrl,i,ky*k )

by the definition of Signy we have

1
Zn+1 = Z Tm,n+1,i Yn+1T5 + Z Z Pm,n+1,i,k Yn+12ELi + Z Z Q;Z)m n+1,i,k Yn+1— y . (4)

i€l 1€[l] ken] 1€[l] ken]
The monomials in the first and the last sum are as claimed in the statement. By the induction
hypothesis any monomial contained in any z, is of the form yig Hpe[t] Yj, Hpe[t] zy,, witht <n, j; =k

and s < jj, for all j, as well as j, < k, for all j, with p < ¢ (which are all different). Each such monomial
leads thus to a monomial in the 2" sum in (4) of the form yi{g (Ynt1 e v;,) (zi [Lep Ti,) =

# Hpe[t,] Yip Hpe[t,] zi,, with t' ==t 4+1 <n+1, jy == n+1, 4441 = i. Moreover t' < n+ 1, all j,
are still different and < n and s < j, for all j,, which proves the induction step.

Together this proves the claim. O

We will in particular use that by Claim 1 in any monomial in z; there are always exactly as many y’s
as z’s in the numerator and there are at least one y and one x; moreover there is at most one y in the
denominator (and which does not cancel down). Moreover, we have:

Corollary 1. Any monomial can only occur in one unique z.

Proof. This is implied by Claim 1 as follows: for any monomial, let ¢* be maximal such that the monomial
contains y;+. Then the monomial does not occur in z, with n > ¢*, since z, contains y, contradicting
maximality. It does not occur in z, with n < * either, since all y; contained in z, have j < n, meaning
y;+ does not occur in z,; a contradiction. O

We start by investigating Equation (2):

y=9
1
Ty + Z Py.i%j + Z wa* =my+ Z Xg,i%i + Z wyd
j€ldl j€ldl i€l Jj€ld]
By equating coefficients, and taking into account that by Claim 1 no z; contains monomials of the form
1, z;, or y%» we obtain p, ; = 0 for all j € [¢] and
(i) my =my
(i) x55 =0 Viel[]
(i) g = y; Vi€ ld]

Let us now investigate Equation (1) (where in §* we replace my, x4, and 1y ; as per (i), (i) and (iii),
respectively):

i€[f)
Z (Wm g Z Pm*ij%j + Z (e )xz = <7Tz + Z Pz,j%j + Z Ve j— ) (ﬂ'y + Z wy,kf) =
i€[(] Jj€lal Jj€ldl Jj€lal Je[q] kelq]
= TpTy + Z Pz,jTy 25 + Z (wz,jﬂ'y + szy,j + Z Z pz,]wy, Z] + Z Z T/Jz,jwyk —_— .
Jj€ldl Jj€lal Jj€lql kelq] Jj€lq] k€ld]

Equating coefficients for 1, we get:



(iv) momy =0

1 1

. . 1
Smce by Claim 1, no terms in zjz;, z; and zj are of the form 0 OF o equating coefficients for m and

Tivn yk yields:

(V) ¢z,j7ry + 7Tzlpy,j =0 Vje [q}
(Vi) ¥. gk =0 Vi, k € [q]

By (iv)—(vi), we have simplified Equation (1) to the following:

Z <7Tm gt Z Pm*ij%; + Z Y . )$z = Z Pz,iTy %5 + Z Z pz,ﬂpyk . (5)

i€[(] J€ld] J€lq] J€lgl Jj€la] k€lq]

Let us analyze the monomials contained in the z;’s. By (3) in Claim 1, there is an equal number of y’s and
2’s in numerators of such monomials. Therefore, on the LHS the number of z’s in all monomials is always
greater than that of y’s, meaning monomials of type (3) only occur on the RHS of (5).

We now show that p, 7, 2z, = 0 for all n € [¢]. Assume that for some n € [¢] this is not the case. Since
none of the monomials in z, can appear on the LHS and by Corollary 1, they do not appear in any other
ziy 1 # n, z, must be subtracted by a term contained in zJ for some j, k € [¢]. The term in this z; must
not have y; in the numerator, as otherwise it would Cancel down and the number of y’s and z’s would be
different, meaning it would not correspond to any monomial in z, (which are of the form (3)). This also
means that any monomial contained in z, (in the first sum on the RHS) must have y;, in the denominator
if it is to be equal to a term in yikzj.

Next, we observe that monomials in z, can only be equal to terms in sz if 5 = n. This is because the
maximal i* with y;+ appearing in z, would be different for any other z;, j # n (cf. the proof of Corollary 1).
But this means that any monomial in z,, which by the above must have ¥ in the denominator, also occurs
in the z, in the double sum, yielding a term with ka in the denominator. Since this cannot occur anywhere
else in the equation by Corollary 1, we arrived at a contradiction. We have thus:

(vil) psjmyzn =0 Vj € [q]

Equation (1) has now the following, simplified representation:

Z (Wm it Z Pm~i %)+ Z (GO% ] ) Z Z Pz,Jl/’y, Zj (6)

i€[l] j€lql j€lq] J€la] kelq]

From Claim 1 we have that every monomial of z; has an equal number of y’s and z’s in the numerator; for
all monomials of the LHS we thus have: (number of y’s) = (number of 2’s) — 1. For such a term to occur
on the RHS, this has to be a monomial N in z; that has y; in the numerator, so it cancels down and leads
to a term with more x’s than y’s. We show that this must be 2, that is, we show that p, ;1 = 0 for all
j# k.

First this holds for & > j, since the “largest” y contained in z; is y; and thus y; does not cancel. Second
for k < j, let us assume that there is at least one pair of coefficients p. ;1,1 # 0 with & < j. Observe that
yikzj on the RHS still contains y; as “largest” y-value (by Claim 1). The monomials composing yikzj do
thus only occur in z; on the LHS, thus py,«;; # 0 for some i € [¢]. Thus the monomial N from z; on the
RHS which contains y;, also occurs on the LHS. However, as by Claim 1 every y occurs only once in every
monomial, after canceling out y; from z; no y;, remains in /N on the RHS. As however, y;, is present in the
corresponding monomial in z; on the LHS, there is no corresponding term on the RHS. A contradiction.

We thus obtain:

(vili) pz vy =0 Vi kelql,j#k



Since the RHS of (6) cannot be 0 (otherwise all m; on the LHS would be 0, which is not a valid forgery),
we have:

(iX) Jdk € [CI] : pz,k¢y,k 7& 0
We now argue that there exists exactly one such k, which follows from the following basic fact:

Claim 2. Let a,b € Z} be two non-zero vectors. If C = a - b" is a diagonal matriz then at most one
element in C' is non-zero.

Proof. Since C'is diagonal, we have rank(C') = #(non-zero rows in C) = #(non-zero elements in C). From
basic linear algebra we have rank(a) = rank(b") = 1 and rank(C) < min{rank(a),rank(b")} = 1. O

Applying this to C = (p.,;) je[q * (w%k);e[q]’ which by (viii) and (ix) is a non-zero diagonal matrix, we
get that all but one element of the diagonal (p. xy i) kelq) are zero, that is:

(x) Anelq]:pzntbyn #0
By (viii) and (x), Equation (1) simplifies to

1
OGRS SYTITNRS pENIES PRI

1
= jeldl icld) Yi n

= pz,nwy,n § Mp ;T4

i€l
1
SRR SICTIEED S SISEED SIVRES P
i€l j€n—1] j€n—1] Yi

where in the 2" line we substituted z, by its definition, namely y, Zke[é] My kT, and in the 3™ line we

replaced my,; by its definition. Since by Claim 1, z;, zjz; and yijxi, for all i € [¢],j € [q], do not have

common monomials, equating coefficients yields (with « = p; 1y p):

Tm* i = O Tm i Pm*ij = O Pmonij Ymrij = CVmmgij

This finally means that the message for the forgery is just a multiple of the previously queried message
M,,, which completes the first part of the proof.

It remains to show that the probability for an adversary to produce an existential forgery by “incident”,
i.e., that two formally different polynomials collide by evaluating to the same value (or, equivalently, that
the difference polynomial evaluates to zero), is negligible. Suppose that the adversary makes ¢ queries to
the signing oracle and O(q) queries to the group oracles. Then, all involved formal polynomials resulting
from querying the group oracles are of degree O(q) and overall there are O((3)) = O(¢?) polynomials that
could collide (i.e. whose difference polynomial evaluates to zero). Then, by the Schwartz-Zippel lemma
and the collision argument, the probability of such an error in the simulation of the generic group is O(%)
and is, therefore negligible in the security parameter. O

4.3 Proof of Theorem 3 (Class-Hiding)

Let us define Game,, as the experiment in Definition 8 with b set to 0, that is, where the real-or-random
oracle OF°F returns randomizations of messages-signature pairs, and let Gameyangom be the game where
OFoR yeturns fresh random pairs (i.e. when b = 1). More precisely, in Gameye, when OFF receives (M;)eq
from @ (that is, (M;) was previously drawn by OFM) and a valid signature o on it, it picks u <% Z,, and
returns CthepR((Mi)ie[g],a,,u, pk). In Gamerandom, When queried on a message in Q, the OF°f oracle



returns (R;);ep (G})? together with o < Signgk ((Ri)icjg; sk). In order to prove class-hiding, we must
show that under the DDH assumption Game,e, and Game,andom are indistinguishable.

We first define a game Game | in which the OF°R oracle, on input M € @ and a valid signature on M,
returns (uM, Signg (1M, sk)), for pu <% Z;, and show that Game[, is distributed equivalently to Gameye,.
Let sk = (2);e[q, Pk = (Xi)ie[é] be the adversary’s output in the first phase. If VKey (sk, pk) = true then

Let ((M;)iepq,0 = (Z,Y, }A/)) be the adversary’s first valid input to Of°%. If Verify, (M, o, pk) = true then

Hz'e[e} e(M;, X;) = e(Z, Y) (8)
e(Y,P) =e(P,Y) (9)

and Y # OGI,Y # 0g,. By this and (9) there exists some ¢ € Z, such that Y = ¢P and Y = @]5; we
let y == %. By (7), the LHS of (8) equals e(3_;cy ;M;, P); moreover, the RHS equals e(iZ, P). Thus,
Z = yEiem x; M;, and o = Signg (M, sk; y).

ChgRepy, according to its definition, applied to (M, o, i, pk) returns (uM, o’), where o’ is a signature
on uM with randomness vy (where ¢ is chosen uniformly from Z; by ChgRepz). The output signature
o’ is thus distributed equivalently to a freshly generated signature on pM; meaning that Game,., and
Game/,, are distributed equivalently.

We next define a game Gamej, for all j € [¢], where the Ol oracle, when queried on (Mj, ..., M) € Q,
chooses 1 <& Z, and Rji1,..., Ry <& G} and returns

(M/ = (MMl, RN ,,U,Mj,Rj_H, ey R@), SignR(M',sk)) .
Note that by definition Game; = Gameyandom and Game, = Game/ ,, (= Gameyea).

Thus, if there exists an adversary that distinguishes Gameey from Gameyandom With probability (k)
then there must exist an index j € [¢] such that the adversary distinguishes Game;_; from Game; with
probability Z_%e(/i), which is non-negligible if €(x) is non-negligible. We show how to construct a DDH
distinguisher from a distinguisher between Game;_; and Game;.

Given a DDH instance (P, aP,bP, cP), we simulate the following game for the adversary. For k =1,...,
at the k-th call the OfM oracle samples My i & Zy,, for all i € [¢], appends

(kaP, ey mk,j,lp, m;w-(aP), m;w-+1P, ey mkng) (10)
to @ and returns it. The OF°F oracle, on input the k-th message in @, samples Rit1,..., R <& G} and
returns

M' = (mp1(bP),...,mgj—1(bP),mgj(cP),Rji1,..., Re) (11)

and o < Signg (M’ sk). If (P,aP,bP,cP) is a real DDH instance (i.e. ¢ = ab) then the first j elements in
(11) are b-multiples of the first j elements in (10), and we have thus simulated Game;. If ¢ is random then
so is the j-th element in (11) and we have simulated Game;_;. Any adversary distinguishing Game;_; from
Game; thus breaks the DDH assumption. O
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