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Abstract. Structure-preserving signatures (SPS) are a powerful building block for cryptographic

protocols. We introduce SPS on equivalence classes (SPS-EQ), which allow joint randomization of

messages and signatures. Messages are projective equivalence classes defined on group element vectors,

so multiplying a vector by a scalar yields a different representative of the same class. Our scheme

lets one adapt a signature for one representative to a signature for another representative without

knowledge of any secret; and given a signature, an adapted signature for a different representative is

indistinguishable from a fresh signature on a random message. We propose a definitional framework

for SPS-EQ and an efficient construction in Type-3 bilinear groups, which we prove secure against

generic forgers.
We also introduce a set-commitment scheme that lets one open subsets of the committed set. From this

and SPS-EQ we then build an efficient multi-show attribute-based anonymous credential system for an

arbitrary number of attributes. Our ABC system avoids costly zero-knowledge proofs and only requires

a short interactive proof to thwart replay attacks. It is the first credential system whose bandwidth

required for credential showing is independent of the number of its attributes, i.e., constant-size.

We propose strengthened game-based security definitions for ABC and prove our scheme anonymous

against malicious organizations in the standard model; finally, we give a concurrently secure variant

in the CRS model.

Keywords: Public-key cryptography, structure-preserving signatures, attribute-based anonymous cre-

dentials, set commitments

1 Introduction

Digital signatures are an important cryptographic primitive that provide a means for integrity pro-
tection, non-repudiation and authenticity of messages in a publicly verifiable way. In most signature
schemes, the message space consists of integers in Zord(G) for some group G, or of arbitrary strings
mapped to either integers in Zord(G) or elements of a group G via a cryptographic hash function. In
the latter case, the hash function is often modeled as a random oracle (thus, one effectively signs
random group elements).

In contrast, structure-preserving signature (SPS) schemes [Fuc09, AHO10, AFG+10, AGHO11,
ACD+12, AGOT14a, AGOT14b, BFF+15, KPW15, Gha16] sign group elements without requiring
any prior encoding. In particular, SPS are defined over two groups G1 and G2, equipped with a
bilinear map (pairing), and messages are vectors of group elements (from either G1 or G2, or both).
Moreover, public keys and signatures also consist of group elements only and signatures are verified
by deciding group membership of their elements and evaluating the pairing on elements from the
public key, the message and the signature. Fully SPS schemes [AKOT15, Gro15] also require the
secret key to consist of group elements.



Randomization is a useful feature of signature schemes that lets anyone transform one signa-
ture into a new one that looks like a freshly generated signature on the same message. There have
been various constructions of randomizable signatures [CL03, CL04, BBS04, Wat05, PS16] and SPS
schemes supporting some types of randomization (inner, sequential, etc.) [AFG+10, AGOT14b].

In this paper, we extend this randomization, in particular, we construct SPS schemes that in
addition to randomizing signatures also enable randomization of the signed messages in particular
ways, and adaptation of the corresponding signatures. As we show, such signature schemes are
particularly interesting for applications in privacy-enhancing cryptographic protocols.

1.1 Contribution

Our contributions can be broken down as follows: (1) Introduction and instantiation of SPS on
equivalence classes (SPS-EQ), which are defined on group element vectors; (2) a randomizable set
commitment scheme that enables constant-size opening of subsets of the committed set; and building
on these primitives (3) a new construction approach for multi-show attribute-based anonymous cre-
dentials, which we efficiently instantiate and analyze in a comprehensive security model we propose.

Structure-Preserving Signature Scheme on Equivalence Classes. Inspired by randomizable
signatures, we introduce a variant of SPS. Instead of signing message vectors as in previous SPS
schemes, our variant signs classes of a projective equivalence relation R defined over G` with ` > 1.
These classes are lines going through the origin and are determined by the mutual ratios of the
discrete logarithms of the vector components. By multiplying each component by the same scalar,
a different representative of the same equivalence class is obtained. If the DDH assumption holds in
group G then it is hard to decide whether two vectors belong to the same equivalence class.

In SPS-EQ an equivalence class is signed by signing an arbitrary representative of the class. From
this signature one can later derive a signature for any other representative of the same class, without
having access to the secret key. Unforgeability for SPS-EQ is defined with respect to classes. Thus,
after obtaining signatures on representatives of its choice, no adversary should be able to compute
a signature on a representative of a class that is different from the ones signed. We also require
that adaptation of signatures leads to freshly distributed ones; in combination with unlinkability
of equivalence classes this implies the following: given a representative and a signature on it, a
random representative of the same class and an adapted signature on it are indistinguishable from a
completely random message and a fresh signature on it.

We present a definitional framework for SPS-EQ including game-based security definitions and
present an efficient construction whose signatures are short and their length is independent of the
message-vector length `. We prove our construction secure in the generic-group model.

Set Commitments. We propose a new type of commitment scheme that lets one commit to sets
and open arbitrary subsets. We first propose a model for this primitive and then give an efficient con-
struction, which we prove secure in this model. It lets one commit to subsets of Zp and a commitment
and a subset-opening both consist of a single bilinear-group element. Our scheme is computationally
binding, perfectly hiding, and computationally subset-sound, meaning that given a commitment to a
set S it is hard to produce a subset-opening for some T 6⊆ S. We prove security under a generalization
of the strong Diffie-Hellman assumption [BB04].

The scheme also enables commitment randomization, which is compatible with the randomization
of our SPS-EQ scheme (i.e., multiplication by a scalar). Randomization is perfect and the witness
used for subset opening can be consistently adapted. This property has not been achieved by existing
constructions (cf. Section 1.2) without relying on costly zero-knowledge proofs of randomization.
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A Multi-Show Attribute-Based Anonymous Credential System. Attribute-based anony-
mous credentials provide means for anonymous authentication. A credential system is a multi-party
protocol involving a user, an organization (or issuer) and a verifying party. The user can obtain a
credential on multiple attributes, such as her nationality or age, from an organization and present
the credential to some verifier later on, revealing only certain attributes. While not learning any
information about the user (anonymity), the verifier can still be sure that presented information
(the shown attributes) is authentic (unforgeability). In a multi-show credential system, a user ob-
tains a credential from an organization, typically in a non-anonymous way, and can later perform an
arbitrary number of unlinkable showings.

We propose a new way of building multi-show attribute-based anonymous credentials (often called
Privacy-ABCs; we simply write ABCs) from SPS-EQ and set commitments. Using our instantiations,
we construct the first standard-model multi-show ABC with anonymity holding against malicious
organization keys.

An SPS-EQ scheme allows to randomize a vector of group elements together with a signature
on it, a property we use to achieve unlinkability of credential showings. We use set commitments
to commit to a user’s attributes. To issue a credential, the issuer signs a message vector containing
this set commitment; the credential is essentially this signature together with its message. During a
showing, a subset of the issued attributes can then be opened. Unlinkability of showings is achieved
via the rerandomization properties of both the signature scheme and the set-commitment scheme,
whose rerandomizations are compatible with each other. Furthermore, to thwart replay attacks of
showings, we add a short constant-size proof of knowledge, which guarantees freshness.

We emphasize that our approach to constructing ABCs differs considerably from existing ones,
as we do not use zero-knowledge proofs to selectively disclose attributes during showings. This makes
constant-size showings possible, as achieved by our construction. In particular, the size of credentials
as well as the bandwidth required when showing a credential are independent of the number of
possible attributes as well as those contained in the credential; it is a small constant number of group
elements. This is the first ABC system with this feature. We note that Camenisch et al. [CDHK15]
recently proposed an approach with identical asymptotic complexity (see Section 5.7 for details).

We introduce a game-based security model for ABCs in the vein of the Bellare, Shi and Zhang’s
[BSZ05] model for group signatures and prove our ABC system secure in it. We note that there
are no other comprehensive models for attribute-based credential systems (apart from independently
developed very strong simulation-based notions in [CKL+14, CDHK15]). Our model considers replays
and provides a strong form of anonymity against organizations that may generate malicious keys—
both of which are not considered by earlier models. Replay attacks have often been considered an
implementation issue, but we believe that such attacks should already be considered in the formal
analysis, avoiding from the beginning problems that might later appear within an implementation.

We note that the independently proposed formal model by Camenisch et al. [CKL+14] and the
ABC construction in [CDHK15]—using a different model—do consider replays and malicious keys
too, although the former in a seemingly weaker sense and the latter only assuming a CRS.

Finally, we discuss a variant of our scheme with smaller organization key sizes that is concurrently
secure in the CRS model. We provide a comparison of our ABC system to other existing multi- and
one-show ABC approaches.

1.2 Related Work

Signatures. Blazy et al. [BFPV11] introduce a new primitive, termed signatures on randomiz-
able ciphertexts for which they modify Waters’ signature scheme [Wat05]. Given a signature on a
ciphertext, anyone can randomize the ciphertext and adapt the signature accordingly, knowing nei-
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ther signing key nor encrypted message. Their construction is only practical for very small message
spaces, which makes it unsuitable for our purposes.

Another related approach is the proofless variant of the Chaum-Pedersen signature [CP93], used
for self-blindable certificates by Verheul [Ver01]. The certificate as well as the initial message can be
randomized using the same scalar, preserving the validity of the certificate. This approach works for
the construction in [Ver01], but (as also observed in [Ver01]) it is not a secure signature scheme due
to its homomorphic property and the possibility of efficient existential forgeries.

Linearly homomorphic signatures [BFKW09, CFW12, Fre12] allow to sign any subspace of a
vector space by publishing a signature for every basis vector with respect to the same (file) identifier;
this identifier “glues” together the single vectors (of a file). Given a sequence of scalar/signature
pairs (βi, σi)i∈[`] for vectors vi (with the same identifier), one can publicly compute a signature for
the vector v =

∑
i∈[`] βivi.

If one uses a different identifier for every signed vector v then such signatures would support
a functionality similar to signature adaptation in SPS-EQ, that is, publicly compute signatures for
vectors v′ = βv (although they are not structure-preserving). Various constructions also provide a
privacy feature called strongly/completely context-hiding [ALP12, ALP13], requiring that a signature
resulting from homomorphic operations is indistinguishable from a fresh one. Nevertheless, homomor-
phic signatures do not help in our context: for SPS-EQ unforgeability, we must prevent combination
of signatures on several (independent) vectors; so every vector must be assigned a unique identifier.
Then however, our unlinkability notion cannot be satisfied as every signature can be linked to its
initial signature via the unique identifier. The same arguments also apply to structure-preserving
linearly homomorphic signatures [LPJY13]. Homomorphic signatures supporting richer classes of
admissible functions (beside linear ones) have also been considered, but are not applicable in our
context either (cf. [ABC+12, ALP12] for an overview). We note that the general framework of P -
homomorphic signatures [ABC+12, ALP12] is related to our approach in terms of unforgeability and
privacy guarantees, but there are no existing instantiations for the functionality that we require (and
we find our formalization more natural).

Chase et al. [CKLM14] introduce malleable signatures that let one derive, from a signature on
a message m, a signature σ′ on m′ = T (m) for an “allowable” transformation T . This generalizes
signature schemes, including quotable [ABC+12, ALP13] or redactable signatures [SBZ02, JMSW02]
with an additional context-hiding property. Letting messages be pseudonyms and allowable trans-
formations map one pseudonym to another one, the authors use malleable signatures to construct
anonymous credential systems and delegatable anonymous credential systems [BCC+09]. The general
construction in [CKLM14] however relies on malleable zero-knowledge proofs [CKLM12] and is not
practically efficient—even when instantiated with the Groth-Sahai proof system [GS08]. Although
the above framework is conceptually totally different from our approach, we note that SPS-EQ can be
cast into the definition of malleable signatures: the evaluation algorithm takes only a single message
vector with corresponding signature and there is a single type of allowable transformation. However,
our construction is practical and moreover Chase et al. [CKLM14] only focus on transformations of
single messages (pseudonyms) and do not consider multi-show ABCs, which is the main focus of our
construction.

Set Commitments. The best-known approach for commitments to (ordered) sets are Merkle
hash trees (MHTs) [Mer88], where for a set S the commitment size is O(1) and the opening of a
committed set element is of size O(log |S|). Boneh and Corrigan-Gibbs [BC14] propose an alternative
MHT construction using a novel commitment scheme based on a bivariate polynomial modulo RSA
composites. In contrast to MHTs, their construction supports succinct proofs of knowledge (PoK) of
committed values.
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Kate, Zaverucha and Goldberg [KZG10] introduce polynomial-commitment schemes that allow to
commit to polynomials and support (batch) openings of polynomial evaluations. They can be used
to commit to ordered sets (by fixing an index set) or to sets by identifying committed values with
roots. Their two constructions are analogues to DL and Pedersen commitments and have O(1)-size
commitments and openings. Recently, Camenisch et al. [CDHK15] proposed a variant of the Pedersen
version from [KZG10]. A related commitment scheme, called knowledge commitment, was proposed
by Groth [Gro10] and later generalized by Lipmaa [Lip12].

Other commitments to ordered sets are generalized Pedersen [Ped92] or Fujisaki-Okamoto [FO98]
commitments. Both have commitment size O(1), but opening proofs are of size O(|S|). For complete-
ness, let us also mention vector commitments [CF13], which allow to open specific positions as well
as subsequent updates at specific positions (but do not necessarily require hiding). Zero-knowledge
sets [MRK03] are another primitive in this context. They allow to commit to a set and to perform
membership and non-membership queries on values without revealing any further information on the
set. In [DHS15b], it was shown that zero-knowledge sets imply commitments in a black-box way.

ABCs. Signatures providing randomization features together with efficient zero-knowledge PoKs
of committed values can be used to generically construct ABC systems. The most prominent ex-
ample are CL credentials [CL03, CL04], based on Σ-protocols. With the advent of Groth-Sahai
proofs [GS08], which provide efficient non-interactive proofs in the CRS model without random
oracles, various constructions of non-interactive anonymous credentials [BCKL08, ILV11] and del-
egatable (hierarchical) anonymous credentials [BCC+09, Fuc11] have been proposed. These have a
non-interactive showing protocol, that is, the show and verify algorithms do not interact when demon-
strating credential possession (also the recent model for conventional ABCs in [CKL+14] demands
showings to be non-interactive). We note that although such credential systems with non-interactive
protocols extend the scope of applications of anonymous credentials, the most common use case (i.e.,
authentication and authorization), essentially relies on interaction (to provide freshness/liveness).
We emphasize that our goal is not to construct non-interactive anonymous credentials.

1.3 Differences to the Original Work

The original version of this paper by Hanser and Slamanig [HS14] contained an SPS-EQ instantiation
that was shown not to be EUF-CMA by Fuchsbauer [Fuc14]. We propose a new instantiation, which
we prove EUF-CMA-secure and which is more efficient than the one in [HS14] in terms of key
size, signature size and number of verification equations. We also show that our scheme satisfies
strengthened security properties, whose relation to the original properties we also analyze.

While [HS14] use the notion of polynomial commitments with factor opening, we found set
commitments with subset openings a more natural notion. We also strengthen the ABC security
model from [HS14]: we define anonymity against adversaries that create malicious organization keys
and provide a stronger notion of unforgeability.

1.4 Subsequent Work

Since its introduction, SPS-EQ has been used in various contexts. The attribute-based multi-show
anonymous credential system presented in [HS14] was extended in [DHS15a] by an efficient revocation
mechanism, which nicely fits the randomization of SPS-EQ.

Besides ABCs, SPS-EQs have also been used to efficiently instantiate other cryptographic con-
cepts. They yielded an intuitive construction of practical round-optimal blind signatures in the stan-
dard model [FHS15], which led to an attribute-based one-show anonymous credential system. They
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were also used to construct conceptually simple verifiably encrypted signatures in the standard model
by Hanser et al. [HRS15]. As they show that certain SPS-EQ imply public-key encryption, this sep-
arates them from one-way functions.

Apart from results concerning SPS-EQ, let us also mention a recent alternative construction of
ABCs by Camenisch et al. [CDHK15] from what they call unlinkable redactable signatures. In their
approach (whose underlying ideas are related to ours) the size of the credentials and showings is
asymptotically identical to that of our construction. However, the concrete efficiency of our construc-
tion is much better, partly due to the fact that [CDHK15] target UC security (cf. Section 5.7 for
more details).

1.5 Organization

Section 2 discusses preliminaries and Section 3 presents SPS-EQ. In Section 4 we propose set-
commitment schemes together with an efficient construction. Section 5 shows how to build an efficient
ABC system from the previously presented signature and commitment schemes and compares the
efficiency of the resulting ABC scheme to existing approaches. Finally, we discuss open issues and
future work in Section 6.

2 Preliminaries

A function ε : N → R+ is called negligible if for all c > 0 there is a k0 such that ε(k) < 1/kc for
all k > k0. By a←R S, we denote that a is chosen uniformly at random from a set S. Furthermore,
we write A(a1, . . . , an; r) if we want to make the randomness r used by a probabilistic algorithm
A(a1, . . . , an) explicit and denote by [A(a1, . . . , an)] the set of points with positive probability of
being output by A. For an (additive) group G we use G∗ to denote G \ {0G}.

Definition 1 (Bilinear Map). Let G1, G2 and GT be cyclic groups of prime order p, where G1

and G2 are additive and GT is multiplicative. Let P and P̂ be generators of G1 and G2, resp. We call
e : G1 ×G2 → GT a bilinear map or pairing if it is efficiently computable and the following holds:

Bilinearity: e(aP, bP̂ ) = e(P, P̂ )ab = e(bP, aP̂ ) ∀ a, b ∈ Zp.
Non-degeneracy: e(P, P̂ ) 6= 1GT

, i.e., e(P, P̂ ) generates GT .

If G1 = G2 then e is symmetric (Type-1) and asymmetric (Type-2 or 3) otherwise. For Type-2
pairings there is an efficiently computable isomorphism Ψ : G2 → G1; for Type-3 pairings no such
isomorphism is known. Type-3 pairings are currently the optimal choice in terms of efficiency for a
given security level [CM11].

Definition 2 (Bilinear-Group Generator). A bilinear-group generator BGGen is a (possibly
probabilistic) polynomial-time algorithm that takes a security parameter 1κ and outputs a descrip-
tion of a bilinear group BG = (p,G1,G2,GT , e, P, P̂ ) consisting of groups G1 = 〈P 〉, G2 = 〈P̂ 〉 and
GT of prime order p with log2 p = dκe and an asymmetric pairing e : G1 ×G2 → GT .

Definition 3 (DL). Let BGGen be a bilinear-group generator that outputs BG = (p,G1,G2,GT , e,
P1 = P, P2 = P̂ ). The discrete logarithm assumption holds in Gi for BGGen if for all probabilistic
polynomial-time (PPT) adversaries A there is a negligible function ε(·) such that

Pr
[
BG←R BGGen(1κ), a←R Zp, a′←R A(BG, aPi) : a′Pi = aPi

]
≤ ε(κ) .

The next assumption states that DL remains hard when given additional elements ajPi. It is
implied e.g. by the Type-3 bilinear-group counterpart of the q-SDH assumption [BB04, CM11].
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Definition 4 (q-co-DL). Let BGGen be a bilinear-group generator that outputs BG = (p,G1,G2,
GT , e, P, P̂ ). The q-co-discrete logarithm assumption assumption holds for BGGen, if for all PPT
adversaries A there is a negligible function ε(·) such that

Pr

[
BG←R BGGen(1κ), a←R Zp
a′←R A(BG, (ajP, ajP̂ )j∈[q])

: a′P = aP

]
≤ ε(κ) .

Note that we will use the q-co-DL assumption statically throughout this paper, that is, q is a fixed
system parameter and does not depend on the adversary’s behavior, as e.g. in [BB04].

Definition 5 (DDH). Let BGGen be a bilinear-group generator that outputs BG = (p,G1,G2,GT ,
e, P1 = P, P2 = P̂ ). The decisional Diffie-Hellman assumption holds in Gi for BGGen, if for all PPT
adversaries A there is a negligible function ε(·) such that

Pr

[
b←R {0, 1}, BG←R BGGen(1κ), r, s, t←R Zp
b∗←R A(BG, rPi, sPi, ((1− b) · t+ b · rs)Pi)

: b∗ = b

]
− 1

2
≤ ε(κ) .

The XDH assumption formalizes the absence of efficiently computable isomorphisms from G1 to G2;
the SXDH assumption implies that there is none from G2 to G1 either.

Definition 6 ((S)XDH). Let BGGen be a bilinear group generator outputting BG = (p,G1,G2,GT ,
e, P, P̂ ). The (symmetric) external Diffie-Hellman assumption holds for BGGen if DDH holds in G1

(and in G2).

The last assumption we use (Definition 8) falls in the uber-assumption family [Boy08, Corollary 1]
for the Type-3 bilinear group setting, which we state for completeness:

Definition 7 ((R,S,T, f)-DH). Let BGGen be a bilinear-group generator that outputs BG = (p,G1,
G2,GT , e, P, P̂ ); let R = (ri)i∈[r], S = (sj)j∈[s] and T = (tk)k∈[t] be three tuples of n-variate poly-
nomials in Zp[X1, . . . , Xn] and also let f ∈ Zp[X1, . . . , Xn]. Define R(x) := (ri(x)P )i∈[r], S(x) :=

(si(x)P̂ )i∈[s] and T(x) := (e(P, P̂ )ti(x))i∈[t]. The (R, S,T, f)-Diffie-Hellman assumption holds for
BGGen, if for all PPT adversaries A there is a negligible function ε(·) such that

Pr

[
BG←R BGGen(1κ), x←R Znp ,
e(P, P̂ )f(x)←R A(BG,R(x), S(x),T(x))

:
0 6= f 6=

∑
(i,j)∈[r]×[s]Aijrisj +

∑
k∈[t] bktk

∀A ∈ Zr×sp ∀ b ∈ Ztp

]
≤ ε(κ) .

Essentially, this assumption says that it is hard to evaluate a polynomial f ∈ Zp[X1, ..., Xn] at vector
x ∈ Znp such that f is independent of the polynomials in R, S and T, whose evaluations at x are
given to A.

We introduce the following assumption, which is implied by the above assumption and generalizes
the q-co-SDH assumption [BB04, CM11]. The latter states that given (aiP, aiP̂ )i∈[q], it is hard to

output (s, 1
a+sP ) for any s. This can be interpreted as outputting the polynomial h(X) := X+s and

1
h(a)P . The next assumption states that it is not only hard to compute 1

h(a)P for h of this specific

form, but it is also hard to compute g(a)
h(a)P for any polynomials g, h for which deg g < deg h.

Definition 8 (Generalized q-co-SDH). Let BGGen be a bilinear-group generator that outputs
BG = (p,G1,G2,GT , e, P, P̂ ). Then, the generalized q-co-strong-Diffie-Hellman assumption holds for
BGGen in G1, if for all PPT adversaries A there is a negligible function ε(·) such that

Pr

BG←R BGGen(1κ), a←R Zp,(
g, h, T

)
←R A(BG, (aiP, aiP̂ )i∈[q])

:

T ∈ G1 ∧ g, h ∈ Zp[X] ∧
0 ≤ deg g < deg h ≤ q ∧

e(T, h(a)P̂ ) = e(g(a)P, P̂ )

 ≤ ε(κ) .
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Analogously, the above assumption can be defined to require T ∈ G2. As with the q-co-DL assump-
tion, we will use the generalized q-co-SDH assumption statically.

It allows exponentially many solutions and involves rational polynomials. Thus, to cover it
with the uber-assumption framework3, we introduce the following family of rational target poly-
nomials Fq = { g(X)

h(X) : g, h ∈ Zp[X], 0 ≤ deg g < deg h ≤ q}. Then, we require the adversary

to additionally specify the target polynomial f ∈ Fq. It can easily be seen that for (R, S,T) =
((Xi)i∈[0,q], (X

i)i∈[0,q], 1) and any f ∈ Fq the generalized q-co-SDH assumption is implied by the
(R,S,T, f)-Diffie Hellman assumption: Observe that the generalized q-co-SDH assumption demands
the solution to be in G1 and that any f = g

h ∈ Fq is—due to being rational—independent from
all polynomials in R,S,T. The asymptotic simulation error in the generic-group model proof of the
generalized q-co-SDH assumption attains a cubic error bound.

2.1 Digital Signatures

Definition 9 (Signature Scheme). A digital signature scheme is a tuple (KeyGen,Sign,Verify) of
PPT algorithms:

KeyGen(1κ): This probabilistic algorithm takes input a security parameter 1κ. It outputs a private
key sk and a public key pk (we assume that pk includes a description of the message space M).

Sign(M, sk): This (probabilistic) algorithm takes input a message M ∈ M and a secret key sk. It
outputs a signature σ.

Verify(M,σ, pk): This deterministic algorithm takes input a message M ∈ M, a signature σ and a
public key pk. It outputs 1 if σ is a valid signature for M under pk and 0 otherwise.

A digital signature scheme is secure if it is correct and existentially unforgeable under adaptive
chosen-message attacks (EUF-CMA) [GMR88]. We define the properties below:

Definition 10 (Correctness). A digital signature scheme (KeyGen, Sign,Verify) is correct if for all
κ ∈ N, all key pairs (sk, pk) ∈ [KeyGen(1κ)] and all M ∈M we have:

Pr [Verify(M, Sign(M, sk), pk) = 1] = 1 .

Definition 11 (EUF-CMA). A digital signature scheme (KeyGen,Sign,Verify) is existentially un-
forgeable under adaptive chosen-message attacks if for all PPT algorithms A with access to a signing
oracle Sign(·, sk) there is a negligible function ε(·) such that:

Pr

[
(sk, pk)←R KeyGen(1κ),

(M∗, σ∗)←R ASign(·,sk)(pk)
: M∗ /∈ Q ∧ Verify(M∗, σ∗, pk) = 1

]
≤ ε(κ) ,

where Q is the set of queries which A has issued to the signing oracle.

3 Structure-Preserving Signatures on Equivalence Classes

We are looking for an efficient, randomizable structure-preserving signature scheme for group-element
vectors that allows to jointly randomize messages and signatures in the public. We associate messages
with representatives of projective equivalence classes defined on the projective space underlying G`

3 As generally discussed and, in particular, demonstrated for, e.g., the similar but weaker SDH assumption in [Boy08,
Sections 6.1 and 6.2]: There, the target polynomial f is allowed to be rational and a family F = { 1

h(X)
: h ∈

Zp[X], deg h = 1} is used to describe all possible target polynomials (as there are exponentially many). It must be
particularly taken care of that its denominator does not vanish.
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(for ` > 1 and some prime order group G). Based on such classes, we will construct a signature scheme
that allows the randomization of both messages and signatures via a change of representatives and
a consistent signature update.

Let us detail these equivalence classes. All elements of a vector (Mi)i∈[`] ∈ (G∗)` share different
mutual ratios. These ratios depend on their discrete logarithms and are invariant under the operation
γ : Zp∗× (G∗)` → (G∗)` with (s, (Mi)i∈[`]) 7→ s · (Mi)i∈[`]. This invariance allows for re-randomization
of messages and coincides with the operation performing a switch of representatives inside projective
equivalence classes defined on G`. More precisely, we use the following projective equivalence relation
to partition (G∗)` into classes:

R = {(M,N) ∈ (G∗)` × (G∗)` : ∃ s ∈ Z∗p such that N = s ·M} ⊆ (G∗)2` .

Note that R is an equivalence relation if and only if G has prime order. (We exclude the 0 element
from G, since for any (Mi)i∈[`], a randomization s · (Mi)i∈[`] should look random in (G∗)`, which is
clearly not the case if Mi = 0 for some i.)

In our scheme an equivalence class [M ]R is signed by actually signing an arbitrary representative
M of [M ]R. The scheme then allows to choose a different representative s · M and to update a
signature for M in the public, i.e., without any secret key. One of our goals is to guarantee that
two message-signature pairs from the same equivalence class cannot be linked. (Note that such an
approach is only feasible for structure-preserving signature schemes where we have no direct access to
scalars; if the messages were vectors of elements of Zp∗, class membership could be decided efficiently.)

3.1 Defining the Signature Scheme

Definition 12 (SPS-EQ). A structure-preserving signature scheme for equivalence relation R over
Gi is a tuple SPS-EQ of the following polynomial-time algorithms:

BGGenR(1κ) is a (probabilistic) bilinear-group generation algorithm which on input a security pa-
rameter 1κ outputs a prime-order bilinear group BG.

KeyGenR(BG, 1`) is a probabilistic algorithm which on input a bilinear group BG and a vector length
` > 1 (in unary) outputs a key pair (sk, pk).

SignR(M, sk) is a probabilistic algorithm which on input a representative M ∈ (G∗i )` of an equivalence
class [M ]R and a secret key sk outputs a signature σ for the equivalence class [M ]R.

ChgRepR(M,σ, µ, pk) is a probabilistic algorithm, which on input a representative M ∈ (G∗i )` of an
equivalence class [M ]R, a signature σ for M , a scalar µ and a public key pk returns an updated
message-signature pair (M ′, σ′), where M ′ = µ ·M is the new representative and σ′ its updated
signature.

VerifyR(M,σ, pk) is a deterministic algorithm which given a representative M ∈ (G∗i )`, a signature σ
and a public key pk outputs 1 if σ is valid for M under pk and 0 otherwise.

VKeyR(sk, pk) is a deterministic algorithm which given a secret key sk and a public key pk checks
both keys for consistency and returns 1 on success and 0 otherwise.

When one does not care about which new representative is chosen, ChgRepR can be seen as consistent
randomization of a signature and its message using randomizer µ without invalidating the signature
on the equivalence class. Our goal is that the signature resulting from ChgRepR is indistinguishable
from a freshly issued signature for the new representative of the same class.

The scheme is correct if honestly generated key pairs and signatures verify, and if ChgRepR
outputs a valid signature.
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Definition 13 (Correctness). An SPS-EQ scheme SPS-EQ over Gi is correct if for all security
parameters κ ∈ N, for all ` > 1, all bilinear groups BG = (p,G1,G2,GT , e, P, P̂ ) ∈ [BGGenR(1κ)], all
key pairs (sk, pk) ∈ [KeyGenR(BG, 1`)], all messages M ∈ (G∗i )` and all scalars µ ∈ Zp∗ we have:

VKeyR(sk, pk) = 1 and

Pr
[
VerifyR(M, SignR(M, sk), pk) = 1

]
= 1 and

Pr
[
VerifyR(ChgRepR(M,SignR(M, sk), µ, pk), pk) = 1

]
= 1 .

Furthermore, we define EUF-CMA security w.r.t. equivalence classes. In contrast to the standard
notion of EUF-CMA, we consider a forgery a valid signature on a message from any equivalence class
for which the forger has not seen signatures.

Definition 14 (EUF-CMA). An SPS-EQ scheme SPS-EQ over Gi is existentially unforgeable un-
der adaptive chosen-message attacks if for all ` > 1 and all PPT algorithms A having access to a
signing oracle SignR(·, sk), there is a negligible function ε(·) such that:

Pr

[
BG←R BGGenR(1κ), (sk, pk)←R KeyGenR(BG, 1`),

(M∗, σ∗)←R ASignR(·,sk)(pk)
:

[M∗]R 6= [M ]R ∀M ∈ Q ∧
VerifyR(M∗, σ∗, pk) = 1

]
≤ ε(κ) ,

where Q is the set of queries that A has issued to the signing oracle.

We now define new properties, which are better suited to work with than the class-hiding game
originally introduced in [HS14]. We start with a class-hiding property on the message space:

Definition 15 (Class-Hiding). Let ` > 1, and SPS-EQ be an SPS-EQ scheme on (G∗i )`. The
message space (G∗i )` is class-hiding if for all PPT adversaries A there is a negligible function ε(·)
such that

Pr

[
b←R {0, 1}, BG←R BGGenR(1κ), M ←R (G∗i )`,
M0←R (G∗i )`,M1←R [M ]R, b

∗←R A(BG,M,Mb)
: b∗ = b

]
− 1

2
≤ ε(κ) .

The following result shows that the class-hiding property is linked to the DDH assumption.

Proposition 1. Let ` > 1 and SPS-EQ be an SPS-EQ scheme on (G∗i )`. Then (G∗i )` is a class-hiding
message space if and only if the DDH assumption holds in Gi.

Proof. W.l.o.g. we consider message space (G∗1)`. We first note that DDH (as defined in Definition 5)
is equivalent to a variant DDH∗ where r, s, t are drawn from Zp∗ instead of Zp (as the respective
distributions are statistically indistinguishable). It suffices thus to show that class-hiding is equivalent
to DDH∗.
“⇒” Assume an adversary A that breaks DDH∗. We define an adversary B against the class-hiding
property of (G∗i )`: B is given an instance (BG,M,M ′); it randomly selects two distinct indexes
i, j ∈ [`] and runs A on (Mi,Mj ,M

′
i ,M

′
j) and outputs whatever A outputs.

If M ′ ∈ [M ]R then M ′ = λM for some λ ∈ Zp∗ and (Mi,Mj ,M
′
i ,M

′
j) = (miP,mjP, λmiP, λmjP )

is a valid DDH∗ tuple in G1. Finally, there is the case of false positives, i.e., the case that M ′ 6∈ [M ]R
but the input given to A constitutes a valid DDH∗ tuple in G1. This occurs however only with
negligible probability.
“⇐” Let us parametrize the game from Definition 15 by bit b and denote it as Gameb, that is, A is
given (BG,M,M ′←R (G∗1)`) in Game0 and (BG,M,M ′←R [M ]R) in Game1. We next define a hybrid
game Game′j for every j ∈ [`]: it chooses µ←R Zp∗ and Rj+1, . . . , R`←R G∗1 and runs A on BG,M and

M ′ := (µM1, . . . , µMj , Rj+1, . . . , R`) .
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Note that by definition Game′1 = Game0 and Game′` = Game1, respectively.
If there exists an adversary that distinguishes Game0 from Game1 with probability ε(κ) then

for some index j ∈ [`] it distinguishes Game′j−1 from Game′j with probability 1
`−1ε(κ), which is

non-negligible if ε(κ) is non-negligible. We show how to construct a DDH∗ distinguisher B from a
distinguisher between Game′j−1 and Game′j .

Given a DDH∗ instance (BG, rP, sP, tP ), B picks (mi)i∈[`]←R (Zp∗)` and Rj+1, . . . , R`←R G∗1, sets

M ←
(
m1P, . . . . . . , mj−1P, (rP ),mj+1P, . . . ,m`P

)
(1)

M ′ ←
(
m1(sP ), . . . ,mj−1(sP ), (tP ), Rj+1, . . . . . . , R`

)
(2)

and runs A on (BG,M,M ′). If (BG, rP, sP, tP ) is a “real” instance (i.e. t = rs) then the first
j elements in (2) are s-multiples of the first j elements in (1), and B thus simulates Game′j . If
t is random then so is the j-th element in (2) and B simulates Game′j−1. Hence, any adversary
distinguishing Game′j−1 from Game′j can be used to break DDH∗. ut

The next two definitions were used in [FHS15]. The first one formalizes the notion that signatures
output by ChgRepR are distributed like fresh signatures on the new representative.

Definition 16 (Signature adaptation). Let ` > 1. An SPS-EQ scheme SPS-EQ on (G∗i )` perfectly
adapts signatures if for all tuples (sk, pk,M, σ, µ) with

VKeyR(sk, pk) = 1 VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` µ ∈ Zp∗

ChgRepR(M,σ, µ, pk) and (µM,SignR(µM, sk)) are identically distributed.

The following definition demands that this even holds for maliciously generated verification keys.
As for such keys there might not even exist a corresponding secret key, we require that adapted
signatures are random elements in the space of valid signatures.

Definition 17 (Signature adaptation under malicious keys). Let ` > 1. An SPS-EQ scheme
SPS-EQ on (G∗i )` perfectly adapts signatures under malicious keys if for all tuples (pk,M, σ, µ) with

VerifyR(M,σ, pk) = 1 M ∈ (G∗i )` µ ∈ Zp∗ (3)

we have that ChgRepR(M,σ, µ, pk) outputs (µM, σ′) such that σ′ is a uniformly random element in
the space of signatures, conditioned on VerifyR(µM, σ′, pk) = 1.

3.2 Our Construction

In Figure 1 we present our SPS-EQ construction with message space (G∗1)`. Its signatures consist of
two G1 elements and one G2 element and public keys are `-tuples from G2. Verification is defined via
two pairing-product equations. A scheme with message space (G∗2)` is easily obtained by swapping
the group memberships of all elements.

3.3 Security of Our Construction

We prove the security of our construction using a direct proof in the generic-group model. The proofs
of Theorems 1 and 2 are given in Appendix A.

Theorem 1. The SPS-EQ scheme in Scheme 1 is correct.

Theorem 2. In the generic-group model for Type-3 bilinear groups, Scheme 1 is EUF-CMA secure.
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BGGenR(1κ): On input a security parameter 1κ, output BG←R BGGen(1κ).

KeyGenR(BG, 1`): On input a bilinear-group description BG and vector length ` > 1 (in unary), choose

(xi)i∈[`]←R (Zp∗)`, set secret key sk ← (xi)i∈[`], compute public key pk ← (X̂i)i∈[`] = (xiP̂ )i∈[`] and

output (sk, pk).

SignR(M, sk): On input a representative M = (Mi)i∈[`] ∈ (G∗1)` of equivalence class [M ]R and a secret

key sk = (xi)i∈[`] ∈ (Zp∗)`, choose y←R Zp∗ and output σ ← (Z, Y, Ŷ ) with

Z ← y
∑
i∈[`]

xiMi Y ← 1
yP Ŷ ← 1

y P̂ .

VerifyR(M,σ, pk): On input a representative M = (Mi)i∈[`] ∈ (G∗1)` of equivalence class [M ]R, a signature

σ = (Z, Y, Ŷ ) ∈ G1 ×G∗1 ×G∗2 and public key pk = (X̂i)i∈[`] ∈ (G∗2)`, check whether∏
i∈[`]

e(Mi, X̂i) = e(Z, Ŷ ) ∧ e(Y, P̂ ) = e(P, Ŷ )

and if this holds output 1 and 0 otherwise.

ChgRepR(M,σ, µ, pk): On input a representative M = (Mi)i∈[`] ∈ (G∗1)` of equivalence class [M ]R, a

signature σ = (Z, Y, Ŷ ), µ ∈ Zp∗ and public key pk, return ⊥ if VerifyR(M,σ, pk) = 0. Otherwise pick

ψ←R Zp∗ and return (µ ·M,σ′) with σ′ ← (ψµZ, 1
ψY,

1
ψ Ŷ ).

VKeyR(sk, pk): On input sk = (xi)i∈[`] ∈ (Zp∗)` and pk = (X̂i)i∈[`] ∈ (G∗2)`, output 1 if xiP̂ = X̂i ∀i ∈ [`]

and 0 otherwise.

Fig. 1. Scheme 1, an EUF-CMA secure SPS-EQ scheme

Lemma 1. Scheme 1 has perfect adaptation of signatures and perfect adaptation of signatures under
malicious keys.

Proof. Let M ∈ (G∗1)`, pk ∈ (G∗2)` and (xi)i∈[`] be such that pk = (xiP̂ )i∈[`]. A signature (Z, Y, Ŷ ) ∈
G1 × G∗1 × G∗2 satisfying VerifyR(M, (Z, Y, Ŷ ), pk) = 1 is of the form (y

∑
xiMi,

1
yP,

1
y P̂ ) for some

y ∈ Zp∗. ChgRepR(M, (Z, Y, Ŷ ), µ, pk) for µ ∈ Zp∗ outputs (yψ
∑
xiµMi,

1
yψP,

1
yψ P̂ ), which is a uni-

formly random element σ in G1 ×G∗1 ×G∗2 satisfying VerifyR(µM, σ, pk) = 1.

Scheme 1 moreover satisfies Definition 16, since sk = (xi)i∈[`] is the only element satisfying
VKeyR(sk, pk) = 1 and SignR(µM, sk) outputs a random element σ in G1 × G∗1 × G∗2 satisfying
VerifyR(µM, σ, pk) = 1. ut

4 Set Commitments

We now introduce a new commitment type that allows for committing to sets and besides ordi-
nary opening also supports opening of subsets. After formalizing the primitive, we give an efficient
construction with succinct commitments and openings.

Kate, Zaverucha and Goldberg [KZG10] introduce the notion of constant-size polynomial com-
mitments. They present two schemes, one computationally and one perfectly hiding. Following a
similar approach, we construct set commitments, which allow us to commit to a set S ⊂ Zp by
committing to a monic polynomial whose roots are the elements of S. A feature we are aiming for

12



opening of subsets of the committed set, which corresponds to opening non-trivial factors of the
committed polynomial. Our scheme is perfectly hiding and computationally binding.

4.1 Definitions

We first present the model and security properties of our set-commitments scheme. They are adapted
from the polynomial-commitment scheme in [HS14], tailored to sets encoded as monic polynomials.

Definition 18 (Set Commitments). A set-commitment scheme SC consists of the following PPT
algorithms.

Setup(1κ, 1t): This probabilistic algorithm takes input a security parameter κ and an upper bound t
for the cardinality of committed sets, both in unary form. It outputs public parameters pp (which
include a description of an efficiently samplable message space Spp containing sets of maximum
cardinality t).

Commit(pp, S): This probabilistic algorithm takes input the public parameters pp defining message
space Spp and a non-empty set S ∈ Spp. It outputs a commitment C to set S and opening
information O.

Open(pp, C,O): This deterministic algorithm takes input the public parameters pp, a commitment C
and opening information O. If O is a valid opening of C to S ∈ Spp, it outputs S, and ⊥ otherwise.

OpenSubset(pp, C,O, T ): This (deterministic) algorithm takes input the public parameters pp, a
commitment C, opening information O for some set S ∈ Spp and a non-empty set T . It returns
⊥ if T * S; else it returns a witness W for T being a subset of S.

VerifySubset(pp, C, T,W ): This deterministic algorithm takes input the public parameters pp, a com-
mitment C, a non-empty set T and a witness W . If W is a witness for T being a subset of the
set committed to in C, it outputs 1, and 0 otherwise.

We call a set-commitment scheme secure if it is correct, binding, subset-sound and hiding. The proper-
ties are as follows, where the definitions of correctness, binding and hiding are mostly straightforward.

Definition 19 (Correctness). A set-commitment scheme SC is correct if for all t > 0, all κ > 0,
all pp ∈ [Setup(1κ, 1t)], all S ∈ Spp and all non-empty T ⊆ S the following holds:

1. Pr [ Open(pp,Commit(pp, S)) = S ] = 1 .

2. Pr
[
(C,O)←R Commit(pp, S) : VerifySubset(pp, C, T,OpenSubset(pp, C,O, T )) = 1

]
= 1 .

Definition 20 (Binding). A set-commitment scheme SC is binding if for all t > 0 and all PPT
adversaries A there is a negligible function ε(·) such that:

Pr

[
pp←R Setup(1κ, 1t), (C,O,O′)←R A(pp),
S ← Open(pp, C,O), S′ ← Open(pp, C,O′)

: S 6= S′ ∧ S, S′ 6= ⊥
]
≤ ε(κ) .

Subset soundness requires it to be infeasible to perform subset openings to sets that are not contained
in the committed set.

Definition 21 (Subset-Soundness). A set-commitment scheme SC is subset-sound if for all t > 0
and all PPT adversaries A there is a negligible function ε(·) such that:

Pr

[
pp←R Setup(1κ, 1t), (C,O, T,W )←R A(pp),
S ← Open(pp, C,O)

:
S 6= ⊥ ∧ T * S ∧

VerifySubset(pp, C, T,W ) = 1

]
≤ ε(κ) .

Our hiding notion strengthens the standard one by giving the adversary access to an OpenSubset or-
acle that opens the challenge commitment to any subset in the intersection of the two candidate sets.
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Definition 22 (Hiding). A set-commitment scheme SC is hiding if for all t > 0 and all PPT
adversaries A with access to an oracle OpenSubset there is a negligible function ε(·) such that:

Pr


b←R {0, 1}, pp←R Setup(1κ, 1t),
(S0, S1, st)←R A(pp),
(C,O)←R Commit(pp, Sb),

b∗←R AOpenSubset(pp,C,O, · ∩(S0∩S1))(st, C)

: b∗ = b

− 1

2
≤ ε(κ) .

In the perfectly hiding case, unbounded adversaries are being considered and ε ≡ 0.

4.2 The Construction

We now give a construction SC of a set-commitment scheme. For the sake of compact representation,

for S ⊂ Zp we let fS(X) :=
∏
s∈S(X − s) =

∑|S|
i=0 fi ·Xi. For a group generator P , since fS(a)P =∑|S|

i=0(fi · ai)P , one can efficiently compute fS(a)P when given (aiP )
|S|
i=0 but not a itself.

Setup(1κ, 1t): On input a security parameter 1κ and a maximum set cardinality 1t run BG =
(p,G1,G2,GT , e, P, P̂ )←R BGGen(1κ), pick a←R Zp and output pp ← (BG, (aiP, aiP̂ )i∈[t]), which
defines message space Spp = {S ⊂ Zp : 0 < |S| ≤ t}.

Commit(pp, S): On input pp = (BG, (aiP, aiP̂ )i∈[t]) and a set S ⊂ Zp with 0 < |S| ≤ t:
– If for some a′ ∈ S: a′P = aP , output C←R G∗1 and opening O ← (1, a′, S);

– else pick ρ←R Zp∗, compute C ← ρ · fS(a)P ∈ G∗1 and output (C,O) with O ← (0, ρ, S).

Open(pp, C,O): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a commitment C and opening O = (b, ρ, S): if
C /∈ G∗1 or ρ /∈ Zp∗ or S 6⊂ Zp or S = ∅ or |S| > t then return ⊥.

– If O = (1, a′, S) and a′P = aP then return S; else return ⊥.

– If O = (0, ρ, S) and C = ρ · fS(a)P , return S; else return ⊥.

OpenSubset(pp, C,O, T ): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a commitment C, opening O and a
set T , let S ← Open(pp, C,O). If S = ⊥, T * S or T = ∅ then output ⊥.

– If O = (1, a′, S): if a′ ∈ T , return W ← ⊥; else return W ← fT (a′)−1 · C.

– If O = (0, ρ, S), output W ← ρ · fS\T (a)P .

VerifySubset(pp, C, T,W ): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a commitment C, a set T and a wit-
ness W : if C /∈ G∗1 or T 6⊂ Zp or T = ∅ or |T | > t, return 0.

– If for some a′ ∈ T : a′P = aP then: if W = ⊥, return 1, else return 0.

– Else: if W ∈ G∗1 and e(W, fT (a)P̂ ) = e(C, P̂ ), return 1, else return 0.

We have augmented the scheme from [HS14] by a special opening (of the form (1, a, S)) for the case
that a set S contains the trapdoor a. (Under the t-co-DL assumption, such sets are infeasible to find.)
This makes the scheme perfectly correct and perfectly hiding while still maintaining computational
binding and subset-soundness.

We have defined the scheme in a way that reduces the computational complexity of the prover
in the ABC system in Section 5.4. To improve the performance of VerifySubset, one could define a
scheme with W ∈ G2 (for which VerifySubset would have to compute fT (a)P ).

Security. We prove SC secure under the q-co-DL and the generalized q-co-SDH assumption. We
use both assumptions in a static way, as q ← t is a system parameter and fixed a priori.

Theorem 3. SC is correct.
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Proof. Let t, κ > 0 and (BG, (aiP, aiP̂ )i∈[t])←R Setup(1κ, 1t) with BG = (p,G1,G2,GT , e, P, P̂ ), let
S ⊂ Zp with 0 < |S| ≤ t and let ∅ 6= T ⊆ S. We consider two cases.
(1) a ∈ S. Commit(pp, S) returns (C,O) with C ∈ G∗1 and O = (1, a, S). Open on input (C, (1, a, S))
returns S, which shows the first property. OpenSubset(pp, C,O, T ) returns W ← ⊥ if a ∈ T and
W ← fT (a)−1 · C if a 6∈ T . If a ∈ T then VerifySubset(pp, C, T,W ) returns 1 if W = ⊥. If a /∈
T , it returns 1 if C,W ∈ G∗1 and e(W, fT (a)P̂ ) = e(C, P̂ ); this is satisfied, since W ∈ G∗1 and
e(W, fT (a)P̂ ) = e(fT (a)−1 · C, fT (a)P̂ ) = e(C, P̂ ).
(2) a 6∈ S. Commit(pp,S) returns (C,O) with C = ρ · fS(a)P and O = (0, ρ, S) with ρ ∈ Zp∗. For
O of this form, Open returns S, since ρ ∈ Zp∗, S ⊂ Zp∗, 0 < |S| ≤ t, fS(a) 6= 0, thus C ∈ G∗1 and C
has the required form. OpenSubset(pp, C,O, T ) returns W ← ρ · fS\T (a)P . On input (pp, C, T,W ),

VerifySubset returns 1 if C,W ∈ G∗1 and e(W, fT (a)P̂ ) = e(C, P̂ ). Since ρ ∈ Zp∗, a 6∈ S we have
W = ρ·fS\T (a)P ∈ G∗1; moreover, e(W, fT (a)P̂ ) = e(ρ·fS(a)·fT (a)−1·P, fT (a)P̂ ) = e(ρ·fS(a)P, P̂ ) =

e(C, P̂ ); so VerifySubset returns 1. ut

Theorem 4. If the t-co-DL assumption holds then SC is binding.

Proof. We show that if A is able to output a commitment C and two valid openings to distinct
sets S, S′ then we can construct an adversary B that breaks t-co-DL: B obtains an instance I =
(BG, (aiP, aiP̂ )i∈[t]), sets pp ← I and runs A(pp). If A outputs a collision (C,O,O′) then by ⊥ 6=
S ← Open(pp, C,O) and ⊥ 6= S′ ← Open(pp, C,O′) with S 6= S′, it holds that C ∈ G∗1. If O =
(1, a′, S) or O′ = (1, a′, S′) then B outputs a′ as solution to the t-co-DL problem. Else, we have
O = (0, ρ, S), O′ = (0, ρ′, S′) with ∅ 6= S, S′ ⊂ Zp, ρ, ρ′ ∈ Zp∗ and:

ρ · fS(a)P = C = ρ′ · fS′(a)P ,

from which we have ρ · fS(a) − ρ′ · fS′(a) = 0. Since S and S′ are both non-empty and distinct, we
have deg fS > 0 and deg fS′ > 0 and fS 6= fS′ . Furthermore, fS and fS′ are monic and ρ, ρ′ 6= 0, thus
t(X)← ρ · fS(X)− ρ′ · fS′(X) 6= 0 while t(a) = 0. Therefore, a is a root of the non-zero polynomial
t(X) ∈ Zp[X] and t(X) is known to B. Factoring t(X) yields a, which B outputs as solution to the
t-co-DL problem. ut

Theorem 5. If the generalized t-co-SDH assumption holds then SC is subset-sound.

Proof. We show that if A is able to output (C,O, T,W ), such that O is a valid opening of C to
set S, T * S and VerifySubset(pp, C, T,W ) = 1 then we can construct an adversary B against the

generalized t-co-SDH as follows. On input an instance I = (BG, (aiP, aiP̂ )i∈[t]), B sets pp ← I and
runs A(pp); assume A breaks subset-soundness by outputting (C,O, T,W ).

We first deal with the case fT (a) = 0. Since T 6= ∅ (otherwise Verifysubset returns 0), and thus
fT (X) is a non-constant polynomial with root a, B can efficiently obtain a by factoring fT (X). It
then chooses c ∈ Zp \ {−a}, and outputs a solution (1, X + c, 1

a+cP ) to generalized t-co-SDH.
For the rest of the proof, assume fT (a) 6= 0, and thus a /∈ T . As A is successful, we have

⊥ 6= S ← Open(pp, C,O). If O = (1, a′, S) then B chooses c ∈ Zp \ {−a′}, and outputs a solution
(1, X + c, 1

a′+cP ) to generalized t-co-SDH. Else, we have O = (0, ρ, S) with ∅ 6= S ⊂ Zp, |S| ≤ t,
ρ ∈ Zp∗ and

C = ρ · fS(a)P ∈ G∗1 . (4)

From VerifySubset(pp, C, T,W ) = 1 we have ∅ 6= T ⊂ Zp, |T | ≤ t, W ∈ G∗1 and e(W, fT (a)P̂ ) =
e(C, P̂ ), which by (4) equals e(ρ · fS(a)P, P̂ ). Since ρ 6= 0, we have

e(ρ−1W, fT (a)P̂ ) = e(fS(a)P, P̂ ) . (5)

15



We further distinguish two cases:
(1) 0 < |S| < |T |. Then 0 < deg fS < deg fT ≤ t, which together with (5) means that (fS , fT , ρ

−1W )
is a solution to the generalized t-co-SDH assumption.
(2) 0 < |T | ≤ |S|. Then 0 < deg fT ≤ deg fS . Since T * S, by polynomial division we obtain h, r
with fS(X) = h(X)fT (X) + r(X) and 0 ≤ deg r < deg fT . Moreover, deg h ≤ deg fS ≤ t. Plugging
this into (5), we get:

e
(
ρ−1W, fT (a)P̂

)
= e
(
h(a)fT (a)P + r(a)P, P̂

)
= e
(
h(a)P, fT (a)P̂

)
+ e
(
r(a)P, P̂

)
, and thus

e
(
ρ−1W − h(a)P, fT (a)P̂

)
= e
(
r(a)P, P̂

)
.

Together with 0 ≤ deg r < deg fT ≤ t, this means that (r, fT , ρ
−1W − h(a)P ) is a solution to the

generalized t-co-SDH assumption, which B can efficiently compute from pp, since deg h ≤ t. ut

Theorem 6. SC is perfectly hiding.

Proof. We consider the view of an unbounded adversary A in the hiding experiment and assume
w.l.o.g. that every query T to the OpenSubset oracle satisfies T ⊂ Zp and ∅ 6= T ⊆ (S0 ∩ S1). We
distinguish several cases.
(1)A chooses S0, S1 with a ∈ S0∩S1. Then for both b = 0, 1, Cb is uniformly random in G∗1 (Cb ∈R G∗1)
and the jth query Tj to OpenSubset is answered with ⊥ if a ∈ Tj , and with Wj,b = fT (a)−1 · Cb if
a 6∈ Tj . The bit b is thus information-theoretically hidden from A.
(2) a is contained in one of the sets S0, S1; say a ∈ S0. Note that for all queries Tj , we have a /∈ Tj .
If b = 0 then A receives a uniformly random C0 and when it queries Tj to the OpenSubset oracle, it
receives Wj,0 = fTj (a)−1 · C0. If b = 1 then A receives C1 = ρ · fS(a)P for ρ ∈R Zp∗, and query Tj to
the OpenSubset oracle returns witness Wj,1 = ρ · fS\Tj (a) ·P = ρ · fS(a) · fTj (a)−1 ·P = fTj (a)−1 ·C1.

Hence, for both b = 0, 1 we have Cb ∈R G∗1 and Wj,b = fTj (a)−1 · Cb for all j; the bit b is thus
information-theoretically hidden from A.
(3) A chooses S0, S1 with a 6∈ S0 ∪ S1. Then for b = 0, 1: Cb = ρ · fSb

(a)P for ρ ∈R Zp∗ and a query
for Tj is answered by Wj,b = ρ · fSb\Tj (a)P = fTj (a)−1 · Cb. Again for both b = 0 and b = 1, A
receives a uniform random element Cb and query replies that do not depend on b; the bit b is thus
information-theoretically hidden from A. ut

5 Building an ABC System

In this section we present an application of SPS-EQ and set commitments introduced in the two
previous sections; we use them as basic building blocks for an attribute-based credential system.
ABC systems are usually constructed in one of two ways. They can be built from blind signatures:
a user obtains a blind signature from an issuer on (commitments to) attributes and later shows the
signature, provides the shown attributes and proves knowledge of all unrevealed attributes [Bra00,
BL13, FHS15]. The drawback of this approach is that such credentials can only be shown once in an
unlinkable fashion (one-show).

Anonymous credentials supporting an arbitrary number of unlinkable showings (multi-show)
can be obtained in a similar vein using a different type of signatures: A user obtains a signature
on (commitments to) attributes then randomizes the signature (so that the resulting signature is
unlinkable to the issued one) and proves in zero-knowledge the correspondence of this signature to
the shown attributes as well as the undisclosed attributes [CL03, CL04]. Our approach also achieves
multi-show ABCs, but differs from the latter. We randomize both the signature and the message
(which is a set commitment to attributes) and then use subset-opening of set commitments for
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selective constant-size showings of attributes. Thereby, we completely avoid costly ZKPoKs over the
attributes (which are necessarily at least linear in the number of shown/encoded attributes).

We start by discussing the functionality and security of ABCs in Sections 5.1 and 5.2. After
providing some intuition for our construction (Section 5.3), we present the scheme (Section 5.4) and
discuss its security (Section 5.5). Finally, we give a performance and functionality comparison with
other schemes in Section 5.7.

5.1 Model of ABCs

In an ABC system there are different organizations issuing credentials to users. These users can then
anonymously demonstrate possession of their credentials to verifiers. The system is called multi-show
when transactions (issuing and showings) performed by the same user cannot be linked. A credential
cred for user i is issued by an organization for a set of attributes A and the user can show a subset
of A while hiding the other attributes. Note that in our definition there is no setup and we do not
assume any trusted parameters at all.

Definition 23 (ABC System). An attribute-based anonymous credentials system consists of the
following PPT algorithms:

OrgKeyGen(1κ, 1t): A probabilistic algorithm that gets (unary representations of) a security param-
eter κ and an upper bound t for the size of attribute sets. It outputs a key pair (osk, opk) for an
organization.

UserKeyGen(1κ): A probabilistic algorithm that gets (the unary representation of) a security param-
eter κ and outputs a key pair (usk, upk) for a user.

(Obtain(usk, opk, A), Issue(upk, osk, A)): These algorithms are run by a user and an organization, re-
spectively, who interact during execution. Obtain is a probabilistic algorithm that takes input the
user’s secret key usk, an organization’s public key opk and a non-empty attribute set A of size
|A| ≤ t. Issue is a probabilistic algorithm that takes input a user’s public key upk, the organiza-
tion’s secret key osk and a non-empty attribute set A of size |A| ≤ t. At the end of this protocol,
Obtain outputs a credential cred for the user for attributes A or ⊥ if the execution failed.

(Show(opk, A, A′, cred),Verify(opk, A′)): These algorithms are run by a user and a verifier, respectively,
who interact during execution. Show is a probabilistic algorithm that takes input the organiza-
tion’s public key opk, an attribute set A of size |A| ≤ t, a non-empty set A′ ⊆ A (representing the
attributes to be shown) and a credential cred. Verify is a deterministic algorithm that takes input
the organization’s public key opk and a set A′. At the end of the protocol, Verify outputs 1 or 0
indicating whether it accepts the credential showing or not.

5.2 Security of ABCs

We present a security model for multi-show ABCs, which is game-based and in the vein of group
signatures [BSZ05] and considers malicious organization keys. We note that there are no other com-
prehensive models for ABC systems (apart from independently developed very strong simulation-
based notions in [CKL+14, CDHK15]). We start with a high-level overview of the required security
properties and note that we consider only a single organization in our model of unforgeability and
anonymity (since all organizations have independent signing keys, the extension to multiple organi-
zations is straightforward):

Correctness: A showing of a credential with respect to a non-empty set A′ of attributes and values
always verifies if the credential was issued honestly for some attribute set A with A′ ⊆ A.
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Unforgeability: A user cannot perform a valid showing of attributes for which she does not possess
a credential. Moreover, no coalition of malicious users can combine their credentials and prove
possession of a set of attributes which no single member has. This holds even after seeing showings
of arbitrary credentials by honest users (the notion thus covers replay attacks).

Anonymity: During a showing, no verifier and no (malicious) organization (even if they collude)
should be able to identify the user or learn anything about the user, except that she owns a valid
credential for the shown attributes. Furthermore, different showings of the same credential are
unlinkable.

We now provide formal definitions of these properties, for which we introduce the following global
variables and oracles.

Global variables. At the beginning of each experiment, either the experiment computes an or-
ganization key pair (osk, opk) or the adversary outputs opk. In the anonymity game there is a bit b,
which the adversary must guess.

In order to keep track of all the users, in particular all honest and corrupt users and those whose
secret keys and credentials have leaked, we introduce the sets U, HU, CU and KU, respectively. We use
the lists UPK, USK, CRED, ATTR and I2U to track user public and secret keys, issued credentials and
corresponding attributes and to which user they were issued. Furthermore, we use the sets JLoR and
ILoR to store the issuance indices and corresponding users that have been set during the first call to
the left-or-right oracle in the anonymity game.

Oracles. The oracles are as follows:

OHU+(i) takes input a user identity i. If i ∈ U, it returns ⊥. Otherwise, it creates a new honest user i
by running (USK[i], UPK[i])←R UserKeyGen(1κ), adding i to U and to HU and returning UPK[i].

OCU+(i, upk) takes input a user identity i and a user public key upk. If i ∈ U, it returns ⊥. Otherwise,
it creates a corrupted user i by adding i sets U and CU, and setting UPK[i]← upk.

OKU+(i) takes input a user identity i and corrupts it. If i 6∈ HU or i ∈ ILoR, it returns ⊥. Otherwise,
it reveals the secret key and all credentials of user i by returning USK[i] and CRED[j] for all j with
I2U[j] = i. It removes i from HU and adds it to KU.

OObtIss(i, A) takes input a user identity i and a set of attributes A. If i 6∈ HU, it returns ⊥. Otherwise,
it issues a credential to i by running

(cred,>)←R (Obtain(USK[i], opk, A), Issue(UPK[i], osk, A)) .

If cred = ⊥, it returns ⊥. Else, it appends (i, cred, A) to (I2U, CRED, ATTR) and returns >.

OObtain(i, A) lets the adversary, who impersonates a dishonest organization, issue a credential to an
honest user. It takes input a user identity i and a set of attributes A. If i 6∈ HU, it returns ⊥.
Otherwise, it runs

(cred, ·)←R (Obtain(USK[i], opk, A), · ) ,

where the Issue part is executed by the adversary. If cred = ⊥, it returns ⊥. Else, it appends
(i, cred, A) to (I2U, CRED, ATTR) and returns >.

OIssue(i, A) lets the adversary, who impersonates a malicious user, obtain a credential from an honest
organization. It takes input a user identity i and a set of attributes A. If i 6∈ CU, it returns ⊥.
Otherwise, it runs

(·, I)←R ( · , Issue(UPK[i], osk, A)) ,
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where the Obtain part is executed by the adversary. If I = ⊥, it returns ⊥. Else, it appends
(i,⊥, A) to (I2U, CRED, ATTR) and returns >.

OShow(j, A′) lets the adversary play a dishonest verifier in a showing by an honest user. It takes input
an index of an issuance j and a set of attributes A′. Let i ← I2U[j]. If i 6∈ HU, it returns ⊥.
Otherwise, it runs

(S, ·)←R (Show(opk, ATTR[j], A′, CRED[j]), · ) ,

where the Verify part is executed by adversary.

OLoR(j0, j1, A
′) is the challenge oracle in the anonymity game where the adversary must distinguish

(multiple) showings of two credentials CRED[j0] and CRED[j1]. The oracle takes two issuance indexes
j0 and j1 and a set of attributes A′. If JLoR 6= ∅ and JLoR 6= {j0, j1}, it returns ⊥. Let i0 ← I2U[j0]
and i1 ← I2U[j1]. If JLoR = ∅ then it sets JLoR ← {j0, j1} and ILoR ← {i0, i1}. If i0, i1 6∈ HU or
A′ 6⊆ ATTR[j0] ∩ ATTR[j1], it returns ⊥. Else, it runs

(S, ·)←R (Show(opk, ATTR[jb], A
′, CRED[jb]), · ) ,

(with b set by the experiment) where the Verify part is executed by the adversary.

Using the global variables and oracles just defined, we now define security of an ABC system:

Definition 24 (Correctness). An ABC system is correct, if for all κ > 0, all t > 0 and all A with
0 < |A| ≤ t and all ∅ 6= A′ ⊆ A it holds that:

Pr


(osk, opk)←R OrgKeyGen(1κ, 1t),
(usk, upk)←R UserKeyGen(1κ),
(cred,>)←R (Obtain(usk, opk, A),

Issue(upk, osk, A))

:
(>, 1)←R (Show(opk, A, A′, cred),

Verify(opk, A′))

 = 1 .

Definition 25 (Unforgeability). An ABC system is unforgeable, if for all t > 0 and all PPT adver-
saries A having oracle access to O := {OHU+ ,OCU+ ,OKU+ ,OObtIss,OIssue,OShow} there is a negligible
function ε(·) such that

Pr

 (osk, opk)←R OrgKeyGen(1κ, 1t),
(A′, st)←R AO(opk),
(·, b∗)←R (A(st),Verify(opk, A′))

:
b∗ = 1 ∧
∀j : I2U[j] ∈ KU ∪ CU

⇒ A′ 6⊆ ATTR[j]

 ≤ ε(κ) .

Definition 26 (Anonymity). An ABC system is anonymous, if for all t > 0 and all PPT adver-
saries A having oracle access to O := {OHU+ ,OCU+ ,OKU+ ,OObtain,OShow,OLoR} there is a negligible
function ε(·) such that

Pr

[
b←R {0, 1}, (opk, st)←R A(1κ, 1t),
b∗←R AO(st)

: b∗ = b

]
− 1

2
≤ ε(κ) .

5.3 Intuition of Our Construction

Our construction of ABCs is based on SPS-EQ, on set commitments with subset openings and on a
single constant-size proof of knowledge for guaranteeing freshness. In contrast to this, the complexity
of proofs of knowledge in existing ABC systems [Bra00, CL01, CL03, CL04, CL11, CL13] is linear in
the number of shown (or even issued) attributes. However, aside from selective disclosure of attributes,
they usually allow to prove statements about non-revealed attribute values, such as AND, OR and
NOT, interval proofs, as well as conjunctions and disjunctions of the aforementioned. We achieve
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less expressiveness; our construction supports selective disclosure as well as AND statements about
attributes (as the constructions in [CL11, CL13, CDHK15], of which only the latter also achieves
constant-size showings). A user can thus either open some attributes and their corresponding values
or solely prove that some attributes are encoded in the respective credential without revealing their
concrete values. Note that one can always associate sets of values to attributes, so that users are
not required to reveal the full attribute value, but only predefined “statements” about the attribute
value, e.g. “01.01.1980”,“> 16”, or “> 18” for an attribute label birthdate. This allows emulation
of proving properties about attribute values.

Example. To give an idea of the expressiveness of our construction, we include an example of an
attribute set A. We are given a user with the following set of attribute and value strings:

A = {“gender, male”, “birthdate, 01.01.1980”, “drivinglicense,#”, “drivinglicense, car”} .

Note that # indicates an attribute value that allows to prove the possession of the attribute without
revealing any concrete value. A showing could, for instance, involve the following attributes A′ and
its hidden complement A \ A′:

A′ = {“gender, male”, “drivinglicense,#”}
A \ A′ = {“birthdate, 01.01.1980”, “drivinglicense, car”} .

Outline. We assume attributes to be values from Zp and note that we can define attributes of
arbitrary format by using a collision-resistant hash function H : {0, 1}∗ → Zp. In our construction
a credential cred of user i consists of a group element C, a scalar r ∈ Zp∗, a modified opening O′

of C (not containing the attributes) and an SPS-EQ signature σ on (C, r · C,P ). The element C is
a set commitment to a set of attributes A ⊂ Zp, whose randomness is the user secret usk (thus, its
opening O′ contains usk or the commitment trapdoor a, if a ∈ A). Additionally, the user performs a
ZKPoK ΠRUK(upk) to prove knowledge of usk, which allows us to extract usk for corrupted users in
the proof of unforgeability. This use of usk is important to achieve anonymity (omitting usk in our
construction would immediately break anonymity).

The values C and r define an equivalence class [(C, r · C,P )]R that is unique for each credential
with overwhelming probability. The scalar r and the third credential component are required to prove
unforgeability. During a showing, a random representative of this class, (C1, C2, C3)←R [(C, r·C,P )]R,
together with a consistently updated signature σ′ is presented. The randomized commitment C1

is then subset-opened to the shown attributes A′ ⊆ A (representing selective disclosure). Hence,
showings additionally include a witness W and a verifier checks whether the encodings of the disclosed
attributes and W give a valid subset opening of C1. In order to guarantee freshness, the prover also
performs a constant-size ZKPoK of the discrete logarithm of C2 to base C1 (i.e., the randomness r)
and the discrete logarithm of C3 to base P (the randomizer used for obtaining (C1, C2, C3) from
(C, r · C,P )).

Freshness. We have to guarantee that no valid showing transcript can be replayed by someone
not in possession of the credential. To do so, we require the user to conduct an (interactive) proof
of knowledge PoK{β : C3 = βP} of the discrete logarithm of the third component C3 = µP of
a shown credential cred′ = ((C1, C2, C3), σ

′), i.e., the randomizer µ used in the showing protocol.
This guarantees that we have a fresh challenge for every showing. For the unforgeability reduction,
we have the user additionally prove knowledge of r = logC1

C2 by conducting a proof of knowledge
PoK{α : C2 = αC1}. We use the compact notation ΠRF(C1, C2, C3) for the AND-composition of
both proofs, i.e., ΠRF(C1, C2, C3) := PoK{(α, β) : C2 = αC1 ∧ C3 = βP}.
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Malicious Organization Keys. In contrast to anonymity notions usually considered for ABC, our
model guarantees anonymity even against adversaries that generate the organization keys maliciously.
Our construction is in the standard model and organization public keys consist of an SPS-EQ public
key pk and the set commitment parameters ppsc. We augment the issuing protocol sketched above
and let the (malicious) organization prove knowledge of a secret key that is consistent with its public
key (this allows us to extract the signing key in the anonymity proof).

For an SPS-EQ scheme SPS-EQ we define an NP-relation RVK, whose statements and witnesses
are public and private keys, i.e.: (pk, sk) ∈ R′VK ⇐⇒ VKeyR(sk, pk) = 1. In our proof of anonymity
we also need to extract the set commitment trapdoor a ∈ Zp, so we augment the above relation to:

((aP, pk), (w1, w2)) ∈ RVK ⇐⇒ (aP = w1P ∧ VKeyR(w2, pk) = 1) ,

where aP is from the set commitment parameters ppsc contained in opk. For compactness, we use
the notation ΠRVK(opk) and require the proof to be a perfect zero-knowledge proof of knowledge.

ZKPoKs and Concurrent Security. We will consider all ZKPoKs in a black-box way. They
can be efficiently instantiated using, e.g., the 4-move ZKPoK proof systems from [CDM00], which is
based on Σ-protocols and features rewindable black-box access to the verifier.

Note however that the ZKPoKs from [CDM00] are not concurrently secure and so neither is any
instantiation of Scheme 2 using them. Thus, each organization, each user and each verifier must not
run more than one protocol execution at once. In Section 5.6, we will discuss a concurrently secure
scheme variant in the CRS model.

5.4 The Construction of the ABC System

Our ABC system is based on any perfectly adapting structure-preserving signature scheme on equiv-
alence classes SPS-EQ and the set-commitment scheme SC from Section 4.2 (which we are going to
modify slightly) and is described in Scheme 2. In particular, since the organization public key is fully
determined by the adversary (for malicious-key anonymity), we assume the bilinear group generation
algorithm of SPS-EQ and the one inside the set commitment setup algorithm to be deterministic4,5

and produce the same bilinear group for each security parameter. We will base our proofs on assump-
tions that are modified accordingly, i.e., that are with respect to a deterministic BGGen producing
the same bilinear group for each security parameter.

Modified Set Commitment Algorithms. For the sake of a modular presentation, we use custom
variants of the set commitment algorithms Commit and OpenSubset of scheme SC, denoted by Commit′

and OpenSubset′.
Commit′ gives partial control over the randomness ρ used during the computation of the commit-

ment and returns a modified opening not containing the set. In particular, it returns a commitment
with randomness ρ if a 6∈ S and a uniformly random commitment otherwise.

Commit′(pp, S, ρ): On input pp = (BG, (aiP, aiP̂ )i∈[t]), a set S ⊂ Zp, 0 < |S| ≤ t, and a scalar ρ ∈ Zp∗:
– If for some a′ ∈ S: a′P = aP , output C←R G∗1 and short opening O′ ← (1, a′). (as in Commit

except for not including S in O′)
– Else compute C ← ρ · fS(a)P ∈ G∗1 and output (C,O′) with O′ ← (0, ρ). (using ρ from the

input instead of drawing it internally)

4 This is for example the case for BN-curves [BN06], the most common choice for Type-3 pairings.
5 Hence, the only randomness used by the set commitment setup algorithm is the one used for picking the commitment

trapdoor. Inside OrgKeyGen, we will make this randomness explicit.
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OrgKeyGen(1κ, 1t): Given κ, t > 0, pick a←R Zp, run ppsc = (BG, (aiP, aiP̂ )i∈[t]) ← Setup(1κ, 1t; a), run

(sk, pk)←R KeyGenR(BG, 1`) for ` = 3 and return (osk, opk)← ((a, sk), (ppsc, pk)).

UserKeyGen(1κ): Given security parameter κ > 0, run BG← BGGenR(1κ), pick usk←R Zp∗, set upk← usk·P
and return (usk, upk).

(Obtain, Issue): UsingΠRVK
(
opk = ((BG, (aiP, aiP̂ )i), pk)

)
:= PoK

{
(α,β) : αP = aP∧VKeyR(β, pk) = 1

}
and ΠRUK(upk) := PoK{α : αP = upk}, Obtain and Issue interact as follows:

Obtain(usk, opk, A) Issue(upk, osk, A)

If A = ∅ ∨ A 6⊂ Zp ∨ |A| > t, return ⊥ If A = ∅ ∨ A 6⊂ Zp ∨ |A| > t, return ⊥

BG← BGGenR(1κ) ΠRUK(upk)
←−−−−−−−→→ If ΠRUK(upk) fails, return ⊥

←
ΠRVK(opk)
←−−−−−−−→

If ΠRVK(opk) fails, return ⊥
(C,O′)←R Commit′(ppsc, A, usk)

r←R Zp∗, R← r · C C,R−−−−−−−−−→ If e(C, P̂ ) 6= e(upk, fA(a)P̂ ) and

∀a′ ∈ A : a′P 6= aP then return ⊥
If VerifyR((C,R, P ), σ, pk) = 0

σ←−−−−−−−−− Else σ←R SignR((C,R, P ), sk)

return ⊥
Else return cred← (C, σ, r,O′)

(Show,Verify): Using ΠRF(C1, C2, C3) := PoK{(α, β) : C2 = αC1 ∧ C3 = βP}, Show and Verify interact

as follows:

Show(opk, A, A′, cred) Verify(opk, A′)

Let cred = (C, σ, r,O′); µ←R Zp∗ Let opk = (ppsc, pk)

cred′←R ChgRepR((C, r · C,P ), σ, µ, pk)

If cred′ = ⊥, return ⊥
Let cred′ = ((C1, C2, C3), σ′)

W ← OpenSubset′(ppsc, C1, (O
′, A), µ, A′) cred′,W−−−−−−−−−−−→

ΠRF(C1, C2, C3)
←−−−−−−−−−→→ If ΠRF(C1, C2, C3) fails, return 0

Return
(
VerifyR(cred′, pk) ∧
VerifySubset(ppsc, C1, A

′,W )
)

Fig. 2. Scheme 2, a multi-show ABC system

We adapt OpenSubset′ to deal with rerandomized commitments (taking input an original opening).

OpenSubset′(pp, C,O, µ, T ): On input pp = (BG, (aiP, aiP̂ )i∈[t]), commitment C, opening O, scalar
µ ∈ Zp∗ and a set T , let S ← Open(pp, µ−1 · C,O). If S = ⊥, T * S or T = ∅ then output ⊥.
(contrary to OpenSubset, Open is being run on µ−1 · C instead of C)
– If O = (1, a′, S): if a′ ∈ T , return W ← ⊥; else return W ← fT (a′)−1 ·C. (as in OpenSubset)
– If O = (0, ρ, S), output W ← µ · ρ · fS\T (a)P . (W gets additionally multiplied by µ)
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Optimizations. Note that the first move in the showing protocol can be combined with the first
move of ΠRF , meaning the showing protocol consists of a total of 4 moves, when using 4-move
ZKPoKs. Furthermore, note that issuing can be made more efficient with regard to both communi-
cation complexity and computational effort, as osk contains set commitment trapdoor a: instead of
using a paring to check C for consistency, the issuer can compute it herself as C ← fA(a) · upk. (We
wrote our scheme so that a is never used and ppsc can then be moved to public parameters in the
concurrently secure variant discussed below.)

5.5 Security

The correctness of Scheme 2 follows by inspection. In Appendix B, we formally prove the following.

Theorem 7. Let ΠRF, ΠRUK and ΠRVK be ZKPoKs. If the t-co-DL assumption holds, SC is subset-
sound and SPS-EQ is EUF-CMA-secure then Scheme 2 is unforgeable.

Theorem 8. Let ΠRF, ΠRUK and ΠRVK be ZKPoKs. If the SPS-EQ has a class-hiding message space
and perfectly adapts signatures then Scheme 2 is anonymous.

5.6 A Concurrently Secure Scheme Variant

We now sketch a more efficient and concurrently secure variant of our scheme, which uses public
parameters. Damg̊ard [Dam00] proposes a generic transformation of any Σ-protocol for an arbitrary
NP-relation R into a 3-move concurrent ZKPoK (without any timing constraints), under the as-
sumption of one-way functions and using a CRS. By introducing a setup algorithm and replacing the
ZKPoKs used in our construction with those from [Dam00] (the statements proven stay the same),
we obtain an ABC that is concurrently secure in the CRS model (and, in particular, anonymous
under malicious organization keys in the CRS model) and uses four moves during issuing and only
three moves during showing (when interleaving the ZKPoK moves with the other protocol moves).

The introduction of system parameters pp further allows us to move the set-commitment param-
eters from the organization keys to pp, which reduces the size of organization public keys.

5.7 Efficiency Analysis and Comparison

We provide a brief comparison with other ABC approaches. As other candidates for multi-show ABCs,
we consider the Camenisch-Lysyanskaya schemes [CL01, CL03, CL04] as well as schemes from BBS+

signatures [BBS04, ASM06], which cover a broad class of ABC schemes from randomizable signature
schemes with efficient proofs of knowledge. Furthermore, we look at two alternative multi-show ABC
constructions [CL11, CL13] as well as Brands’ approach [Bra00] (also covering the provable secure
version [BL13]) for the sake of completeness, although the latter only provides one-show ABCs. We
omit other approaches such as [AMO08] that only allow a single attribute per credential. We also
omit approaches that achieve more efficient showings for existing ABC systems only in very special
cases such as for attribute values that come from a very small set (and are, thus, hard to compare).6

Finally, we also include the recent approach in [CDHK15] that has the same asymptotic parameter
sizes as our approach. They achieve security in the UC framework [Can01], but consequently far less
efficient constructions in a concrete setting. Their approach is equally expressive as ours (selective
disclosure), but additionally supports pseudonyms and context-specific pseudonyms for showings.

6 For instance, the approach in [CG12] for CL credentials in the strong-RSA setting (encoding attributes as prime
numbers) or in a pairing-based setting using BBS+ credentials [SNF11] (encoding attributes using accumulators)
where the latter additionally requires very large public parameters (one F -secure BB signature [BCKL08] for every
possible attribute value).
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Table 1. Comparison of various approaches to ABC systems.

Scheme Parameter Size (L attr.) Issuing Showing (k-of-L attr.) MK P
Setting CRS Credential Size Issuer User Comm Verifier User Comm

[CL03] sRSA O(L) O(1) 3|ZN | O(L) O(L) O(L) O(L) O(L) O(L−k) × r

[CL04] Type-1 O(L) O(L) (2L+ 2)|G1| O(L) O(L) O(L) O(L) O(L) O(L) × r

[BBS04] Type-2 O(L) O(1) |G1|+ 22|Zq| O(L) O(L) O(1) O(L) O(L) O(L) × r

[CL11] Type-2 O(1) O(L) L|G1|+ 1|G2| O(L) O(L) O(L) O(L) O(1) O(1) × s

[CL13] XDH O(L) O(L) (2L+ 2)(1|G1|+ 1|Zp|) O(L) O(L) O(L) O(k) O(k) O(k) × s

[Bra00] Gq O(L) O(1) 2|Gq|+ 2|Zq| O(L) O(L) O(1) O(k) O(k) O(L−k) × r

[CDHK15] SXDH O(L) O(1) 6|G1|+ 2|G2|+ 1|Zp| O(L) O(L) O(1) O(k) O(L− k) O(1) ◦ s

Scheme 2 SXDH × O(1) 3|G1|+ 1|G2|+ 2|Zp| O(L) O(L) O(1) O(k) O(L− k) O(1) X s

For our comparison in Table 1 we take their most efficient instantiation (which does not provide
secret key extractability) and note that our showings require less than 10 group elements (when
instantiated with Scheme 1 and the ZKPoK protocol from [CDM00]), whereas the cheapest variant
in [CDHK15] requires around 100 group elements.

Table 1 gives an overview of these systems, where Type-1 and Type-2 refer to the type of bilinear
group; in a stronger sense, XDH and SXDH requires the respective assumption to hold. Furthermore,
Gq denotes a group of prime order q (e.g., a subgroup of large order q of Zp∗ or an elliptic curve group
of order q). By |G|, denote the bitlength of the representation of an element from group G, by MK
we indicate whether anonymity (privacy) holds with respect to maliciously generated issuer keys and
by P we indicate whether the schemes support selective disclosure (s) or also proving relations about
attributes (r). We note that ◦ indicates that the most efficient construction from [CDHK15] used in
Table 1 does not consider malicious keys, while the other less efficient ones in [CDHK15] do.

We emphasize that, in contrast to other approaches, such as [CL04, CL13], our construction only
requires a small and constant number of pairing evaluations in all protocol steps. We stress that the
model introduced in [CKL+14] allows to instantiate constructions, for instance based on [CL03], that
can deal with malicious organization keys (although at the cost of efficiency).

6 Future Work

Some challenging issues with respect to SPS-EQ remain open. Primarily, the construction of an
instantiation secure in the standard model (or CRS model) that relies on simple assumptions and
perfectly adapts signatures (under malicious keys) is an open problem. A first step was done in
[FHS15], which give a standard-model construction of SPS-EQ under a q-type assumption, but
which only provides a weaker form of privacy. Furthermore, it is an interesting question whether
such signatures when built for other more general equivalence relations yield alternative and further
applications.
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A Security of Scheme 1

Here, we prove the security of Scheme 1, that is, its correctness and EUF-CMA security.

A.1 Proof of Theorem 1 (Correctness)

We have to show that for all κ ∈ N, all ` > 1, all choices of bilinear groups BG←R BGGenR(1κ), all
choices of key pairs (sk, pk)←R KeyGenR(BG, 1`), all M ∈ (G∗1)` and all µ ∈ Zp∗ the following holds:

VKeyR(sk, pk) = 1 ∧
VerifyR

(
M,SignR(M, sk), pk; y

)
= 1 ∀ y ∈ Zp∗ ∧

VerifyR
(
ChgRepR(M,SignR(M, sk; y), µ, pk; ψ), pk

)
= 1 ∀ y, ψ ∈ Zp∗ .

KeyGenR(BG, 1`) returns sk← (xi)i∈[`]←R (Zp∗)` and pk← (xiP̂ )i∈[`], which shows the first equation.

SignR(M, sk; y) returns Z = y
∑

i∈[`] xiMi, Y = 1
yP and Ŷ = 1

y P̂ . Plugging this into the first
relation in VerifyR, we get

e(Z, Ŷ ) = e
(
y
∑

i∈[`] xiMi,
1
y P̂
)

= e
(∑

i∈[`] xiMi, P̂
)y· 1

y =
∏
i∈[`] e(xiMi, P̂ ) =

∏
i∈[`] e(Mi, X̂i) .

Since e(Y, P̂ ) = e( 1yP, P̂ ) = e(P, 1y P̂ ) = e(P, Ŷ ), the second verification equation is also satisfied.

Finally, ChgRepR
(
M, (Z = y

∑
i∈[`] xiMi, Y = 1

yP, Ŷ = 1
y P̂ ), µ, pk; ψ

)
outputs µM and

σ′ =
(
ψµZ, 1

ψY,
1
ψ Ŷ
)

=
(
ψy
∑

i∈[`] xiµMi,
1
ψ

1
yP,

1
ψ

1
y P̂
)
,

which is the same as SignR(µM, sk; (ψy)), and thus verifies by correctness of SignR. ut
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A.2 Proof of Theorem 2 (Unforgeability)

In the generic-group model an adversary only performs generic group operations (operations in G1,
G2 and GT , pairings and equality tests) by querying the respective group oracle.

We first consider the messages submitted to the signing oracle and the forgery output by the
adversary as formal multivariate Laurent polynomials whose variables correspond to the secret values
chosen by the challenger, and show that an adversary is unable to symbolically produce an existential
forgery (even when message elements are adaptively chosen). Then, in the second part we show that
the probability for an adversary to produce an existential forgery by chance is negligible.

The values chosen by the challenger in the unforgeability game, which are unknown to the ad-
versary, are x1, . . . , x` used in the public keys (X̂i)i∈[`] ∈ (G∗2)` and the values yj , j ∈ [q], picked for
the j-th signature, that is, when the j-th signing query for a message (Mj,i)i∈[`] is answered as

(Zj , Yj , Ŷj) = (yj
∑

i∈[`] xiMj,i,
1
yj
P, 1

yj
P̂ ) .

When outputting a forgery (Z∗, Y ∗, Ŷ ∗) for a message (M∗i )i∈[`], the elements the adversary has

seen are (Zj , Yj)j∈[q] in G1, and (Ŷj)j∈[q] as well as (X̂i)i∈[`] in G2. The forgery must thus have been
computed by choosing

πz, πy, πŷ, πm∗,i, ρz,j , ρy,j , ρm∗,i,j , ψy,j , ψŷ,j , ψm∗,i,j , χŷ,i ∈ Zp for j ∈ [q] and i ∈ [`]

and setting

Z∗ = πzP +
∑
j∈[q]

ρz,jZj +
∑
j∈[q]

ψz,jYj Y ∗ = πyP +
∑
j∈[q]

ρy,jZj +
∑
j∈[q]

ψy,jYj

Ŷ ∗ = πŷP̂ +
∑
i∈[`]

χŷ,iX̂i +
∑
j∈[q]

ψŷ,j Ŷj M∗i = πm∗,iP +
∑
j∈[q]

ρm∗,i,jZj +
∑
j∈[q]

ψm∗,i,jYj

Similarly, for all j ∈ [q] the message (Mj,i)i∈[`] submitted in the j-th query is computed as a linear
combination of all the G1 elements the adversary has seen so far, that is,

P,Z1, Y1, . . . , Zj−1, Yj−1 .

By considering all these group elements and taking their discrete logarithms to the bases P and P̂ ,
respectively, we obtain the following linear combinations:

z∗ = πz +
∑
j∈[q]

ρz,jzj +
∑
j∈[q]

ψz,j
1

yj

y∗ = πy +
∑
j∈[q]

ρy,jzj +
∑
j∈[q]

ψy,j
1

yj

ŷ∗ = πŷ +
∑
i∈[`]

χŷ,ixi +
∑
j∈[q]

ψŷ,j
1

yj

m∗i = πm∗,i +
∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

mj,i = πm,j,i +
∑

k∈[j−1]

ρm,j,i,kzk +
∑

k∈[j−1]

ψm,j,i,k
1

yk
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Observe that all message elements as well as the elements Y ∗, Ŷ ∗ of the forgery must be different from
0G1 and 0G2 , respectively, by definition. Plugging the forgery into the verification relations yields:∏

i∈[`]

e(M∗i , X̂i) = e(Z∗, Ŷ ∗) ∧ e(Y ∗, P̂ ) = e(P, Ŷ ∗)

and taking discrete logarithms to the basis e(P, P̂ ) in GT , we obtain the following equations:∑
i∈[`]

m∗ixi = z∗ŷ∗ (6)

y∗ = ŷ∗ (7)

The valuesm∗i , z
∗, ŷ∗, y∗ are multivariate Laurent polynomials of total degreeO(q) in x1, . . . , x`, y1, . . . ,

yq. Our further analysis will be simplified by the following fact.

Claim 1. For all n ≥ 1, the monomials that constitute zn have the form

1

ybs

∏
k∈[t]

yjk
∏
k∈[t]

xik (8)

with 1 ≤ t ≤ n; for all k1 6= k2: jk1 6= jk2; for all k: jk ≤ n ∧ s < jk; jt = n; and b ∈ {0, 1}.

Proof. We prove the claim by induction on n.

n = 1: As before the first signing query, the only element from G1 available to the adversary is P ,
we have m1,i = πm,1,i and therefore

z1 =
∑
i∈[`]

πm,1,iy1xi ,

which proves the base case.
n→ n+ 1: Assume for all k ∈ [n] the monomials of all zk are of the form in (8). Since

mn+1,i = πm,n+1,i +
∑

k∈[n] ρm,n+1,i,kzk +
∑

k∈[n] ψm,n+1,i,k
1
yk

,

by the definition of SignR we have

zn+1 =
∑
i∈[`]

πm,n+1,i yn+1xi +
∑
i∈[`]

∑
k∈[n]

ρm,n+1,i,k yn+1zkxi +
∑
i∈[`]

∑
k∈[n]

ψm,n+1,i,k yn+1
1

yk
xi . (9)

The monomials in the first and the last sum are as claimed in the statement. By the induc-
tion hypothesis any monomial contained in any zk is of the form 1

ybs

∏
p∈[t] yjp

∏
p∈[t] xip , with

t ≤ n, jt = k and s < jp for all jp as well as jp < k, for all jp with p < t (which are all
different). Each such monomial leads thus to a monomial in the 2nd sum in (9) of the form
1
ybs

(
yn+1

∏
p∈[t] yjp

)(
xi
∏
p∈[t] xip

)
= 1

ybs

∏
p∈[t′] yjp

∏
p∈[t′] xip , with t′ := t+ 1 ≤ n+ 1, jt′ := n+ 1,

it+1 := i. Moreover t′ ≤ n+ 1, all jp are still different and ≤ n and s < jp for all jp, which proves
the induction step.

Together this proves the claim. ut

We will in particular use that by Claim 1 in any monomial in zk there are always exactly as many
y’s as x’s in the numerator and there are at least one y and one x; moreover there is at most one y
in the denominator (and which does not cancel down). Moreover, we have:
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Corollary 1. Any monomial can only occur in one unique zn.

Proof. This is implied by Claim 1 as follows: For any monomial, let i∗ be maximal such that the
monomial contains yi∗ . Then the monomial does not occur in zn with n > i∗, since zn contains yn
contradicting maximality. It does not occur in zn with n < i∗ either, since all yj contained in zn have
j ≤ n, meaning yi∗ does not occur in zn; a contradiction. ut

We start by investigating Equation (7):

y∗ = ŷ∗

πy +
∑
j∈[q]

ρy,jzj +
∑
j∈[q]

ψy,j
1

yj
= πŷ +

∑
i∈[`]

χŷ,ixi +
∑
j∈[q]

ψŷ,j
1

yj

By equating coefficients, and taking into account that by Claim 1 no zj contains monomials of the
form 1, xi, or 1

yj
, we obtain ρy,j = 0 for all j ∈ [q] and

(i) πŷ = πy
(ii) χŷ,i = 0 ∀i ∈ [`]

(iii) ψŷ,j = ψy,j ∀j ∈ [q]

Let us now investigate Equation (6) (where in ŷ∗ we replace πŷ, χŷ,i and ψŷ,j as per (i), (ii) and (iii),
respectively): ∑

i∈[`]

m∗ixi = z∗ŷ∗

∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

(
πz +

∑
j∈[q]

ρz,jzj +
∑
j∈[q]

ψz,j
1

yj

)(
πy +

∑
k∈[q]

ψy,k
1

yk

)
= πzπy +

∑
j∈[q]

ρz,jπy zj +
∑
j∈[q]

(
ψz,jπy + πzψy,j

) 1

yj
+
∑
j∈[q]

∑
k∈[q]

ρz,jψy,k
1

yk
zj +

∑
j∈[q]

∑
k∈[q]

ψz,jψy,k
1

yjyk

Equating coefficients for 1, we get:

(iv) πzπy = 0

Since by Claim 1, no terms in zjxi, zj and 1
yk
zj are of the form 1

yj
or 1

yjyk
, equating coefficients for

1
yj

and 1
yjyk

yields:

(v) ψz,jπy + πzψy,j = 0 ∀j ∈ [q]
(vi) ψz,jψy,k = 0 ∀j, k ∈ [q]

By (iv)–(vi), we have simplified Equation (6) to the following:∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

∑
j∈[q]

ρz,jπy zj +
∑
j∈[q]

∑
k∈[q]

ρz,jψy,k
1

yk
zj . (10)

Let us analyze the monomials contained in the zj ’s. By (8) in Claim 1, there is an equal number of y’s
and x’s in numerators of such monomials. Therefore, on the LHS the number of x’s in all monomials
is always greater than that of y’s, meaning monomials of type (8) only occur on the RHS of (10).

We now show that ρz,nπy zn = 0 for all n ∈ [q]. Assume that for some n ∈ [q] this is not the case.
Since none of the monomials in zn can appear on the LHS and by Corollary 1, they do not appear in
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any other zi, i 6= n, zn must be subtracted by a term contained in 1
yk
zj for some j, k ∈ [q]. The term

in this zj must not have yk in the numerator, as otherwise it would cancel down and the number of
y’s and x’s would be different, meaning it would not correspond to any monomial in zn (which are
of the form (8)). This also means that any monomial contained in zn (in the first sum on the RHS)
must have yk in the denominator if it is to be equal to a term in 1

yk
zj .

Next, we observe that monomials in zn can only be equal to terms in 1
yk
zj if j = n. This is because

the maximal i∗ with yi∗ appearing in zn would be different for any other zj , j 6= n (cf. the proof
of Corollary 1). But this means that any monomial in zn, which by the above must have yk in the
denominator, also occurs in the zn in the double sum, yielding a term with y 2

k in the denominator.
Since this cannot occur anywhere else in the equation by Corollary 1, we arrived at a contradiction.
We have thus:

(vii) ρz,jπy zn = 0 ∀j ∈ [q]

Equation (6) has now the following, simplified representation:∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi =

∑
j∈[q]

∑
k∈[q]

ρz,jψy,k
1

yk
zj (11)

From Claim 1 we have that every monomial of zj has an equal number of y’s and x’s in the numerator;
for all monomials of the LHS we thus have: (number of y’s) = (number of x’s)− 1. For such a term
to occur on the RHS, this has to be a monomial N in zj that has yk in the numerator, so it cancels
down and leads to a term with more x’s than y’s. We show that this must be zk, that is, we show
that ρz,jψy,k = 0 for all j 6= k.

First this holds for k > j, since the “largest” y contained in zj is yj and thus yk does not cancel.
Second for k < j, let us assume that there is at least one pair of coefficients ρz,jψy,k 6= 0 with k < j.
Observe that 1

yk
zj on the RHS still contains yj as “largest” y-value (by Claim 1). The monomials

composing 1
yk
zj do thus only occur in zj on the LHS, thus ρm∗,i,j 6= 0 for some i ∈ [`]. Thus the

monomial N from zj on the RHS which contains yk also occurs on the LHS. However, as by Claim 1
every y occurs only once in every monomial, after canceling out yk from zj no yk remains in N on
the RHS. As however, yk is present in the corresponding monomial in zj on the LHS, there is no
corresponding term on the RHS. A contradiction. We thus obtain:

(viii) ρz,jψy,k = 0 ∀j, k ∈ [q], j 6= k

Since the RHS of (11) cannot be 0 (otherwise all m∗i on the LHS would be 0, which is not a valid
forgery), we have:

(ix) ∃ k ∈ [q] : ρz,kψy,k 6= 0

We now argue that there exists exactly one such k, which follows from the following basic fact:

Claim 2. Let a, b ∈ Zqp be two non-zero vectors. If C = a · b> is a diagonal matrix then at most one
element in C is non-zero.

Proof. C is diagonal, so rank(C) = #(non-zero rows in C) = #(non-zero elements in C). From basic
linear algebra we have rank(a) = rank(b>) = 1 and rank(C) ≤ min{rank(a), rank(b>)} = 1. ut

Applying this to C := (ρz,j)j∈[q] · (ψy,k)>k∈[q], which by (viii) and (ix) is a non-zero diagonal matrix,

we get that all but one element of the diagonal (ρz,kψy,k)k∈[q] are zero, that is:

(x) ∃!n ∈ [q] : ρz,nψy,n 6= 0
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By (viii) and (x), Equation (6) simplifies to

∑
i∈[`]

(
πm∗,i +

∑
j∈[q]

ρm∗,i,jzj +
∑
j∈[q]

ψm∗,i,j
1

yj

)
xi = ρz,nψy,n

1

yn
zn

= ρz,nψy,n
∑
i∈[`]

mn,ixi

= ρz,nψy,n
∑
i∈[`]

(
πm,n,i +

∑
j∈[n−1]

ρm,n,i,jzj +
∑

j∈[n−1]

ψm,n,i,j
1

yj

)
xi ,

where in the 2nd line we substituted zn by its definition, namely yn
∑

k∈[`]mn,kxk, and in the 3rd line

we replaced mn,i by its definition. Since by Claim 1, xi, zjxi and 1
yj
xi, for all i ∈ [`], j ∈ [q], do not

have common monomials, equating coefficients yields (with α := ρz,nψy,n):

πm∗,i = απm,n,i ρm∗,i,j = αρm,n,i,j ψm∗,i,j = αψm,n,i,j

This finally means that the message for the forgery is just a multiple of the previously queried
message Mn, which completes the first part of the proof.

It remains to show that the probability that an adversary produces an existential forgery by
“accident”, i.e., that two formally different polynomials collide by evaluating to the same value
(or, equivalently, that the difference polynomial evaluates to zero), is negligible. Suppose that the
adversary makes q queries to the signing oracle and O(q) queries to the group oracles. Then, all
involved formal polynomials resulting from querying the group oracles are of degree O(q) and overall
there are O(

(
q
2

)
) = O(q2) polynomials that could collide (i.e. whose difference polynomial evaluates

to zero). Then, by the Schwartz-Zippel lemma and the collision argument, the probability of such

an error in the simulation of the generic group is O( q
3

p ) and is, therefore negligible in the security
parameter. ut

B Security of Scheme 2

B.1 Proof of Theorem 7 (Unforgeability)

In the proof of unforgeability we distinguish whether the adversary wins the game by forging a
signature, breaking subset-opening soundness of the commitment scheme or computing a discrete
logarithm. We can efficiently determine which was the case since the knowledge extractor of the
ZKPoK ΠRF lets us extract the credential used by the adversary.

Proof. We first introduce the following syntactic changes to the experiment, which let us distinguish
different types of forgeries: (1) We include the value R in credentials cred output by Obtain (these
belong to honest users and are now of the form cred = ((C,R), σ, r, O′)). (2) When the adversary
makes a valid call to OIssue, the experiment receives the values C,R and produces a signature σ;
instead of appending ⊥ to the list CRED, the oracle now appends ((C,R), σ,⊥,⊥). Note that the
adversary’s view in the experiment remains unchanged.

Assume now an efficient adversary A wins the unforgeability game (Definition 25) with non-
negligible probability and let ((C∗1 , C

∗
2 , C

∗
3 ), σ∗) be the message-signature pair it uses and W ∗ be the

witness for an attribute set A′∗ 6⊆ ATTR[j], for all j with I2U[j] ∈ KU ∪ CU; moreover, the ZKPoK
ΠRF(C∗1 , C

∗
2 , C

∗
3 ) verifies. We distinguish the following cases:
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Type 1: [(C∗1 , C
∗
2 , C

∗
3 )]R 6= [(C,R, P )]R for ((C,R), σ, ∗, ∗) = CRED[j] for all issuance indexes j (i.e.,

I2U[j] ∈ HU ∪ KU ∪ CU). The pair ((C∗1 , C
∗
2 , C

∗
3 ), σ∗) is thus a signature forgery and using A we

construct an adversary B that breaks the EUF-CMA security of the SPS-EQ scheme.
Type 2: [(C∗1 , C

∗
2 , C

∗
3 )]R = [(C,R, P )]R where ((C,R), σ, ∗, ∗) = CRED[j] for some index j with

I2U[j] ∈ KU∪CU. Since A only wins if A′ 6⊆ ATTR[j], it must have broken subset soundness. We use
A to construct an adversary B that breaks subset soundness of the set-commitment scheme SC.

Type 3: [(C∗1 , C
∗
2 , C

∗
3 )]R = [(C,R, P )]R where ((C,R), σ, r, O′) = CRED[j] for some index j with

I2U[j] ∈ HU. Then, we use A to break q-co-DLP.

Type 1. This reduction is straightforward. B interacts with a challenger C in the EUF-CMA game
for SPS-EQ and B simulates the ABC-unforgeability game for A.
C runs (sk, pk)←R KeyGenR(BG, 13) and gives pk to B. Then, B picks a←R Zp, defines ppsc ←

(BG, (aiP, aiP̂ )i∈[t]) and sets (osk, opk) ← ((a,⊥), (ppsc, pk)). It next runs A(opk) and simulates the
environment and the oracles. All oracles are as in the real game, except for the following oracles,
which use the signing oracle instead of the signing key sk:

OObtIss(i, A): B computes (C,′O)←R Commit′(ppsc, A, USK[i]), chooses r←R Zp∗ and queries its oracle
SignR(·, sk) on (C, r ·C,P ) to obtain σ; B appends (i, ((C, r ·C), σ, r, O′), A) to (I2U, CRED, ATTR).

OIssue(i, A): B runs this oracle by running the simulator S of ZKPoK ΠRVK(opk) (as it does not know
sk = osk[2]), and instead of signing (C,R, P ), B obtains the signature σ from C’s signing oracle.
If successful, B appends (i, ((C,R), σ,⊥,⊥), A) to (I2U, CRED, ATTR) and returns >.

Note that by perfect zero-knowledge of ΠRVK(opk) the simulation of OIssue is perfect, and so is that of
OObtIss. When A outputs (A′∗, st), B runs A(st) and interacts with A as verifier in a showing protocol.
If A delivers a valid showing using ((C∗1 , C

∗
2 , C

∗
3 ), σ∗) and conducting ΠRF(C∗1 , C

∗
2 , C

∗
3 ) then B runs

the knowledge extractor of ΠRF to obtain a witness w = (r′′, µ) with C∗3 = µP . If there is a credential
⊥ 6= ((C ′, R′), σ′, ∗, ∗) ∈ CRED such that (C ′, R′, P ) = µ−1 · (C∗1 , C∗2 , C∗3 ) then B aborts. (In this case,
the forgery is not of Type 1.) Otherwise, B has never queried a signature for class [(C∗1 , C

∗
2 , C

∗
3 )]R

and outputs ((C∗1 , C
∗
2 , C

∗
3 ), σ∗), which is a forgery. B breaks thus EUF-CMA of SPS-EQ.

Type 2. B interacts with the challenger C in the subset-soundness game for SC for some t > 0. First, C
generates set-commitment parameters ppsc ← (BG, (aiP, aiP̂ )i∈[t]) with BG = (p,G1,G2,GT , e, P, P̂ )
= BGGenR(1κ) and sends ppsc to B. B generates a key pair (sk, pk)←R KeyGenR(BG, 13), sets (osk, opk)
← ((⊥, sk), (ppsc, pk)) and runs A(opk), simulating the oracles. All oracles are as in the real game,
except for OObtIss, in which B simply ignores the first two moves, and OIssue, which is simulated as
follows (as B does not know a = osk[1]):

OIssue(i, A): The oracle is simulated as prescribed except for running the simulator for ΠRVK(opk).
When A conducts ΠRUK(upk), B runs the extractor for ΠRUK to extract usk and sets USK[i]← usk.

By perfect zero-knowledge of ΠRVK(opk) the simulation of the oracle OIssue is perfect. Moreover, note
that B stores the secret keys of all users (all i ∈ HU ∪ KU ∪ CU).

When A outputs (A′∗, st), B runs A(st) and interacts with A as verifier in a showing protocol.
Assume A delivers a valid showing using ((C∗1 , C

∗
2 , C

∗
3 ), σ∗) and a witness W ∗ for the attribute set

A′∗ such that A′∗ 6⊆ ATTR[j] for all j with I2U[j] ∈ KU ∪ CU and by conducting ΠRF(C∗1 , C
∗
2 , C

∗
3 ).

Then B runs the knowledge extractor of ΠRF to obtain a witness w = (r′′, µ) such that C∗3 = µP .
Let (C ′, R′, P ) = µ−1 · (C∗1 , C∗2 , C∗3 ); if there is no credential ⊥ 6= ((C ′, R′), ∗, ∗, ∗) ∈ CRED then
B aborts (the forgery was of Type 1). Otherwise, let j∗ be such that ((C ′, R′), ∗, ∗, ∗) = CRED[j∗].
If I2U[j∗] ∈ HU then B aborts (the forgery was of Type 3). Else, we have I2U[j∗] ∈ KU ∪ CU and
A′∗ * ATTR[j∗]. If for some a′ ∈ ATTR[j∗] : a′P = aP then B sets O∗ ← (1, a′, ATTR[j∗]). Else, B sets
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O∗ ← (0, µ · USK[I2U[j∗]], ATTR[j∗]). B outputs (C∗1 , O
∗, A′∗,W ∗), which satisfies A′∗ 6⊆ ATTR[j∗] 6= ⊥

and VerifySubset(ppsc, C
∗
1 , A
′∗,W ∗) = 1. B’s output breaks thus subset soundness of SC.

Type 3. We assume the forgery to be of Type 3 and use a sequence of games which are indistin-
guishable under q-co-DL. Henceforth, we denote the event that an adversary wins Game i by Si.

Game 0: The original game, which only outputs 1 if the forgery is of Type 3.

Game 1: As Game 0, except for the following oracles:

OObtIss(i, A): As in Game 0, except that the experiment aborts if set commitment trapdoor a ∈ A.

OIssue(i, A): Analogous to OObtIss.

Game 0 → Game 1: If A queries a set A with a ∈ A to one of the two oracles then this breaks the
q-co-DL assumption for q = t and BG = BGGenR(1κ). Denoting by εqDL(κ) the advantage of solving
the q-co-DL assumption, we have thus

|Pr[S0]− Pr[S1]| ≤ εqDL(κ) . (12)

Game 2: As Game 1, with the difference that the oracle OShow is run as follows:

OShow(j, A′): As in Game 0, but the ZKPoK ΠRF(C1, C2, C3) is simulated.

Game 1 → Game 2: By the perfect zero-knowledge property of ΠRF , we have that

Pr[S1] = Pr[S2] . (13)

Game 3: As Game 2, except that oracle OHU+ is run as follows:

OHU+(i): As in Game 0, but when executing UserKeyGen(1κ), the experiment draws usk←R Zp instead
of usk←R Zp∗ and it aborts if usk = 0.

Game 2 → Game 3: Denoting by qu the number of queries to OHU+ , we have

|Pr[S2]− Pr[S3]| ≤ qu
p . (14)

Game 4: As Game 3, except that when A eventually delivers a valid showing by conducting
ΠRF(C∗1 , C

∗
2 , C

∗
3 ), the experiment runs the knowledge extractor of ΠRF and extracts a witness w.

Game 3 → Game 4: This change is only conceptual and we have

Pr[S3] = Pr[S4] . (15)

Game 5: As Game 4, except that we pick an index k←R [qo], where qo is the number of queries
to OObtIss. The extracted witness w is such that w = (r, µ) ∈ (Zp∗)2 and C∗2 = rC∗1 and C∗3 = µP
and if credential ((C ′, R′), σ′, r′, O′)← CRED[k] is such that (C ′, R′, P ) 6= µ−1 · (C∗1 , C∗2 , C∗3 ) then the
experiment aborts. Furthermore, we change the executions of the following oracle:

OKU+(i): As in Game 0, except that the experiment aborts when i = I2U[k].

Game 4 → Game 5: Note that when the forgery is of Type 3 then there exists some j s.t. for
CRED[j] = ((C ′, R′), σ′, r′, O′) we have (C ′, R′, P ) = µ−1 · (C∗1 , C∗2 , C∗3 ); moreover, I2U[j] ∈ HU. With
probability 1

qo
we have k = j, in which case the experiment does not abort, i.e., we have

Pr[S5] ≥ 1
qo

Pr[S4] . (16)

We will now show that Pr[S5] ≤ εDL(κ), where εDL(κ) is the advantage of solving the DLP. B
plays the role of the challenger for A in Game 5 and obtains a G1-DLP instance (BG, xP ) with BG =
(p,G1,G2,GT , e, P, P̂ ) = BGGenR(1κ), generates ppsc ← (BG, (aiP, aiP̂ )i∈[t]) by picking a←R Zp,
generates (sk, pk)←R KeyGenR(BG, 13) and sets (osk, opk)← ((a, sk), (ppsc, pk)). Then, B runs A(opk)
and simulates the oracles as in Game 5, except for OObtIss, whose simulation is as follows:
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OObtIss(i, A): Let this be the jth query. B first computes C ← USK[i] · fA(a) · P . If j = k then it sets
R ← USK[i] · fA(a) · xP (= x · C), O′ = (0, USK[i]) and appends cred = ((C,R), σ,⊥, O′) to CRED.
Otherwise B proceeds as in Game 5.

Note that since Game 2, the third component (r) of the credential is not required to simulate OShow

queries. When A outputs (A′∗, st) then B runs A(st) and interacts with A as verifier in a showing
protocol. If A wins Game 5 using (C∗1 , C

∗
2 , C

∗
3 ) and conducting ΠRF(C∗1 , C

∗
2 , C

∗
3 ) then B runs the

knowledge extractor of ΠRF and extracts a witness w = (r′, µ) ∈ (Zp∗)2 such that C∗2 = r′C∗1 and
C∗3 = µP . Further, we have that ((C ′, R′), σ′,⊥, O′) = CRED[k]. In the end, B outputs r′ as a solution
to the DLP in G1. We thus have

Pr[S5] ≤ εDL(κ) . (17)

Equations (12)–(17) together yield Pr[S0] ≤ qo · εDL(κ) + qu
p + εqDL(κ), where q = t and qo and

qu are the number of queries to OObtIss and OHU+ , respectively. ut

B.2 Proof of Theorem 8 (Anonymity)

The proof proceeds by defining a sequence of indistinguishable games in the last of which the answers
of oracle OLoR are independent of the bit b. Such an answer contains (C1, C2, C3), σ

′ and the proof
ΠRF(C1, C2, C3). We first replace the signature σ′ by a fresh signature (Game 2) and simulate the
proof ΠRF (Game 3). In Games 5 and 6 we replace C1 and C2 by random elements. Since C3 = µ·P for
µ←R Zp∗, in the final game the adversary receives a fresh signature σ′ on a random tuple (C1, C2, C3)
and a simulated proof, resulting in a game that is independent of b.

Proof. We assume that adversary A at some point calls OLoR for some (j0, j1, A
′) with both I2U[j0],

I2U[j1] ∈ HU. This is w.l.o.g., as otherwise the bit b is perfectly hidden from A. Henceforth, we denote
the event that an adversary wins Game i by Si.

Game 0: The original game as given in Definition 26.

Game 1: As Game 0, except for the oracle OObtain. On the first successful completion of the ZKPoK
ΠRVK(opk) (of which there must be at least one by the above assumption), the experiment runs the
knowledge extractor for ΠRVK , which extracts a witness (w1, w2).

Game 0 → Game 1: This change is only conceptual and we have Pr[S0] = Pr[S1].

Game 2: As Game 1, except that the experiment sets a ← w1 and sk ← w2 and runs OLoR as
follows:

OLoR(j0, j1, A
′): As in Game 0, except that all executions of ChgRepR((C, r·C,P ), σ, µ, pk) for creden-

tial (C, σ, r,O′)← CRED[jb] and µ←R Zp∗ are replaced by (µ ·(C, r ·C,P ), SignR(µ ·(C, r ·C,P ), sk)).

Game 1 → Game 2: By soundness of ΠRVK , we have VKeyR(sk, pk) = 1, and by perfect adaptation of
signatures of SPS-EQ (Definition 16), ChgRepR(M,σ, µ, pk) and (µM,SignR(µM, sk)) are identically
distributed for all M ∈ (G∗1)3. We thus have Pr[S1] = Pr[S2].

Game 3: As Game 2, except that the experiment runs OLoR as follows:

OLoR(j0, j1, A
′): As in Game 2, but the ZKPoK ΠRF(C∗1 , C

∗
2 , C

∗
3 ) is simulated.

Game 2 → Game 3: By perfect zero-knowledge of ΠRF , we have that Pr[S2] = Pr[S3] and thus

Pr[S0] = Pr[S1] = Pr[S2] = Pr[S3] . (18)

Game 4: As Game 3, except for the following changes. Let qu be (an upper bound on) the number of
queries made to OHU+ . At the beginning Game 4 picks k←R [qu] and runs OKU+ and OLoR as follows:
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OKU+(i): If i 6∈ HU or i ∈ ILoR, it returns ⊥ (as in the previous games). If i = k then the experiment
stops and outputs a random bit b′←R {0, 1}; otherwise it returns user i’s usk and credentials and
moves i from HU to KU.

OLoR(j0, j1, A
′): As in Game 3, except that if k 6= I2U[jb], the experiment stops outputting b′←R {0, 1}.

Game 3 → Game 4: By assumption, OLoR is called at least once with some input (j0, j1, A
′) with

I2U[j0], I2U[j1] ∈ HU. If k = I2U[jb] then OLoR does not abort and neither does OKU+ (it cannot
have been called on I2U[jb] before that call to OLoR (otherwise I2U[jb] /∈ HU), if called afterwards, it
returns ⊥, since k ∈ ILoR). Since k = I2U[jb] with probability 1

qu
, the probability that the experiment

does not abort is at least 1
qu

, and thus

Pr[S4] ≥ (1− 1
qu

)12 + 1
qu
· Pr[S3] . (19)

Game 5: As Game 4, except for OLoR:

OLoR(j0, j1, A
′): As in Game 4, except that in addition to µ←R Zp∗, it picks C1←R G∗1 and performs

the showing using cred′←R ((C1, r · C1, µ · P ), SignR((C1, r · C1, µ · P ), sk)), with r ← CRED[jb][3],
and W ← ⊥ (if a ∈ A′) or W ← fA′(a)−1 · C1 (if a /∈ A′).

Note that the only difference is the choice of C1; W is distributed as in Game 4, in particular, if
a /∈ A′, it is the unique element satisfying VerifySubset(pp, C, A′,W ).

Game 4 → Game 5: Let (BG, xP, yP, zP ) be a DDH instance with BG = BGGenR(1κ). After ini-
tializing the environment, the simulation initializes a list L ← ∅. The oracles are simulated as in
Game 4, except for the subsequent oracles, which are simulated as follows:

OHU+(i): As in Game 4, but if i = k it sets USK[i] ← ⊥ and UPK[i] ← xP . (We have thus implicitly
set usk← x.)

OObtain(i, A): As in Game 4, except for the computation of the following values if i = k. Let this be
the jth call to this oracle. If a /∈ A, it computes C as C ← fA(a) · xP and sets L[j]← ⊥. If a ∈ A

it picks ρ←R Zp∗, computes C as C ← ρ · xP , sets L[j]← ρ and simulates the ZKPoK ΠRUK(upk)
(by the perfect ZK property of ΠRUK(upk) the simulation is perfect). (In both cases C is thus
distributed as in the original game.)

OShow(j, A′): As in Game 4, with the difference that if I2U[j] = k and a 6∈ A′ it computes the witness
W ← µfA\A′(a) · xP . (W is thus distributed as in the original game.)

OLoR(j0, j1, A
′): As in Game 4, with the following difference. Using self-reducibility of DDH, it picks

s, t←R Zp and computes Y ′ ← t · yP + sP = y′P with y′ ← ty + s, and Z ′ ← t · zP + s · xP =
(t(z − xy) + xy′)P . (If z 6= xy then Y ′ and Z ′ are independently random; otherwise Z ′ = y′X.)
It performs the showing using the following values (implicitly setting µ← y′):

– If a 6∈ ATTR[jb]: C1 ← fA(a) · Z ′ and W ← fA′(a)−1 · C1;

– If a ∈ ATTR[jb] and a 6∈ A′: C1 ← ρ · Z ′ with ρ← L[jb] and W ← fA′(a)−1 · C1;

– If a ∈ A′: C1 ← ρ · Z ′ with ρ← L[jb] and W ← ⊥;

C2 ← r · C1, C3 ← Y ′ and r ← CRED[jb][3].

Apart from an error event happening with negligible probability, we have simulated Game 4 if the
DDH instance was “real” and Game 5 otherwise. If xP = 0G1 , or if during the simulation of OLoR it
occurs that Y ′ = 0G1 or Z ′ = 0G1 then the distribution of values is not as in one of the two games.
Otherwise, we have implicitly set usk← x and µ← y′ (for a fresh value y′ at every call of OLoR). In
case of a DDH instance, we have (depending on the case) C1 ← uskµfA(a)·P (or C1 = ρ·xµ·P = µ·C);
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otherwise C1 is independently random. Letting εDDH(κ) denote the advantage of solving the DDH
problem and ql the number of queries to the OLoR, we have

|Pr[S4]− Pr[S5]| ≤ εDDH(κ) + (1 + 2ql)
1
p . (20)

Game 6: As Game 5, except for OLoR:

OLoR(j0, j1, A
′): As in Game 5, except that in addition to µ and C1 it also picks C2←R G∗1 and performs

the showing using cred′←R ((C1, C2, µ · P ),SignR((C1, C2, µ · P ), sk)) and W as in Game 5.

Game 5 → Game 6: Let (BG, xP, yP, zP ) be a DDH instance with BG = BGGenR(1κ). After ini-
tializing the environment, the simulation initializes a list L ← ∅. The oracles are simulated as in
Game 5, except for the subsequent oracles, which are simulated as follows:

OObtain(i, A): As in Game 5, except for the computation of the following values if i = k. Let this be
the jth call to this oracle. It first picks u←R Zp and sets X ′ ← xP +u ·P and L[j]← u. If a /∈ A, it
computes C ← fA(a) ·USK[i] ·P and R← fA(a) ·USK[i] ·X ′. If a ∈ A, it picks ρ←R Zp∗ and computes
C ← ρ ·P and R← ρ ·X ′. In both cases it sets r ← ⊥ (r is implicitly set to r ← x′ := x+ u and
C and R = r · C are distributed as in the original game; unless X ′ = 0G1). Note that, since the
ZKPoK in OShow is simulated, r is not used anywhere in the game.

OLoR(j0, j1, A
′): As in Game 5, with the difference that it fetches u ← L[jb], picks s, t←R Zp and

computes Y ′ ← t · yP + s ·P = y′P with y′ ← ty+ s, and Z ′ ← t · zP + s ·xP +ut · yP +us ·P =
(t(z − xy) + x′y′)P . It picks µ←R Zp∗ and performs the showing using C1 ← Y ′, C2 ← Z ′ and
C3 ← µ · P . Witness W is computed from C1 as in the previous simulation.

Apart from an error event happening with negligible probability, we have simulated Game 5 if the
DDH instance was valid and Game 6 otherwise. If X ′ = 0G1 during the simulation of OObtain, or if
during the simulation of OLoR it occurs that Y ′ = 0G1 or Z ′ = 0G1 then the distribution of values
is not as in one of the two games. Otherwise, we have implicitly set r ← x′ (for a fresh value x′ at
every call of OObtain) and C1 ← Y ′ (for a fresh value Y ′ at every call of OLoR). In case of a DDH
instance, we have C2 = r ·C1 (as in Game 5); otherwise C2 is independently random (as in Game 6).
Letting εDDH(κ) denote the advantage of solving the DDH problem, and qo and ql be the number of
queries to OObtain and OLoR, respectively, we get

|Pr[S5]− Pr[S6]| ≤ εDDH(κ) + (qo + 2ql)
1
p . (21)

In Game 6 the OLoR oracle returns a fresh signature σ on a random triple (C1, C2, C3)←R (G∗1)3 and
a simulated proof; the bit b is thus information-theoretically hidden from A and we have Pr[S6] = 1

2 .
From this and Equations (21), (20), (18) and (19) we have

Pr[S5] ≤ Pr[S6] + εDDH(κ) + (qo + 2ql)
1
p = 1

2 + εDDH(κ) + (qo + 2ql)
1
p ,

Pr[S4] ≤ Pr[S5] + εDDH(κ) + (1 + 2ql)
1
p ≤

1
2 + 2 · εDDH(κ) + (1 + qo + 4ql)

1
p ,

Pr[S0] = Pr[S3] ≤ 1
2 + qu · Pr[S4]− 1

2 · qu ≤
1
2 + qu ·

(
2 · εDDH(κ) + (1 + qo + 4ql)

1
p

)
,

where qu, qo and ql are the number of queries to the OHU+ , OObtain and the OLoR oracle, respectively.
Assuming DDH, the adversary’s advantage is thus negligible. ut
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