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Abstract

When analyzing lattice based cryptosystems, we often need to solve the Shortest Vector
Problem (SVP) in some lattice associated to the system under scrutiny. The go-to algorithms
in practice to solve SVP are enumeration algorithms, which usually consist of a preprocessing
step, followed by an exhaustive search. Obviously, the two steps offer a trade-off and should
be balanced in their running time in order to minimize the overall complexity. In practice, the
most common approach to control this trade-off is to use block reduction algorithms during the
preprocessing. Despite the popularity of this approach, it lacks any well founded analysis and
all practical approaches seem to use ad hoc parameters. This weakens our confidence in the
cryptanalysis of the systems. In this work, we aim to shed light on at least one side of this
trade-off and analyze the effect of block reduction on the exhaustive search. For this, we give
asymptotic worst case bounds and presents results from both experiments and simulation that
show its average case behavior in practice.

1 Introduction

Lattice-based cryptography is a very active research area having attracted a lot of attention in
recent years. There are several reasons for this. On the one hand, lattice problems seem very useful
in the construction of new cryptographic primitives. For example, they have been used to construct
candidates for fully homomorphic encryption [12] and multi-linear maps [11], making significant
progress on long standing open problems in cryptography. Furthermore, since Ajtai showed in his
breakthrough work [2] a worst-case to average-case reduction for lattice problems, many primitives
have emerged that enjoy a strong security reduction, see for example [22, 3, 27, 20, 21, 13]. Finally,
lattices have been studied in mathematics and computer science for a long time and the hardness
of many associated problems is well understood by now. One of the most classical and prominent
problems of this kind is the Shortest Vector Problem (SVP). The SVP has been proved to be
NP-hard under randomized reductions [18, 23], and thus all known algorithms to solve it have a
(super-)exponential complexity. Unfortunately, these algorithms are not very well understood. This
is demonstrated by the recurring phenomenon that, as already pointed out in [9], asymptotically
fast algorithms are routinely outperformed in practice by algorithms having inferior theoretical
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bounds. One such example are block reduction algorithms (which actually approximate SVP,
rather than solve it). In theory, slide reduction [9] seems to offer the best trade-off between running
time and output quality, but is outperformed in practice by BKZ [28], as demonstrated in [10].
Such gaps between theory and practice weaken our confidence in the cryptanalysis of lattice based
cryptosystems and thus hinder a wide spread adoption in practice.

Another example for such a gap are exact SVP algorithms. Sieving [4, 5, 25] and Voronoi cell
based algorithms [24] are known to have a single exponential complexity, but they are hardly ever
used to solve SVP in practice, since they are outperformed by enumeration for all practically feasible
instances (see e.g. [26]), which is only known to have super exponential complexity in the worst case.
Even inside the class of enumeration algorithms, such gaps exist. For example, for a long time, we
only knew two kinds of enumeration algorithms that solve SVP: FinckePohst [8] (including a wide
range of heuristic variants) having a worst case complexity of 2O(n2), and Kannan’s algorithm [17]
with a complexity of nO(n). But again, the latter is outperformed by the former in practice.

All known enumeration algorithms consist of two phases: a preprocessing that prepares the
input, followed by an exhaustive search for the shortest vector. Roughly speaking, the exhaus-
tive search is the source of the inefficiency for these algorithms and the asymptotic superiority
of Kannan’s algorithm stems from a very heavy preprocessing, significantly reducing the search
space. However, it is also exactly this preprocessing that slows it down in practice, even though
asymptotically it is dominated by the search step. Only very recently it was shown how to reduce
this preprocessing step while keeping the search efficient [26]. On the other hand, it was already
pointed out in [16], that spending more time on the preprocessing than the FinckePohst algorithm
also makes sense in practice. To demonstrate this, a block reduction algorithm was used as the
preprocessing to speed up the exhaustive search. The parameter of the reduction algorithm that
controls the quality of the output can be used to trade off preprocessing time for a faster exhaus-
tive search. A similar approach is also used in [6] and represents the state of the art. Despite the
popularity of this method, to the best of our knowledge there is no well founded analysis of the
trade-off that can be achieved, and all practical approaches seem to use ad hoc parameters. In this
work, we aim to shed light on at least one side of this trade-off by building on techniques from
[26]: we show asymptotic bounds for the exhaustive search depending on the kind and parameter
of the approximation algorithm used as preprocessing. In particular, we show that the enumera-
tion complexity drops from 2O(n2) to βO(n2/β) when preprocessing the basis using block reduction
with parameter β. We also hint at implications these bounds have for the complexity of the entire
algorithm, but leave an in depth analysis for future work. Instead, we move on to the practical
side and show through a large set of experiments and simulations that in practice the exhaustive
search has a complexity qualitatively similar to the asymptotic bounds. We hope that this work
helps to further our understanding of lattice algorithms and to ultimately lead to a wider adoption
of lattice based cryptography in practice.

2 Preliminaries

Notation Numbers and reals are denoted by lower case letters and sets by upper case letters. For
n ∈ Z+ we denote the set {1, . . . , n} by [n]. For vectors we use bold lower case letters and the i-th
entry of a vector v is denoted by vi. Let 〈v,w〉 =

∑
i vi ·wi be the scalar product of two vectors, and

‖v‖ =
√
〈v,v〉 the standard Euclidean norm. We define the projection of a vector b orthogonally

to a vector v as πv(b) = b − 〈b,v〉‖v‖2 v. Matrices are denoted by bold upper case letters. The i-th
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column of a matrix B is denoted by bi. Furthermore, we denote the submatrix comprising the
columns from the i-th to the j-th column (inclusive) as B[i,j]. We extend the projection operator
to matrices, where πV(B) is the matrix obtained by applying πV to every column bi of B and
πV(bi) = πvk(· · · (πv1(bi)) · · · ).

Lattices A lattice Λ is a discrete subgroup of Rm and is generated by a matrix B ∈ Rm×n,
i.e. Λ = L(B) = {Bx : x ∈ Zn}. If B has full column rank, B is called a basis of Λ and
dim(Λ) = n is the dimension (or rank) of Λ. A lattice has infinitely many bases, which are related
to each other by right-multiplication with unimodular matrices. With each matrix B we associate
its Gram-Schmidt-Orthogonalization (GSO) B∗, where the i-th column b∗i of B∗ is defined as
b∗i = πB[1,i−1]

(bi) = πB∗
[1,i−1]

(bi) (and b∗1 = b1). For a fixed matrix B we extend the projection

operation to indices: πi(·) = πB∗
[1,i]

(·). Whenever we refer to the shape of a basis B, we mean the

vector (‖b∗i ‖)i∈[n].
For every lattice Λ there are a few invariants associated to it. One of them is its determinant

det(L(B)) =
∏
i ‖b∗i ‖ for any basis B. Even though the basis of a lattice is not uniquely defined,

the determinant is and it is efficiently computable given a basis. Furthermore, for every lattice
Λ we denote the length of its shortest non-zero vector (also known as the first minimum) by
λ1(Λ), which is always well defined. We use the short-hand notations det(B) = det(L(B)) and
λ1(B) = λ1(L(B)). Minkowski’s theorem is a classic result that relates the first minimum to the
determinant of a lattice. It states that λ1(Λ) ≤ √γn det(Λ)1/n, for any Λ with dim(Λ) = n, where
Ω(n) ≤ γn ≤ n is Hermite’s constant. Finding a (even approximate) shortest nonzero vector in
a lattice, commonly known as the Shortest Vector Problem (SVP), is NP-hard under randomized
reductions [18, 23].

Lattice Reduction Lattice reduction algorithms deal with the problem of obtaining a “good”
basis from an arbitrary basis for some notion of a “good” basis. The LLL algorithm [19] is a
polynomial time basis reduction algorithm that produces a basis B ∈ Zm×n such that δ‖b∗i ‖ ≤
λ1(πi−1(B[i,i+1])) for all i ∈ [n− 1] and some δ < 1 usually chosen close to 1.

BKZ-β [28] is a generalization of LLL to larger block size, i.e. it guarantees that the output basis
satisfies δ‖b∗i ‖ ≤ λ1(πi−1(B[i,min(i+β,n)])) for all i ∈ [n− 1] by utilizing a SVP oracle in dimension
β. When β = n, this is usually referred to as HKZ reduction and is essentially equivalent to solving
SVP. Using Minkowski’s theorem, one can prove the following bounds for b1 of a BKZ-β reduced
basis [15]:

‖b1‖ ≤ β
n−1
β−1λ1(B) (1)

‖b1‖ ≤ β
n−1

2(β−1)
+ 3

2 det(B)1/n (2)

Note that any prefix B[1,i] and any projection πi(B) of a BKZ-β reduced basis is also BKZ-β reduced.
Unfortunately, there is no polynomial bound on the number of calls BKZ makes to the SVP oracle,
but it has been repeatedly reported to behave very well in practice (see e.g. [10, 6]). Furthermore,
Hanrot, Pujol, and Stehlé showed in [15] that one can terminate BKZ after a polynomial number of
calls to the SVP oracle and provably achieve bounds only slightly worse than 1. For these reasons,
BKZ is very popular in practice and implementations are readily available in different libraries,
e.g. in NTL or fpLLL. As the dimension and block size of BKZ grows, running it becomes more
and more impractical. But since BKZ has also proved to be a very useful tool in the cryptanalysis

3



of lattice-based cryptosystems, one would like to predict its behavior for very large instances to
estimate the security of such systems. To this end, Chen and Nguyen introduced a BKZ simulator
[6] that, given as input the shape of a basis and an integer closely related to the number of SVP
calls, predicts the shape of the output of BKZ after the given number of calls to the oracle without
the need to run it, based on heuristic assumptions. It is straightforward to modify the simulator to
predict the output of BKZ by calling it repeatedly until no more change to the shape of the basis
is observed.

In [9], Gama and Nguyen introduced a different block reduction algorithm, namely slide reduc-
tion. Similar to BKZ, it is parameterized by a block size β and uses a SVP oracle in dimension β
to produce a basis with the following properties:

‖b1‖ ≤ β
n−β
β−1 λ1(B) (3)

‖b1‖ ≤ β
n−1

2(β−1) det(B)1/n (4)

Moreover, every prefix B[1,iβ] and every projection πiβ(B) is slide reduced and every projected
block πiβ(B[iβ+1,(i+1)β]) is HKZ reduced. Slide reduction has the desirable property of only making
a polynomial number of calls to the SVP oracle. Unfortunately, as reported in [9] and [10], it
seems to be outperformed by BKZ, despite providing better guarantees on output quality and
runtime. Not surprisingly, it is rarely used in practice and we are not aware of any publicly
available implementation.

Enumeration Algorithms The standard enumeration procedure, usually attributed to Fincke,
Pohst [8], and Kannan [17] can be described as a recursive algorithm: given as input a basis
B ∈ Zm×n and a radius r, it first recursively finds all vectors v′ ∈ Λ(π1(B)) with ‖v′‖ ≤ r, and
then for each of them finds all v ∈ Λ(B), s.t. π1(v) = v′ and ‖v‖ ≤ r, using b1. For each i ∈ [n],
the procedure introduces a multiplicative factor proportional to r/‖b∗i ‖ to its complexity. So the
complexity of the enumeration procedure depends on a) the upper bound r for the shortest vector
and b) the shape of the basis. In fact, Hanrot and Stehlé noticed in [16] that one can estimate the
complexity of enumeration based on the Gaussian heuristic by the quantity

E(r,B) = max
i∈[n]

πi/2ri

Γ(i/2 + 1)
∏
j≥n−i+1 ‖b∗i ‖

(5)

We remark that, as already pointed out in [6], this estimate is likely to overestimate the complexity,
since is does note take heuristics like dynamic radius updates etc. into account. So Equation (5)
should not be used as a precise prediction, but it is very useful to compare the expected complexity
of enumeration for different inputs.

The bound r is usually chosen to be either the first vector b1 of the basis or Minkowski’s bound.
The shape of the basis is determined by the preprocessing strategy and there is a trade-off between
preprocessing the basis and enumeration. The simplest approach, first proposed by Fincke and
Pohst [8], is to apply LLL to the input and then call the enumeration procedure. This algorithm
has a worst case complexity of 2O(n2). On the other hand, Kannan [17] proposed to use a much
heavier, recursive preprocessing: alternate the LLL reduction on B[1,2] and recurse on π1(B) until
no more change is observed. At this point the basis is often called quasi-HKZ reduced. Only then
call the enumeration procedure to find the shortest vector v and finally recurse on πv(B) to fully
HKZ reduce the basis (which is necessary for the recursive calls to make sense). It can be shown
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that this algorithm runs in at most O(nn/2e+o(n)) steps [16]. In theory, this is much better than
the bound obtained for FinckePohst, but the heavy preprocessing seems to kill the performance
in practice, so it is never used. It was only very recently, that a technique for interpolating both
algorithms was introduced [26], providing an easy method to trade off preprocessing time and
enumeration complexity. In practice, the most common approach at this point is to use block
reduction algorithms to preprocess the basis before enumeration (see e.g. [16, 6]), but to the best
of our knowledge there is no analysis of this approach and the parameter choice is usually ad hoc.

3 Worst-Case Analysis of Enumeration after Block Reduction

Consider an algorithm that reduces an input basis B using a block reduction algorithm with param-
eter β and then runs enumeration to find the shortest vector. We are interested in the complexity
of the enumeration step depending on the parameter β.

3.1 A Naive Attempt

As a warm up we will show how a simple analysis could go and argue why this result is not
satisfactory. Assume for now that the enumeration bound is chosen to be r = ‖b1‖ and that
‖b1‖ & ‖b∗i ‖ for all i ∈ [n] (which is true under a common heuristic assumption, namely the
Geometric Series Assumption [29]). In this case, enumeration can be bounded by the quantity∏

i

‖b1‖
‖b∗i ‖

One can easily show (see e.g. [7], Theorem 1) for BKZ-β reduced bases that

‖b1‖ ≤ β
log β+1

2
(1+ 1−1

β−1
)‖b∗i ‖ ≈ 2(i log

2 β)/2β‖b∗i ‖

which results in a bound for enumeration of 2(n
2/4β) log2 β. While already showing that there is at

least an improvement of (log2 β)/β as compared to FinckePohst (which corresponds to the case of
β = 2), this bound seems to be too rough. Consider the algorithm with parameter β = n − 1. In
this case, it has a striking similarity to Kannan’s algorithm: Recall that Kannan’s algorithm can
be viewed as alternately calling a SVP oracle on B[1,2] and an HKZ oracle (instantiated with a
recursive call) on π1(B). The only difference between this kind of preprocessing and BKZ-(n− 1)
is that the latter alternates between calling an SVP oracle on B[1,n−1] and a HKZ oracle π1(B).
So a BKZ-(n− 1) reduced basis is also quasi-HKZ reduced and thus strictly stronger reduced than
after Kannan’s preprocessing. In particular, the enumeration complexity should not be larger than
for Kannan’s algorithm, which we know to be O(nn/2e+o(n)). However, plugging β = n− 1 into the
bound we obtained above, we see that the complexity is bounded by nO(n logn), which is off by a
factor log n in the exponent. It follows that the analysis could be improved by at least that factor.

We remark that we do not believe that BKZ-(n−1) is a suitable preprocessing for enumeration
since it is even more expensive than quasi-HKZ reduction and can be expected to be at least as
impractical.

3.2 ζ-Reducedness of Block Reduction

Our analysis of the enumeration builds on the framework recently introduced in [26], namely ζ-
reduction. We recall the corresponding definition.
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Definition 1 ([26]) Let B ∈ Zm×n be a lattice basis1 and ζ : [n]→ R+. We call B ζ-reduced, if
for all i ∈ [n]

‖b∗i ‖ > ζ(i) det(B)1/n ⇒ λ1(πi−1(B)) > λ1(B)

and B[1,k] is ζ-reduced for all k ∈ [n− 1].

In [26] it was proved that using the ζ-reducedness of a basis we can bound the enumeration
step:

Theorem 1 ([26]) Let B ∈ Zm×n be a ζ-reduced basis with ζ(i) ≥
√
n for all i ∈ [n]. Then there

is an efficiently computable set M ⊂ Zn with |M | ≤ 3n
∏n
i=1 ζ(i) such that there is a vector x ∈M

with ‖Bx‖ = λ1(B).

It follows that in order to bound the enumeration on BKZ reduced bases, it suffices to analyze
the ζ bounds that BKZ achieves. This is exactly what the following lemma does.

Lemma 1 If B ∈ Zm×n is BKZ-β reduced then it is ζ-reduced with ζ(i) = β
n−1

2(β−1)
+ 3

2 .

Proof We prove the contrapositive and assume λ1(πi(B)) ≤ λ1(B). Since πi(B) and B[1,i−1]
are BKZ-β reduced, we have

‖b∗i ‖ ≤ β
n−i

(β−1)λ1(πi(B)) ≤ β
n−i

(β−1)λ1(B) ≤ β
n−i

(β−1) ‖b1‖ ≤ β
n−i

(β−1)β
i−2

2(β−1)
+ 3

2 det(B[1,i−1])
1/(i−1)

and so

‖b∗i ‖i−1 ≤ β
(i−1)(n−i)

(β−1)
+

(i−1)(i−2)
2(β−1)

+ 3
2
(i−1)

det(B[1,i−1])

By (2) we also have ‖b∗i ‖n−i+1 ≤ β
(n−i)(n−i+1)

2(β−1)
+ 3

2
(n−i+1)

det(πi(B)). Multiplying those two bounds
and doing some arithmetic gives

‖b∗i ‖n ≤ β
(i−1)(n−i)

(β−1)
+

(i−1)(i−2)
2(β−1)

+
(n−i)(n−i+1)

2(β−1)
+ 3

2
n

det(B) ≤ β
n(n−1)
2(β−1)

+ 3
2
n

det(B)

2

Using Theorem 1 we can easily deduce a runtime bound for the enumeration step.

Corollary 1 Given a BKZ-β reduced basis B ∈ Zm×n, enumeration can solve the SVP in Λ(B)

in β
n(n−1)
2(β−1)

+ 3
2
n
2O(n).

For β = 2 (FinckePohst) and β = n−1 (≈ Kannan) we get the expected bounds up to constants
in the exponent. Other values for β interpolate the two algorithms offering an improvement in
the exponent of the dominating factor of FinckePohst of about log(β)/β. Up to constants in
the exponent, this proves that the enumeration step after BKZ is as efficient as after Kannan’s
preprocessing as long as β = O(n).

1In [26] the definition covers arbitrary generating systems, not just bases. In this work however, we only consider
bases, so we slightly simplified the definition accordingly.
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Although rarely used in practice, we now also show how to apply ζ-reduction to slide reduced
bases, which leads to slightly improved results.

Lemma 2 If B ∈ Zm×n is slide reduced with parameter β the k-th projected block πkβ(B[kβ+1,(k+1)β])
is ζ-reduced for

ζ(kβ < i ≤ (k + 1)β) = β
n−1

2(β−1)
+ β
β−1
− kβ2

n(β−1)

Proof As before, we assume λ1(πi(B)) ≤ λ1(B). We start by showing the lemma for the first
vector ‖b∗i ‖ of the block. In this case B[1,i−1] and πi(B) are also slide reduced and we can apply
the same approach as for BKZ:

‖b∗i ‖ ≤ β
n−i−β
(β−1) λ1(πi(B)) ≤ β

n−i−β
(β−1) λ1(B) ≤ β

n−i−β
(β−1) ‖b1‖ ≤ β

n−i−β
(β−1) β

i−2
2(β−1) det(B[1,i−1])

1/(i−1)

and so

‖b∗i ‖i−1 ≤ β
(i−1)(n−i−β)

(β−1)
+

(i−1)(i−2)
2(β−1) det(B[1,i−1])

By (4) we also have ‖b∗i ‖n−i+1 ≤ β
(n−i)(n−i+1)

2(β−1) det(πi(B)). Again, multiplying those two bounds
gives

‖b∗i ‖n ≤ β
(i−1)(n−i−β)

(β−1)
+

(i−1)(i−2)
2(β−1)

+
(n−i)(n−i+1)

2(β−1) det(B) ≤ β
n(n−1)−2β(i−1)

2(β−1) det(B) (6)

which implies ‖b∗i ‖ ≤ β
n−1

2(β−1) det(B)1/n and shows the result for the first vector of each block,

because β
β−1 ≥

kβ2

n(β−1) and so ζ(i) ≥ β
n−1

2(β−1) .

We now generalize to arbitrary i. Let j = (k + 1)β + 1, i.e. the start of the next block. If
λ1(πj(B)) > λ1(πi(B)) then the shortest vector in πi(B) is in πi(B[i,j−1]) and ‖b∗i ‖ = λ1(πi(B)),

because πi(B[i,j−1]) is HKZ reduced. It follows that ‖b∗i ‖ is ζ-reduced for all ζ(i) ≥
√
n ≤ β

n−1
2(β−1) .

Now let λ1(πj(B)) ≤ λ1(πi(B)). Then by assumption λ1(πj(B)) ≤ λ1(πi(B)) ≤ λ1(B), so (6) holds
for b∗j . Utilizing the fact that πi(B[i,j−1]) is HKZ reduced and πi+1(B[i+1,j]) is DSVP reduced, we

easily deduce by Minkowski’s theorem that ‖b∗i ‖ ≤ κ
κ
κ−1 ‖b∗j‖ where κ = j − i. Putting this and

(6) together, we get:

‖b∗i ‖ ≤ κ
κ
κ−1 ‖b∗j‖ ≤ β

β
β−1β

n(n−1)−2β(j−1)
2n(β−1) det(B)1/n ≤ β

n−1
2(β−1)

+ β
β−1
− kβ2

n(β−1) det(B)1/n

2

Again, using Theorem 1, we obtain a bound on the runtime of enumeration on slide reduced
bases.

Corollary 2 Given a β-slide reduced basis B ∈ Zm×n, enumeration can solve the SVP in Λ(B) in

β
n(n−1)
2(β−1)

+
(n−β)

2 2O(n).

Proof The corollary follows from a short sequence of equations:

n/β∏
k=1

ζ((k−1)β+1)β = β
n(n−1)
2(β−1)

+ nβ
β−1
− β3

n(β−1)

∑n/β
k=1 k = β

n(n−1)
2(β−1)

+ nβ
β−1
−nβ+β

2

2(β−1) = β
n(n−1)
2(β−1)

+
β(n−β)
2(β−1) ≈ β

n(n−1)
2(β−1)

+
(n−β)

2
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2

Not surprisingly, due to the better bounds achieved on ‖b∗1‖, slide reduction yields a stronger
ζ-reduction and thus improves the bound on the enumeration. However, plugging β = n − 1 into
the bound2 shows that the bound is still worse than the one for Kannan, but only by a factor 1/e.
We leave it as an interesting open question if one can achieve such a bound for block reduced bases.

Remark Recall that block reduction algorithms use a SVP oracle in dimension β. Obviously, we
can use recursive calls to our enumeration algorithm (including block reduction) to implement this
oracle. In the case of BKZ we can use the slightly worse bound obtained in [15] instead of Equation
(1). This will give us worse constants in the exponents, but has the advantage that the number
of (top level) recursive calls during the preprocessing is polynomially bounded, which bounds the
overall number of recursive calls by nO(n). This proves that using the algorithm proposed in [15]
combined with ζ-reduction, SVP can be solved by block reduction and enumeration in nO(n) steps
by setting β = O(n). Alternatively, we can use slide reduction instead of BKZ to achieve a similar
result. To the best of our knowledge, such a bound was only known for Kannan’s algorithm and
the recent variant in [26], up to this point.

4 Performance in Practice

In this section we present experimental results that indicate that the bound obtained in Section 3
for BKZ is not only of theoretical nature, but that the average case hardness of enumeration on
block reduced bases can be expected to follow similar bounds (with smaller constants) in practice.

All experiments and simulations were performed on random lattices in the sense of Goldstein
and Mayer [14] with numbers of bit length 10n, where n is the lattice dimension. In order to
demonstrate that the enumeration follows qualitatively similar bounds in practice, we use the

model β
a
n(n−1)
(β−1)

+bn
2cn, where n is the lattice dimension, β the block size of BKZ, and a, b, and c

are parameters. We fit the model to our data using standard statistical methods and show that it
is indeed a good fit.

4.1 Experiments

We used NTLs BKZ algorithm to reduce the input lattice of dimension n with varying parameter β,
after which we called it again using β = n to HKZ reduce the lattice (which is essentially equivalent
to finding the shortest vector). We only measure the running time of the second call as the goal
of this article is to explore the effect the reducedness has on the final enumeration. In order to
obtain results in larger dimensions we set NTLs pruning parameter to 10. Still, the algorithm has its
limits (both, the BKZ preprocessing and the final HKZ reduction) and we were only able to obtain
meaningful results for n ≤ 85 and 5 ≤ β ≤ 55. We used the model for fixed n and fitted it to the
data obtained by the experiments (where each data point is the average over 20 random lattices).
Figure 1 shows exemplary results for n = 75 and n = 85, respectively. The results demonstrate that
for fixed dimension n the running time of enumeration in practice closely follows the theoretical
worst-case bound up to constants in the exponents. Curiously, the exponents for the closest curve
vary for different dimensions - an issue, we will address later.

2Technically, this choice of parameter is not possible for slide reduction as it requires β|n. But plugging in this
value should give a good estimation of how tight the bound is by comparison with Kannan’s algorithm.
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Figure 1: Runtime of HKZ reduction after BKZ-β reduction
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Figure 2: Estimated runtime of enumeration (in nodes) after simulated BKZ-β reduction

4.2 Simulation

As the experiments in the previous section are somewhat limited in scale due to resource constraints,
we reverted to simulation to obtain data in larger dimensions. Specifically, we generated random
lattices in dimension n ∈ {100, 110, . . . , 400} and LLL reduced them using NTL. Then we used
the BKZ simulator for each lattice to compute the expected shape of a BKZ-β reduced basis
for β ∈ {50, 55, . . . , n}. Finally, for each n we estimated the number of nodes that need to be
enumerated using (5).

The result is shown in Figure 2. Again we see that the running time follows the theoretical
bound and again we observed the phenomenon that the constants seem to depend on n. To explore
this issue a little deeper, we fitted the model to the complete data set (i.e. now n and β are the
variables). The result is shown in Figure 3 and indicates that for large dimensions the average case
hardness can be expected to follow the model at least roughly. As we are mostly interested in the
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Figure 3: Log of runtime in nodes for full enumeration depending on dimension n and blocksize β
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constant of the dominating term, we fixed b and c to the value obtained by this fitting and extracted
the corresponding a parameter for each fixed n. Figure 4 plots the obtained a value depending on
the dimension n. While the values do increase with the dimension, they do so less and less rapidly.
From the theoretical analysis we know that they cannot increase indefinitely, so we conjecture that
they converge at some point. We do not offer an explanation for this phenomenon and leave it for
future work to explore this behavior in depth.
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