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Abstract

This paper presents a new fast public key cryptosystem namely : a key exchange algorithm,
a public key encryption algorithm and a digital signature algorithm, based on a the difficulty to
invert the following function : F (X) = (A×X)Mod(2r)Div(2s) .
Mod is modulo operation , Div is integer division operation , A , r and s are known natural
numbers while (r > s) .
In this paper it is also proven that this problem is equivalent to SAT problem which is NP
complete .

Keywords : key exchange, public key encryption, digital signature, boolean satisfability problem,
NP complete .

1 Introduction :

Since its invention by Withfield Diffie and Martin Hellman, Public key cryptography has im-
posed itself as the necessary and indispensable building block of every IT Security architecture.
But in the last decades it has been proven that public key cryptosystems based on number the-
ory problems are not immune againt quantum computing attacks. The advent of low computing
ressources mobile devices such wirless rfid sensors, smart cellphones, ect has also put demands on
very fast and lightweight public key algorithms .
Public key cryptosystem presented in this paper is not based on number theory problems and is
very fast compared to Diffie-Hellman and RSA algorithms. It is based on the difficulty to invert
the following function : F (X) = (A×X)Mod(2r)Div(2s) .
Mod is modulo operation , Div is Integer division operation , A , r and s are known natural numbers
while (r > s) . In this paper we construct three public key algorithms based on this problem namely
a key exchange algorithm, a public key encryption algorithm and a digital signature algorithm.
We prove its efficiency compared to Diffie-Hellman and RSA, and that the problem which it is
based on is equivalent to SAT which is a NP complet problem .
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2 Secret key exchange algorithm :

Before exchanging a secret key, Alice and Bob shared a knowledge of :

Natural numbers [ l, m, p, q, M, D, Z ] satisfying following conditions :

q = l + m - p , p > m + q, M = 2p ,D = 2(m+q) , Z is l bits long.

To exchange a secret key :

- 1 Bob chooses randomly natural numbers [ X , r1 , r2 ]. X is m bits long wheras r1 and r2 are

q bits long. These numbers are a private knowledge of Bob.

- 2 Computes numbers : Rx = r1× 2p + r2 and U = X × Z + Rx , then sends U to Alice.

- 3 Alice chooses randomly natural numbers [ Y , r3 , r4 ]. Y is m bits long whereas r3 et r4

q bits long. These numbers are a private knowledge of Alice.

- 4 Computes numbers : Ry = r3× 2p + r4 and V = Y × Z + Ry , then sends V to Bob.

- 5 Bob computes number W = (X × V )Mod(M)Div(D).

- 6 Alice computes number W = (Y × U)Mod(M)Div(D).

The secrete key exchanged by Bob and Alice is the number :

W = (X × V )Mod(M)Div(D) = (Y × U)Mod(M)Div(D)

The size of W in bits is egal to p - ( m + q ).
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3 Public key encryption algorithm :

3.1 Encryption :

In order to send a encrypted message to Bob, Alice performs the following steps :

-1 She gots his public key composed by natural numbers [ l, m, p, q, M, D, Z, U ] , satisfying

conditions : q = l + m - p , p > m + q, M = 2p ,D = 2(m+q) , Rx = r1× 2p + r2

and U = X × Z + Rx , X is m bits long whereas r1 and r2 are q bits long.

- 2 She chooses randomly natural numbers [ Y, r3, r4 ] Y is m bits long whereas r3 and r4 are

q bits long.

- 3 She computes numbers Ry = r3× 2p + r4 and V = Y × Z + Ry, then the secret key

W = (Y × U)Mod(M)Div(D).

- 4 She encrypts with secret key W her plaintext and sends corresponding ciphertext

and number V to Bob.

3.2 Decryption :

In order to decrypt the ciphertext recieved from Alice, Bob performs the following steps :

- 1 From element X of his private key and number V recieved from Alice,

he computes secret key W = (X × V )Mod(M)Div(D).

- 2 With secret key W, he decrypts the ciphertext recieved from Alice.
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4 Digital signature Algorithm :

4.1 Signature :

In order to sign a Message Msg, Bob performs the following steps :

- 1 He chooses randomly natural numbers r3 and r4 wich are q bits long.

- 2 Computes Ry = r3× 2p + r4 .

- 3 Hashes Msg by a hash function HF and gets a digest H which length in bits is the same

as elements Z of his public key . From element X of his private key, he computes a signature

S = X ×H + Ry

- 4 Sends Message Msg and signature S to Alice.

4.2 Verification :

In order to verify that Message Msg is sent by Bob, Alice performs the following steps :

- 1 She gots his public key composed by natural numbers [ l, m, p, q, M, D, Z , U ] , satisfying

conditions : q = l + m - p , p > m + q, M = 2p ,D = 2(m+q) , Rx = r1× 2p + r2

and U = X × Z + Rx , X is m bits long whereas r1 and r2 are q bits long.

- 2 Hashes Msg by HF and gets a digest H which the length in bits is the same as Zs.

- 3 From digest H , signature S and the elements [ U, Z, M, D ] of Bob’s public key,

she computes two numbers Wx = (H×U)Mod(M)Div(D) and Wy = (Z×S)Mod(M)Div(D).

- 4 Compares Wx to Wy : Msg is sent by Bob if Wx = Wy
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5 Efficiency :

In comparaison to the standardised key exchange algorithms such as Diffie-Hellman in the multi-
plicatif group and RSA which needed in average N multiplications modulo operations to exchange
a secret key ( N being private key’s lenght ).
The key exchange algorithm presented in this paper needed just 4 multiplications ,
Meaning that presented public key cryptosystem is very fast and efficient compared to Diffie-
Hellman and RSA cryptosystems.

6 Security :

The Security of presented public key cryptosystem is based on the difficulty of finding X and Y
while knowing Z, p, q, U = (X × Z)Mod(2p)Div(2q) and V = (Y × Z)Mod(2p)Div(2q).

Puting it otherwise, it is based on the difficulty to invert the following function :

F (X) = (A×X)Mod(2p)Div(2q) = YMod(2p)Div(2q).

A, X, p and q are known natural numbers, while A and X are respectively n and m bits long,
(n > m) and (p > q) .

At first glance we can notice that it is easy to verify a solution but it is difficult to find one, implying
that this problem is in NP.

6.1 Proof of equivalence to SAT :

Let the binary representation of A be a(n)...a(i+1)a(i)...a(0).

The binary representation of X be x(m)...x(i+1)x(i)...x(0) .

The binary representation of Y be y(n+m)...y(i+1)y(i)...y(0) .

Y is the arithmetic product of A and X, our problem consists then on solving this system of equa-
tions :

If (q ≤ j ≤ m) :

yj = ((
j∑

i=0
a(j−i) × xi) + cj)Mod(2) and cj = ((

j−1∑
i=0

a(j−1−i) × xi) + cj−1)Div(2)
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If (m ≤ j ≤ n) :

yj = ((
j∑

i=j−m
a(j−i) × xi) + cj)Mod(2) and cj = ((

j−1∑
i=j−1−m

a(j−1−i) × xi) + cj−1)Div(2)

If (n ≤ j ≤ p) :

yj = ((
n∑

i=j−n
a(j−i) × xi) + cj)Mod(2) and cj = ((

n∑
i=j−1−n

a(j−1−i) × xi) + cj−1)Div(2)

cj is the retenue bit of multiplication product (Y = A×X) at column j.

Solving this system of equations is equivalent to find boolean values xi=0→m satisfying the following
logical functions :

cj = F (x(j−1), ..., x(k+1), x(k), ..., x0, c(j−1))

∧mj=q((⊕
j
i=0(a(j−i) ∧ xi)⊕ cj) = yj) = true

∧nj=m((⊕j
i=j−m(a(j−i) ∧ xi)⊕ cj) = yj) = true

∧pj=n((⊕n
i=j−n(a(j−i) ∧ xi)⊕ cj) = yj) = true

It’s known that every logical function can be converted into an equivalent formula that is in CNF,
proving that our problem is equivalent to the boolean satisfability problem which is NP Complete.
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7 Conclusion and open question :

In this paper we have presented a new fast public key cryptosystem based on the difficulty of in-
verting the following function : F (X) = (A×X)Mod(2r)Div(2s) .
Mod is modulo operation , Div is integer division operation , A , r and s are known natural numbers
while (r > s) .

We have proved its efficiency compared to Diffie Hellman and RSA cryptosystems. We have also
proved that its security is based on a new problem equivalent to SAT.
The fact that its security is not based on number theory problems is also a proof of its resistance
against quantum computing attacks.

The last decade have seen a enormous progress of SAT Solvers but they are still inefficient in solving
logical statements containg a lot of xors which is the case of our problem.

SAT is NP complete, meaning that solving it can take exponential time. It is has been found that
the hardest instances of a SAT problem depends on its constraindness which is defined as the ratio
of clauses to variables.

This lead us to ask what forms should have the natural numbers composing public parameters of
our PKCS in order to produce hard SAT instances even to a eventual SAT Solver that have not
problems with xor clauses.
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