
The Related-Key Security of Iterated Even–Mansour Ciphers

Pooya Farshim1 and Gordon Procter2

1 Queen’s University Belfast, Northern Ireland, UK
2 Royal Holloway, University of London, UK

pooya.farshim@ gmail.com gordon.procter.2011@ live.rhul.ac.uk

Abstract. The simplicity and widespread use of blockciphers based on the iterated Even–Mansour (EM)
construction has sparked recent interest in the theoretical study of their security. Previous work has
established their strong pseudorandom permutation and indifferentiability properties, with some matching
lower bounds presented to demonstrate tightness. In this work we initiate the study of the EM ciphers
under related-key attacks which, despite extensive prior work, has received little attention. We show that
the simplest one-round EM cipher is strong enough to achieve non-trivial levels of RKA security even
under chosen-ciphertext attacks. This class, however, does not include the practically relevant case of
offsetting keys by constants. We show that two rounds suffice to reach this level under chosen-plaintext
attacks and that three rounds can boost security to resist chosen-ciphertext attacks. We also formalize
how indifferentiability relates to RKA security, showing strong positive results despite counterexamples
presented for indifferentiability in multi-stage games.

Keywords. Even–Mansour, related-key attack, public permutation, ideal cipher, indifferentiability.

1 Introduction

1.1 Background

Formal analyses of cryptographic protocols often assume that cryptosystems are run on keys that are indepen-
dently generated and bear no relation to each other. Implicit in this assumption is the premise that user keys
are stored in protected areas that are hard to tamper with. Security under related-key attacks (RKAs), first
identified by Biham and Knudsen [9,10,35], considers a setting where an adversary might be able to disturb
user keys by injecting faults [2], and consequently run a cryptosystem on related keys. Resilience against RKAs
has become a desirable security goal, particularly for blockciphers.

The need for RKA security is further highlighted by the fact that through (improper) design, a higher-level
protocol might run a lower-level one on related keys. Prominent examples are the key derivation procedures
in standardized protocols such as EMV [23] and the 3GPP integrity and confidentiality algorithms [31], where
efficiency considerations have led the designers to use a blockcipher under related keys. Similar considerations
can arise in the construction of tweakable blockciphers [38], if a blockcipher is called on keys that are offset by
xoring tweak values. An RKA-secure primitive can offer security safeguards against such protocol misuse.

Bellare and Kohno (BK) [7] initiated the theoretical treatment of security under related-key attacks and
propose definitions for RKA-secure pseudorandom functions (PRFs) and pseudorandom permutations (PRPs).
The BK model were subsequently extended by Albrecht et al. [1] to idealized models of computation to account
for the possibility that key might be derived in ways that depend on the ideal primitive. Both works prove that
the ideal cipher is RKA secure against wide sets of related-key deriving (RKD) functions. Bellare and Cash [5]
present an RKA-secure pseudorandom function from standard intractability assumptions and Bellare, Cash,
and Miller [6] give a comprehensive treatment of RKA security for various cryptographic primitives, leveraging
the RKA resilience of PRGs to construct RKA-secure instances of various other primitives. In this work we are
interested in the RKA security of blockciphers.

1.2 The Even–Mansour ciphers

Key-alternating ciphers were introduced by Daemen and Rijmen [21] with the aim of facilitating a theoretical
discussion of the design of AES. The key-alternating cipher has since become a popular paradigm for blockcipher
design, with notable examples including AES [20,42], Present [14], LED [29], PRINCE [16], KLEIN [28], and

Zorro [27]. Key-alternating ciphers originate in the work of Even and Mansour [24,25], who considered a single
round of the construction show in Figure 1; their motivation was to design the simplest blockcipher possible.
This design is closely related to Rivest’s DES-X construction, proposed as a means to protect DES against
brute-force attacks [33], which itself builds on principles dating back to Shannon [46, p. 713]. In this work, we
use the terms ‘key-alternating cipher’ and ‘iterated Even–Mansour cipher’ interchangeably.

P1 ⊕

k2

P2 ⊕

k3

. . . ⊕

kt

Pt ⊕

kt+1

y⊕

k1

x

Fig. 1. The t-round iterated Even–Mansour scheme: E((k1, . . . , kt+1), x) := Pt(· · ·P2(P1(x⊕ k1)⊕ k2) · · ·)⊕ kt+1.

Provable security. Even and Mansour’s original analysis [24,25] considers ‘cracking’ and ‘forging’ attacks in
the random-permutation model and shows that no adversary can predict x given E(k, x) or E(k, x) given x with
reasonable probability, without making q1 queries to the permutation and qem to the encryption/decryption
oracle, where q1qem ≈ 2n. The indistinguishability of the Even–Mansour scheme from a random permutation is
shown by Kilian and Rogaway [33,34, Theorem 3.1 with κ = 0] and Lampe, Patarin and Seurin [36, App. B of
the full version]. Both works show that an adversary making q1 and qem queries to the permutation oracle and
the encryption/decryption oracles respectively, has a success probability of approximately q1qem/2

n−1. Gentry
and Ramzan [26] show that the permutation oracle can be instantiated by a Feistel network with a random
oracle without loss of security.

At Eurocrypt 2012, Dunkelman, Keller, and Shamir [22] showed that the Even–Mansour scheme retains the
same level of security using only a single key, that is E(k, x) = P(x⊕ k)⊕ k. Bogdanov et al. [15] show that the
t-round Even–Mansour cipher with independent keys and permutations and at least two rounds (t ≥ 2) provides
security up to approximately 22n/3 queries but can be broken in t ·2tn/(t+1) queries. Following this work, several
papers have moved towards proving a bound that meets this attack [47,36], with Chen and Steinberger [18] able
to prove optimal bounds using Patarin’s H-coefficient technique [44]. Chen et al. [17] consider two variants of
the two-round Even–Mansour scheme: one with independent permutations and identical round keys, the other
with identical permutations but a more complex key schedule. In both cases (under certain assumptions about
the key schedule), security is maintained up to roughly 22n/3 queries.

Maurer, Renner, and Holenstein (MRH) [40] introduce a framework which formalizes what it means for
a non-monolithic object to be able to replace another in arbitrary cryptosystems. This framework, know as
indifferentiability, has been used to validate the design principle behind many cryptographic constructions, and
in particular that of the iterated Even–Mansour constructions. Lampe and Seurin [37] show that the 12-round
Even–Mansour cipher using a single key is indifferentiable from the ideal cipher. Andreeva et al. [3] show that a
modification of the single-key, 5-round Even–Mansour cipher, where the key is first processed through a random
oracle, is indifferentiable from the ideal cipher.

Cryptanalysis. Daemen [19] describes a chosen-plaintext attack that recovers the key of Even–Mansour in
approximately q1 ≈ qem ≈ 2n/2 queries. Biryukov and Wagner [13] are able to give a known-plaintext attack
against the Even–Mansour scheme with the same complexity as Daemen’s chosen-plaintext attack. Dunkelman,
Keller, and Shamir [22] introduce the slidex attack that uses only known plaintexts and can be carried out with
any number of queries as long as q1 · qem ≈ 2n.

Mendel et al. [41] describe how to extend Daemen’s attack [19] to a related-key version, and are able to
recover the keys when all round keys are independent. Bogdanov et al. [15] remark that related-key distinguishing
attacks against the iterated Even–Mansour scheme with independent round keys “exist trivially,” and describe a
key-recovery attack, requiring roughly 2n/2 queries against the two-round Even–Mansour scheme with identical
round keys, assuming that an adversary can xor constants into the round key.

Many key-alternating ciphers such as AES [12,11], Present [43], LED [41], and Prince [32] have been analyzed
in the related-key model. One of the security claims of the LED blockcipher [29] is a high resistance to related-key
attacks, which is justified by giving a lower bound on the number of active S-boxes.

2

1.3 Contributions

Despite extensive literature on the provable security of iterated Even–Mansour ciphers and (RKA) cryptanalysis
of schemes using this design strategy, their formal related-key analysis has received little attention. In this work
we initiate the provable RKA security analysis of such key-alternating ciphers. Our results build on the work of
Barbosa and Farshim [4] who study the RKA of security of Feistel constructions. They show that by appropriate
reuse of keys across the rounds, the 3-round Feistel construction achieves RKA security under chosen-plaintext
attacks. With four rounds the authors are able to prove RKA security for chosen-ciphertext attacks. The authors
also formalize a random-oracle model transform by Lucks [39] which processes the key via the random oracle
before application. Our results are similar and we show that key reuse is also a viable strategy to protect against
related-key attacks in key-alternating ciphers. In contrast to the Feistel constructions, key-alternating ciphers
operate intrinsically in an idealized model of computation, and our analyses draw on techniques used in the
formalization of Lucks’s heuristic in [4].

We start with the simplest of the key-alternating ciphers, namely the (one-round) EM cipher. We recall that
for xor related-key attacks, where an adversary can offset keys by values of its choice, this construction does
not provide RKA security [16,15,37,3]. Indeed, it is easy to check that E((k1, k2), x) = E((k1 ⊕∆, k2), x ⊕∆),
which only holds with negligible probability for the ideal cipher. We term this pattern of adversarial behaviour
offset switching. One idea to thwart the above attack here would be to enforce key reuse in the construction;
although the above equality no longer holds, a close variant still applies:

E(k, x) = E(k ⊕∆, x⊕∆)⊕∆ .

Despite this negative result, we show that the minimal EM cipher with key-reuse enjoys a non-trivial level
of RKA security (even in the chosen-ciphertext setting). For a set of allowed relate-key queries Φ, we identify a
set of sufficient conditions that allow us to argue that E(φ(k), x) and E(φ′(k), x′) for φ, φ′ ∈ Φ look random and
independent from an adversary’s point of view. As usual, our conditions impose that the RKD functions have
unpredictable outputs, as otherwise RKA security is trivially unachievable. (For φ(k) = c, a predictable value,
consider an adversary which computes E(c, 0) and compares it E(φ(k), 0).) Our second condition looks at the
generalization of the offset-switching attack above and requires it to be infeasible to find offset claws, i.e., for
any pair of functions (φ1, φ2) and any value ∆ of adversary’s choice, over a random choice of k

φ1(k)⊕ φ2(k) 6= ∆ .

This strengthens the standard claw-freeness condition [7,1,4], which corresponds to the ∆ = 0 case. In our work,
we also consider RKD functions that depend on the underlying permutations by placing queries to them. As
mentioned above, this is particularly relevant for the Even–Mansour ciphers as they inherently operate in the
random-permutation model. We build on previous work in the analysis of such functions [1,4] and formulate
adequate restrictions on oracle queries that allow a security proof to be established. Informally, our condition
requires that the queries made by φ’s have empty intersection with the outputs of φ’s, even with offsets.

The search for xor-RKA security leads us to consider the two-round EM constructions. The first attack
discussed above, where the key is offset by a constant, still applies in this setting and once again we consider
key reuse. (The two permutations are still independent.) For this cipher, the offset-switching attack no longer
applies, which raises the possibility that the two-round Even–Mansour might provide xor-RKA security. We start
with chosen-plaintext attacks, formulate three new conditions (analogous to those given for the basic scheme),
and prove security under them. These conditions, as before, decouple the queries made to the permutation
oracle and allow us to simulate the outer P2 oracle forgetfully in a reduction. We then show that this new set of
restrictions are weak enough to follow from the standard output-unpredictability and claw-freeness properties.
Since xoring with constants is output unpredictable and claw-free [7], the xor-RKA security of the single-key,
two-round EM construction follows. Under chosen-ciphertext attacks, however, this construction falls prey to an
attack of Andreeva et al. [3] on the indifferentiability of two-round EM (adapted to the RKA setting). For CCA
security, we turn to three-round constructions, where we show of the 14 possible way to reuse keys, all but one
fall prey to either offset switching attacks or Andreeva et al.’s attack [3]. On the other hand, the three-round
construction which uses a single key meets the desired xor-RKA security in the CCA setting.

Dunkelman, Keller, and Shamir [22] consider several variants of the Even–Mansour scheme, such as addition
Even–Mansour where the xors are replaced with modular additions, and involution Even–Mansour, where

3

random permutations are replaced with random involutions. It is reasonable to expect that our results can be
modified to also apply to these schemes. Another possible variant of the Even–Mansour scheme is one where
the same permutation is used across the rounds [17]; we briefly argue that our proof techniques carry over to
this permutation reuse setting.

As mentioned above, Lampe and Seurin [37] show that the 12-round EM construction is indifferentiable from
the ideal cipher when a single key is used throughout the rounds. Ristenpart, Shacham and Shrimpton [45],
on the other hand, point out that indifferentiability does not necessarily guarantee composition in multi-stage
settings and go on to note that the RKA game is multi-staged. This leaves open the question of whether
indifferentiability provides any form of RKA security. We show that if RKD functions query the underlying
primitive indirectly via the construction only, then composition holds. This level of RKA security is fairly strong
as, in our opinion, it is unclear what it menas to syntactically changing the RKD functions from those in the
ideal setting which have access to the ideal cipher to those which (suddenly) get access to permutations. Our
result, in particular, implies that Lampe and Seurin’s constructions [37] and Holenstein, Künzler, and Tessaro’s
14-round Feistel construction [30] are RKA secure against key offsets in the CCA setting.

2 Preliminaries

Notation. We write x ← y for assigning value y to variable x. We write x ←$ X for the action of sampling
x from a finite set X uniformly at random. If A is a probabilistic algorithm we write y ←$ A(x1, . . . , xn) for
the action of running A on inputs x1, . . . , xn with randomly chosen coins, and assigning the results to y. We
let [n] := {1, . . . , n}, and we denote the bitwise complement of a bit string x by x.

Blockciphers. A (block)cipher is a function E : K ×M −→M such that for every k ∈ K the map E(k, ·) is
a permutation onM. Such an E uniquely defines its inverse map D(k, ·) for each key k. We write BC := (E,D)
to denote a blockcipher, which also implicitly defines the cipher’s key space K and message space or domain
M. We denote the set of all blockciphers with key space K and domain M by Block(K,M). The ideal cipher
with key space K and message space M corresponds to a model of computation where all parties have oracle
access to a uniformly chosen random element of Block(K,M) in both the forward and backward directions. For
a blockcipher BC := (E,D), notation ABC denotes oracle access to both E and D for A.

Permutations. An ideal permutation can be viewed as a blockcipher whose key space contains a single key.
In this work, we are interested in building blockciphers with large key spaces from a small number of ideal
permutations P1, . . . ,Pt and their inverses. This is equivalent to access to a blockcipher with key space [t],
where Pi(x) := P(i, x). In order to ease notation, we define a single oracle π, which provides access to all t
ideal permutations in both directions. This oracle takes as input (i, x, σ), where i ∈ [t], x ∈M, and σ ∈ {+,−}
and returns Pi(x) if σ = + and P−1

i (x) if σ = −. Slightly abusing notation, we define Pσi (x) := Pσ(i, x) :=
π(i, x, σ), and assume σ = + whenever it is omitted from the superscript. A blockcipher constructed from t
ideal permutations π is written BCπ := (Eπ,Dπ).

RKD functions. A related-key deriving (RKD) function maps keys to keys in some key space K. In this
paper, we view RKD functions as circuits that may contain special oracles gates π. An RKD set Φ is a set of
RKD functions φπ : K −→ K, where π is an oracle. (The oracle will be instantiated with π as defined above.)
Throughout the paper we assume that membership in RKD sets can be efficiently decided.

RKA security. Following [7,1], we formalize the RKA security of a blockcipher BCπ := (Eπ,Dπ) in the
(multiple) ideal-permutation model via the game shown in Figure 2. The RKA game is parametrized by an
RKD set Φ which specifies the RKD functions that an adversary is permitted to query during its attack. This
game also includes a procedure for oracle π defined above. We define the RKCCA advantage of an adversary A
via

Advrkcca
BCπ,Φ,t(A) := 2 · Pr [RKCCABCπ,A,Φ,t]− 1 .

The RKCPA game and advantage are defined similarly by considering adversaries that do not make any RKDec
queries (backwards queries to the permutations are still permitted).

RKA security of the ideal cipher. Following [7] we define the RKA security of the ideal cipher by
augmenting the procedures of the above game with those for computing the ideal cipher IC := (iE, iD) in both

4

RKCCABCπ,A,Φ,t:

b ←$ {0, 1}; k ←$ K
(P,P−1) ←$ Block([t],M)
(iE, iD) ←$ Block(K,M)
b′ ←$ ARKEnc,RKDec,π

Return (b′ = b)

π(i, x, σ):

Return Pσ(i, x)

RKEnc(φπ, x):

k′ ← φπ(k)
If b = 0 Return iE(k′, x)
Return Eπ(k′, x)

RKDec(φπ, x):

k′ ← φπ(k)
If b = 0 Return iD(k′, x)
Return Dπ(k′, x)

Fig. 2. Game defining the Φ-RKCCA security of a blockcipher BCπ := (Eπ,Dπ) with access to t ideal permutations. An
adversary can query the RKEnc and RKDec oracles with a φπ ∈ Φ only. In the RKCPA game the adversary cannot
query the RKDec oracle.

directions. When working with the ideal cipher, t is often 0, but we consider RKD functions which have oracle
access to the ideal procedures iE and iD as in [1].

Even–Mansour ciphers. The t-round Even–Mansour (EM) cipher EMπ := (Eπ,Dπ) with respect to t per-
mutations P1,. . . ,Pt on domain {0, 1}n has key space K = {0, 1}n(t+1), domain M = {0, 1}n, and is defined
via

Eπ((k1, . . . , kt+1), x) := Pt(· · ·P2(P1(x⊕ k1)⊕ k2) · · ·)⊕ kt+1 ,

Dπ((k1, . . . , kt+1), x) := P−1
1 (· · ·P−1

t−1(P−1
t (x⊕ kt+1)⊕ kt) · · ·)⊕ k1 .

In this work we are interested in EM ciphers where keys are reused in various rounds. Following notation
adopted in [4], we denote the EM construction where key kij is used before round j by EMπ[i1, i2, . . . , it+1]. We

call such key schedules simple. Note that K = {0, 1}n·|{i1,i2,...,it+1}| in these constructions. Of particular interest
to us are the EMπ[1, 1], EMπ[1, 1, 1] and EMπ[1, 1, 1, 1] constructions, where a single key is used in all rounds.
We emphasize that the round permutations in all these constructions are independently chosen, unless stated
otherwise.

3 Indifferentiability and RKA Security

Given the indifferentiability results for the EM and Feistel constructions discussed in the introduction, in this
section we study to what extent (if any) an indifferentiable construction can provide resilience against related-
key attacks. We start by recalling what it means for a blockcipher construction to be indifferentiable from the
ideal cipher [40].

Indifferentiability. Let BCπ := (Eπ,Dπ) be a blockcipher and let S IC be a simulator with oracle access
to the ideal cipher having the same key and message spaces as those of BCπ. We define the indifferentiability
advantage of a distinguished D with respect to S against BCπ via

Advindiff
BCπ,t(S,D) := Pr

[
DBCπ,π

]
− Pr

[
DIC,S IC

]
,

where the first probability is taken over a random choice of π (as defined in Figure 2), and the second probability
is taken over a random choice of a blockcipher IC := (iE, iD). Note that in this definition we require a universal
simulator.

Theorem 1. Let Φ be an RKD set consisting of function φOC having access to a blockcipher oracle OC. Let π be
as before, BCπ be a blockcipher construction, and S be an indifferentiability simulator. Then for any adversary
A against the Φ-RKCCA security of BCπ, where the oracles in the RKD functions are instantiated with BCπ,
there are adversaries D1 and D2 against the indifferentiability of BCπ, and an adversary B against the Φ-RKCCA
of the ideal cipher, where the oracles in the RKD functions are instantiated with the ideal cipher, such that

Advrkcca
BCπ,Φ,t(A) ≤ Advindiff

BCπ,t(S,D1) + Advindiff
BCπ,t(S,D2) + Advrkcca

IC,Φ,t(B) .

5

Proof. The proof structure is as follows. Given an adversary A against the Φ-RKCCA of BCπ we construct an
adversary B against the Φ-RKCCA of the ideal cipher IC using the simulator S. We then use the indifferentiability
of the construction to argue that B’s advantage is negligibility different from that of A for each value of the
challenge bit.

Let S be a (universal) indifferentiability simulator as in the theorem statement. Let A be an adversary
as above with access to π and related-key oracles RKEnc and RKDec, which use either BCπ or the ideal
cipher IC′ = (iE′, iD′) to handle the queries. Let B be an adversary with oracle access to IC and the RKEnc
and RKDec oracles that use either IC or an independent ideal cipher IC′ as follows. Algorithm B runs A and
answers its π queries via S IC, where S’s oracles are answered using access to IC given to B. To answer RKEnc
(resp. RKDec) queries (φOC, x), algorithm B queries its own RKEnc (resp. RKDec) oracle on (φOC, x) and
returns the response to A. When A terminates with a bit b′, algorithm B also returns b′.

When B is run with respect to related-key oracles that use IC = (iE, iD), adversary A is run with respect to
the oracles

S IC(x), iE(φIC(k), x), iD(φIC(k), x) .

We use indifferentiability to show that the distribution of A’s output is close to that of A when run with the
oracles

π(x), Eπ(φBCπ (k), x), Dπ(φBCπ (k), x) . (1)

Consider a distinguisher D1 which operates as follows. It chooses a random key k, runs A and answers its
permutation queries using its own permutation oracle which implements either S IC or π. When an RKD query
(φOC, x) in either the forward or backward direction is placed, algorithm D1 first computes φOC(k) by answering
φ’s oracle queries using its second set of oracles. These implement either IC or BCπ. It then obtains a related
key k′, queries its forward or backward blockcipher oracle on (k′, x) as needed, and returns the answer to A. It
is easy to see that D1 runs A in one of the environments above according to the oracles that D1 gets, and since
S is an indifferentiability simulator for BCπ, the difference in A’s outputs is bounded by the indifferentiability
advantage.

When B is run with respect to related-key oracles that use IC′ = (iE′, iD′), adversary A is run with respect
to the oracles

S IC, iE′(φIC(k), x), iD′(φIC(k), x) .

We show that the distribution of A’s output is close to that of A when run with the oracles

π(x), iE′(φBCπ (k), x), iD′(φBCπ (k), x) . (2)

Once again, this follows from the indifferentiability of the construction. Consider a distinguisher D2 which choses
a key k, runs A, and answers its permutation queries using its own permutation oracle, which implements either
S IC or π as before. When an RKD query (φOC, x) in either the forward or backward direction is placed, algorithm
D2 first computes φOC(k) by answering φ’s oracle queries using its own second set of oracles. Once again, these
implement either IC or BCπ. It then obtains a related key k′. Algorithm D2 now simulates an independent ideal
cipher IC′ via lazy sampling, queries its forward or the backward procedure on (k′, x) as needed, and returns
the result to A. It is easy to see that D1 runs B according to one of the environments above depending on the
oracles that it gets. Since S is an indifferentiability simulator for BCπ, the difference in A’s outputs is bounded
by the indifferentiability advantage.

Finally, observe that the difference in A’s output with respect to environments (1) and (2) is, by definition,
A’s advantage in the Φ-RKCCA game against BCπ. This concludes the proof. ut

Care with composition. Ristenpart, Shacham, and Shrimpton [45] show that indifferentiability does not al-
ways guarantee secure composition in multi-stage settings where multiple adversaries communicate in restricted
ways only. The authors then remark that RKA security is multi-staged. To see this note that the RKA game can
be seen as consisting of two adversaries Aπ1 and Aπ2 where Aπ1 corresponds to the standard RKA adversary Aπ
and Aπ2 is an adversary which has access to the key k, receives a state value from Aπ1 containing the description
of an RKD function φπ and a value x, computes φπ(k) using its access to π to get k′, and returns Eπ(k′, x)
or Dπ(k′, x) to Aπ1 as needed. Hence adversary Aπ2 does not freely communicate with Aπ1 . The above theorem

6

essentially shows that in settings where Aπ2 takes the form ABCπ

2 , indifferentiability suffices. In our opinion,
this restricted access particularly suits well the RKA security model. Indeed, when starting in the ideal setting
where the RKD functions have access to the ideal cipher, one needs to address how the oracles are instantiated
when moved to the construction. A natural way to do this is to simply instantiate the oracles with those of the
construction, and in this setting, as we show, indifferentiability suffices. On the other hand, giving the RKD
functions direct access to π would constitute a syntactic change in the two RKD sets, and it is unclear how one
should compare the two RKA settings.

Lampe and Seurin [37, Theorem 2] show that the 12-round EMπ[1, · · · , 1] construction is indifferentiable
from the ideal cipher (with a universal simulator). Bellare and Kohno [7], on the other hand, show that the
ideal cipher is Φ⊕-RKCCA secure, where

Φ⊕ := {k 7→ k ⊕∆ : ∆ ∈ K} .

We therefore obtain as a corollary of the above theorem that the 12-round construction EMπ[1, · · · , 1] is Φ⊕-
RKCCA secure. The same conclusion applies to the 14-round Feistel construction of Holenstein, Künzler, and
Tessaro [30]. These construction, however, are suboptimal in terms rounds with respect to RKA security. Barbosa
and Farshim [4] show that 4 rounds with key reuse suffices for Feistel networks. In the following sections, we
study the Even–Mansour ciphers with smaller number of rounds while maintaining RKA security.

4 The RKA Security of EMπ[1, 1]

In this section we study RKD sets Φ for which the single-key Even–Mansour construction provides Φ-RKCCA
security. Our results are similar to those of Bellare and Kohno [7], Albrecht et al. [1], and Barbosa and Farshim [4]
in that we identify a set of restrictions on the RKD set Φ that allow us to establish a security proof. For the one-
round construction there are two simple key schedules up to relabeling: EMπ[1, 1] and EMπ[1, 2]. Neither of these
constructions can provide Φ⊕-RKCPA security due to the offset-switching attacks discussed in the introduction.
Despite this, we show that the most simple of the EM constructions, EMπ[1, 1], provides a non-trivial level of
RKA security. The results of this section will also serve as a warm up to the end goal of achieving strong forms
of RKA security, which will encompass key offsets as a special case.

4.1 Restricting RKD sets

Bellare and Kohno [7] observe that if an adversary is able to choose a φ ∈ Φ that has predictable outputs on
a randomly chosen key, then Φ-RKCCA security is not achievable. To see this, let φ be the constant zero (or
any predictable) function. An adversary can simply test if it is interacting with the real or the ideal cipher by
enciphering x under the zero key and comparing it to the value it receives from its RKEnc oracle on (φ, x).
This motivates the following definition of unpredictability, adapted to the ideal-permutation model.

Output unpredictability (OUP). The advantage of an adversary A against the output unpredictability of
an RKD set Φ with access to t ideal permutations is defined via

Advoup
Φ,t(A) := Pr [∃ (φπ, c) ∈ List : φπ(k) = c : List ←$ Aπ] .

Here List contains pairs of the form (φπ, c) for φπ ∈ Φ and c ∈ K, and π is the oracle containing t ideal
permutations. The probability is taken over a random choice of k ←$ K, the t random permutations implicit
in π, and the coins of the adversary. Note that via a simple guessing argument, this definition can be shown
to be equivalent to one where the adversary is required to output a single pair, with a loss of 1/|List| in the
reduction.

A second condition that Bellare and Kohno [7] introduce is claw-freeness. Roughly speaking, a set Φ has
claws if there are two distinct φ1, φ2 ∈ Φ such that φ1(k) = φ2(k). Although this condition is not in general
necessary—given an arbitrary claw there isn’t necessarily an attack—it turns out that existence of claws prevent
natural approaches to proofs of security. We lift claw-freeness to the ideal-permutation model below.

7

Claw-freeness (CF). The advantage of an adversary A against the claw-freeness of an RKD set Φ with
access to t ideal permutations is defined via

Advcf
Φ,t(A) := Pr [∃ (φπ1 , φ

π
2) ∈ List : φπ1 (k) = φπ2 (k) ∧ φπ1 6= φπ2 : List ←$ Aπ] .

Here List contains pairs of RKD functions, π is as before, and the probability space is defined similarly to that
for output unpredictability. Once again this definition is equivalent to one where List is restricted to be of size
one.

Claw-freeness is not a strong enough condition for the one-round EM construction to be RKA secure.
Indeed, consider an adversary that queries its encryption oracle with two pairs (φ1, x1) and (φ2, x2), possibly
with x1 6= x2, such that

x1 ⊕ φ1(k) = x2 ⊕ φ2(k) .

Then the permutation underlying the construction will be queried at the same point and the resulting ciphertexts
will differ by φ1(k) ⊕ φ2(k) = x1 ⊕ x2, a predictable value. This observation motivates a strengthening of the
claw-freeness property.

Xor claw-freeness (XCF). The advantage of an adversary A against the xor claw-freeness of an RKD set
Φ with access to t ideal permutations is defined via

Advxcf
Φ,t(A) := Pr [∃ (φπ1 , φ

π
2 , c) ∈ List : φπ1 (k)⊕ φπ2 (k) = c ∧ φπ1 6= φπ2 : List ←$ Aπ] .

The variables and probability space are defined similarly to those for claw-freeness.
Xor claw-freeness implies claw-freeness as the latter is a special case with c = 0. That claw-freeness is weaker

than xor claw-freeness can be seen by considering the set Φ⊕ corresponding to xoring with constants. This set
can be easily shown to be output unpredictable and claw-free [7], but is not xor claw-free as

φ∆1
(k)⊕ φ∆2

(k) = ∆1 ⊕∆2 where φ∆(k) := k ⊕∆ .

We also observe that xor claw-freeness of Φ implies that there is at most one φ ∈ Φ which is predictable as any
two predictable RKD functions can be used to break xor claw-freeness.

Let us now consider oracle access in the RKD functions. Following the attacks identified in [1,4], we consider
the oracle-dependent RKD set

Φ :=
{
id : k 7→ k, φP : k 7→ P(k)

}
.

Consider the following Φ-RKCPA adversary against EMπ[1, 1]. Query (id, 0) and get y = P(k)⊕k. Query (φP, y)
and get z. Return (z = 0). When interacting with EMπ[1, 1] we have that

z = EP(P(k),P(k)⊕ k) = P(P(k)⊕ k ⊕ P(k))⊕ P(k) = P(k)⊕ P(k) = 0 .

On the other hand, this identity is true with probability at most 1/(2n−1) with respect to the ideal cipher. This
attack stems from the fact that when answering an RKEnc query, π is evaluated at a point already queried by
an RKD function; this motivates our final restriction.

Xor query independence (XQI). The advantage of an adversary A against the xor query independence of
an RKD set Φ with access to t ideal permutations is defined via

Advxqi
Φ,t(A) := Pr

[
∃ (i, σ, φπ1 , φ

π
2 , c) ∈ List : (i, φπ1 (k)⊕ c, σ) ∈ Qry[φπ2 (k)]; List ←$ Aπ

]
where

Qry[φπ(k)] := {(i, x, σ) : (i, x, σ) queried to π by φπ(k)} ,
Qry[φπ(k)] := Qry[φπ(k)] ∪ {(i, π(i, x, σ),−σ) : (i, x, σ) ∈ Qry[φπ(k)]} .

Note that for the EM cipher, restricting the above definition to i = 1 suffices. We also define query indepen-
dence [1] as above but demand that c = 0.

8

Examples. The OUP, XCF, and XQI conditions introduced above do not lead to vacuous RKD sets. As an
example of an RKD set which is independent of the permutations consider

Φxu := {k 7→ H(k, x) : x ∈ K′} ,

where H is an xor-universal hash function from K to K with key space K′. As a simple instantiation, let
K′ = {0, 1}k \ 0k and for k ∈ K′ define H(k, x) := k · x, where {0, 1}k is interpreted as GF(2k) with respect to
a fixed irreducible polynomial, and multiplication is defined over GF(2k).

As an example of an oracle-dependent RKD set, one can take

Φ := {k 7→ P(k ⊕∆) : ∆ ∈ K} .

4.2 Sufficiency of the conditions

We now show that if an RKD set Φ meets the output unpredictability, xor claw-freeness and xor query indepen-
dence properties defined above, then EMπ[1, 1] provides Φ-RKCCA security. Throughput the paper we denote
the number of queries to various oracles in an attack as follows:

qi : the number of direct, distinct queries to π with index i made by the adversary A.
qem : the number of distinct queries to the RKEnc and (if present) RKDec oracles by A.

qφi : the number of distinct queries to π with index i made by the RKD function φπ.

We call an RKA adversary repeat-free if it does not query its RKEnc or RKDec oracle on a pair (φ, x) twice.
We call an RKA adversary redundancy-free if it does not query RKEnc on (φ, x) to get y and then RKDec
on (φ, y) to get x, or vice versa. Without loss of generality, we assume that all adversaries in this paper are
repeat-free and redundancy-free.

Theorem 2 (Φ-RKCCA security of EMπ[1, 1]). Let Φ be an RKD set. Then for any adversary A against the
Φ-RKCCA security of EMπ[1, 1] with parameters as defined above, there are adversaries B1, B2, B3 and B4 such
that

Advrkcca
EMπ [1,1],Φ,1(A) ≤Advoup

Φ,1(B1) + Advxqi
Φ,1(B2) + Advxcf

Φ,1(B3) + Advcf
Φ(B4)

+
qem(q1 +

∑
φ q

φ
1)

2n − (q1 +
∑
φ q

φ
1)

+
2q2
em

2n
,

where B1, B2, B3 and B4 output lists of sizes 2q1qem, 2q2
em, q2

em, and q2
em respectively and they all make q1

queries to π.

We give the intuition behind the proof here and leave the details to Appendix A. The adversary A in the
Φ-RKCCA game is run with respect to the oracles

P(x), P−1(x), P(x⊕ φπ(k))⊕ φπ(k), P−1(x⊕ φπ(k))⊕ φπ(k) .

Our goal is to make a transition to an environment with the oracles

P(x), P−1(x), iE(φπ(k), x), iD(φπ(k), x) ,

where (iE, iD) denotes the ideal cipher. To this end, we consider two intermediate environments where the last
two oracles corresponding to RKEnc and RKDec are handled via a forgetful oracle $ that returns uniform
strings on each invocation, irrespectively of its inputs. Applying this change to the first environment above gives

P(x), P−1(x), $(x⊕ φπ(k))⊕ φπ(k), $(x⊕ φπ(k))⊕ φπ(k) ,

while the second gives
P(x), P−1(x), $(φπ(k), x), $(φπ(k), x) ,

both of which are identical to the environment (P(x),P−1(x), $(), $()). We will now argue that the above changes
alterA’s winning probabilities negligibly, down to the conditions on Φ that we introduced in the previous section.

9

Let us first look at the change where we replace iE(φπ(k), x) and iD(φπ(k), x) with $(φπ(k), x). We introduce
another game and replace the random keyed permutations iE and iD by random keyed functions iF and iC:

P(x), P−1(x), iF(φπ(k), x), iC(φπ(k), x) .

Via (a keyed extension of) the random permutation/random function (RP/RF) switching lemma [8], the envi-
ronments containing (iF, iC) and (iE, iD) can be shown to be indistinguishable up to the birthday bound q2

em/2
n.

The environments containing iF(φπ(k), x) and iC(φπ(k), x) and two copies of $(φπ(k), x) and can be shown to
be identical down to the CF property. Indeed, an inconsistency could arise whenever (φπ1 , x1) 6= (φπ2 , x2) but
(φπ1 (k), x1) = (φπ2 (k), x2). This means x1 = x2 and hence we must have that φπ1 6= φπ2 . But φπ1 (k) = φπ2 (k) and
this leads to a break of the claw-freeness.

Let us now look at the changes made when we replace P±(x ⊕ φπ(k)) ⊕ φπ(k) with $(x ⊕ φπ(k)) ⊕ φπ(k).
We need to consider the points where a forgetful simulation of P or P−1 via $ in the last two oracles leads to
inconsistencies. Let us define the following six lists.

List+P := [(a,P(a)) : A queries a to P], List−P := [(P−1(b), b) : A queries b to P−1] ,

List+φ := [(a,P(a)) : φπ(k) queries a to P], List−φ := [(P−1(b), b) : φπ(k) queries b to P−1] ,

List+$:= [(x⊕ φπ(k), $(x⊕ φπ(k))) : A queries (φπ, x) to RKEnc] ,

List−$:= [($(φπ(k)⊕ y), φπ(k)⊕ y) : A queries (φπ, y) to RKDec] .

Let List? be the union of the above lists over all φ queried to RKEnc or RKDec. This list encodes the
trace of the attack, as in the forgetful environment no queries to P or P−1 are made while handling RKEnc
and RKDec queries. This trace is consistent with one coming from a permutation unless List? does not respect
the permutivity properties, i.e., there are two entries (a, b), (a′, b′) ∈ List? such that it is not the case that
(a = a′ ⇐⇒ b = b′). Note that one of these pairs must be in List$:= List+$ ∪ List−$ as the other oracles are
faithfully implemented. There is an inconsistency on List? if and only if there is an inconsistency among two lists
(one of which is either List+$ or List−$). There are 20 possibilities to consider, including the order that queries

are made. We consider first query of a pair being on List+$; the other cases are dealt with symmetrically.

List+$ and List+P : (1) The first component of a pair on List+$ —we call this a first entry on List+$ —matches a

first entry a on List+P . This means that for some query (φπ, x) to RKEnc we have that a = φπ(k)⊕ x. This
leads to a break of output unpredictability. (2) The second entry on these lists match. More explicitly, we
are looking at the probability that P(a) = R, for R the output of $ on a forward query. Here we can assume
that R is known and this addresses the adaptivity of choice of a. But even in this case the probability of
this event is small as P is a random permutation.

List+$ and List−P : (1) A second entry on List+$ matches a second entry b′ on List−P . This means that for some
query (φπ, x) to RKEnc with output y we have that b′ = φπ(k) ⊕ y. This leads to a break of output
unpredictability. (2) The first entries match on these lists. The argument is similar to case (2) above, but
now is for P−1.

List+$ and List+φ : (1) A first entry on List+$ matches a first entry List+φ . This means that for some query (φπ1 , x)
to RKEnc we have that a = φπ1 (k)⊕ x for a query a of some other φπ2 . This leads to a break of xor query
independence. (2) The second entries match on these lists. The argument is as in case (2) of first pair of
lists.

List+$ and List−φ : (1) A second entry on List+$ matches a second entry b′ on List−φ . This means that for some
query (φπ1 , x) to RKEnc with output y we have that b′ = φπ1 (k)⊕ y for a query b′ of some other φπ2 . This
leads to a break of xor query independence. (2) The first entries match on these lists. The argument is as
in case (2) of the second pair of lists.

List+$ and List+$: Two first entries on List+$ match. This means that for two queries (φπ1 , x1) and (φπ2 , x2) to
RKEnc we have that φπ1 (k)⊕ x1 = φπ2 (k)⊕ x2. Repeat-freeness ensures that φ1 6= φ2 as otherwise x1 = x2

as well. This leads to a break of xor claw-freeness. (2) The second entries match on these lists. Since the
oracle returns independent random values, this probability can be bounded by the birthday bound.

List+$ and List−$: A second entry on List+$ matches a second entry on List−$. This means that for a queries
(φπ1 , x1) to RKEnc with outputs y1 and (φπ2 , x2) to RKDec, we have that φπ1 (k) ⊕ y1 = φπ2 (k) ⊕ x2.
Redundancy-freeness ensures that φ1 6= φ2 as otherwise x2 would be an encryption of x1. This leads to a

10

break of xor claw-freeness. (2) The first entries match on these lists. The probability of this event can be
also bounded by the birthday bound.

Hence inconsistencies among any two pairs of lists happen with small probability, and this shows that List?
is also inconsistent with small probability.

5 The Φ-RKCPA Security of EMπ[1, 1, 1]

The theorem established in the previous section does not encompass Φ⊕-RKA security as this set is not xor
claw-free. In this section, we investigate whether an extra round of iteration can extend RKA security to the Φ⊕

set. For the two-round EM constructions, up to relabelling, there are 5 simple key schedules: [1, 1, 1], [1, 1, 2],
[1, 2, 1], [1, 2, 2], and [1, 2, 3]. It is easy to see that offset-switching attacks can be used to attack the Φ⊕-RKCPA
security of all but the first of these. In the following subsections we study the RKA security of the only remaining
construction, EMπ[1, 1, 1].

5.1 Weakening the conditions

We start by following a similar proof strategy to that given for EMπ[1, 1] and identify a set of restrictions which
are strong enough to enable a security proof, yet weak enough to encompass the Φ⊕ set. Starting from the CPA
environment

π(i, x, σ), P2(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ,

we simulate the P2 oracle forgetfully and move to a setting with oracles

π(i, x, σ), $(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ≡ π(i, x, σ), $() .

This game can be also be reached from the ideal game π(i, x, σ), iE(φπ(k), x) via an application of the RP/RF
switching lemma [8] and the claw-freeness property as in the analysis of EMπ[1, 1].

We now analyze the probability that the second environment simulates the first one in an inconsistent way.
We look at inconsistencies which arise due to oracles being queried on the same inputs. The first place such an
inconsistency might arise is when A makes an explicit π query (2, a,+) that matches a query made to $, i.e.,
P1(x ⊕ φπ(k)) ⊕ φπ(k) = a for some (φπ, x). Our first condition below addresses this event; we give a slight
strengthening of the condition as we will be using it later on.

First-order output unpredictability. Let t ≥ 1. The advantage of an adversary A against the first-order
output unpredictability of an RKD set Φ with access to t ideal permutations is defined via

Advoup1
Φ,t (A) := Pr [∃ (i, σ, φπ, x, c) ∈ List s.t. Pσi (φπ(k)⊕ x)⊕ φπ(k) = c : List ←$ Aπ] .

Oracle π, the probability space, and List are defined analogously to the previous definitions. Note that in the
RKCPA setting we do not need to consider inconsistencies resulting from inputs to P−1

1 or P−1
2 arising through

RKDec queries, and only need to consider (i, σ) = (1,+) above.

Inconsistencies arising as a result of two RKEnc queries (this oracle places queries to $) lead to the following
modification of claw-freeness.

First-order claw-freeness. Let t ≥ 1. The advantage of an adversary A against the first-order claw-freeness
of an RKD set Φ with access to t ideal permutations is defined via

Advcf1
Φ,t(A) := Pr[∃ (i, σ, φπ1 , x1, φ

π
2 , x2) ∈ List s.t. Pσi (φπ1 (k)⊕ x1)⊕ φπ1 (k) =

Pσi (φπ2 (k)⊕ x2)⊕ φπ2 (k) ∧ φπ1 6= φπ2 : List ←$ Aπ] .

We now look at inconsistencies in the simulation due to a mismatch in an RKD query to π and a query to $
made via the RKEnc oracle. Since only the second function is forgetfully simulated, we require independence
of queries for P2 only. One again, in the RKCPA setting, restricting the definition to (i, σ) = (1,+) suffices.

11

First-order query independence. Let t ≥ 2. The advantage of an adversary A against the first-order query
independence of an RKD set Φ with access to t ideal permutations is defined via

Advqi1
Φ,t(A) := Pr[∃(i, σ, φπ1 , x1, φ

π
2) ∈ List : (2,Pσi (φπ1 (k)⊕ x1)⊕ φπ1 (k),±) ∈ Qry[φπ2 (k)]; List ←$ Aπ] ,

where, as before,

Qry[φπ(k)] := {(i, x, σ) : (i, x, σ) queried to π by φπ(k)} ,
Qry[φπ(k)] := Qry[φπ(k)] ∪ {(i, π(i, x, σ),−σ) : (i, x, σ) ∈ Qry[φπ(k)]} .

The new set of conditions identified above allow us to carry out a similar proof strategy to that of Theorem 2
and establish the following result. (See Appendix B for the details of the proof.)

Theorem 3 (Φ-RKCPA security of EMπ[1, 1, 1]). Let Φ be an RKD set. Then for any adversary A against the
Φ-RKCPA security of EMπ[1, 1, 1] with parameters as defined before there are B1a against OUP1 , B1b against
OUP , B2a against QI1, B2b against XQI, B3 against CF1, and B4 against CF such that

Advrkcpa
EMπ [1,1,1],Φ,2(A) ≤Advoup1

Φ,2 (B1a) + Advoup
Φ,2(B1b) + Advqi1

Φ,2(B2a) + Advxqi
Φ,2(B2b)

+ 2Advcf1
Φ,2(B3) + Advcf

Φ,2(B4) +
qem(q2 +

∑
φ q

φ
2)

2n − (q2 +
∑
φ q

φ
2)

+
2q2
em

2n
,

where B1a and B1b output lists of length q2qem, B2a and B2b lists of length q2
em, B3 a list of length q2

em, and B4

a list of length at most q2
em.

Proof (Outline). Following the high-level proof of Theorem 2, we give a brief overview of the proof. We define
the lists List±P and List±φ (for P2) as in the proof of Theorem 2, but now consider

List+$:= [(P1(x⊕ φπ(k))⊕ φπ(k), $(P1(x⊕ φπ(k)))⊕ φπ(k)) : A queries (φπ, x) to RKEnc] .

We need to bound the probabilities of collisions among these lists. one of which must be on List+$. There are 9
possibilities to consider, including the order that queries are made. We consider first query of a pair being on
List+$; the other cases are dealt with symmetrically.

List+$ and List+P : (1) A first entry on List+$ matches a first entry a on List+P . This means that for some query
(φπ, x) to RKEnc we have that a = P1(φπ(k) ⊕ x) ⊕ φπ(k). This leads to a break of first-order output
unpredictability. (2) The second entry on these lists match. More explicitly, we are looking at the probability
that P2(a) = R, for R the output of $ on a forward query a. Here we can assume that R is known and this
addresses the adaptivity of choice of a. But even in this case the probability of this event is small as P2 is
a random permutation.

List+$ and List−P : (1) Two first entries match on these lists. This means that P−1
2 (b) = P1(φπ(k)⊕ x)⊕ φπ(k)

for some query b to P−1
2 . The probability of this occurring can be bounded information theoretically as P2

is a random permutation. (2) A second entry on List+$ matches a second entry b′ on List−P . This means that
for some query (φπ, x) to RKEnc with output y we have that b′ = y ⊕ φπ(k). This leads to a break of
(standard) output unpredictability.

List+$ and List+φ : (1) A first entry on List+$ matches a first entry List+φ . This means that for some query (φπ1 , x)
to RKEnc we have that a = P1(φπ1 (k)⊕x)⊕φπ1 (k) for a query a of some other φπ2 . This leads to a break of
first-order query independence. (2) The second entries on these lists match. In this case P2(a) = y ⊕ φπ1 (k)
for a query a of an RKD function φπ2 , with y the output of the RKEnc oracle. This probability can be
bounded information theoretically as P2 is a random permutation.

List+$ and List−φ : (1) A first entry on List+$ matches a first entry List−φ . This means that for some query (φπ1 , x)

to RKEnc we have that P−1
1 (b) = P1(φπ1 (k)⊕ x)⊕ φπ1 (k) for a query b of some other φπ2 . The probability

of this occurring can be bounded information theoretically as P2 is a random permutation. (2) The second
entries match on these lists. In this case b = y ⊕ φπ1 (k) for a query b of an RKD function φπ2 , with y the
output of the RKEnc oracle. This probability can be bounded down to xor query independence.

12

List+$ and List+$: (1) Two first entries on List+$ match. This means that for two queries (φπ1 , x1) and (φπ2 , x2) we
have that P1(φπ1 (k)⊕x1)⊕φπ1 (k) = P1(φπ2 (k)⊕x2)⊕φπ2 (k). This leads to a break of first-order claw-freeness.
(2) Two second entries on List+$ match. Since the outputs are chosen randomly, the probability of this event
can be bounded information theoretically.

The above cover all possibilities that could lead to inconsistencies and the theorem follows. ut

5.2 Φ⊕-RKCPA security

We show that the restrictions identified above are weak enough so that the offset RKD set Φ⊕ can be shown
to satisfy them. We start by showing that for oracle-independent sets, Φ is output unpredictable and claw-free
if and only if it is first-order output unpredictable and first-order claw-free.

Proposition 1 (OUP ∧ CF ⇐⇒ OUP1 ∧ CF1). Let Φ be an oracle-independent RKD set and let t ≥ 1. Then
for any adversary A against the OUP (resp. CF) game outputting a list of size ` and placing qi permutation
queries with index i, there is an adversary B1 (resp. B2) outputting a list of size ` (resp. `) and placing qi+ δ1i`
(resp. qi) permutation queries with index i such that

Advoup
Φ,t(A) ≤ Advoup1

Φ,t (B1) and Advcf
Φ,t(A) ≤ Advcf1

Φ,t(B2) .

Moreover, for any adversary A against OUP1 with parameters as before, there is an adversary B1 against OUP
outputting a list of size ` · qπ := ` ·

∑
i qi, where it places qi permutation queries with index i such that

Advoup1
Φ,t (A) ≤ Advoup

Φ,t(B1) +
`(qπ + 1)

2n − `
.

Finally, for any adversary A against CF1 with parameters as before, there are adversaries B1 and B2, where B1

is as in the previous case, and B2 outputs a list of size ` and makes qi permutation queries with index i such
that

Advcf1
Φ,t(A) ≤ Advoup

Φ,t(B1) + 2 ·Advcf
Φ,t(B2) +

`

2n − `
+

`

2n − 2`
.

Proof. For the first inequality, given A against OUP outputting List of size `, algorithm B1 against OUP1
runs A, simulates its π queries using its own π oracle, and constructs a new list List′ consisting of tuples
(1,+, φ, 0,P1(c) ⊕ c) for each (φ, c) ∈ List. Now if List contains an entry (φ, c) such that φ(k) = c, then the
corresponding entry (1,+, φ, 0, c′) on List′ would satisfy P1(φ(k)⊕ 0)⊕ φ(k) = c′. Note that List′ is also of size
`, but B1 places ` extra queries to P1.

For the second inequality, given A’s output List of size `, algorithm B2 runs A, simulates its π queries using
its own π oracle, and constructs a new list List′ consisting of tuples of the form (1,+, φ1, 0, φ2, 0) for each
(φ1, φ2) ∈ List. Now if List contains an entry (φ1, φ2) such that φ1(k) = φ2(k), then the corresponding entry
(1,+, φ1, 0, φ2, 0) on List′ would satisfy P1(φ1(k) ⊕ 0) ⊕ φ1(k) = P1(φ2(k) ⊕ 0) ⊕ φ2(k). Note that the size of
List′ is also ` and B2 also places the same number of queries as A to P±i .

For the third inequality, let us consider a modified OUP1 game where the π oracle used in the winning
condition is replaced with an independent random permutation π′. Since the outputs of π′ are independent of
A’s view, each entry in A’s list wins the game with probability at most 1/(2n− `+ 1), and hence A’s advantage
is at most `/(2n− `). Furthermore, these two games are identical unless A’s list of π queries has an entry which
appears on the list of π′ queries. We form the lists

List+i := [(a,Pi(a)) : A queries a to Pi] and List−i := [(P−1
i (b), b) : A queries b to P−1

i] ,

and analogous lists List′
±
i for π′. We consider inconsistencies with List+i . (The case of List−i is dealt with similarly.)

There are two possibilities:

List+i and List′
+
i : (1) The first entries match. Then a = φ(k) ⊕ x for some (φ, x) and a, and we can win the

output unpredictability game by outputting (φ, x⊕ a). (2) The second entries match. Then Pi(a) = P′i(a
′).

This happens with probability at most `+i · q
+
i /(2

n −min(`+i , q
+
i)), where q+

i is the size of List+i and `+i is

the size of List′
+
i .

13

List+i and List′
−
i : (1) The second entries match. Then b = φ(k)⊕ x for some (φ, x) and b, and we can win the

output unpredictability game by outputting (φ, x⊕ b). (2) The first entries match. Then P′
−1
i (b′) = a. This

happens with probability at most `−i · q
+
i /(2

n − `−i), where `−i is the size of List′
−
i .

Considering all cases leads to an upper bound of Advoup
Φ,t(B1) + ` · qπ/(2n − `).

To prove the final inequality, again we consider a modified game where the winning condition is performed
with respect to an independent permutation π′. The change in A’s success probability can be bounded as in
the previous case down to output unpredictability. We modify this game further, by considering a third game
whose winning requirement is changed to that of the CF game: given a list of entries (i, σ, φ1, x1, φ2, x2) check if
φ1(k) = φ2(k) for some entry on the list. The outputs of these two games are identical unless one of the following
takes place. (1) The second game outputs false and the third outputs true. In this, case we can construct an
adversary which wins the CF game by simply outputs all pairs (φ1, φ2) in A’s list. (2) The second game outputs
true and the third outputs false. In this case, there are two sub-possibilities: (2.1) The adversary wins with a pair
(i, σ, φ1, x1, φ2, x2) such that φ1(x1)⊕x1 = φ2(x2)⊕x2 (but of course φ1(k) 6= φ2(k)). This cannot be the case as
π′ is a permutation. (2.2) Adversary A wins with a pair (i, σ, φ1, x1, φ2, x2) such that φ1(x1)⊕x1 6= φ2(x2)⊕x1.
As before since π′ are independent of A’s view, the probability of this event is at most `/(2n − 2`), since each
entry places 2 queries to π. Finally note that the final game is identical to the CF game (and oracle π′ is not
used by the game). ut

Bellare and Kohno [7] show that the RKD set Φ⊕ is output unpredictable with advantage `/2n for any
adversary outputting a list of size `, and claw-free with advantage 0. The above proposition allow us to conclude
that this set is also first-order output unpredictable and first-order claw-free.

Corollary 1. Let t ≥ 1 and suppose Φ⊕ is defined with respect to a key space of size 2n. Then for any A
outputting a list of at most ` ≤ 2n/4 and making at most q1 queries to its P1 oracle,

Advoup1
Φ⊕,t(A) ≤ ` · (q1 + 1)

2n−1
and Advcf1

Φ⊕,t(A) ≤ ` · (q1 + 2)

2n−1
.

This corollary together with Theorem 3 allow us to establish that EMπ[1, 1, 1] is Φ⊕-RKCPA secure.

Corollary 2. For any adversary A against the Φ⊕-RKCPA security of EMπ[1, 1, 1] that makes at most qπ
queries to its π oracle (of which qi are to π(i, ·, ·)) and at most qem queries to its RKEnc oracle, with q2qem,
q2
em ≤ 2n/4, we have

Advrkcpa
EMπ [1,1,1],Φ⊕,2(A) ≤ qem(q2 + qem)(2q1 + 5)

2n
+

q2qem
2n − q2

.

We remark that via a direct analysis (but at the expense of modularity) the cubic bound above can be tightened
to a quadratic one.

5.3 A Φ⊕-RKCCA attack on EMπ[1, 1, 1]

The above result raises the question if the security proof can be extended to the CCA setting. Adapting an
attack due to Andreeva et al. [3] on the indifferentiability of the two-round EM construction to the RKA setting,
we show that EMπ[1, 1, 1] is Φ⊕-RKCCA insecure. The corresponding adversary is shown in Figure 3 where x
denotes x⊕ 1n, and ∆ ∈ {0, 1}n denotes the function k 7→ k ⊕∆.

Analysis. When interacting with oracles implementing the EM construction, we show that A returns true with
probability 1. We have that y0 = P2(P1(k)⊕ k)⊕ k and y1 = P2(P1(k)⊕ k)⊕ k. Now x is calculated as

y0 = P2(P1(k)⊕ k)⊕ k ⊕k−→ P2(P1(k)⊕ k)
P−1
2−→ P1(k)⊕ k ⊕k−→ P1(k)

P−1
1−→ P−1

1 (P1(k))
⊕k−→ P−1

1 (P1(k))⊕ k .

Variable y2 is calculated as

x = P−1
1 (P1(k))⊕ k ⊕k−→ P−1

1 (P1(k))
P1−→ P1(k)

⊕k−→ P1(k)⊕ k P2−→ P2(P1(k)⊕ k)
⊕k−→ P2(P1(k)⊕ k)⊕ k .

14

Adv. ARKEnc,RKDec,π:
Query RKEnc(0n, 0n); Receive y0

Query RKEnc(1n, 1n); Receive y1

Query RKDec(1n, y0); Receive x
Query RKEnc(0n, x); Receive y2

Return (y2 = y1)

Fig. 3. Adversary A attacking the Φ⊕-RKCCA security of EMπ[1, 1, 1].

Hence y2 = P2(P1(k)⊕ k)⊕ k = y1. On the other hand, when the adversary is interacting with the ideal cipher,
for the equality to hold we need to have that

Ek(Dk(Ek(0))) = Ek(1) i.e., Dk(Ek(0)) = Dk(Ek(1)) .

The latter equality however holds with negligible probability. This attack also applies if the round permutations
are identical, i.e., when P2 = P1.

Remark. Note that in the CCA setting we would need to simulate both permutations P1 and P2 forgetfully as
forward and backward outputs need to look random. To do this we would have to re-introduce the xor claw-free
condition in order to rule out collisions on P1, which in turn excludes the Φ⊕ set. It is instructive to check
where the above sequence of queries triggers collisions in the second permutation, irrespectively of how P1 is
simulated. Let z := P1(k) ⊕ k. During the first and second RKEnc queries, P2 is queried on points z and z,
respectively. During the decryption query, P−1

2 is queried on P2(z), which is equivalent to P2 being queried on
z. This is a P2 collision. Note also that in the third RKEnc query a second collision occurs as P2 is queried on
z.

6 The Φ-RKCCA Security of EMπ[1, 1, 1, 1]

Building on the results of the previous sections, we set out to find a key schedule for the iterated Even–
Mansour construction that provides Φ⊕-RKCCA security. Our previous results show that at least three rounds
are necessary. We start by showing that of the fourteen possible simple key schedules for three-round EM, all
but one fall prey to Φ⊕-RKCCA attacks. We then show that the remaining EMπ[1, 1, 1, 1] construction does
indeed provide Φ⊕-RKCCA security.

6.1 Attacking EMπ[κ] for κ 6= [1, 1, 1, 1]

Up to relabeling, then there are 14 possible key schedules for the three-round Even–Mansour schemes. Of
these, 9 are susceptible to offset-switching attacks. These are key schedules where a key appears only in the
first or the last round and nowhere else, e.g., [1, 2, 2, 2], [1, 2, 2, 3], or [1, 2, 2, 1]. This rules out 9 key schedules.
Another 4 can be attacked using Andreeva et al.’s attack [3]. These are the [1, 1, 2, 1], [1, 2, 1, 1], [1, 1, 2, 2], and
[1, 2, 1, 2] schedules. We give three attacks in Figure 4 below. Here, c1c2 ∈ {0, 1}2 denotes the RKD function
(k1, k2) 7→ (k1 ⊕ cn1 , k2 ⊕ cn2). The analysis of the success probabilities of these adversaries are similar to that
for the attack in Section 5.3 and hence omitted.

These attacks give a generic 4-query related-key distinguisher for reduced-round LED [29] (8 out of 32
rounds for LED-64 and 16 out of 48 for LED-128). Our results lend support to the designers’ claim that LED
provides good related-key attack security in spite of the simple key schedule, even though they do not apply
directly to LED as the round functions are neither random permutations nor independent.

6.2 RKA security of EMπ[1, 1, 1, 1]

We now show that EMπ[1, 1, 1, 1] achieves Φ-RKCCA security for sets Φ which include, amongst others, the Φ⊕

set. As before, we motivate a number of restrictions on Φ by considering a simulation strategy and analyzing

15

Adv. ARKEnc,RKDec,π:
Query RKEnc(00, 0); Get y0

Query RKEnc(10, 1); Get y1

Query RKDec(10, y0); Get x
Query RKEnc(00, x); Get y2

Return (y2 = y1)

Adv. ARKEnc,RKDec,π:
Query RKEnc(00, 0); Get y0

Query RKEnc(10, 1); Get y1

Query RKDec(10, y0); Get x
Query RKEnc(00, x); Get y2

Return (y2 = y1)

Adv. ARKEnc,RKDec,π:
Query RKEnc(00, 0); Get y0

Query RKEnc(10, 1); Get y1

Query RKDec(10, y0); Get x
Query RKEnc(00, x); Get y2

Return (y2 = y1)

Fig. 4. Adversaries attacking EMπ[1, 1, 2, 1] (left), EMπ[1, 1, 2, 2] (middle), and EMπ[1, 2, 1, 2] (right).

the inconsistencies that could arise. The adversary in the Φ-RKCCA game with respect to the construction has
access to π and the oracles

P3(P2(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ,

P−1
1 (P−1

2 (P−1
3 (x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) .

Once again we aim to simulate the above two oracles by returning uniformly random values. There are at least
two way to perform this:

(a) Simulate the outer permutations in RKEnc and RKDec forgetfully. That is, the P3 oracle in RKEnc and
the P−1

1 oracle in RKDec are forgetfully implemented.
(b) Simulate the middle oracles P2 and P−1

2 forgetfully. This will ensure that the inputs to P±1 and P±3 are
randomized, and hence their outputs will be also random.

The first approach, although in some sense the more natural one, does not work. This is due to the fact
that P1 (resp. P3) also appear as the first-round permutation in RKEnc (resp. RKDec). An adversary which
performs an offset switch can trigger collisions in these oracles without being detected. We therefore adapt the
second simulation strategy and for forgetful oracle $ consider

P3($(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ,

P−1
1 ($(P−1

3 (x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) .

We now consider inconsistencies, starting with a query collision between π (from a query of A) and $ arising
from either the forward or backwards direction. Here we rely on first-order output unpredictability, but note
that (i, σ) = (1,+) and (i, σ) = (3,−) will be critically relied on. Collisions arising between an RKD query
to π and a $ query in either direction can be ruled out down to first-order query independence; once again
(i, σ) ∈ {(1,+), (3,−)} will be used. Finally, the probability that a collision occurs as a result of two queries to
$ and/or $−1 can be bounded by the first-order claw freeness property. As before, inconsistencies also arise due
to collisions between the outputs of oracle queries; the probability of this occurring can be bounded information
theoretically. Note that here we also rely on independence of queries to the second permutation, but both cases
(i, σ) ∈ {(1,+), (3,−)} in the definition will be used. We formally prove the following theorem in Appendix C.

Theorem 4 (Φ-RKCCA security of EMπ[1, 1, 1, 1]). Let Φ be an RKD set. Then for any adversary A against
the Φ-RKCPA security of EMπ[1, 1, 1, 1] with parameters as before, we have adversaries B1, B2, B3, and B4 such
that

Advrkcca
EMπ [1,1,1,1],Φ,3(A) ≤Advoup1

Φ,3 (B1) + Advxqi1
Φ,3 (B2) + 2Advcf1

Φ,3(B3) + Advcf
Φ,3(B4)

+
2q2
em

2n
+

2qem(q2 +
∑
φ q

φ
2)

2n − (q2 +
∑
φ q

φ
2)

,

where B1 outputs a list of length 2q2qem, B2 a list of length 2q2
em, B3 a list of length q2

em, and B4 a list of length
at most q2

em.

Corollary 1 together with Theorem 4 allow us to establish that the three-round single-key Even–Manour
construction with independent round permutations is Φ⊕-RKCCA secure:

16

Corollary 3. For any adversary A against the Φ⊕-RKCCA security of EMπ[1, 1, 1, 1] with parameters defined
as before. Then

Advrkcca
EMπ [1,1,1,1],Φ⊕,3(A) ≤ 2qem(q2 + qem)(2q1 + 2q3 + 9)

2n
+

2qemq2

2n − q2
.

Once again, via a direct analysis (but at the expense of modularity) the cubic bound above can be tightened
to a quadratic one.

Permutation reuse. It is interesting to see if the above results can be further minimized by considering
permutation re-use across the rounds. If the same permutation is used in the first and third rounds, a similar
proof strategy applies as these oracles would be faithfully simulated in the reduction. The proof, however, does
not immediately apply if the same permutation is used in all rounds as a forgetful simulation of the middle oracle
introduces inconsistencies across the rounds. Without going into the details, we remark that this can be made
to work by introducing a new CF-type assumption which requires that it is infeasible to find (φ1, x1, φ2, x2)
such that φ2(k) ⊕ x2 = P±(x1 ⊕ φ1(k)) ⊕ φ1(k). This condition would ensure that inconsistencies resulting
from a P query in the first or thirds rounds and a $ query happen with low probability. Following the proof
of Proposition 1, we can also reduce this new property to standard OUP and CF notions: starting from the
above winning condition, first consider the game where the winning condition uses an independent permutation
(this change reduces to OUP), then consider the winning condition φ1(k) = φ2(k) (an adversary winning this
game wins the CF game), finally if an adversary wins the second game but not the third, then they have found
a solution to φ1(k) ⊕ φ2(k) = x ⊕ R where R is the random output of the independent permutation, which
happens with probability at most `/(2n − 2`) as x, φ1(k), and φ2(k) are independent of R, where ` is the size
of the list output by the adversary.

References

1. Martin R. Albrecht, Pooya Farshim, Kenny G. Paterson, and Gaven J. Watson. On cipher-dependent related-key
attacks in the ideal-cipher model. In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages 128–145, Lyngby,
Denmark, February 13–16, 2011. Springer, Berlin, Germany.

2. Ross J. Anderson and Markus G. Kuhn. Low Cost Attacks on Tamper Resistant Devices. In Bruce Christianson,
Bruno Crispo, T. Mark A. Lomas, and Michael Roe, editors, Security Protocols, 5th International Workshop, Paris,
France, April 7-9, 1997, Proceedings, volume 1361 of Lecture Notes in Computer Science, pages 125–136. Springer,
1997.

3. Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John P. Steinberger. On the indifferentia-
bility of key-alternating ciphers. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042
of LNCS, pages 531–550, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Berlin, Germany.

4. Manuel Barbosa and Pooya Farshim. The related-key analysis of feistel constructions. In Carlos Cid and Christian
Rechberger, editors, FSE 2014, LNCS. Springer, 2014. (to appear).

5. Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure against related-key
attacks. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 666–684, Santa Barbara, CA, USA,
August 15–19, 2010. Springer, Berlin, Germany.

6. Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks and tampering. In
Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 486–503, Seoul, South
Korea, December 4–8, 2011. Springer, Berlin, Germany.

7. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 491–506, Warsaw, Poland,
May 4–8, 2003. Springer, Berlin, Germany.

8. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing
proofs. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 409–426, St. Petersburg, Russia,
May 28 – June 1, 2006. Springer, Berlin, Germany.

9. Eli Biham. New types of cryptoanalytic attacks using related keys (extended abstract). In Tor Helleseth, edi-
tor, EUROCRYPT’93, volume 765 of LNCS, pages 398–409, Lofthus, Norway, May 23–27, 1993. Springer, Berlin,
Germany.

10. Eli Biham. New types of cryptanalytic attacks using related keys. Journal of Cryptology, 7(4):229–246, 1994.
11. Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full AES-192 and AES-256. In Mitsuru

Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 1–18, Tokyo, Japan, December 6–10, 2009. Springer,
Berlin, Germany.

17

12. Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and related-key attack on the full AES-256. In
Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 231–249, Santa Barbara, CA, USA, August 16–20,
2009. Springer, Berlin, Germany.

13. Alex Biryukov and David Wagner. Advanced slide attacks. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 589–606, Bruges, Belgium, May 14–18, 2000. Springer, Berlin, Germany.

14. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw,
Yannick Seurin, and C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, CHES 2007, volume 4727 of LNCS, pages 450–466, Vienna, Austria, September 10–13, 2007.
Springer, Berlin, Germany.

15. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, François-Xavier Standaert, John P. Steinberger, and Elmar
Tischhauser. Key-alternating ciphers in a provable setting: Encryption using a small number of public permutations
- (extended abstract). In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 45–62, Cambridge, UK, April 15–19, 2012. Springer, Berlin, Germany.

16. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knežević, Lars R. Knudsen, Gregor Lean-
der, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications - extended abstract. In Xiaoyun Wang
and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 208–225, Beijing, China, December 2–6,
2012. Springer, Berlin, Germany.

17. Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John P. Steinberger. Minimizing the two-round
Even-Mansour cipher. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 39–56, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Berlin, Germany.

18. Shan Chen and John P. Steinberger. Tight security bounds for key-alternating ciphers. In Phong Q. Nguyen
and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 327–350, Copenhagen, Denmark,
May 11–15, 2014. Springer, Berlin, Germany.

19. Joan Daemen. Limitations of the Even-Mansour construction (rump session). In Hideki Imai, Ronald L. Rivest, and
Tsutomu Matsumoto, editors, ASIACRYPT’91, volume 739 of LNCS, pages 495–498, Fujiyoshida, Japan, Novem-
ber 11–14, 1991. Springer, Berlin, Germany.

20. Joan Daemen and Vincent Rijmen. The block cipher Rijndael. In Jean-Jacques Quisquater and Bruce Schneier,
editors, Smart Card Research and Applications, volume 1820 of Lecture Notes in Computer Science, pages 277–284.
Springer Berlin Heidelberg, 2000.

21. Joan Daemen and Vincent Rijmen. The wide trail design strategy. In Bahram Honary, editor, 8th IMA International
Conference on Cryptography and Coding, volume 2260 of LNCS, pages 222–238, Cirencester, UK, December 17–19,
2001. Springer, Berlin, Germany.

22. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography: The Even-Mansour scheme revisited.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 336–354,
Cambridge, UK, April 15–19, 2012. Springer, Berlin, Germany.

23. EMVCo. EMV Integrated Circuit Card Specifications for Payment Systems, Book 2, Security and Key Management,
June 2008. Version 4.2.

24. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudorandom permutation. In Hideki
Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, ASIACRYPT’91, volume 739 of LNCS, pages 210–224,
Fujiyoshida, Japan, November 11–14, 1991. Springer, Berlin, Germany.

25. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudorandom permutation. Journal
of Cryptology, 10(3):151–162, 1997.

26. Craig Gentry and Zulfikar Ramzan. Eliminating random permutation oracles in the Even-Mansour cipher. In
Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 32–47, Jeju Island, Korea, December 5–9,
2004. Springer, Berlin, Germany.

27. Benôıt Gérard, Vincent Grosso, Maŕıa Naya-Plasencia, and François-Xavier Standaert. Block ciphers that are easier
to mask: How far can we go? In Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013, volume 8086 of
LNCS, pages 383–399, Santa Barbara, California, US, August 20–23, 2013. Springer, Berlin, Germany.

28. Zheng Gong, Svetla Nikova, and Yee-Wei Law. KLEIN: a new family of lightweight block ciphers. In RFID. Security
and Privacy, pages 1–18. Springer Berlin Heidelberg, 2011.

29. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED block cipher. In Bart Preneel
and Tsuyoshi Takagi, editors, CHES 2011, volume 6917 of LNCS, pages 326–341, Nara, Japan, September 28 –
October 1, 2011. Springer, Berlin, Germany.

30. Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the random oracle model and the ideal
cipher model, revisited. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 89–98, San Jose,
California, USA, June 6–8, 2011. ACM Press.

31. Tetsu Iwata and Tadayoshi Kohno. New security proofs for the 3GPP confidentiality and integrity algorithms.
In Bimal K. Roy and Willi Meier, editors, FSE 2004, volume 3017 of LNCS, pages 427–445, New Delhi, India,
February 5–7, 2004. Springer, Berlin, Germany.

18

32. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, Lei Wang, and Shuang Wu. Security analysis of PRINCE. In Shiho
Moriai, editor, FSE 2013, volume 8424 of LNCS, pages 92–111, Singapore, March 11–13, 2013. Springer, Berlin,
Germany.

33. Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive key search. In Neal Koblitz, editor,
CRYPTO’96, volume 1109 of LNCS, pages 252–267, Santa Barbara, CA, USA, August 18–22, 1996. Springer,
Berlin, Germany.

34. Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive key search (an analysis of DESX). Journal
of Cryptology, 14(1):17–35, 2001.

35. Lars Ramkilde Knudsen. Cryptanalysis of LOKI 91. In Jennifer Seberry and Yuliang Zheng, editors, Advances in
Cryptology – AUSCRYPT ’92, volume 718 of Lecture Notes in Computer Science, pages 196–208. Springer Berlin
Heidelberg, 1993.

36. Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. An asymptotically tight security analysis of the iterated
Even-Mansour cipher. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
278–295, Beijing, China, December 2–6, 2012. Springer, Berlin, Germany.

37. Rodolphe Lampe and Yannick Seurin. How to construct an ideal cipher from a small set of public permutations. In
Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 444–463, Bengalore,
India, December 1–5, 2013. Springer, Berlin, Germany.

38. Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable block ciphers. In Moti Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 31–46, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Berlin, Germany.

39. Stefan Lucks. Ciphers secure against related-key attacks. In Bimal K. Roy and Willi Meier, editors, FSE 2004,
volume 3017 of LNCS, pages 359–370, New Delhi, India, February 5–7, 2004. Springer, Berlin, Germany.

40. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility results on reductions,
and applications to the random oracle methodology. In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21–39, Cambridge, MA, USA, February 19–21, 2004. Springer, Berlin, Germany.

41. Florian Mendel, Vincent Rijmen, Deniz Toz, and Kerem Varici. Differential analysis of the LED block cipher. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 190–207, Beijing, China,
December 2–6, 2012. Springer, Berlin, Germany.

42. National Institute of Standards and Technology. FIPS Publication 197, Announcing the Advanced Encryption
Standard (AES), 2001.

43. Onur Özen, Kerem Varici, Cihangir Tezcan, and Çelebi Kocair. Lightweight block ciphers revisited: Cryptanalysis
of reduced round PRESENT and HIGHT. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP 09,
volume 5594 of LNCS, pages 90–107, Brisbane, Australia, July 1–3, 2009. Springer, Berlin, Germany.

44. Jacques Patarin. The “coefficients H” technique (invited talk). In Roberto Maria Avanzi, Liam Keliher, and Francesco
Sica, editors, SAC 2008, volume 5381 of LNCS, pages 328–345, Sackville, New Brunswick, Canada, August 14–15,
2008. Springer, Berlin, Germany.

45. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composition: Limitations of the indiffer-
entiability framework. In Kenneth G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506,
Tallinn, Estonia, May 15–19, 2011. Springer, Berlin, Germany.

46. C E Shannon. Communication Theory of Secrecy Systems. Bell System Technical Journal, 128(4), October 1949.
47. John Steinberger. Improved security bounds for key-alternating ciphers via hellinger distance. Cryptology ePrint

Archive, Report 2012/481, 2012. http://eprint.iacr.org/2012/481.

A Proof of Theorem 2: The Φ-RKCCA Security of EMπ[1, 1]

Proof. The proof proceeds through four stages. In the first, A interacts with a public permutation and its
inverse, plus the forward and backward directions of the Even–Mansour scheme instantiated with the same
permutation:

P(x), P−1(x), P(x⊕ φπ(k))⊕ φπ(k), P−1(x⊕ φπ(k))⊕ φπ(k) .

We then consider an environment in which P and P−1 are replaced by $, a forgetful random oracle, for queries
made to the Even–Mansour scheme:

P(x), P−1(x), $(x⊕ φπ(k))⊕ φπ(k), $(x⊕ φπ(k))⊕ φπ(k)

which is identical to
P(x), P−1(x), $(φπ(k), x), $(φπ(k), x) .

Finally, we transition to games in which $ is replaced by keyed random functions iF and iC:

P(x), P−1(x), iF(φπ(k), x), iC(φπ(k), x) ,

19

http://eprint.iacr.org/2012/481

and then by the ideal cipher (iE, iD):

P(x), P−1(x), iE(φπ(k), x), iD(φπ(k), x) .

We will now argue that the above changes alter A’s winning probabilities negligibly and bound A’s winning
probability in terms of the conditions on Φ introduced in Section 4.

The first transition is analyzed via a series of games, given in Figure 5. These games include two intermediate
transitions: in the first, P is replaced with Q (a random permutation, chosen independently of P) for queries
arising through RKEnc (or RKDec); in the second, Q is replaced with $ (a forgetful random oracle). We
identify the points at which these two intermediate transitions lead to inconsistencies, by setting Bad flags. In
contrast to how the intuition behind this proof is described in Section 4, we defer the bounding of the probability
bad events occurring during the first intermediate transition until after the second intermediate transition. The
specification of DS1

−1 and IS1
−1 are omitted for conciseness; they are defined analogously to their respective

forward oracles. Without loss of generality, we will assume that no adversary makes repeat or redundant queries
– this assumption is needed in the transitions to and from the forgetful random oracles. Let Si denote the event
where the adversary outputs 1 in Game i.

Game 0 is the RKA game augmented with a public permutation oracle (as described in Section 2), conditioned
on b = 1. In this game, the adversary interacts with oracles realizing the public permutation P and the
Even–Mansour construction instantiated with P.

Game 1 is only syntactically different from Game 0. The queries to π are split into two groups: those made
directly to π, either by the adversary or by an RKD function, which are answered by the sampling algorithm
DS1 (or DS1

−1); and those made indirectly, through queries made to RKEnc (or RKDec), which are
answered by IS1 (or IS1

−1). The oracles DS1 and IS1 maintain consistent lists I1 and D1; the lists used
by inverse oracles are identical to the lists used by the corresponding forward oracles. As this is a purely
syntactic change, Pr[S0] = Pr[S1].

Game 1a introduces syntactic changes to DS1 and IS1 (and the corresponding inverse oracles) in order for the
code in the games that follow to be identical until specified bad events occur. Introducing this step will
allow us to remove the statement b ←$ {0, 1}n \ Rng(DS1, IS1); this is necessary as we wish to completely
decouple DS1 (and DS1

−1) from IS1 (and IS1
−1).

Game 2 sets Bad1 either if DS1 is queried on a point already defined in I1 or if IS1 is queried on a point already
defined in D1 (and similarly for the inverse oracles). This occurs either because A queries π directly at a
point that is also queried through an indirect RKEnc (or RKDec) query, or because an RKD function
queries π at a point that is also queried through an RKEnc (or RKDec) query. We will later bound the
probability of this event in terms of the output unpredictability and query independence of Φ. Game 2 sets
Bad2 if the value chosen at random for DS1(a) is already defined in range of IS1, or vice versa (and similarly
for the inverse queries and the domain of IS1 or DS1). This is necessary because in Game 1, for both DS1

and IS1, b is sampled from {0, 1}n \Rng(DS1, IS1) whereas our objective in Game 3 is to ensure that DS1 and
DS1

−1 are independent of IS1 and IS1
−1. The outputs of DS1 and IS1 (and their inverses) remain consistent

and Pr[S1] = Pr[S2].

Game 3 omits the boxed statements in Game 2 and so is identical to Game 2 unless one of Bad1 or Bad2 is
set. In this game, the oracles DS1 and IS1 check consistency with their own lists (and the list for their
corresponding inverse oracle contains all the same entries as their list), but they may become inconsistent
with each other. It is possible for Bad1 to be set in two different ways:

– E1 is the event an adversary directly queries DS1 at a point coinciding with a point queried to IS1 from
a query to RKEnc (or comparable conditions resulting from queries to DS1

−1 or RKDec).

– E2 is the event an RKD function queries DS1 at a point coinciding with a point queried to IS1 from a
query to RKEnc (or comparable conditions resulting from queries to DS1

−1 or RKDec).

We will analyze each of the ways that Bad1 can be set below. Similarly, Bad2 can be set either because
of a query to DS1 from A, a query to DS1 from φπ, or from a query to IS1 due to a query to RKEnc
(or similarly for the corresponding inverse oracles); we consider all cases simultaneously below. In Game 3,
the responses to RKEnc (and RKDec) queries are completely decoupled from the responses to π queries,
so we can consider that RKEnc (and RKDec) use Q to respond to queries and π uses P. We have that
Pr[S2] ≤ Pr[S3] + Pr[E1 ∨ E2 ∨ Bad2].

20

Game 4 sets Bad3 if a query to RKEnc (or RKDec) results in a value being queried to IS1 (or IS1
−1) that is

already in I1 (or I1
−1). Game 4 chooses the response to IS1 uniformly from {0, 1}n and sets Bad4 if this

value is already in Rng(IS1) (and similarly for IS1
−1). The flag Bad4 can be set in four ways (as a result

of two queries to either of IS1 and IS1
−1, plus two ‘mixed cases’ with one query to each of IS1 and IS1

−1);
we consider each of these cases when we analyze the probability of setting bad events below. Game 4 is
equivalent to Game 3 and, in particular, Pr[S3] = Pr[S4].

Game 5 omits the boxed statements from Game 4 and so is identical to Game 4 unless Bad3 or Bad4 is set. Let
E′1, E

′
2, Bad′2 represent events in Game 5 corresponding to events E1, E2, Bad2 in Game 4, then Pr[E1 ∨

E2 ∨ Bad2] ≤ Pr[E′1 ∨ E
′
2 ∨ Bad′2] + 2 Pr[Bad3 ∨ Bad4]. In this game, calls to π(1, ·,+) through RKEnc

(which are answered by IS1) are answered by a forgetful random oracle and so the ciphertexts are uniform
and independent of the key and the plaintext (the same is true for calls to the inverse oracles).

In Game 5, the adversary interacts with

P(x), P−1(x), $(x⊕ φπ(k))⊕ φπ(k), $(x⊕ φπ(k))⊕ φπ(k) .

During the transitions to
P(x), P−1(x), iF(φπ(k), x), iC(φπ(k), x)

inconsistencies only arise if the adversary makes queries (φπ1 , x1) 6= (φπ2 , x2), but where (φπ1 (k), x1) = (φπ2 (k), x2).
If an adversary A makes such a query, we can construct an adversary B4 which wins the CF game with a list

of length at most
q2em

2 as follows: B4 runs A and outputs List = {(φπi , φπj) : 1 ≤ i < j ≤ qem}.
In the final transition, we switch from a random function to a random permutation (for each φπ); the

probability of an inconsistency arising in this step is bounded by
q2em
2n [8].

Therefore we have that

Advrkcca
EMπ [1,1],Φ,1(A) ≤Pr[E′1 ∨ E

′
2 ∨ Bad′2] + 2 Pr[Bad3 ∨ Bad4] + Advcf

Φ,1(B4) +
q2
em

2n
.

It remains to bound the probability that the bad events occur in Game 5.

Event E′1 occurs when the adversary directly queries π at a point that is also queried as a result of a query
to RKEnc (or RKDec). This situation is described in Section 4 as an inconsistency between ListP :=
List+P ∪ List−P and List$:= List+$ ∪ List−$. We will use A to create an adversary B1 against the OUP game
with a list of length 2q1qem. The adversary B1 runs A and then outputs List = {(φπi , xi ⊕ aj) : 1 ≤ i ≤
qem, 1 ≤ j ≤ q1} ∪ {(φπi , yi ⊕ bj) : 1 ≤ i ≤ qem, 1 ≤ j ≤ q1}, where xi is the input to RKEnc resulting in
output yi on the ith query (reversed for a query to RKDec) and aj is the input to π(1, ·,+) resulting in
output bj on the jth query (similarly reversed for a query to π(1, ·,−)). If A sets Bad1 with an DS1 or IS1

query, then B1 wins the OUP game with a tuple of the form (φπi , xi ⊕ aj) and if A sets Bad1 with a query
to DS1

−1 or IS1
−1 then B wins the OUP game with a tuple of the form (φπi , yi⊕ bj). We therefore conclude

that Pr[E′1] ≤ Advoup
Φ,1(B1), where B1 outputs a list of length 2q1qem.

Event E′2 occurs when an RKD function queries π at a point that is also queried as a result of a query
to RKEnc (or RKDec). This situation is described in Section 4 as an inconsistency between Listφ :=
List+φ ∪ List

−
φ and List$. We will use A to create an adversary B2 against the XQI game with a list of length

2q2
em. The adversary B2 runs A and outputs List = {(1,+, φπi , φπj , xi) : 1 ≤ i, j ≤ qem} ∪ {(1,−, φπi , φπj , yi) :

1 ≤ i, j ≤ qem}. If A sets Bad1 with a query to IS1 or to DS1 from an RKD function that queries π(1, ·,+),
then B1 wins the OUP game with a tuple of the form (1,+, φπi , φ

π
j , xi) and if A sets Bad1 with a query to

IS1
−1 or DS1

−1 from an RKD function that queries π(1, ·,−), then B wins the XQI game with a tuple of

the form (1,−, φπi , φπj , yi). Therefore, Pr[E′2] ≤ Advxqi
Φ,1(B2), where B2 outputs a list of length 2q2

em.

Flag Bad′2 is set in a sub-case of the situation described in Section 4 as an inconsistency between ListP and
List$ or Listφ and List$. It can occur in one of 16 different ways. Collisions between DS1 and IS1, DS1

−1 and
IS1
−1, DS1 and IS1

−1, or DS1
−1 and IS1 can all set Bad2 and each is counted twice, depending on the order

of the queries. This gives 8 ways to set Bad2, however the query to DS1 can arise through a query by A or
through φπ, which gives 16 ways. In each case, we use a birthday-bound style argument and note that each

pair (x, a) has at most a 1/(2n − q −
∑
φ q

φ
1) chance of setting Bad′2 (if it is set via a call to IS1 or IS1

−1

then it is set with probability 1/2n). Applying the union bound and recalling that qem is the total number

21

of queries made to RKEnc and RKDec and thus to IS and IS1
−1 by A (similarly for q1 and qφ1) gives that

Bad′2 is set with probability at most
(q1+

∑
φ q

φ
1)qem

2n−(q1+
∑
φ q

φ
1)

.

Flag Bad3 is set if a query to RKEnc (or RKDec) result in a value being queried to IS1 (or IS1
−1) that is

already in I1 (or I1
−1). This situation is described in Section 4 as an inconsistency between List$ and List$.

We will use A that sets Bad3 to create an adversary B3 against the XCF game. The adversary B3 runs A
and then outputs List = {(φπi , φπj , xi ⊕ xj) : 1 ≤ i < j ≤ qem} ∪ {(φπi , φπj , yi ⊕ yj) : 1 ≤ i < j ≤ qem}. If A
sets Bad3 as a result a query to IS1, then B3 wins the XCF game with a tuple of the form (φπi , φ

π
j , xi ⊕ xj)

and if A sets Bad3 as a result a query to IS1
−1, then B3 wins the XCF game with a tuple of the form

(φπi , φ
π
j , yi ⊕ yj). Thus Pr[Bad3] ≤ Advxcf

Φ,1(B3), where B3 outputs a list of length at most q2
em.

Flag Bad4 is set in a sub-case of the situation described in Section 4 as an inconsistency between List$ and

List$. Using similar reasoning as in the setting of Bad2, it is set with probability at most
q2em

2
1

2n .

As we have that

Advrkcca
EMπ [1,1],Φ,1(A) ≤Pr[E′1 ∨ E

′
2 ∨ Bad′2] + 2 Pr[Bad3 ∨ Bad4]

+ Advcf
Φ,1(B4) +

q2
em

2n
,

we may conclude that

Advrkcca
EMπ [1,1],Φ,1(A) ≤Advoup

Φ,1(B1) + Advxqi
Φ,1(B2) +

qem(q1 +
∑
φ q

φ
1)

2n − (q1 +
∑
φ q

φ
1)

+ 2

(
Advxcf

Φ,1(B3) +
q2
em

2n+1

)
+ Advcf

Φ,1(B4) +
q2
em

2n
,

where B1 outputs a list of length 2q1qem, B2 a list of length 2q2
em, B3 a list of length q2

em, and B4 a list of length
at most q2

em.

22

Game i:
k ←$ K
b′ ←$ ARKEnc,RKDec,π

Return b′

RKEnc(φπ, x):

k′ ← φπ(k)
Return k′ ⊕ IS1(k′ ⊕ x)

RKDec(φπ, y):

k′ ← φπ(k)
Return k′ ⊕ IS1

−1(k′ ⊕ y)

π(1, a,+):

Return DS1(a)

Game 1:

DS1(a)

If D1[a] 6=⊥
Return D1[a]

If I1[a] 6=⊥

Return I1[a]

b ←$ {0, 1}n \ Rng(DS1, IS1)

D1[a]← b; D1
−1[b]← a

Rng(DS1)← Rng(DS1) ∪ {b}
Dom(DS1)← Dom(DS1) ∪ {a}
Return D1[a]

IS1(a):

If I1[a] 6=⊥

Return I1[a]

If D1[a] 6=⊥

Return D1[a]

b ←$ {0, 1}n \ Rng(DS1, IS1)

I1[a]← b; I1
−1[b]← a

Rng(IS1)← Rng(IS1) ∪ {b}
Dom(IS1)← Dom(IS1) ∪ {a}
Return I1[a]

Game 1a:

DS1(a):

If D1[a] 6=⊥
Return D1[a]

If I1[a] 6=⊥

Return I1[a]

b ←$ {0, 1}n \ Rng(DS1)
If b ∈ Rng(IS1)

b ←$ {0, 1}n \ Rng(DS1, IS1)

D1[a]← b; D1
−1[b]← a

Rng(DS1)← Rng(DS1) ∪ {b}
Dom(DS1)← Dom(DS1) ∪ {a}
Return D1[a]

IS1(a):

If I1[a] 6=⊥

Return I1[a]

If D1[a] 6=⊥

Return D1[a]

b ←$ {0, 1}n
If b ∈ Rng(IS1)

b ←$ {0, 1}n \ Rng(IS1)

If b ∈ Rng(DS1)

b ←$ {0, 1}n \ Rng(DS1, IS1)

I1[a]← b; I1
−1[b]← a

Rng(IS1)← Rng(IS1) ∪ {b}
Dom(IS1)← Dom(IS1) ∪ {a}
Return I1[a]

Game 2 Game 3:

DS1(a):

If D1[a] 6=⊥
Return D1[a]

If I1[a] 6=⊥
Bad1 ← true

Return I1[a]

b ←$ {0, 1}n \ Rng(DS1)
If b ∈ Rng(IS1)

Bad2 ← true

b ←$ {0, 1}n \ Rng(DS1, IS1)

D1[a]← b; D1
−1[b]← a

Rng(DS1)← Rng(DS1) ∪ {b}
Dom(DS1)← Dom(DS1) ∪ {a}
Return D1[a]

IS1(a):

If I1[a] 6=⊥

Return I1[a]

If D1[a] 6=⊥
Bad1 ← true

Return D1[a]

b ←$ {0, 1}n
If b ∈ Rng(IS1)

b ←$ {0, 1}n \ Rng(IS1)

If b ∈ Rng(DS1)
Bad2 ← true

b ←$ {0, 1}n \ Rng(DS1, IS1)

I1[a]← b; I1
−1[b]← a

Rng(IS1)← Rng(IS1) ∪ {b}
Dom(IS1)← Dom(IS1) ∪ {a}
Return I1[a]

Game 4 Game 5:

DS1(a):

If D1[a] 6=⊥
Return D1[a]

If I1[a] 6=⊥
Bad1 ← true

b ←$ {0, 1}n \ Rng(DS1)
If b ∈ Rng(IS1)

Bad2 ← true

D1[a]← b; D1
−1[b]← a

Rng(DS1)← Rng(DS1) ∪ {b}
Dom(DS1)← Dom(DS1) ∪ {a}
Return D1[a]

IS1(a):

If I1[a] 6=⊥
Bad3 ← true

Return I1[a]

If D1[a] 6=⊥
Bad1 ← true

b ←$ {0, 1}n
If b ∈ Rng(IS1)

Bad4 ← true

b ←$ {0, 1}n \ Rng(IS1)

If b ∈ Rng(DS1)
Bad2 ← true

I1[a]← b; I1
−1[b]← a

Rng(IS1)← Rng(IS1) ∪ {b}
Dom(IS1)← Dom(IS1) ∪ {a}
Return I1[a]

Fig. 5. Sequence of games for the proof of Theorem 2. Oracles π(1, ·,−), DS1
−1, and IS1

−1 are defined in a similar way to their corresponding forward oracles.

23

B Proof of Theorem 3: The Φ-RKCPA Security of EMπ[1, 1, 1]

Proof. The proof follows a similar pattern to the proof of Theorem 2 and proceeds through four stages. In the
first, A interacts with the public permutations and their inverses, plus the forward direction of the 2-round
Even–Mansour scheme instantiated with the same permutations:

π(i, x, σ), P2(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) .

We then consider an environment in which P2 is replaced by $, a forgetful random oracle, for queries made to
the Even–Mansour scheme:

π(i, x, σ), $(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) ,

which is identical to
π(i, x, σ), $(φπ(k), x) .

Finally, we transition to games in which $ is replaced by a keyed random function iF:

π(i, x, σ), iF(φπ(k), x) ,

and then by the ideal cipher iE:
π(i, x, σ), iE(φπ(k), x) .

We will now argue that the above changes alter A’s winning probabilities negligibly and bound A’s winning
probability in terms of the conditions on Φ introduced in Section 5.

The first transition is analyzed via a series of games, given in Figure 6. These games include two intermediate
transitions: in the first, P2 is replaced with Q (a random permutation, chosen independently of π) for queries
arising through RKEnc; in the second, Q is replaced with $ (a forgetful random oracle). We identify the
points at which these two intermediate transitions lead to inconsistencies, by setting Bad flags. In contrast to
how the intuition behind this proof is described in Section 5, we defer the bounding of the probability bad
events occurring during the first intermediate transition until after the second intermediate transition. The
specification of DS1

−1 and IS1
−1 are omitted for conciseness; they are defined analogously to their respective

forward oracles. Without loss of generality, we will assume that no adversary makes repeat or redundant queries
– this assumption is needed in the transitions to and from the forgetful random oracles. Let Si denote the event
where the adversary outputs 1 in game i.

Game 0 is the RKA game augmented with a public permutation oracle (as described in Section 2), conditioned
on b = 1. In this game, the adversary interacts with an oracle π realizing the two public permutations and
the forward direction of the Even–Mansour construction, instantiated with π.

Game 1 is only syntactically different from Game 0. The queries to π are split into three groups. The first group
is those made to π(1, ·, ·), either by the adversary, by an RKD function, or as the result of an RKEnc
query; these are answered by the sampling algorithms S1 and S1

−1. The second group of queries consists
of those made directly to π(2, ·, ·), either by the adversary or by an RKD function, which are answered by
the sampling algorithms DS2 (or DS2

−1). The third group of queries are those queries to π(2, ·, ·) which are
made indirectly, through queries made to RKEnc; these queries are answered by IS2. The oracles DS2 and
IS2 maintain consistent lists I2 and D2; the lists used by inverse oracles are identical to the lists used by the
corresponding forward oracles As this is a purely syntactic change, Pr[S0] = Pr[S1].

Game 2 sets Bad1 either if DS2 is queried on a point already defined in I2 or if IS2 is queried on a point already
defined in D2 (and similarly for DS2

−1). This occurs either because A queries π(2, ·, ·) directly at a point that
is also queried to IS2 through an indirect RKEnc query, or because an RKD function queries π(2, ·, ·) at a
point that is also queried to IS2 through an RKEnc query (and similarly for DS2

−1). We will later bound
the probability of this event in terms of the output unpredictability, first-order output unpredictability,
xor query independence and first-order query independence of Φ. Game 2 sets Bad2 if the value chosen at
random for DS2(a) is already defined in range of IS2, or vice versa (and similarly for DS2

−1 queries and
the domain of IS2). This is necessary because in Game 1, for both DS2 and IS2, b may be sampled from
{0, 1}n \ Rng(DS2, IS2) and we wish to completely decouple DS1 (and DS1

−1) from IS1. The code of S1 and
is unchanged and will remain so throughout this proof. The outputs of DS2 (and DS2

−1) and IS2 remain
consistent and Pr[S1] = Pr[S2].

24

Game 3 omits the boxed statements in Game 2 and so is identical to Game 2 unless one of Bad1 or Bad2 is
set. In this game, the oracles DS2 and IS2 check consistency with their own lists, (and the list for their
corresponding inverse oracle contains all the same entries as their list) but they may become inconsistent
with each other. It is possible for Bad1 to be set in two possible ways:
– E1 is the event an adversary directly queries DS2 (or DS2

−1) at a point coinciding with a point queried
to (or output from) IS2 via a query to RKEnc.

– E2 is the event an RKD function queries DS2 (or DS2
−1) at a point coinciding with a point queried to

(or output from) IS2 from a query to RKEnc.
We will analyze each of the ways that Bad1 can be set below. Similarly, Bad2 can be set either because of
a query to DS2 from A, a query to DS2 from φπ, or a query to IS2 due to a query to RKEnc (or similarly
for DS2

−1); we consider all cases simultaneously below. In Game 3, the responses to RKEnc queries are
completely decoupled from the responses to π queries, so we can consider that RKEnc uses Q to respond
to queries and π uses P. We have that Pr[S2] ≤ Pr[S3] + Pr[E1 ∨ E2 ∨ Bad2].

Game 4 sets Bad3 if two distinct queries to RKEnc result in the same value being queried to IS2. As A makes
no queries to RKDec, we only need to consider the possibility that Bad3 is set as a result of a query to
RKEnc. Game 4 chooses the response to IS2 uniformly from {0, 1}n and sets Bad4 if this value is already
in Rng(IS2). Game 4 is equivalent to Game 3 and, in particular, Pr[S3] = Pr[S4].

Game 5 omits the boxed statements from Game 4 and so is identical to Game 4 unless Bad3 or Bad4 is set. Let
E′1, E

′
2, Bad′2 represent events in Game 5 corresponding to events E1, E2, Bad2 in Game 4, then Pr[E1 ∨

E2∨Bad2] ≤ Pr[E′1∨E
′
2∨Bad

′
2]+2 Pr[Bad3∨Bad4] In this game, calls to π(2, ·,+) through RKEnc (which

are answered by IS1) are answered by a forgetful random oracle and so the ciphertexts are uniform and
independent of the key and the plaintexts.

In Game 5, the adversary interacts with

π(i, x, σ), $(P1(x⊕ φπ(k))⊕ φπ(k))⊕ φπ(k) .

During the transitions to
π(i, x, σ), iF(φπ(k), x) ,

inconsistencies only arise if the adversary makes queries (φπ1 , x1) 6= (φπ2 , x2), but where (φπ1 (k), x1) = (φπ2 (k), x2).
If an adversary A makes such a query, we can construct an adversary B4 which wins the CF game with a list

of length at most
q2em

2 as follows: B4 runs A and outputs List = {(φπi , φπj) : 1 ≤ i < j ≤ qem}.
In the final transition, we switch from a random function to a random permutation (for each φπ); the

probability of an inconsistency arising in this step is bounded by
q2em
2n [8].

Therefore we have that

Advrkcpa
EMπ [1,1,1],Φ,2(A) ≤Pr[E′1 ∨ E

′
2 ∨ Bad′2] + 2 Pr[Bad3 ∨ Bad4] + Advcf

Φ,2(B4) +
q2
em

2n

It remains to bound the probability that the bad events occur in Game 5.

Event E′1 occurs when the adversary directly queries π(2, ·, ·) at a point that is also queried as a result of a
query to RKEnc. This situation is analogous to that described in Section 4 as an inconsistency between ListP

and List$. Although A makes no IS2
−1 queries, it is possible to trigger E2 with a query to DS2

−1. We will use
A to create adversaries B1a and B1b against the OUP1 and OUP games respectively, both with lists of length
q2qem: The adversary B1a runs A and then outputs List = {(1,+, φπi , xi, aj) : 1 ≤ i ≤ qem, 1 ≤ j ≤ q2}.
The adversary B1b runs A and then outputs List = {(φπi , yi ⊕ bj) : 1 ≤ i ≤ qem, 1 ≤ j ≤ q2}. If A can set
Bad by querying the permutation at a point that is also queried as a result of a query to RKEnc, then
either the adversary B1a will win the OUP1 game or B1b will win the OUP game. We therefore conclude

that Pr[E′1] ≤ Advoup1
Φ,2 (B1a) + Advoup

Φ,2(B1b), where B1a and B1b both output a list of length q2qem.

Event E′2 occurs when an RKD function queries π(2, ·, ·) at a point that is also queried to (or returned from) IS2

as a result of a query to RKEnc. This situation is analogous to that described in Section 4 as an inconsistency
between Listφ and List$. Although A makes no IS2

−1 queries, it is possible to trigger E2 with a query to
DS2

−1. We will use A to create adversaries B2a and B2b against the QI1 and XQI games respectively, both
with lists of length q2

em. The adversary B2a runs A and outputs List = {(2,+, φπi , xi, φπj) : 1 ≤ i, j ≤ qem};

25

the adversary B2b runs A and outputs List = {(2,−, φπi , φπj , yi) : 1 ≤ i, j ≤ qem}. If A can set Bad by
causing an RKD function to query the permutation at a point that is also queried (or returned) as a result
of a query to RKEnc, then either B2a will win the QI1 game or B2b will win the QI game. Although A
makes no IS2

−1 queries, it is possible to trigger E2 with a query to DS2
−1 and so we must include tuples

of the form (φπi , φ
π
j , yi). Therefore we can conclude that Pr[E′2] ≤ Advqi1

Φ,2(B2a) + Advxqi
Φ,2(B2b), where B2a

and B2bboth output lists of length q2
em.

Flag Bad′2 is set in a situation analogous to a sub-case of that described in Section 4 as an inconsistency
between ListP and List$ or Listφ and List$. It can occur in one of 8 different ways. Collisions between DS2

and IS2 or DS2
−1 and IS2 can both set Bad2 and each is counted twice, depending on the order of the

queries. This gives 4 ways to set Bad2, however the query to DS2 can arise through a query by A or through
φπ, which gives 8 ways. In each case, we use a birthday-bound argument and note that each pair (x, a)

sets Bad′2 with probability at most 1/(2n − q2 −
∑
φ q

φ
2) (if it is set via a call to IS2 then it is set with

probability 1/2n). Applying the union bound and recalling that qem is the total number of queries made to

RKEnc (and thus to IS) by A (and similarly for q2 and qφ2) gives that Bad′2 is set with probability at most
(q2+

∑
φ q

φ
2)qem

2n−(q2+
∑
φ q

φ
2)

.

Flag Bad3 is set when two queries to RKEnc result in IS2 being queried at the same point. This situation
is analogous to that described in Section 4 as an inconsistency between List$ and List$. We will use A
to create an adversary B3 against the CF1 property of Φ. The adversary B3 runs A and then outputs
List = {(1,+, φπi , xi, φπj , xj) : 1 ≤ i < j ≤ qem}. Note that, as A makes no RKDec queries, it is unable to
set Bad3 with an RKDec query and so we do not need to include tuples of the form (φπ1 , y1, φ

π
2 , y2) in List.

Thus Pr[Bad3] ≤ Advcf1
Φ,2(B3), where B3 outputs a list of length qem(qem−1)

2 .
Flag Bad4 is set in a situation analogous to a sub-case of the that described in Section 4 as an inconsistency

between List$ and List$. Using similar reasoning as in the setting of Bad2, it is set with probability at most
q2em

2
1

2n .

As we have that

Advrkcpa
EMπ [1,1,1],Φ,2(A) ≤Pr[E′1 ∨ E

′
2 ∨ Bad′2] + 2 Pr[Bad3 ∨ Bad4] + Advcf

Φ,2(B4) +
q2
em

2n

we may conclude that

Advrkcpa
EMπ [1,1,1],Φ,2 ≤Advoup1

Φ,2 (B1a) + Advoup
Φ,2(B1b) + Advqi1

Φ,2(B2a) + Advxqi
Φ,2(B2b)

+
qem(q2 +

∑
φ q

φ
2)

2n − (q2 +
∑
φ q

φ
2)

+ 2

(
Advcf1

Φ,2(B3) +
q2
em

2n+1

)
+ Advcf

Φ,2(B4) +
q2
em

2n
,

where B1a and B1b output lists of length q2qem, B2a and B2b lists of length q2
em, B3 a list of length q2

em, and B4

a list of length at most q2
em.

26

Game i:
k ←$ K
b′ ←$ ARKEnc,π

Return b′

RKEnc(φπ, x):

k′ ← φπ(k)
z1 ← S1(k′ ⊕ x)
Return k′ ⊕ IS2(k′ ⊕ z1)

π(1, a,+):

Return S1(a)

π(2, a,+):

Return DS2(a)

S1(a):

If S1[a] 6=⊥
Return S1[a]

b ←$ {0, 1}n \ Rng(S1)
S1[a]← b; S−1

1 [b]← a
Rng(S1)← Rng(S1) ∪ {b}
Dom(S1)← Dom(S1) ∪ {a}
Return S1[a]

Game 1:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

Return I2[a]

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(DS2, IS2)

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
Return I2[a]

If D2[a] 6=⊥
Return D2[a]

b ←$ {0, 1}n
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)

b ←$ {0, 1}n \ Rng(DS2, IS2)

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Game 2 Game 3:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

Bad1 ← true; Return I2[a]

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

Bad2 ← true

b ←$ {0, 1}n \ Rng(DS2, IS2)

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
Return I2[a]

If D2[a] 6=⊥
Bad1 ← true; Return D2[a]

b ←$ {0, 1}n
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)
Bad2 ← true

b ←$ {0, 1}n \ Rng(DS2, IS2)

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Game 4 Game 5:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

Bad1 ← true

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

Bad2 ← true

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
Bad3 ← true; Return I2[a]

If D2[a] 6=⊥
Bad1 ← true

b ←$ {0, 1}n
If b ∈ Rng(IS2)

Bad4 ← true

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)
Bad2 ← true

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Fig. 6. Sequence of games for the proof of Theorem 3. Oracles π(i, ·,−), S1
−1, and DS2

−1 are defined in a similar way
to their corresponding forward oracles.

27

C Proof of Theorem 4: The Φ-RKCCA Security of EMπ[1, 1, 1, 1]

Proof. The proof follows a similar pattern to the proof of Theorems 2 and 3 and we proceed through four stages.
In the first, A interacts with the public permutations and their inverses, plus the 3-round Even–Mansour scheme
instantiated with the same permutations:

π(i, x, σ), P3(P2(P1(x⊕φπ(k))⊕φπ(k))⊕φπ(k))⊕φπ(k), P−1
1 (P−1

2 (P−1
3 (x⊕φπ(k))⊕φπ(k))⊕φπ(k))⊕φπ(k) .

We then consider an environment in which P2 and P−1
2 are replaced by $, a forgetful random oracle, for queries

made to the Even–Mansour scheme:

π(i, x, σ), P3($(P1(x⊕φπ(k))⊕φπ(k))⊕φπ(k))⊕φπ(k), P−1
1 ($(P−1

3 (x⊕φπ(k))⊕φπ(k))⊕φπ(k))⊕φπ(k) ,

which is identical to
π(i, x, σ), $(φπ(k), x), $(φπ(k), x) .

Finally, we transition to games in which $ oracles are replaced by keyed random functions iF and iC,

π(i, x, σ), iF(φπ(k), x), iC(φπ(k), x) ,

and then by the ideal cipher (iE, iD),

π(i, x, σ), iE(φπ(k), x), iD(φπ(k), x) .

We will now argue that the above changes alter A’s winning probabilities negligibly and bound A’s winning
probability in terms of the conditions on Φ introduced in Section 5.

The first transition is analyzed via a series of games, given in Figure 7. These games include two intermediate
transitions: in the first, P2 is replaced with Q (a random permutation, chosen independently of π) for queries
arising through RKEnc (or RKDec); in the second, Q is replaced with $ (a forgetful random oracle). We
identify the points at which these two intermediate transitions lead to inconsistencies, by setting Bad flags.
We omit a specification of the inverse oracles for conciseness; they are defined analogously to their respective
forward oracles. Without loss of generality, we will assume that no adversary makes repeat or redundant queries
– this assumption is needed in the transitions to and from the forgetful random oracles. Let Si denote the event
where the adversary outputs 1 in game i.

Game 0 is the RKA game augmented with a public permutation oracle (as described in Section 2), conditioned
on b = 1. In this game, the adversary interacts with an oracle realizing the three public permutations π and
the Even–Mansour construction instantiated with π.

Game 1 is only syntactically different from Game 0. Sampling algorithms S1 and S3 (and their inverses) are
introduced to respond to queries made to π(1, ·, ·) and π(3, ·, ·). Queries to π(2, ·, ·) are split into two groups:
those made directly to π, either by the adversary or by an RKD function, which are answered by the sampling
algorithm DS2 (or DS2

−1) and those made indirectly through queries made to RKEnc (or RKDec), which
are answered by IS2 (or IS2

−1). The oracles DS2 and IS2 maintain consistent lists, I2 and D2; the lists used
by inverse oracles are identical to the lists used by the corresponding forward oracles. As this is a purely
syntactic change, Pr[S0] = Pr[S1].

Game 2 sets Bad1 either if DS2 is queried on a point already defined in I2 or if IS2 is queried on a point already
defined in D2 (and similarly for the inverse oracles). This occurs either because A queries π(2, ·, ·) directly
at a point that is also queried to π(2, ·, ·) through an indirect RKEnc query, or because an RKD function
queries π(2, ·, ·) at a point that is also queried to π(2, ·, ·) through an RKEnc query (and similarly for
the inverse oracles). We will later bound the probability of this event in terms of the first-order output
unpredictability and first-order query independence of Φ. Game 2 sets Bad2 if the value chosen at random
for IS2(a) is already defined in range of DS2, or vice versa (and similarly for the inverse queries and the
domain of IS2 or DS2). This is necessary because in Game 1, for both DS2 and IS2, b is sampled from
{0, 1}n \ Rng(DS2, IS2) whereas our objective in Game 3 is to ensure that DS2 (and DS2

−1) are independent
of IS2 (and IS2

−1). The code of S1 and S3 remains unchanged throughout this proof. The outputs of DS2

and IS2 remain consistent and Pr[S1] = Pr[S2].

28

Game 3 omits the boxed statements in Game 2 and so is identical to Game 2 unless one of Bad1 or Bad2 is
set. In this game, the oracles DS2 and IS2 check consistency with their own lists (and the list for their
corresponding inverse oracle contains all the same entries as their list), but they may become inconsistent
with each other. It is possible for Bad1 to be set in two possible ways:
– E1 is the event an adversary directly queries DS2 at a point coinciding with a point queried to IS2 from

a query to RKEnc (or comparable conditions resulting from queries to inverse oracles).
– E2 is the event an RKD function queries DS2 at a point coinciding with a point queried to IS2 from a

query to RKEnc (or comparable conditions resulting from queries to inverse oracles).
We will analyze each of the ways that Bad1 can be set below. Similarly, Bad2 can be set either because of
a query to DS2 from A, a query to DS2 from φπ, or from a query to IS2 due to a query to RKEnc (or
similarly for the corresponding inverse oracles); we consider all cases simultaneously below. In Game 3, the
responses to RKEnc queries are completely decoupled from the responses to π queries, so we can consider
that RKEnc uses Q to respond to queries and π uses P. We have that Pr[S2] ≤ Pr[S3]+Pr[E1∨E2∨Bad2].

Game 4 sets Bad3 if a query to RKEnc (or RKDec) results in a value being queried to IS2 (or IS2
−1) that is

already in I2 (or I2
−1). The flag Bad4 can be set in four ways (as a result of two queries to either of IS2 and

IS2
−1, plus two ‘mixed cases’ with one query to each of IS2 and IS2

−1); we consider each of these cases when
we analyze the probability of setting bad events below. Game 4 chooses the response to IS2 uniformly from
{0, 1}n and sets Bad4 if this value is already in Rng(IS2). Game 4 is equivalent to Game 3 and, in particular,
Pr[S3] = Pr[S4].

Game 5 omits the boxed statements from Game 4 and so is identical to Game 4 unless Bad3 or Bad4 is set.
Let E′1, E

′
2, Bad′2 represent events in Game 5 corresponding to events E1, E2, Bad2 in Game 4, then

Pr[E1 ∨ E2 ∨ Bad2] ≤ Pr[E′1 ∨ E
′
2 ∨ Bad′2] + 2 Pr[Bad3 ∨ Bad4] In this game, calls to π(2, ·, ·) through

RKEnc (RKDec), which are answered by IS2 (IS2
−1) are answered by a forgetful random oracle and so

the ciphertexts (plaintexts) are uniform and independent of the key and the plaintext (ciphertexts).

In Game 5, the adversary interacts with

π(i, x, σ), P3($(P1(x⊕φπ(k))⊕φπ(k))⊕φπ(k))⊕φπ(k), P−1
1 ($(P−1

3 (x⊕φπ(k))⊕φπ(k))⊕φπ(k))⊕φπ(k) .

During the transitions to
π(i, x, σ), iF(φπ(k), x), iC(φπ(k), x) ,

inconsistencies only arise if the adversary makes queries (φπ1 , x1) 6= (φπ2 , x2), but where (φπ1 (k), x1) = (φπ2 (k), x2).
If an adversary A makes such a query, we can construct an adversary B4 which wins the CF game with a list

of length at most
q2em

2 as follows: B4 runs A and outputs List = {(φπi , φπj) : 1 ≤ i < j ≤ qem}.
In the final transition, we switch from a random function to a random permutation (for each φπ); the

probability of an inconsistency arising in this step is bounded by
q2em
2n [8].

Therefore we have that

Advrkcca
EMπ [1,1,1,1],Φ,3(A) ≤Pr[E′1 ∨ E

′
2 ∨ Bad′2] + 2 Pr[Bad3 ∨ Bad4] + Advcf

Φ,3(B4) +
q2
em

2n

It remains to bound the probability that the bad events occur in Game 5.

Event E′1 occurs when the adversary directly queries π(2, ·, ·) at a point that is also queried to IS2 (or IS2
−1)

a result of a query to RKEnc (or RKDec). This situation is analogous to that described in Section 4 as
an inconsistency between ListP and List$. We will use A to create an adversary B1 against the OUP1 game
with a list of length 2q2qem. The adversary B1 runs A and then outputs List = {(1,+, φπi , xi, aj) : 1 ≤ i ≤
qem, 1 ≤ j ≤ q2}∪{(3,−, φπi , yi, bj) : 1 ≤ i ≤ qem, 1 ≤ j ≤ q2}. If A sets Bad1 with an RKEnc or DS2 query,
then B1 wins the OUP1 game with a tuple of the form (1,+, φπi , xi, aj) and if A sets Bad1 with a query
to RKDec or DS2

−1 then B wins the OUP1 game with a tuple of the form (3,−, φπi , yi, bj). We therefore

conclude that Pr[E′1] ≤ Advoup1
Φ,3 (B1), where B1 outputs a list of length 2q2qem.

Event E′2 occurs when an RKD function queries the π(2, ·, ·) at a point that is also queried as a result of a query
to RKEnc. This situation is analogous to that described in Section 4 as an inconsistency between Listφ and
List$. We will use A to create an adversary B2 against the QI1 game with a list of length 2q2

em. The adversary
B2 runs A and outputs List = {(1,+, φπi , xi, φπj) : 1 ≤ i, j ≤ qem} ∪ {(3,−, φπi , yi, φπj) : 1 ≤ i, j ≤ qem}. If

29

A can set Bad by causing an RKD function to query the permutation at a point that is also queried as
a result of a query to IS2 or DS2, then the adversary B2 will win the QI1 game with a tuple of the form
(1,+, φπi , xi, φ

π
j) and if A sets Bad1 with a query to IS2

−1 or DS2
−1 then B wins the QI1 game with a tuple

of the form (3,−, φπi , yi, φπj). Therefore we can conclude that Pr[E′2] ≤ Advqi1
Φ,3(B2), where B2 outputs a list

of length 2q2
em.

Flag Bad′2 is set in a situation analogous to a sub-case of that described in Section 4 as an inconsistency
between ListP and List$ or Listφ and List$. It can occur in one of 16 different ways. Collisions between DS2

and IS2, DS2
−1 and IS2

−1, DS2 and IS2
−1, or DS2

−1 and IS2 can all set Bad2 and each is counted twice,
depending on the order of the queries. This gives 8 ways to set Bad2, however the query to DS2 can arise
through a query by A or through φπ, which gives 16 ways. In each case, we use a birthday-bound style

argument and note that each pair (x, a) sets Bad′2 with probability at most 1/(2n − q2 −
∑
φ q

φ
2) (if it is

set via a call to IS2 or IS2
−1 then it is set with probability 1/2n). Applying the union bound and recalling

that qem is the total number of queries made to RKEnc (and thus to IS) by A (and similarly for q2 and

qφ2) gives that Bad′2 is set with probability at most
(q2+

∑
φ q

φ
2)qem

2n−(q2+
∑
φ q

φ
2)

.

Flag Bad3 is set if a query to RKEnc (or RKDec) results in a value being queried to IS2 (or IS2
−1) that is

already in I2 (or I2
−1). This situation is analogous to that described in Section 4 as an inconsistency between

List$ and List$. We will useA to create an adversary B3 against the CF1 property of Φ. The adversary B3 runs
A and then outputs List = {(1,+, φπi , xi, φπj , xj) : 1 ≤ i < j ≤ qem}∪{(3,−, φπi , yi, φπj , yj) : 1 ≤ i < j ≤ qem}
If A sets Bad3 with query to IS2, then B3 wins the CF1 game with a tuple of the form (1,+, φπi , xi, φ

π
j , xj) and

if A sets Bad3 with query to IS2
−1, then B3 wins the CF1 game with a tuple of the form (3,−, φπi , yi, φπj , yj).

Thus Pr[Bad3] ≤ Advcf1
Φ,3(B3), where B3 outputs a list of length at most q2

em.
Flag Bad4 is set in a situation analogous to a sub-case of the that described in Section 4 as an inconsistency

between List$ and List$. Using similar reasoning as in the setting of Bad2, it is set with probability at most
q2em

2
1

2n .

As we have that

Advrkcca
EMπ [1,1,1,1],Φ,3(A) ≤Pr[E′1 ∨ E

′
2 ∨ Bad′2] + 2 Pr[Bad3 ∨ Bad4] + Advcf

Φ,3(B4) +
q2
em

2n

we may conclude that

Advrkcca
EMπ [1,1,1,1],Φ,3(A) ≤Advoup1

Φ,3 (B1) + Advxqi1
Φ,3 (B2) + 2

qem(q2 +
∑
φ q

φ
2)

2n − (q2 +
∑
φ q

φ
2)

+ 2

(
Advcf1

Φ,3(B3) +
q2
em

2n+1

)
+ Advcf

Φ,3(B4) +
q2
em

2n

where B1 outputs a list of length 2q2qem, B2 a list of length 2q2
em, B3 a list of length q2

em, and B4 a list of length
at most q2

em.

30

Game i:
k ←$ K
b′ ←$ ARKEnc,RKDec,π

Return b′

RKEnc(φπ, x):

k′ ← φπ(k)
z1 ← S1(k′ ⊕ x)
z2 ← IS2(k′ ⊕ z1)
Return k′ ⊕ S3(k′ ⊕ z2)

π(2, a,+):

Return DS2(a)

π(1, a,+):

Return S1(a)

S1(a):

If S1[a] 6=⊥
Return S1[a]

b ←$ {0, 1}n \ Rng(S1)
S1[a]← b; S−1

1 [b]← a
Rng(S1)← Rng(S1) ∪ {b}
Dom(S1)← Dom(S1) ∪ {a}
Return S1[a]

π(3, a,+):

Return S3(a)

S3(a):

If S3[a] 6=⊥
Return S3[a]

b ←$ {0, 1}n \ Rng(S3)
S3[a]← b; S−1

3 [b]← a
Rng(S3)← Rng(S3) ∪ {b}
Dom(S3)← Dom(S3) ∪ {a}
Return S3[a]

Game 1:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

Return I2[a]

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(DS2, IS2)

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
Return I2[a]

If D2[a] 6=⊥
Return D2[a]

b ←$ {0, 1}n
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)

b ←$ {0, 1}n \ Rng(DS2, IS2)

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Game 2 Game 3:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

Bad1 ← true; Return I2[a]

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

Bad2 ← true

b ←$ {0, 1}n \ Rng(DS2, IS2)

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
Return I2[a]

If D2[a] 6=⊥
Bad1 ← true; Return D2[a]

b ←$ {0, 1}n
If b ∈ Rng(IS2)

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)
Bad2 ← true

b ←$ {0, 1}n \ Rng(DS2, IS2)

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Game 4 Game 5:

DS2(a):

If D2[a] 6=⊥ Return D2[a]
If I2[a] 6=⊥

Bad1 ← true

b ←$ {0, 1}n \ Rng(DS2)
If b ∈ Rng(IS2)

Bad2 ← true

D2[a]← b; D−1
2 [b]← a

Rng(DS2)← Rng(DS2) ∪ {b}
Dom(DS2)← Dom(DS2) ∪ {a}
Return D2[a]

IS2(a):

If I2[a] 6=⊥
Bad3 ← true; Return I2[a]

If D2[a] 6=⊥
Bad1 ← true

b ←$ {0, 1}n
If b ∈ Rng(IS2)

Bad4 ← true

b ←$ {0, 1}n \ Rng(IS2)

If b ∈ Rng(DS2)
Bad2 ← true

I2[a]← b; I2
−1[b]← a

Rng(IS2)← Rng(IS2) ∪ {b}
Dom(IS2)← Dom(IS2) ∪ {a}
Return I2[a]

Fig. 7. Sequence of games for the proof of Theorem 4. Oracles RKDec, π(i, ·,−), S1
−1, S3

−1, DS2
−1, and IS2

−1 are
defined in a similar way to their corresponding forward oracles.

31

	The Related-Key Security of Iterated Even–Mansour Ciphers

