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Abstract

We consider a public and keyless code (Enc,Dec) which is used to encode a message m and derive a codeword
c = Enc(m). The codeword can be adversarially tampered via a function f ∈ F from some “tampering function
family” F , resulting in a tampered value c′ = f(c). We study the different types of security guarantees that can
be achieved in this scenario for different families F of tampering attacks.

Firstly, we initiate the general study of tamper-detection codes, which must detect that tampering occurred
and output Dec(c′) = ⊥. We show that such codes exist for any family of functions F over n bit codewords, as
long as |F| < 22n is sufficiently smaller than the set of all possible functions, and the functions f ∈ F are further
restricted in two ways: (1) they can only have a few fixed points x such that f(x) = x, (2) they must have high
entropy of f(x) over a random x. Such codes can also be made efficient when |F| = 2poly(n). For example, F can
be the family of all low-degree polynomials excluding constant and identity polynomials. Such tamper-detection
codes generalize the algebraic manipulation detection (AMD) codes of Cramer et al. (EUROCRYPT ’08).

Next, we revisit non-malleable codes, which were introduced by Dziembowski, Pietrzak and Wichs (ICS ’10)
and require that Dec(c′) either decodes to the original message m, or to some unrelated value (possibly ⊥)
that doesn’t provide any information about m. We give a modular construction of non-malleable codes by
combining tamper-detection codes and leakage-resilient codes. This gives an alternate proof of the existence of
non-malleable codes with optimal rate for any family F of size |F| < 22n , as well as efficient constructions for
families of size |F| = 2poly(n).

Finally, we initiate the general study of continuous non-malleable codes, which provide a non-malleability
guarantee against an attacker that can tamper a codeword multiple times. We define several variants of the
problem depending on: (I) whether tampering is persistent and each successive attack modifies the codeword
that has been modified by previous attacks, or whether tampering is non-persistent and is always applied to the
original codeword, (II) whether we can “self-destruct” and stop the experiment if a tampered codeword is ever
detected to be invalid or whether the attacker can always tamper more. In the case of persistent tampering and
self-destruct (weakest case), we get a broad existence results, essentially matching what’s known for standard
non-malleable codes. In the case of non-persistent tampering and no self-destruct (strongest case), we must
further restrict the tampering functions to have few fixed points and high entropy. The two intermediate cases
correspond to requiring only one of the above two restrictions.

These results have applications in cryptography to related-key attack (RKA) security and to protecting
devices against tampering attacks without requiring state or randomness.



1 Introduction

Motivating Example. Consider a security-sensitive device such as a smart-card implementing a digital signature
scheme. The user gives it messages as inputs and receives signatures as outputs. The computation relies on a secret
signing key stored on the card. Moreover, the user’s name, say “Eve”, is stored on the card and the card only signs
message that begin with the name “Eve”. The security of signature schemes ensures that Eve cannot sign a message
with any other name if she is given this card and uses it as a black-box. However, Boneh, DeMillo and Lipton
[BDL01] show a surprising result: if the above is implemented using RSA signatures with Chinese remaindering,
and Eve is able to simply flip a single bit of the signing key on the smart card and observe the resulting incorrectly
generated signature, then she can factor the RSA modulus and completely recover the signing key. Alternatively,
no matter which signature scheme is used, Eve may be able to flip a few bits of the name stored on the card (e.g.,
change the value from “Eve” to “Eva”) without changing the signing key and then use the card to sign messages
under a different name.

The above are examples of tampering attacks. By tampering with the internal state of a device (without
necessarily knowing what it is) and then observing the outputs of the tampered device, an attacker may be able to
learn additional sensitive information which would not be available otherwise. A natural approach to protecting
against such attacks is to encode the data on the device in some way. For example, [BDL01] suggest using error-
detection codes to thwart an attack that flips a small number of bits. This raises the question of what kind of codes
are needed to achieve protection and what classes of tampering attacks can they protect against?

A Coding Problem. We can translate the above scenario into a coding problem. We would like to design a
code (Enc,Dec) consisting of a possibly randomized encoding function and a decoding function with the correctness
guarantee that Dec(Enc(m)) = m. There are no secret keys and anybody can encode and decode. We model
tampering as a family of functions F that an attacker can apply to modify codewords.1 We consider a “tampering
experiment” with some message m and function f ∈ F . The experiment begins by probabilistically encoding
c ← Enc(m), then tampers c′ = f(c) and finally outputs the decoded value m′ = Dec(c′). We consider different
types of security guarantees on the outcome m′ of the experiment.

1.1 Tamper Detection Codes

Perhaps the simplest property that we could ask for is that tampering can always be detected with overwhelming
probability, meaning that the decoded value is some special symbol m′ = ⊥ indicating an error. In other words, a
tamper-detection code for a family F ensures that for any message m and any tampering function f ∈ F we have
Pr[Dec(f(c)) 6= ⊥ : c← Enc(m)] is negligible. We ask for which function families F do such codes exist.

Surprisingly, this natural problem has not been studied at this level of generality and relatively little is known
beyond a few specific function families. Standard error-detection codes provide this guarantee for the family of
all functions f such that the hamming distance between c and f(c) is always small, but non-zero. The algebraic
manipulation detection (AMD) codes of Cramer et al. [CDF+08], consider this type of guarantee for functions f
that can flip an arbitrary number of bits of c, but the error pattern is independent of c. In other words, AMD
codes consider the family FAMD = {f∆(c) := c⊕∆ | ∆ 6= 0n}.

In this work, we show that tamper-detection codes exist for any function family F over n-bit codewords as
long as the size of the family is bounded |F| < 22αn for some constant α < 1 and the functions f ∈ F satisfy two
additional restrictions:

• High Entropy: For each f ∈ F , we require that f(c) has sufficiently high min-entropy when c ∼ {0, 1}n is
uniformly random.

• Few Fixed Points: For each f ∈ F , we require that there aren’t too many fixed points c s.t. f(c) = c.

Moreover, we show that such codes can achieve a rate (defined as the ratio of message size to codeword size) of
(1−α). We also show that the restrictions on the tampering functions (high entropy, few fixed points) in the above
result cannot be removed.

This existence result relies on a probabilistic method argument and, in general, such codes may not be efficient.
However, when the size of the function family is |F| ≤ 2s(n) for some polynomial s, then we can use a probabilistic
method argument with limited independence to get efficient codes. More precisely, this yields a family of efficient

1This is a departure from standard coding theory problems by focusing on the process (family of functions) F that modifies a
codeword rather than on some notion of distance between the original and modified codeword.
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codes (Ench,Dech) indexed by some hash function h from a t-wise independent function family (for a polynomial
t depending on s), such that a random member of the family is a secure tamper-detection code for F with over-
whelming probability. We can also think of this as a construction of efficient tamper-detection codes in the common
random string (CRS) model, where the random choice of h is specified in the CRS and known to everyone.

This result generalizes AMD codes which which provide tamper-detection for the family FAMD of size |FAMD| =
2n − 1 that has full entropy n, and no fixed points. For example, using this result, we can get efficient tamper-
detection codes (in the CRS model) for the class F−poly,d of polynomials f over F2n of some bounded degree
d = poly(n), as long as we exclude the identity polynomial f(x) = x and the constant (degree 0) polynomials.
Alternatively, we get also get such tamper-detection codes for the class F−affine,r of all affine functions when we

interpret x ∈ {0, 1}n as an (n/r)-dimensional vector over the field F2r with a sufficiently large r, and we exclude
the identity and the constant functions.

1.2 Non-Malleable Codes

The work of Dziembowski, Pietrzak and Wichs [DPW10] introduced the notion of non-malleable codes, which
asks for a weaker guarantee on the outcome of the tampering experiment. Instead of insisting that the decoded
value after tampering is always m′ = ⊥, non-malleable security requires that either m′ = m is equal to the original
message, or m′ is a completely unrelated value (possibly ⊥) that contains no information about the original message
m. Moreover, the choice of which of these two options occurs is also unrelated to m. For example, non-malleability
ensures that it should not be possible to tamper c to c′ = f(c) in such a way as to just flip a bit of the encoded
message. Alternatively, it shouldn’t be possible to tamper the codeword in such a way as to get either m′ = m or
m′ = ⊥ depending on (say) the first bit of m.

Non-malleable codes offer strong protection against tampering. By encoding the data on an device with a non-
malleable code for F , we ensure that an attacker cannot learn anything more by tampering with the data on the
device via functions f ∈ F and interacting with the tampered device, beyond what could be learned given black-
box access to the device without the ability to tamper. Moreover, such codes can also protect against continuous
tampering attacks, where the attacker repeatedly tampers with the data on the device and observes its outputs.
On each invocation, the device must first decode the secret data, run the underlying functionality with the decoded
value to produce some output, and then freshly re-encode the decoded value. This last step is important for security
and ensures that each tampering attack acts on a fresh codeword. On the downside, this step usually requires fresh
randomness and also requires that device is now stateful even if the underlying functionality is stateless.

Prior Work on Non-Malleable Codes. The work of [DPW10], gives a broad existence result showing that
for any family F of tampering functions over n-bit codewords having size |F| < 22αn for α < 1 there exists a
(possibly inefficient) non-malleable code for F . This covers various complex types of tampering attacks. The work
of Cheraghchi and Guruswami [CG13a] further show that such codes can achieve a rate of 1−α, which is optimal.
These results rely on a probabilistic method argument, where the code is defined via a completely random function.

The works of [CG13a, FMVW14] also give efficient scaled-down versions of the above existence results for
function families of singly-exponential size |F| ≤ 2s(n) for some polynomial s. For example, F could be the class
of all circuits of size at most s(n). These results are derived using a probabilistic method argument with limited
independence, where the code (Ench,Dech) is parameterized by some efficient hash function h chosen from a t-wise
independent family for some polynomial t depending on s. The code is secure with overwhelming probability over
the choice of h, which we can think of as a common random string (CRS).

Several other works [DPW10, CKM11, LL12, DKO13, ADL13, CG13b, FMNV14, CZ14] construct explicit non-
malleable codes for interesting families that are restricted through their granularity. In particular, these works
envision that the codeword consists of several components, each of which can be tampered arbitrarily but indepen-
dently of the other components. The strongest variant of this is the split-state model, where the codeword consists
of just two components that are tampered independently of each other. Such codes were recently constructed in
the information theoretic setting in the works of [DKO13, ADL13]. Another recent result [AGM+14] shows how to
construct non-malleable codes against functions that can permute (and perturbe) the bits of the codeword.

Our Results. We show a general way of obtaining non-malleable codes for general function families by combining
tamper-detection codes for restricted function families (with few fixed points and high entropy) and a certain type
of leakage-resilient codes, defined by Dav̀ı, Dziembowski and Venturi [DDV10]. The resulting non-malleable code
construction matches that of Faust et al. [FMVW14] but with an optimized modular analysis. We show that this
construction can simultaneously achieve optimal rate (1−α) for function families of size |F| = 22αn and also efficient
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encoding/decoding that scales polynomially in the security parameter and n when |F| = 2poly(n). Previously, each
of these properties was known to be achievable individually but by different constrictions shown in [CG13a] and
[FMVW14] respectively.

1.3 Continuous Non-Malleable Codes

As mentioned, standard non-malleable codes already provide protection against continuous tampering attacks on
a device, if the device freshly re-encodes its state after each invocation to ensure that tampering is applied to a
fresh codeword each time. However, this is undesirable since it requires that: (1) the device has access to fresh
randomness on each invocation, and (2) the device is stateful and updates its state on each invocation. This is the
case even if the underlying functionality that the device implements (e.g., a signature scheme) is deterministic and
stateless. This brings up the natural question (posed as an open problem by [DPW10]) whether we can achieve
security against continuous tampering of a single codeword without re-encoding. We consider four variants of such
continuous non-malleable codes depending on:

• Whether tampering is persistent, meaning that each tampering attack is applied to the current version of
the codeword that has been modified by previous attacks, and the original codeword is otherwise lost once
tampered. Alternatively, we can consider non-persistent tampering, where tampering is always applied to the
original codeword.

• Whether tampering to an invalid codeword (one that decodes to ⊥) causes a “self-destruct” meaning that
the experiment stops and the attacker cannot gain any additional information, or whether the attacker can
always continue tampering more. We can think of this as corresponding to a physical device “self-destructing”
(e.g., by erasing all internal data) if it detects that it has been tampered. This in turn corresponds to a very
limited form of state, where the data on the device can only be erased but not updated otherwise.

Note that persistent tampering and self-destruct is the weakest variant, non-persistent tampering and no self
destruct is the strongest variant, and the remaining two variants lie in between and are incomparable to each other.
All of these variants are already stronger than standard non-malleable codes.

The notion of continuous non-malleable codes was first introduced in the work of Faust et al. [FMNV14], which
considered the case of non-persistent tampering and self-destruct. It focused on tampering in the split-state model,
where two halves of a codeword are tampered independently of each other, and showed that although such codes
cannot exist information theoretically, they can be constructed under computational assumptions. The reason for
focusing on non-persistent tampering is that this models attacks that have access to some “auxiliary memory”
on the device beyond the n bits of “active memory” used to store the codeword. The initial tampering attack
can make a copy the original codeword onto this auxiliary memory. Each subsequent attack can then tamper the
original codeword from the auxiliary memory and place the tampered codeword into the active memory. In the
case of persistent tampering, we implicitly assume that there is no such auxiliary memory on the device.

In this work, we give a general definition of continuous non-malleable codes that captures all of the above
variants. We initiate the comprehensive study of what type of tampering attacks we can protect against under
each variant in the information theoretic setting.

Our Results. We use the same template that we employed for constructing standard non-malleable codes to also
construct continuous non-malleable codes. Depending on which of the four variants of continuous non-malleable
codes we consider, we show that our construction achieves security for different classes of tampering attacks.

In the setting of persistent tampering and self-destruct (weakest), we show broad existence results which essen-
tially match the existence results of [DPW10, CG13a] for standard non-malleable codes. In particular, we show
that such codes exist (inefficiently) for any family F of tampering functions over n-bits, whose size is |F| = 22αn

for α < 1. Moreover, such codes achieve a rate of 1 − α. For example, this result shows existence of such codes
(albeit inefficient) in the split-state model with rate 1/2. Furthermore, we give an efficient scaled-down versions
of the above existence results for function families of singly-exponential size |F| = 2poly(n). Unfortunately, in this
case the efficiency of the code also depends polynomially on the number of tampering attacks we want to protect
against. We conjecture that this dependence can be removed, and leave this fascinating problem for future work.

In the setting of non-persistent tampering and no self destruct (strongest), we must place additional restrictions
on the function family F to ensure that the functions have high entropy and few fixed points, as in tamper-detection
codes. In fact, a tamper-detection code is continuous non-malleable in this setting since each tampering attack
simply leaves the codeword invalid (decodes to ⊥) and so the attacker does not learn anything. However, in
contrast to tamper-detection codes, continuous non-malleable codes in this setting can also trivially tolerate the
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“identity function” fid(x) = x and the “always constant” functions fc(x) = c. Therefore, we (e.g.,) get continuous
non-malleable codes in this setting for the class Fpoly,d of all low-degree polynomials or the class Faffine,r of all affine
functions over a sufficiently large field.

In the two intermediate settings, we only need to impose one of the two restrictions on high entropy and few
fixed points. For the case of persistent tampering and no self destruct we only require that the functions have few
fixed points but can have arbitrary entropy. For the case of non-persistent tampering and self destruct we only
require that the functions have high entropy but can have many fixed points.

1.4 Other Related Work and RKA Security

There is a vast body of literature that considers tampering attacks using other approaches besides (non-malleable)
codes. See, e.g., [BK03, GLM+04, IPSW06, BC10, BCM11, FPV11, KKS11, AHI11, GOR11, Pie12, Wee12, BPT12,
DFMV13, ABPP14, GIP+14] etc.

One highly relevant line of work called related key attacks (RKA) security [BK03, BC10, BCM11, Wee12,
BPT12, ABPP14] considers tampering with the secret key of a cryptographic primitive such as a pseudorandom
function or a signature scheme. The definitions in those works usually require the schemes to be stateless, consider
non-persistent tampering (tampering is always applied to the original key), and do not allow for self-destruct.
These works focus on giving clever constructions of specific primitives that satisfy RKA security based on specific
computational assumptions. We note that our results on continuous non-malleable codes in the setting of non-
persistant tampering and no self-destruct provide a generic way of achieving qualitatively similar results to these
works for any cryptographic scheme. In particular, by encoding the key of the scheme with such codes, we can
achieve protection against the types of attacks that were considered in the RKA literature (e.g., additive tampering,
low-degree polynomials) as well as many other interesting families.

Nevertheless, we note that the RKA constructions from the literature maintain some advantages, such as having
uniformly random secret keys, whereas we would require the secret key to be a structured codeword. Also, the
exact definitions of RKA security in the literature vary from one primitive to another and sometimes impose
additional properties that our constructions would not satisfy. For example, definitions of RKA security for PRFs
usually require that outputs under both the original and the tampered keys remain pseudorandom, whereas our
solution would only guarantee that outputs under the original key remain pseudorandom even given outputs under
a tampered key, but the latter may not be pseudorandom (they may just be ⊥). It is not clear whether these
differences are important in the envisioned applications, and therefore we view our results as providing qualitatively
similar (but not equivalent) security guarantees to those studied in the context of RKA security.

2 Preliminaries

Notation. For a positive integer n, we define the set [n] := {1, . . . , n}. LetX,Y be random variables with supports
S(X), S(Y ), respectively. We define their statistical distance by SD(X,Y ) = 1

2

∑
s∈S(X)∪S(Y ) |Pr[X = s]− Pr[Y = s]|.

We write X ≈ε Y and say that X and Y are ε-statistically close to denote that SD(X,Y ) ≤ ε. We let Un denote
the uniform distribution over {0, 1}n. We use the notation x ← X to denote the process of sampling a value x
according to the distribution X. For a set S, we write s ← S to denote the process of sampling s uniformly at
random from S.

Tail Bound. We recall the following lemma from [BR94] which gives us a Chernoff-type tail bound for limited
independence.

Lemma 2.1 (Lemma 2.3 of [BR94]). Let t ≥ 4 be an even integer. Suppose X1, . . . , Xn are t-wise independent
random variables over {0, 1}. Let X :=

∑n
i=1Xi and define µ := E[X] be the expectation of the sum. Then, for

any A > 0, Pr[|X − µ| ≥ A] ≤ 8
(
tµ+t2

A2

)t/2
. In particular, if A ≥ µ then Pr[|X − µ| ≥ A] ≤ 8

(
2t
A

)t/2
.

It is easy to check by observing the proof of the lemma that it also holds even when X1, . . . , Xn are not truly
t-wise independent but for any S ⊆ [n] of size |S| ≤ t they satisfy Pr[

∧
i∈S{Xi = 1}] ≤

∏
i∈S Pr[Xi = 1]. This

is because the only use of independence in the proof is to bound E[
∏
i∈S Xi] ≤

∏
i∈S E[Xi] which holds under the

above condition.
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Coding Schemes. It will be useful to define the following general notion of a coding scheme.

Definition 2.2. A (k, n)-coding scheme consists of two functions: a randomized encoding function Enc : {0, 1}k →
{0, 1}n, and a deterministic decoding function Dec : {0, 1}n → {0, 1}k ∪ {⊥} such that, for each m ∈ {0, 1}k,
Pr[Dec(Enc(m)) = m] = 1. For convenience, we also define Dec(⊥) = ⊥.

2.1 Leakage-Resilient Codes

The following definition of leakage-resilient codes is due to [DDV10]. Intuitively, it allows us to encode a message m
into a codeword c in such a way that learning f(c) from some class of leakage functions f ∈ F will not reveal anything
about the message m. For convenience, we actually insist on a stronger guarantee that f(c) is indistinguishable
from f applied to the uniform distribution over n bit strings.

Definition 2.3. Let (lrEnc, lrDec) be a (k, n)-coding scheme. For a function family F , we say that (lrEnc, lrDec)

is (F , ε)-leakage-resilient, if for any f ∈ F and any m ∈ {0, 1}k we have f(lrEnc(m)) ≈ε f(Un) where Un is the
uniform distribution over n bit strings.

Construction. We recall the following construction from [DDV10, FMVW14]. Let H be a t-wise independent

hash function family consisting of functions h : {0, 1}v → {0, 1}k. For any h ∈ H we define the (k, n = k+v)-coding
scheme (lrEnch, lrDech) where: (1) lrEnch(m) := (r, h(r)⊕m) for r ← {0, 1}v; (2) lrDech((r, z)) := z ⊕ h(r).

We give an improved analysis of this construction: to handle a leakage family F with `-bits of leakage (i.e., the
output size of f ∈ F is `-bits), the best prior analysis in [FMVW14] required overhead (roughly) v = log log |F|+ `,
whereas our improved analysis only requires overhead (roughly) v = max{log log |F|, `}. This can yield up to a
factor of 2 improvement and will be crucial in getting optimal rate for our non-malleable and continuous non-
malleable codes.

Theorem 2.4. Fix any function family F consisting of functions f : {0, 1}n → {0, 1}`. With probability 1 − ρ
over the choice of a random h← H from a t-wise independent family H, the coding scheme (lrEnch, lrDech) above
is (F , ε)-leakage-resilient as long as v ≥ vmin and t ≥ tmin, when B := log |F|+ k + log (1/ρ) and

either vmin = log(B + 2`) + log `+ 2 log (1/ε) +O(1) and tmin = O(B),

or vmin = log(B + 2`) + 2 log (1/ε) +O(1) and tmin = O(B + 2`).

In particular, if ρ = ε = 2−λ for security parameter λ and, |F| ≥ max
{

2k, 2λ
}

, ` ≤ 2λ we get:

vmin = max{log log |F|, `}+O(λ) and tmin = O(log |F|).

Proof. Define BAD as the event that (lrEnch, lrDech) is not a good (F , ε)-leakage resilient code and let q ∈ [2`−1]
be a parameter to be set later.

Pr [Bad] = Pr
h

[
∃f ∈ F , m ∈ {0, 1}k : SD (f(Uv, h(Uv)⊕m), f(Un)) ≥ ε

]
≤

∑
f∈F

∑
m∈{0,1}k

Pr
h

[
∃ S ⊂ {0, 1}`, |S| = q : Pr

r←Uv
[f(r, h(r)⊕m) ∈ S]− Pr [f(Un) ∈ S] ≥ ε/4 · p̃s

]
(2.1)

Line 2.1 follows from the previous line and Lemma 2.5 below. Fix some m ∈ {0, 1}k, f ∈ F and S ⊆ {0, 1}`, |S| = q.
Define ps := Pr [f(Un) ∈ S], and for each r ∈ {0, 1}v let pr,s := Pr [f(r, Uk) ∈ S]. Define random variables Yr,s = 1
if f(r, h(r) ⊕ m) ∈ S where the randomness is over the choice of h. Clearly

∑
r∈{0,1}v pr,s = ps and for each

r, E[Yr,s] = pr,s. Therefore E[
∑
r∈{0,1}v Yr,s] = 2v · ps. Note that Yr,sr∈{0,1}v are t-wise independent random
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variables. Furthermore let p̃s := max
(
q · 2−`, ps

)
. This means that:

Pr
h

[
Pr

r←Uv
[f(r, h(r)⊕m) ∈ S]− Pr [f(Un) ∈ S] ≥ ε/4 · p̃s

]
≤ Pr

h

 ∑
r∈{0,1}v

Yr,s − 2v · ps ≥ 2v · ε/4 · p̃s


≤
(
t · 2v · ps + t2

(ε/4 · 2v · p̃s)2

)t/2
≤
(

2t · 2v · ps
(ε/4 · 2v · p̃s)2

)t/2
≤
(

2t

(ε/4)2 · 2v · p̃s

)t/2
≤
(

2t

ε2 · 2v−`−4 · q

)t/2
(2.2)

⇒ Pr [Bad] ≤ |F| · 2k ·
(

2`

q

)
·
(

2t

ε2 · 2v−`−4 · q

)t/2
≤ ρ (2.3)

The inequality in Line 2.2 is obtained by replacing p̃s with 2−` · q. We satisfy Line 2.3 by setting the parameters
appropriately, such that,(

2t

ε2 · 2v−`−4 · q

)
< 1/2 ⇒ v ≥ log t+ `+ 2 log (1/ε)− log q + 6

2t/2 · ρ > |F| · 2k ·
(

2`

q

)
⇒ t/2 ≥ log |F|+ k + log (1/ρ) + log

(
2`

q

)
We analyze the parameters for two values for q:

1. Set q = 2`−1, we get tmin = O(B + 2`) and vmin = log tmin + 2 log (1/ε) + 6.

2. Set q = dB/`e if dB/`e ≤ 2`−1, then we get tmin = O(B) and vmin = log tmin +`−logB+log `+2 log (1/ε)+5 =
`+ log `+ 2 log (1/ε) +O(1).

Lemma 2.5. Let Y and Z be two random variables over {0, 1}`. If SD (Y, Z) = ε then

∀ q, 1 ≤ q ≤ 2`−1, ∃ S ∈ {0, 1}`, |S| = q : |Pr [Z ∈ S]− Pr [Y ∈ S]| ≥ ε/4 ·max
(
Pr [Z ∈ S] , q · 2−`

)
.

Proof. For all x ∈ {0, 1}` define zx := Pr [Z = x], yx := Pr [Y = x], and for all S ⊂ {0, 1}` define ps := Pr [Z ∈ S].
Furthermore for any subset S of size q, let p̃s := max

(
q · 2−`, ps

)
. Assume for some q, all subsets S ∈ {0, 1}`, such

that |S| = q, have the following property,

|Pr [Z ∈ S]− Pr [Y ∈ S]| < ε/4 · p̃s. (2.4)

Define set Sz :=
{
x ∈ {0, 1}` : zx ≥ yx

}
and let Sy := {0, 1}` \ Sz. Let S∗ := Sz if |S|z ≥ |S|y and S∗ = Sy

otherwise. Clearly |S|∗ ≥ 2`−1.

SD (Z, Y ) = ε⇒ |Pr [Z ∈ S∗]− Pr [Y ∈ S∗]| = ε.

Order elements in S∗ increasingly according to |zx − yx|. For example x1 minimizes |zx − yx|. Let r = |S∗| mod q
and d = b|S∗| /qc. Define M0 to be the set of the first r values in S∗. Evidently, |Pr [Z ∈M0]− Pr [Y ∈M0]| ≤
ε(r/ |S∗|) < ε/2. For all i ∈ {1, 2, . . . , d} define Mi to be the first q elements in S∗ \

(
∪i−1
j=0Mj

)
.

ε = |Pr [Z ∈ S∗]− Pr [Y ∈ S∗]| =
d∑
i=0

|Pr [Z ∈Mi]− Pr [Y ∈Mi]|

⇒
d∑
i=1

|Pr [Z ∈Mi]− Pr [Y ∈Mi]| > ε/2 (2.5)

By Line 2.4 we have,

d∑
i=1

|Pr [Z ∈Mi]− Pr [Y ∈Mi]| <
d∑
i=1

ε/4 · p̃Mi

< ε/4 ·
d∑
i=1

(pMi + q/2`) < ε/4

(
(pS∗ − pm0) +

|S∗| − r
2`

)
< ε/2.

This contradicts Line 2.5.
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3 Tamper Detection Codes

We begin by defining the notion of a tamper-detection code, which ensures that if a codeword is tampered via some
function f ∈ F then this is detected and the modified codeword decodes to ⊥ with overwhelming probability. We
give two flavors of this definition: a default (“standard”) version which guarantees security for a worst-case message
m and a weak version which only guarantees security for a random message m.

Definition 3.1. Let (Enc,Dec) be a (k, n)-coding scheme and let F be a family of functions of the form f :
{0, 1}n → {0, 1}n ∪ ⊥. We say that (Enc,Dec) is a:

• (F , ε)-secure tamper detection code if for any function f ∈ F and any message m ∈ {0, 1}k, we have
Pr [Dec(f(Enc(m))) 6= ⊥] ≤ ε, where the probability is over the randomness of the encoding procedure.

• (F , ε)-weak tamper detection code if for any function f ∈ F we have Prm←Uk [Dec(f(Enc(m))) 6= ⊥] ≤ ε,
where the probability is over a random message m and the randomness of the encoding procedure.

It is easy to see that there are some small function families for which tamper detection (or even weak tamper
detection) is impossible to achieve. One example is the family consisting of a single identity function fid(x) = x.
Another example is the family consisting of all constant function Fconst = {fc(x) = c : c ∈ {0, 1}n}. This family
is of size only |Fconst| = 2n but no matter what code is used there is some function fc ∈ Fconst corresponding to a
valid codeword c which breaks the tamper detection guarantee. Of course, there are other “bad” functions such as
ones which are close to identity or close to some constant function. But we will show that these are the only bad
cases. We begin by defining two restrictions on functions which ensure that they are far from the above bad cases.

Definition 3.2. A function f : {0, 1}n → {0, 1}n ∪ ⊥ is a ϕ-few fix points, µ-entropy function if

• Prx←Un [f(x) = x] ≤ ϕ. (ϕ-few fixed points)

• ∀y ∈ {0, 1}n, Prx←Un [f(x) = y] ≤ 2−µ. (µ-entropy)

The first property restricts the number of fixed points x : f(x) = x to be less than ϕ · 2n. This ensures that
the function is sufficiently far from being an identity function. The second property is equivalent to saying that
the min-entropy H∞(f(Un)) ≥ µ. This ensures that the function is far from being a constant function.

3.1 Weak Tamper-Detection Codes

We begin by constructing weak tamper-detection codes. We will then show how to use weak tamper-detection
codes to also construct standard tamper-detection codes.

Construction. Our construction of weak tamper detection codes will have a deterministic encoding. Let {0, 1}k
be the message space and {0, 1}n to be the codeword space where n = k + w for some w > 0. For a function
h : {0, 1}k → {0, 1}w define (Ench,Dech) as follow, Ench(m) := (m,h(m)) and Dech(c) checks whether c = (m, z)
where z = h(m): if so, it outputs m and otherwise it outputs ⊥.

Theorem 3.3. Let F be any finite family of ϕ-few fix points, µ-entropy functions and H =
{
h | h : {0, 1}k → {0, 1}w

}
be a family of 2t-wise independent hash functions, then

Pr
h←H

[(Dech,Ench) is a (F , ε)-weak tamper detection code] > 1− ρ

when the parameters satisfy

t ≥ tmin where tmin = log |F|+ k + log(1/ρ) + 5

µ ≥ log(tmin) + w + log (1/ε) + 6

w ≥ log (1/ε) + 3

ϕ ≤ ε/4

For example, if ρ = ε = 2−λ for security parameter λ and, |F| ≥ max
{

2k, 2λ
}

we get:

t = O(log |F|) , µ = log log |F|+ 2λ+O(1) , w = λ+O(1) , ϕ = 2−(λ+O(1))
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Proof. Define the event BAD to occur if (Dech,Ench) is not a (F , ε)-weak tamper detection code. Then, by the
union bound:

Pr
h←H

[BAD] = Pr
h←H

[
∃f ∈ F , Pr

m←Uk
[Dech(f(Ench(m))) 6= ⊥] > ε

]
≤
∑
f∈F

Pr
h←H

[
Pr

m←Uk
[Dech(f(Ench(m))) 6= ⊥] > ε

]
︸ ︷︷ ︸

Pf

(3.1)

Let’s fix some particular function f ∈ F and find a bound on the value of Pf . Define the indicator random variables
{Xm}m∈{0,1}k as Xm = 1 if Dech(f(Ench(m))) 6= ⊥, where the randomness is only over the choice of h. Let’s also
define the variables {Ym,z}(m,z)∈{0,1}n as Ym,z = 1 if h(m) = z and h(m′) = z′ where (m′, z′) = f(m, z). Then
Xm =

∑
z Ym,z and therefore:

Pf = Pr

 ∑
m∈{0,1}k

Xm > 2kε

 = Pr

 ∑
(m,z)∈{0,1}n

Ym,z ≥ 2kε

 . (3.2)

We can ignore variables Ym,z for values (m, z) such that f(m, z) = ⊥ since in that case Ym,z = 0 always. Otherwise,
we have Pr[Ym,z = 1] = Pr[h(m) = z ∧ h(m′) = z′] ≤ 2−2w if f(m, z) = (m′, z′) 6= (m, z) is not a fixed point and
Pr[Ym,z = 1] = Pr[h(m) = z] = 2−w if f(m, z) = (m, z) is a fixed point.

We might hope that the random variables Ym,z are t-wise independent but they are not. For example, say
c = (m, z) and c′ = (m′, z′) are two values such that f(c) = c′ and f(c′) = c then Ym,z = 1⇔ Ym′,z′ = 1. In order
to analyze the dependence between these random variables we represent the tampering function f as a directed
graph. We define a graph G with vertices V = {0, 1}n, representing the codewords, and edges E = {(c, c′) | c′ =
f(c), c = (m, z), m ∈ {0, 1}k, z ∈ {0, 1}w}, representing the tampering function. Note that every vertex has at
most one outgoing edge, so we can label each edge em,z with the value (m, z) of its unique origin vertex. Using
this representation we can associate each Ym,z to the unique edge em,z.

Now consider any subset E′ ⊆ E of edges such that the origin c = (m, z) and destination c′ = (m′, z′) = f(c)
of each edge (c, c′) in E′ is disjoint from the origin or destination of all other edges in E′. We call such sets E′

vertex-disjoint. Then for any S ⊆ E′ of size |S| = t we have:

Pr

 ∧
(m,z)∈S

Ym,z = 1

 ≤ ∏
(m,z)∈S

Pr [Ym,z = 1] (3.3)

This is because Ym,z = 1 iff h(m) = z ∧ h(m′) = z′ where (m′, z′) = f(m, z). Let S̃ ⊆ V be all the vertices

contained in either the origin or destination of edges in E (so |S̃| = 2S since S ⊆ E′ is vertex-disjoint). If two
vertices (m, z) and (m, z′) in S̃ share the same m, then it cannot be the case that h(m) = z and h(m) = z′ so
Pr[
∧

(m,z)∈S Ym,z = 1] = 0. Otherwise, if the values m contained in S̃ are all disjoint, then variables Ym,z are
independent since h is 2t-wise independent.

Now we will partition the set E of edges into smaller subsets each of which is vertex-disjoint. Firstly, let Esl be
the set of all self-loops (fixed point) edges e(m,z) such that f(m, z) = (m, z). It is clear that Esl is vertex-disjoint.
Since f is a ϕ-few fix points, µ-entropy function, we know that |Esl| ≤ ϕ2n. Furthermore, E[

∑
e(m,z)∈Esl

∑
Ym,z] ≤

ϕ2n−w ≤ ϕ2k. By applying Lemma 2.1, with some tmin ≤ t we get:

Pr

 ∑
e(m,z)∈Esl

Ym,z ≥
ε

2
2k

 ≤ Pr

 ∑
e(m,z)∈Esl

Ym,z ≥ ϕ2k + (
ε

2
− ϕ)2k


≤ Pr

 ∑
e(m,z)∈Esl

Ym,z ≥ ϕ2k + (
ε

4
)2k

 (3.4)

≤ 8

(
2tmin

( ε4 )2k

)tmin/2

≤ 8

(
1

2

)tmin

(3.5)

where inequality 3.4 follow by requiring that ϕ ≤ ε/4 and the right hand inequality of 3.5 follows by requiring that
(ε/4)2k ≥ 8tmin. This in turn follows by observing that k ≥ µ ≥ log(tmin) + w + log(1/ε) + 5.
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Next we define Ensl = E \ Esl to be the set of edges that are not self loops. Let Gnsl be the corresponding
graph consisting of G with all self-loops removed. Since f is a ϕ-few fix points, µ-entropy function, we know
that each vertex in graph G has in-degree of at most 2n−µ and out-degree 1, and therefore total degree at most
2n−µ + 1. By a theorem of Shannon [Sha49] on edge-colorings, we can color the edges of such a graph using at
most q ≤ (3/2)2n−µ + 1 ≤ 2n−µ+1 colors so that no two neighboring edges (ignoring direction) are colored with
the same color. In other words, we can partition Ensl into exactly q := 2n−µ+1 subsets E1, . . . , Eq such that each
Ei is vertex-disjoint (we can always add dummy colors to make this exact). Further, recall that E[Ym,z] ≤ 2−2w

for edges e(m,z) ∈ Ensl that are not self loops. This implies that:

Pr

 ∑
em,z∈Ensl

Ym,z ≥
(ε

2

)
2k

 ≤ Pr

∃i ∈ [q] :
∑

em,z∈Ei

Ym,z ≥
(ε

2

)
2k
(

1

2

)(
|Ei|
2n

+
1

q

) (3.6)

≤
∑
i∈[q]

Pr

 ∑
em,z∈Ei

Ym,z ≥
(ε

4

)
2−w

(
|Ei|+ 2µ−1

) (3.7)

≤
∑
i∈[q]

Pr

 ∑
em,z∈Ei

Ym,z ≥ |Ei|2−2w +A

 (3.8)

where A =
(ε

4

)
2k−n

(
|Ei|+ 2µ−1

)
− |Ei|2−2w.

Inequality 3.6 follows by observing that
∑
i∈[q]

(
|Ei|
2n + 1

q

)
≤ 2, inequality 3.7 follows by substituting q = 2n−µ+1

and w = n− k, and inequality 3.8 follows by the union bound. We can also bound:

A =
(ε

4

)
2−w

(
|Ei|+ 2µ−1

)
− |Ei|2−2w

≥ |Ei|2−w
(ε

4
− 2−w

)
+
ε

4
2−w2µ−1

≥ |Ei|2−2w +
ε

4
2−w2µ−1 (3.9)

where equation 3.9 follows by requiring that 2−w ≤ ε
8 ⇔ w ≥ log(1/ε) + 3 and therefore

(
ε
4 − 2−w

)
≥ ε

8 ≥ 2−w.
This shows that A ≥ |Ei|2−2w. Continuing from equation 3.8 and applying Lemma 2.1 with tmin ≤ t we get:

Pr

 ∑
em,z∈Ensl

Ym,z ≥
(ε

2

)
2k

 ≤ q8

(
2tmin

ε
42−w2µ−1

)tmin/2

≤ 2n−µ+18

(
1

2

)tmin

(3.10)

where 3.10 follows by requiring ε
42−w2µ−1 ≥ 8tmin ⇔ µ ≥ log(tmin) + w + log(1/ε) + 6.

Finally, combining 3.1, 3.2, 3.5 and 3.10 we have:

Pr[BAD] ≤
∑
f∈F

Pf =
∑
f∈F

Pr

 ∑
(m,z)∈{0,1}n

Ym,z ≥ 2kε


≤

∑
f∈F

Pr

 ∑
em,z∈Esl

Ym,z ≥
(ε

2

)
2k

+ Pr

 ∑
em,z∈Ensl

Ym,z ≥
(ε

2

)
2k


≤ |F|

(
8

(
1

2

)tmin

+ 2n−µ+18

(
1

2

)tmin
)

≤ 16|F|2n−µ+1

(
1

2

)tmin

≤ ρ

where the last line follows by requiring that tmin ≥ log |F|+n−µ+ log(1/ρ) + 5 where n = k+w. This proves the
theorem.

9



3.2 Upgrading Weak Tamper-Detection Codes

We now show how to convert weak tamper-detection codes to (standard) tamper-detection codes with security
for a worst-case message. We do so via a “composed code” construction following Figure 3.1, which will be
useful throughout the paper. The idea of such composed constructions, is to choose the inner code according to the
weaknesses of the outer code; in other words the inner code complements the outer code to achieve a stronger notion
of security which is expected from the composed code. In our case, the composed code is obtained by composing
an inner “leakage-resilient (LR) code” and an outer “weak tamper-detection (WTD) code”. The weakness of the
outer WTD code comes from the fact that it only guarantees security for a uniformly random message. On the
other hand, the inner LR code ensures that one cannot tell between a LR encoding of some worst-case message
and a uniformly random inner codeword in the context of the tampering experiment.

Let (lrEnc, lrDec) be a (k, k′)-code such that lrDec never outputs ⊥.
Let (wtdEnc, wtdDec) be a deterministic (k′, n)-code. We define the composed (k, n)-code (Enc,Dec) via:

• Enc(m): Let cin ← lrEnc(m) and output c = wtdEnc(cin).

• Dec(c): Let cin = wtdDec(c). If cin = ⊥, output ⊥ else output m = lrDec(cin).

In particular, let (lrEnch1 , lrDech1) and (wtdEnch2 , wtdDech2) be given by:

lrEnch1(m) = (r, h1(r)⊕m) : r ← Uv1 lrDech1(r, x) = (h1(r)⊕ x)
wtdEnch2(cin) = (cin, h2(cin)) wtdDech2(cin, z) = cin if z = h2(cin) and ⊥ otherwise.

where h1 : {0, 1}v1 → {0, 1}k, h2 : {0, 1}k
′
→ {0, 1}v2 , k′ := k + v1, n := k′ + v2.

Then the composed code (Ench1,h2 ,Dech1,h2) is defined as:

Ench1,h2(m) =

{
r ← Uv1 , x := m⊕ h1(r),

z := h2(r, x), output (r, x, z)

}
, Dech1,h2(r, x, z) =

{
If z 6= h2(r, x), output ⊥

otherwise output x⊕ h1(r).

}
Figure 3.1: Composed Code Construction

Definition 3.4. For a function f and a coding scheme (E,D) define the binary leakage function of f on (E,D),
denoted by bLf [(E,D)] as follows,

bLf [(E,D)] (x) =

{
1 if D(f(E(x))) = ⊥
0 otherwise.

For a family of functions F , define binary leakage function family as BLF [(E,D)] = {bLf [(E,D)] |∀ f ∈ F}.
When the coding scheme is implicit we omit the index (E,D) and write bLf , BLF .

Theorem 3.5. Let F be a family of functions, let (wtdEnc, wtdDec) be a (k′, n)-coding scheme which is (F , ε)-
weak tamper detection code and let (lrEnc, lrDec) be a (k, k′)-coding scheme which is (BLF [(wtdEnc, wtdDec)] , γ)-
leakage resilient code. Then the composed code (Enc,Dec) of Figure 3.1 is a (k, n) coding scheme which is (F , γ+ε)-
secure tamper detection code.

Proof. Firstly, ∀m ∈ {0, 1}k,∀f ∈ F we have:

|Pr [wtdDec(f(wtdEnc(lrEnc(m)))) 6= ⊥]− Pr [wtdDec(f(wtdEnc(Uk′))) 6= ⊥] |
= |Pr [bLf (lrEnc(m)) = 0]− Pr[bLf (Uk′) = 0]|
≤ SD(bLf (lrEnc(m)), bLf (Uk′)) ≤ γ

where the second line follows from the definition of bLf ∈ BLF [(wtdEnc, wtdDec)] and the last line from the fact
that (lrEnc, lrDec) is a (BLF [(wtdEnc, wtdDec)] , γ)-leakage resilient code .

Secondly, since (wtdEnc, wtdDec) is an (F , ε)-weak tamper detection code we also have ∀f ∈ F :

Pr [wtdDec(f(wtdEnc(Uk′))) 6= ⊥] ≤ ε

Combining the above, we get ∀m ∈ {0, 1}k,∀f ∈ F :

Pr [wtdDec(f(wtdEnc(m))) 6= ⊥] ≤ ε+ γ

which proves the theorem.
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Combining the results of theorems 2.4, 3.3 and 3.5 gives us the following corollary.

Corollary 3.6. Let (Ench1,h2
,Dech1,h2

) be the construction in Figure 3.1 where h1 is chosen from a t-wise inde-
pendent hash family H1, and h2 is chosen from a t-wise independent hash family H2. Then, for any family of ϕ-few
fix points, µ-entropy functions F , the code (Ench1,h2 ,Dech1,h2) is an (F , 2ε)-tamper detection code with probability
1− ρ over the choice of h1 and h2, as long as:

t ≥ tmin, tmin := O(log |F|+ k + v1 + log (1/ρ))

v1 ≥ log(tmin) + 2 log (1/ε) +O(1), v2 ≥ log (1/ε) +O(1).

µ ≥ log(tmin) + v2 + log (1/ε) +O(1), ϕ ≤ ε/4

For example, if ρ = ε = 2−λ for security parameter λ and, |F| ≥ max
{

2k, 2λ
}

we get:

t = O(log |F|) , µ = log log |F|+ 2λ+O(1) , ϕ = 2−(λ+O(1)), v1 = log log |F|+ 2λ+O(1) , v2 = λ+O(1).

Proof. By Theorem 3.5 we need the inner code (lrEnch1
, lrDech1

) to be a (BLF [(wtdEnch2 , wtdDech2)] , ε)-leakage
resilient code, and the outer code (wtdEnch2

, wtdDech2
) to be a (F , ε)-weak tamper detection code. We notice that

the leakage-family BLF [(wtdEnch2 , wtdDech2)] is a function family of size |F| where each function outputs ` = 1 bits
of leakage. Furthermore, the definition of the leakage family is fixed independently of the choice of h1. Therefore,
we can apply Theorems 2.4, 3.3 to get the above parameters.

When |F| ≤ 22αn for some constant α < 1, then the overhead of the code is n− k = v1 + v2 = αn+O(λ) and
therefore the rate of the code approaches k/n ≈ (1− α). The above codes can be made efficient when |F| ≤ 2s(n)

for some polynomial s, where the efficiency of the code depends on s (and in this case, the rate approaches 1). In
particular, we get an efficient family of codes indexed by hash functions h1, h2 such that a random member of the
family is a tamper-detection code for F with overwhelming probability. We can also think of this as an efficient
construction in the common random string (CRS) model, where h1, h2 are given in the CRS.

Example: Tampering via Polynomials. Let F−poly,d be the set of all polynomials p(x) over the field F2n of
degree d, excluding the identity polynomial p(x) = x and the degree 0 polynomials {p(x) = c : c ∈ F2n}. Then
F−poly,d is an ϕ-few fix points, µ-entropy function where ϕ = d/2n and µ = n− log d. Furthermore |F−poly,d| = 2n(d+1).

Using corollary 3.6, we see that there exist (F−poly,d, ε)-tamper-detection codes for degrees up to d = 2αn, for

constant α < 1
2 , with security ε negligible in n. The rate of such codes approaches (1 − α). Furthermore, when

the degree d = d(n) is polynomial in n, then we get an efficient construction in the CRS model with a rate that
approaches 1.

Example: Tampering via Affine Functions. Let F−affine,r be the set of all affine tampering functions when
we identify {0, 1}n as the vector space Fm2r with m = n/r. We exclude the identity and constant functions. In
particular, F−affine,r consists of all functions fA,b(x) = Ax + b where A ∈ Fm×m2r , b ∈ Fm2r , and (1) A is not the all 0
matrix, (2) if A is the identity matrix then b 6= 0 is a non-zero vector.

In particular the family F−affine,r is a ϕ-few fix points, µ-entropy function where ϕ = 2−r and µ = r. Furthermore

the size of the family is |F−affine,r| ≤ 2n
2+n. The high-entropy requirement is guaranteed by (1) and the few-fixed

points requirement is guaranteed by (2) as follows. If x is a fixed point then Ax+ b = x means that (A− In)x = b;
if A is identity then this cannot happen since b 6= 0 and if A is not identity then this happens with probability at
most 2−r over a random x.

Using corollary 3.6, we get (F−affine,r, ε)-tamper-detection codes where ε is negligible in r and the rate of the code
approaches 1. Furthermore, we get efficient constructions of such codes in the CRS model.

A similar result would also hold if we considered all affine functions over the vector space Fn2 , given by fA,b(x) =
Ax+ b where A ∈ Fn×n2 , b ∈ Fn2 , but in this case we would need to add the additional requirement that rank of A
is at least r (to ensure high entropy), and either b is not in the column-span of (A− In) or the rank of (A− In) is
at least r (to ensure few fixed points).

Necessity of High Entropy. We argue that the restrictions on few fixed points and high entropy cannot be
removed (in general). Firstly, we argue that the restriction on high entropy is necessary. We show that for every
µ ≤ k, there is a family F of µ-entropy, 0-fixed-points functions of size |F| ≤ (2n)2µ such that there does not exist
any tamper-detection code for F . In other words, this shows that we need to require µ ≥ min{k, log log |F|− log n}
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even when ϕ = 0. To see this, consider the family of functions fc0,...,c2µ−1
(x) which have 2µ distinct values ci ∈

{0, 1}n hard-coded, and if the µ least significant bits of x represent a number j (in binary), then fc0,...,c2µ−1
(x) = cj .

Consider the family Fconst,µ = {fc0,...,c2µ−1
: ci ∈ {0, 1}n,∀i 6=jci 6= cj} of all such functions. Then |Fconst,µ| ≤ (2n)2µ

and the family has µ-entropy. We can also consider a restricted family F ′const,µ where the ordering of c0, . . . , c2µ−1

is always such that the µ least significant bits of ci do not represent i, to ensure that the functions have no fixed
points. This gives us a family F ′const,µ of µ-entropy, 0-fixed-points functions of size |F ′const,µ| ≤ (2n)2µ , but for any
code (Enc,Dec) with message-size k ≥ µ and codeword size n, we can find a function fc0,...,c2µ−1

∈ F ′const,µ where
c0, . . . , c2µ−1 are all distinct valid codewords, and therefore tampering goes undetected with probability 1.

Necessity of Few Fixed Points. Secondly, we argue that the restriction on few fixed points is necessary. It is
clear that the single identity function has all fixed-points (ϕ = 1) and full entropy (µ = n) but cannot be detected
by any code. This shows that we must require ϕ < 1 even when µ = n and the function family is of size 1. We
can further show that for any ϕ, there is a small family F of size |F| = 2n which has ϕ-few fixed points and fully
entropy (µ = n) such that no code (Enc,Dec) is even an (F , ϕ)-weak tamper-detection code. At first it may seem
that a single permutation with ϕ-few fixed points could do the trick, but perhaps the code is chosen in such a way
that the valid codewords c are never fixed points f(c) 6= c even though a ϕ-fraction of random values x are fixed
points f(x) = x. To defeat this, we consider a family F of permutations with ϕ-few fixed points where the set
of fixed points is 1-wise independent: for each x ∈ {0, 1}n we have Prf←F [f(x) = x] = ϕ. For example F could
consist of functions fk(x) with a hard-coded key k ∈ {0, 1}n such that, if x ⊕ k ≤ ϕ · 2n then fk(x) = x, and
otherwise fk is defined in some fixed way to ensure that it is a permutation with no other fixed points (e.g., a cycle
over all other values x such that x⊕ k > ϕ · 2n). In that case, for any code (Enc,Dec) we have

Pr
f←F,m←{0,1}k

[Dec(f(Enc(m))) 6= ⊥] ≥ Pr
f,m,c←Enc(m)

[f(c) = c] ≥ ϕ

By an averaging argument, this shows that there exists some f ∈ F such that Prm←{0,1}k [Dec(f(Enc(m))) 6= ⊥] ≥ ϕ,
which shows that the code is not an (F , ϕ)-weak tamper-detection code.

3.3 Predictable Codes

So far, we saw that tamper-detection codes are (only) achievable for “restricted” function families with few fixed
points and high entropy. However, we now observe that such tamper-detection codes for restricted families can
also provide a meaningful security guarantee for function families that don’t have the above restrictions. The idea
is to consider how tamper-detection can “fail”. Firstly, it is possible that the tampering function gets a codeword
which is a fixed-point c such that f(c) = c. In that case, tampering does not change the codeword and therefore
will not get detected. In some sense this failure is not too bad since the codeword did not change. Secondly, it is
possible that f(c) = c∗ where c∗ is some “heavy” value that has many pre-images (responsible for low-entropy of
f) and is a valid codeword. Fortunately, there cannot be too many such heavy values c∗. In other words, we can
essentially predict what will happen as a result of tampering: either the codeword will not change at all, or it will
be tampered to an invalid value that decodes to ⊥, or it will be tampered to one of a few “heavy” values c∗. We
capture this via the following definition of a “predictable code” (a similar notion called “bounded malleable codes”
was defined in [FMVW14]) which says that the outcome of tampering a codeword via some function f lies in some
“small” set P(f) which only depends on f and not on the message that was encoded.

Definition 3.7 (Predictable Codes). Let (Enc,Dec) be a (k, n)-coding scheme. For a tampering function f : {0, 1}n →
{0, 1}n and message m ∈ {0, 1}k consider a distribution tamperf,m that chooses c ← Enc(m), sets c′ := f(c), and
if c′ = c it outputs a special symbol same, if Dec(c′) = ⊥ it outputs ⊥, and otherwise it outputs c′.

For a family of tampering functions F and a predictor P : F → powerset({0, 1}n ∪ same ∪ ⊥) we say that

the code is (F ,P, ε)-predictable if for all f ∈ F ,m ∈ {0, 1}k: Pr[tamperf,m 6∈ P(f)] ≤ ε. We say that the code is

(F , `, ε)-predictable if it is (F ,P, ε)-predictable for some P such that for all f ∈ F , |P(f)| ≤ 2`.

Let F be a function family consisting of functions f : {0, 1}n → {0, 1}n and µ ∈ [n], ϕ > 0 be two parameters.
We say that c′ ∈ {0, 1}n is µ-heavy if Pr[f(c) = c′ : c← {0, 1}n] > 1/2µ. Define

Hf (µ) := {c : c ∈ {0, 1}n is µ-heavy}.

Note that |Hf (µ)| ≤ 2µ. For any function f ∈ F define the restricted function f ′ by setting f ′(c) := f(c) unless

(I) if f(c) ∈ Hf (µ) then f ′(c) := ⊥.
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(II) if Prx∈{0,1}n [f(x) = x] > ϕ and f(c) = c then we set f ′(c) := ⊥.

It is clear that f ′ is a ϕ-few fix points, µ-entropy function. Define the family F [restrict(µ, ϕ)] = {f ′ : f ∈ F}.

Theorem 3.8. For any function family F , if (Enc,Dec) is an (F [restrict(µ, ϕ)], ε)-TDC then it is also an (F ,P, ε)-
predictable code where P(f) = {⊥, same} ∪Hf (µ). In particular, it is (F , µ+ 1, ε)-predictable.

Furthermore, if F has µ-high entropy, then P(f) = {⊥, same}. If F has ϕ-few fixed points then P(f) =
{⊥} ∪Hf (µ). If F has µ-high entropy and ϕ-few fixed points then P(f) = {⊥}.

Proof. Assume (Enc,Dec) is an (F [restrict(µ, ϕ)], ε)-TDC. Let f ∈ F be some function and f ′ ∈ F [restrict(µ, ϕ)]
defined as above so that f ′(c) = f(c) unless conditions (I) or (II) hold in which case f ′(c) = ⊥. This in turn
implies that either: (A) tamperf,m = tamperf ′,m or (B) tamperf,m ∈ Hf (µ) or (C) tamperf,m = same. Case (B)
corresponds to condition (I) and case (C) corresponds to condition (II).

By the TDC security of (Enc,Dec), we know:

∀f ′ ∈ F [restrict(µ, ϕ)], ∀m ∈ {0, 1}k : Pr
[
tamperf ′,m 6= ⊥

]
= Pr [Dec(f ′(Enc(m))) 6= ⊥] ≤ ε.

which immediately implies that ∀f ∈ F , ∀m ∈ {0, 1}k:

Pr
[
tamperf,m 6∈ P(f)

]
= Pr

[
tamperf,m 6∈ {⊥, same} ∪Hf (µ)

]
≤ Pr

[
tamperf ′,m 6= ⊥

]
≤ ε

This proves that (Enc,Dec) is (F ,P, ε)-predictable where P(f) = {⊥, same} ∪Hf (µ).
For the second part of the theorem, we simply notice that if F has µ-high entropy, then Hf (µ) = ∅ and if F has

ϕ-few fixed points then we only have cases (A) and (B) but not (C), and therefore P(f) need not output same.

Combining the results of Theorem 3.8 and Corollary 3.6 gives us the following corollary.

Corollary 3.9. Let (Ench1,h2
,Dech1,h2

) be the construction in Figure 3.1 where h1 is chosen from a t-wise inde-
pendent hash family H1, and h2 is chosen from a t-wise independent hash family H2. For any family of functions,
F , the code (Ench1,h2

,Dech1,h2
) is an (F , `, ε)-predictable code with probability 1− ρ over the choice of h1 and h2,

as long as:

t > tmin where tmin = O(log |F|+ k + v1 + log (1/ρ))

v1 ≥ log(tmin) + 2 log (1/ε) +O(1) , v2 ≥ log (1/ε) +O(1).

` ≥ log(tmin) + v2 + log (1/ε) +O(1)

For example, if ρ = ε = 2−λ for security parameter λ and, |F| ≥ max
{

2k, 2λ
}

we get:

t = O(log |F|) , ` = log log |F|+ 2λ+O(1) , v1 = log log |F|+ 2λ+O(1), v2 = λ+O(1).

Furthermore, if F has µ-high entropy for some µ ≥ log log |F| + 2λ + O(1), then the code is (F ,P, ε)-predictable
with P(f) = {⊥, same} and if F has ϕ-few fixed points for some ϕ ≤ 2−(λ+O(1)) then same 6∈ P(f). If F has µ-high
entropy and ϕ-few fixed points then P(f) = {⊥}.

A similar result to the above corollary was also shown in [FMVW14] for “bounded malleable codes” via a
direct proof that did not go through tamper-detection codes. Here, we achieve some important improvements in
parameters. Most importantly, our overhead is v1 + v2 = log log |F| + O(λ) whereas previously it was at least
3 log log |F|. This will be crucial for us to argue that our constructions achieve optimal rate (1 − α) when the
function family is of size |F| = 22αn .

4 Basic Non-malleable codes

We now review the definition of non-malleable codes. Several different definitions (standard, strong, super) were
proposed in [DPW10, FMVW14] and here we will by default use the strongest of these which was called “super”
non-malleable codes in [FMVW14]. This notion considers the tampering experiment tamperf,m that we previously
used to define predictable codes: it chooses c ← Enc(m), sets c′ := f(c), and if c′ = c it outputs a special symbol
same, if Dec(c′) = ⊥ it outputs ⊥, and otherwise it outputs c′. Non-malleable codes ensure that the output of
the experiment is independent of the message m: for any two messages m0,m1 the distributions tamperf,m0

and
tamperf,m1

should be statistically close.2

2For a weaker definition in [DPW10], the experiment tamperf,m either outputs same if c′ = f(c) or Dec(c′). In contrast, in our
definition it outputs c′ in full when Dec(c′) 6= ⊥ which provides more information and makes the definition stronger.
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Definition 4.1 (Non-malleable Code). Let (Enc,Dec) be a (k, n)-coding scheme and F be a family of functions
f : {0, 1}n → {0, 1}n. We say that the scheme is (F , ε)-non-malleable if for any m0,m1 ∈ {0, 1}k and any f ∈ F ,
we have tamperf,m0

≈ε tamperf,m1
where

tamperf,m :=

{
c← Enc(m), c′ := f(c)

output same if c′ = c, output ⊥ if Dec(c′) = ⊥, and else output c′.

}
We will argue that the composed code construction in Figure 3.1 already achieves non-malleability. Intuitively,

we will rely on two facts: (1) we already showed that the composed code is predictable meaning that the outcome
of the tampering experiment can be thought of as providing at most small amount of leakage, (2) the inner code is
leakage-resilient so the small amount of leakage cannot help distinguish between two messages m and m′.

To make the above intuition formal, we need to translate a class of tampering functions into a related class of
leakage functions for which we need the inner code to be leakage resilient. This translation is given in the following
definition.

Definition 4.2. Let (wtdEnc, wtdDec) be a deterministic coding scheme, let F = {f : {0, 1}n → {0, 1}n} be a
family of functions, and let P(f) : F → powerset {{0, 1}n ∪ same ∪ ⊥} be a predictor. For a tampering function
f ∈ F , define the the corresponding leakage function Lf (x) as:

Lf (x) :=

{
Rf (x) if Rf (x) ∈ P(f)

minP(f) otherwise.
where Rf (x) :=

 ⊥ if wtdDec(f(wtdEnc(x)))) = ⊥
same else if f(wtdEnc(x))) = wtdEnc(x),

f(wtdEnc(x)) otherwise.

where minP(f) denotes the minimal value in P(f) according to some ordering. Define the leakage family
Lf [(wtdEnc, wtdDec),P] := {Lf | ∀f ∈ F}. When the coding scheme and the predictor function are implicit we
simply write LF .

Next we argue that the composed code construction in Figure 3.1 is non-malleable for F as long as the composed
code is predictable for F and the inner code is leakage resilient for LF . Intuitively, the outer predictable code ensures
that tampering can only result in a few possible values, while the inner leakage-resilient code ensures that the choice
of which of these few values is the actual outcome of tampering does not reveal anything about the underlying
message.

Theorem 4.3. Let F be a finite family of functions and let (Enc,Dec) be the composed coding scheme of Fig-
ure 3.1 constructed using an inner code (lrEnc, lrDec) and an outer code (wtdEnc, wtdDec). If (Enc,Dec) is
(F ,P, ε)-predictable and (lrEnc, lrDec) is a (Lf [(wtdEnc, wtdDec),P] , γ)-leakage resilient for some predictor P,
then (Enc,Dec) is a (F , 2(γ + ε))-non-malleable code.

Proof. For all m0,m1 ∈ {0, 1}k and for all f ∈ F , we have:

tamperm0,f ≡ Rf (lrEnc(m0))

≈ε Lf (lrEnc(m0)) (4.1)

≈γ Lf (Uk′) (4.2)

≈γ Lf (lrEnc(m1)) (4.3)

≈ε Rf (lrEnc(m1)) (4.4)

≡ tamperm1,f

where ≡ denotes distributional equivalence. Lines 4.1 and 4.4 follow from the fact that Pr[Rf (lrEnc(m)) 6=
Lf (lrEnc(m))] ≤ Pr[tamperf,m 6∈ P(f)] ≤ ε since the combined code is (F ,P, ε)-predictable. Lines 4.2 and 4.3
follow from the fact that (lrEnc, lrDec) is a (LF , γ)-leakage resilient code.

Corollary 4.4. Let (Ench1,h2
,Dech1,h2

) be the construction in Figure 3.1 where h1 is chosen from a hash family
H1 which is t-wise independent, and h2 is chosen from a hash family H2 which is t-wise independent. For any
family of functions F , the composed code (Ench1,h2 ,Dech1,h2) is a (F , ε)-non-malleable code with probability 1− ρ
over the choice of h1 and h2, as long as the following holds: v2 = log (1/ε) + O(1), v1 ≥ vmin and t ≥ tmin for
B := log |F|+ k + v1 + log (1/ρ) +O(1) and

either tmin = O(B) and vmin = log(B) + log log(B/ε2) + 4 log (1/ε) +O(1)

or tmin = O(B/ε2) and vmin = log(B) + 4 log (1/ε) +O(1).
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In particular, if ρ = ε = 2−λ and |F| ≥ {2k, 2λ}, λ ≥ log log log |F| then we get:

tmin = O(log |F|) and vmin = log log |F|+O(λ)

Proof. By Corollary 3.9, (Ench1,h2
,Dech1,h2

) is a (F , `, ε/2)-Predictable code with probability 1− (2/3)ρ over the
choice of h1 and h2 for ` = log(B) + log (1/ε) + v2 + O(1) = log(B) + 2 log (1/ε) + O(1) = log(B/ε2) + O(1).
Moreover, we can rely on Theorem 2.4 which tells us that the inner code is (LF , ε)-leakage resilient code with
probability 1− ρ/3 over the choice of h1 as long as v1 ≥ vmin and t ≥ tmin where

either tmin = O(B) and vmin = log(B + 2`) + log `+ 2 log (1/ε) +O(1),

= log(B/ε2) + log log(B/ε2) + 2 log (1/ε) +O(1)

or tmin = O(B + 2`) and vmin = log(B + 2`) + 2 log (1/ε) +O(1).

= log(B/ε2) + 2 log (1/ε) +O(1)

Both of these events occur simultaneously with probability at least 1 − ρ and, by Theorem 4.3, the composed
code is then (F , ε)-non-malleable code.

The above corollary tells us that, for any tampering function family F of size up to |F| = 22αn for α < 1
there exist (inefficient) non-malleable codes for F with additive overhead v1 + v2 = αn + O(λ) and therefore rate
approaching (1−α). This matches the positive results on the rate of non-malleable codes of [CG13a] and is known
to be optimal. Furthermore, if |F| = 2s(n) for some polynomial s(n), then we can get an efficient family of codes
such that a random member of the family is an (F , 2−λ) non-malleable code for F with overwhelming probability,
where the efficiency of the code is poly(s(n), n, λ) and the additive overhead of the code is v1 + v2 = O(log n+ λ),
and therefore the rate approaches 1. For example, F could be the family of all circuits of size at most s(n) and we
can view our construction as giving an efficient non-malleable code for this family in the CRS model, where the
random choice of h1, h2 is specified by the CRS. This matches the positive results of [FMVW14]. Therefore, we get
a single construction and analysis which achieves the “best of both worlds” depending on the setting of parameters.

5 Continuous Non-malleable Codes

Intuitively, a continuous non-malleable code guarantees security against an attacker that can continuously tamper
with a codeword without the codeword being refreshed. We give a unified definition of four variants of such codes
depending on two binary variables: (I) a “self-destruct” flag sd which indicates whether the game stops if a codeword
is ever detected to be invalid (corresponding to a device self-destructing or erasing its internals) or whether the
attacker can continue tampering no matter what, (II) a “persistent” flag prs indicating whether each successive
attack modifies the codeword that has been modified by previous attacks, or whether tampering can also always
be applied to the original codeword (corresponding to the case where a copy of the original codeword may remain
in some auxiliary memory on the device).

In more detail, the definition of continuous non-malleable codes considers a tampering experiment where a
codeword c← Enc(m) is chosen in the beginning. The attacker repeatedly chooses tampering functions fi and we
set the i’th tampered codeword to either be ci = fi(c) if the “persistent” flag prs is off or ci = fi ◦ fi−1 ◦ · · · ◦ f1(c)
if prs is on. Just like the non-continuous definition, we give the attacker the special symbol same if the codeword
remains unchanged ci = c, we give the attacker ⊥ if Dec(ci) = ⊥ and we give the attacker the entire codeword
ci otherwise. In the case where the “self-destruct” flag sd is on, the experiment immediately stops if we give the
attacker ⊥ to capture that the device self-destructs and the attacker has no more opportunity to tamper. In the
case where the “persistent” flag prs is on, we also stop the experiment if the attacker ever gets the entire tampered
codeword ci (and not same or ⊥) in some period i. This is without loss of generality since any future tampering
attempts can be answered using ci alone and hence there is no point in continuing the experiment.

Definition 5.1. Let (Enc,Dec) be a (k, n)-coding scheme and let F be a family of tampering functions f : {0, 1}n →
{0, 1}n. We define four types of continuous non-malleable codes (CNMC) parameterized by the flags sd ∈ {0, 1}
(self destruct) and prs ∈ {0, 1} (persistent tampering). We say that the scheme is a (F , T, ε)-CNMC[prs, sd] if for

any two messages m0,m1 ∈ {0, 1}k, for any F-legal adversary A we have ConTamperA,T,m0
≈ε ConTamperA,T,m1

where the experiment ConTamperA,T,m is defined in figure 5.1. For prs = 0, an adversary A is F-legal, if the
tampering functions chosen in each round i ∈ [T ] satisfy fi ∈ F . For prs = 1, an adversary A is F-legal if the
tampering functions fi chosen in each round i satisfy (fi ◦ . . . ◦ f1) ∈ F .
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ConTamperA,T,m[prs, sd]

c← Enc(m)

f0 := identity

Repeat i = 1, . . . , T

A chooses a function f ′i

if prs
?
= 1 : fi := f ′i ◦ fi−1 else fi := f ′i

c′ := fi(c)

if c′
?
= c : A receives same

else if Dec(c′)
?
= ⊥ : { A receives ⊥, if sd

?
= 1 experiment stops}

else : { A receives c′, if prs
?
= 1 experiment stops}

The output of the experiment is the view of A.

Figure 5.1: Continuous Non-Malleability Experiment

Tamper-Resilience via Continuous Non-malleable Codes. We note that the above definition of continu-
ous non-malleable codes directly guarantees strong protection against continuous tampering attacks on a device
implementing an arbitrary cryptographic scheme. We imagine that the secret key sk of the cryptographic scheme
is encoded using such a code and the codeword is stored on the device; on each invocation, the device first decodes
to recover the key and then executes the original scheme. The device never needs to update the codeword. In
the setting of “self-destruct” we need the device to erase the stored codeword or simply stop functioning if on
any invocation it detects that the codeword decodes to ⊥. In the setting of non-persistent tampering, we assume
the tampering attacks have access to the original codeword rather than just the current value on the device (e.g.,
because a copy of the original codeword may remain somewhere on the device in some auxiliary memory).

We guarantee that whatever an attacker can learn by continuously tampering with the codeword stored on the
device and interacting with the tampered device, could be simulated given only black-box access to the original
cryptographic scheme with the original secret key sk and without the ability to tamper. The main idea is that
the information that the attacker can learn by interacting with a tampered device is completely subsumed by the
information provided by the experiment ConTamperA,T,sk and interaction with the original untampered device: if
the tampering results in ⊥ then the attacker learns nothing from the tampered device beyond that this happened, if
it results in same the attacker gets the outputs of the original device, and if it results in a new valid codeword c′ then
the attacker at most learns c′. On the other hand, ConTamperA,T,sk does not provide any additional information
about sk by the security of the continuous non-malleable codes.

A similar connection between standard non-malleable codes and tamper-resilience was formalized by [DPW10]
in the case where the device updates the stored codeword after each invocation and the above claim simply says
that the connection extends to the setting where the device does not update the codeword after each invocation
and we use a continuous non-malleable code. The formalization of the above claim and formal proof would be
essentially the same as in [DPW10].

5.1 Tool: Repeated Leakage Resilience

Towards the goal of constructing continuous non-malleable codes, we will rely on a new notion of leakage-resilient
codes which we call “repeated leakage resilience”.

Consider a family F consisting of leakage functions f : {0, 1}n → {0, 1}` where each function f ∈ F has an

associated unique “repeat” value repeatf ∈ {0, 1}
`
. An attacker can specify a vector of functions (f1, . . . , fT ) with

fi ∈ F . We apply the functions to the codeword c one-by-one: if the output if fi(c) = repeatfi we continue to
the next function until we get the first i for which fi(c) 6= repeatfi in which case we output fi(c). As in the case
of standard leakage-resilient codes, we don’t want the attacker to be able to distinguish between an encoding of a
particular message m versus a random codeword.

Definition 5.2. Let (lrEnc, lrDec) be a (k, n)-coding scheme. Let F be a family of functions f : {0, 1}n → {0, 1}`

where each function f ∈ F has an associated “repeat value” repeatf ∈ {0, 1}
`
. For an integer T ≥ 1, we say that
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(lrEnc, lrDec) is (F , T, ε)-repeated-leakage-resilient, if for any f̄ = (f1, . . . , fT ) ∈ FT and any m ∈ {0, 1}k we
have RLeakage(f̄ , lrEnc(m)) ≈ε RLeakage(f̄ , Un), where we define RLeakage(f̄ , c) to output the value (i, fi(c)) for
the smallest i such that fi(c) 6= repeatfi , or ⊥ if no such i exists.

Notice that if we allow T to be as large as T = 2n then there is a simple family F of only 2n leakage functions
with just 1-bit output such RLeakage(f̄ , lrEnc(m)) completely reveals m. In particular consider the family F of
functions fc′ : {0, 1}n → {stop, repeat} that have a hard-coded value c′ ∈ {0, 1}n and we define fc′(c) = stop if
c′ = c and fc′(c) = repeat otherwise (1 bit output). Let f̄ be a vector of all functions in F . Then RLeakage(f̄ , c)
completely reveals c.

In general, we can always view repeated-leakage resilience as a special case of standard leakage resilience. In
particular, for any family of leakage functions F with associated repeat values repeatf we can define the family

Frepeat,T := {RLeakage(f̄ , ·) : f̄ ∈ FT }. It is clear that an (Frepeat,T , ε)-leakage-resilient code is also (F , T, ε)-
repeated-leakage-resilient. If the function-family F consists of functions with `-bits of leakage then the functions in
Frepeat,T have ≤ `+ log T + 1 bits of leakage (e.g., the range of f ∈ Frepeat,T is [T ]×{0, 1}` ∪ {⊥}). In other words,
the amount of leakage only increases by log T + 1 which is not very large. Unfortunately, even though the amount
of leakage is not much larger, the quality of the leakage measured as the size of the leakage family is substantially
larger: |Frepeat,T | = |F|T . This hurts our parameters and requires the efficiency of our codes to depend on and
exceed T . Summarizing the above discussion with the parameters of standard leakage-resilient codes from Section
2.1: Theorems 2.4 we get the following.

Theorem 5.3. Let F be a family of functions of the form f : {0, 1}n → {0, 1}` where each function f has

an associated “repeat” value repeatf ∈ {0, 1}
`
. If (lrEnc, lrDec) is a (k, n)-coding scheme which is (Frepeat,T , ε)-

leakage-resilient then it is also (F , T, ε)-repeated-leakage-resilient. In particular let (lrEnch, lrDech) be the family
of (k, n = k + v)-codes defined in Section 2.1. Then with probability 1 − ρ over the choice of h ← H chosen from
a t-wise independent hash function family, the code (lrEnch, lrDech) is (F , T, ε)-repeated-leakage-resilient as long
as:

t ≥ tmin := O(T · log |F|+ k + log(1/ρ))

v ≥ log
(
tmin + (2`+1 · T )

)
+ log(`+ log T + 1) + 2 log (1/ε) +O(1)

In the natural setting where ε = ρ = 2−λ and T, ` ≤ 2λ, |F| ≥ max{2λ, 2k}, for security parameter λ, we have

t =O(T · log |F|) v = max{`, log log |F|}+O(λ)

Recall that in standard leakage-resilient codes, if we have |F| = 2s(n) for some polynomial s(n), then our
construction was efficient and we required polynomial independence t = O(s(n)). Unfortunately, for repeated
leakage resilience, the above theorem requires us to now set t = O(Ts(n)) depending on T . In general, we
would like to have a fixed efficient construction which is secure for any polynomial number of repeated leakage
queries T , rather than the reverse quantifiers where for any polynomial T we have an efficient construction which
depends on T . We believe that our analysis of repeated-leakage resilience is sub-optimal and that the above goal
is possible. Intuitively, we believe that the sub-optimality of the analysis comes from the fact that it completely
ignores the structure of the function family Frepeat,T and only counts the number of functions. However, the
functions RLeakage(f̄ , ·) in the family have significantly restricted structure and are not much more complex than
the functions f ∈ F . Indeed, we can think of RLeakage(f̄ , ·) as first computing f1(c), . . . , fT (c) and then computing
some shallow circuit on top of the T outputs. We put forward the following conjecture, and leave it as an interesting
open problem to either prove or refute it.

Conjecture 5.4. Theorem 5.3 holds in the setting ε = ρ = 2−λ and T, ` ≤ 2λ, |F| ≥ max{2λ, 2k}, with t =
O(λ log |F|) instead of t = O(T log |F|).

5.2 Abstract Construction of Continuous Non-Malleable Codes

We now show how to construct continuous non-malleable codes for all four cases depending on self-destruct (yes/no)
and persistent tampering (yes/no). Our constructions follow the same template as the construction of standard
non-malleable codes. In particular, to get continuous non-malleability for some function family F we will use
the composed code construction from Figure 3.1 and rely on the fact that the combined code is “predictable” for
F with some predictor P satisfying certain properties and that the inner code is repeated leakage resilient for
a corresponding leakage family. Intuitively, we want to ensure that if the predictor P(f) outputs a large set of
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possible values that might be the outcomes of any single tampering attempt via a function f , there is at most
one value repeatf ∈ P(f) which causes the continuous tamper experiment in figure 5.1 to continue and not stop.
Therefore, the adversary does no learn much information during the tampering experiment.

Theorem 5.5. Let F be a family of tampering functions of the form f : {0, 1}n → {0, 1}n. Let (Enc,Dec) be the
composed code from Figure 3.1, constructed using an inner code (lrEnc, lrDec) and an outer code (wtdEnc, wtdDec).
Assume (Enc,Dec) is (F ,P, ε1)-predictable code with some predictor P satisfying the conditions below, and (lrEnc, lrDec)
a (LF , T, ε2)-repeated leakage resilient code for the leakage family LF = LF [(wtdEnc, wtdDec),P] (see Definition
4.2) and where each Lf ∈ LF has an associated repeat value repeatf as defined below. Then the composed code
(Enc,Dec) is (F , T, ε)-CNMC[sd, prs] with ε = 2T · ε1 + 2ε2.

• For case sd = 0, prs = 0 we require that for all f ∈ F , |P(f)| = 1. In this case, the leakage-resilience
requirement is vacuous since the leakage family LF has 0-bit output.

• For case sd = 1, prs = 0 we require that for all f ∈ F , either |P(f)| = 1 or P(f) = {⊥, same}. For each
Lf ∈ LF , we define repeatf = P(f) if |P(f)| = 1 or repeatf = same otherwise.

• For case sd = 0, prs = 1 we require that for all f ∈ F , either |P(f)| = 1 or same 6∈ P(f). For each Lf ∈ LF ,
we define repeatf = P(f) if |P(f)| = 1 or repeatf = ⊥ otherwise.

• For case sd = 1, prs = 1, we have no requirements on P(f). For each Lf ∈ LF , we define repeatf = same.

Proof. We need to show that for any two messages m0,m1 and any F-legal attacker A, ConTamperA,T,m0
≈ε

ConTamperA,T,m1
. To do so, we define a series hybrid experiments. Consider a new experiment called ConTamperiA,T,m

ConTamperiA,T,m[prs, sd]

cin ← lrEnc(m)

f0 = identity

Repeat j = 1, . . . , T

A chooses a function f ′j

if prs
?
= 1 : fj := f ′j ◦ fj−1 else fj := f ′j

if j ≤ i : c′ = Lfj (cin) else c′ = Rfj (cin)

A receives c′

if c′
?
= ⊥ and sd

?
= 1, experiment stops

if c′ 6∈ {⊥, same} and prs
?
= 1, experiment stops

Once again, the output of the experiment is the view of A. Functions Rf and Lf are the leakage functions
defined in Definition 4.2. Notice that if we use Rf in every iteration then we get experiment ConTamperA,T,m as

defined in Figure 5.1, therefore ConTamper0A,T,m ≡ ConTamperA,T,m. We call the experiment that uses Lf in every

iteration, ConTamper′A,T,m ≡ ConTamperTA,T,m. By triangle inequality we have

SD(ConTamperA,T,m,ConTamper′A,T,m) ≤
i=T∑
i=1

SD
(
ConTamperi−1

A,T,m,ConTamperiA,T,m
)

Next we aim to show SD
(
ConTamperi−1

A,T,m,ConTamperiA,T,m
)
≤ ε1 for all i ∈ [T ]. Which implies that

SD(ConTamperA,T,m,ConTamper′A,T,m) ≤ T · ε1.

To start, note that the two experiments ConTamperi−1
A,T,m and ConTamperiA,T,m are only different in the leakage func-

tion used at step i. This function is Rfi in experiment ConTamperi−1
A,T,m and is Lfi in experiment ConTamperiA,T,m.

Notice that in both experiments the tampering function fi chosen in iteration i is chosen non-adaptively (inde-
pendently of the codeword cin). This is because the messages the adversary receives in the first i − 1 attacks are
completely determined by the tampering functions chosen and independent of cin. First of all, Lf always outputs an
element in the predictable set P(f). Second of all, considering the way the experiments are defined, the only value
that keeps the experiments running for each tamper function f is the unique value repeatf , defined specifically for
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each of the four non-malleability cases. Therefore, the ith tampering function is chosen non-adaptively. Keep in
mind that the experiments must reach the ith attack, otherwise there is no difference in the two experiments.

Given that the choice of the ith function is non-adaptive and the only difference is whether Lfi is used or Rfi ,
we have

SD
(
ConTamperi−1

A,T,m,ConTamperiA,T,m
)

= Pr [Rfi(cin) 6= Lfi(cin)] = Pr [Rfi(cin) 6∈ P(f)] ≤ ε1.

Next we prove that for any two message m0 and m1

SD(ConTamper′A,T,m0
,ConTamper′A,T,m1

) ≤ 2ε2. (5.1)

Once we have Line 5.1 we can conclude the proof using the following reasoning. For any two message m0 and m1

we have,

SD(ConTamperA,T,m0
,ConTamperA,T,m1

) ≤
SD

(
ConTamperA,T,m0

,ConTamper′A,T,m0

)
+SD

(
ConTamper′A,T,m0

,ConTamper′A,T,m1

)
+SD

(
ConTamper′A,T,m1

,ConTamperA,T,m1

)
≤

=2T · ε1 + 2ε2.

To prove Line 5.1, we use the repeated leakage resilience property of the inner coding scheme. We can think of
the two experiments ConTamper′A,T,m0

and ConTamper′A,T,m1
as providing repeated leakage on the inner codeword

cin which is either an inner encoding of m0 or an inner encoding of m1. The leakage functions used on cin for each
tampering function f is Lf which comes from the leakage family LF , and we associate with each such function a
unique “repeat value” repeatf . The way that the repeat value and the experiment are defined ensures that the
experiment stops whenever the outcome is not repeatf .

Now consider the sequence of tampering functions fi that correspond to how A would act if he received repeatfi
after each tampering step i: {f1, f2, ..., fT }. Let Lfi be the corresponding leakage function for fi with the unique
repeat value repeatfi as define in the theorem statement. And let L̄ = (Lf1 , Lf2 , . . . , LfT ). The view of the adversary

A in experiment ConTamper′A,T,m is completely determined by the outcome of RLeakage(L̄, lrEnc(m)). Therefore:

SD
(
ConTamper′A,T,m0

,ConTamper′A,T,m1

)
≤ SD

(
RLeakage(L̄, lrEnc(m0)),RLeakage(L̄, lrEnc(m1))

)
≤ SD

(
RLeakage(L̄, lrEnc(m0)),RLeakage(L̄, Uk′)

)
+ SD

(
RLeakage(L̄, lrEnc(m0)),RLeakage(L̄, Uk′)

)
≤ 2ε2

5.3 Construction Results and Parameters

We now summarize what we get when we instantiate the above construction with the code (Ench1,h2
,Dech1,h2

)
from Figure 3.1. We characterize the type of function families for which we achieve the various cases of continuous
non-malleable security in terms of whether the family has “few fixed points” and “high entropy”.

Corollary 5.6. Let (Ench1,h2 ,Dech1,h2) be the (k, n)-coding scheme construction in Figure 3.1 where h1 is chosen
from a t1-wise independent hash family H1, and h2 is chosen from a t2-wise independent hash family H2.

Let F be a family of ϕ-few fix points, µ-entropy functions and assume that |F| ≥ max
{

2k, 2λ
}

. Then for any
T ≤ 2λ the code (Ench1,h2

,Dech1,h2
) is an (F , T, T · 2−λ)-CNMC[sd, prs] with probability 1 − 2−λ over the choice

of h1 and h2 with the following parameters for each of the four options, where sd = 1 indicates self-destruct and
prs = 1 indicates persistent tampering:

[ sd, prs] ϕ ≤ µ ≥ t1 = t2 = v1 + v2 ≥
[ 0 , 0 ] 2−(λ+O(1)) log log |F|+ 2λ+O(1) O(log |F |) O(log |F |) log log |F|+O(λ)

[ 0 , 1 ] 2−(λ+O(1)) No restriction O(T · log |F|) O(log |F |) log log |F|+O(λ)
[ 1 , 0 ] No restriction log log |F|+ 2λ+O(1) O(T · log |F|) O(log |F |) log log |F|+O(λ)
[ 1 , 1 ] No restriction No restriction O(T · log |F|) O(log |F |) log log |F|+O(λ)

All results in the table also hold if F includes the always identity function fid(x) = x or the always constant
functions {fc(x) = c : c ∈ {0, 1}n}.

If Conjecture 5.4 holds then we can set t1 = O(λ · log |F|) for the last three rows of the table.
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Proof. Theorem 5.5 tells us how to build continuous non-malleable codes using predictable codes and repeated-
leakage resilient codes. Corollary 3.9 gives us the parameters for predictable codes and the type of predictability
they achieve. Furthermore, we can always add the identity and constant functions f to any family and maintain
predictability with |P(f)| = 1 for these functions. Theorem 5.3 gives us the parameters for repeated-leakage-resilient
codes. By plugging in the parameters, the corollary follows.

We explore the consequences of the above corollary in each of the four settings.

No Self-Destruct, Non-Persistent Tampering (Strongest). We begin with the strongest setting, where
we assume no self-destruct and non-persistent tampering. In this case, an (F , ε)-tamper-detection code is also
an (F ,P, ε)-predictable code with P(f) = ⊥ for each f ∈ F , and hence it is also an (F , T, 2T · ε)-continuous
non-malleable code in this setting. In particular, we get such codes for families of functions with high entropy and
few fixed points. However, we can also add the “always identity” function fid(x) = x or the “always constant”
functions {fc(x) = c : c ∈ {0, 1}n} to F and maintain “predictability” and therefore also continuous non-malleable
security in this setting.

As an example, we can achieve continuous non-malleable codes in this setting for the function families discusses
in Section 3 in the context of tamper-detection. By adding in the “always identity” and the “always constant”
functions to these families we get such continuous non-malleable codes for:

• The family Fpoly,d consisting of all polynomials p(x) of degree d over the field F2n . For inefficient codes, we
can set the degree as high as d = 2αn, for constant α < 1

2 and get rate (1 − α). For efficient codes (in the
CRS model), the degree must be set to some polynomial d = d(n) and the rate approaches 1.

• The family Faffine,r consisting of all affine tampering functions when we identify {0, 1}n as the vector space
Fm2r with m = n/r: i.e., all functions fA,b(x) = Ax+ b where A ∈ Fm×m2r , b ∈ Fm2r . Such codes are efficient (in
the CRS model) and their security is 2−r+O(1).

The number of tampering attacks T that such codes protect against can even be set to exponential in the
security parameter T = 2λ without hurting efficiency.

Self Destruct, Persistent Tampering (Weakest). In the weakest setting, where we assume self-destruct
and persistent tampering, we show the existence of (inefficient) continuous non-malleable codes which essentially
matches the known results for standard non-malleable codes. In particular, for a function family F of size |F| = 22αn

we can protect against even an exponential number T = 2λ tampering attempts with security ε = 2−λ and get
a rate which approaches (1 − α). For example, we show the existence of such (inefficient) codes in the split-state
model where the n-bit codeword is divided into two halves and the attacker can tamper each half of the codeword
arbitrarily but independently of the other half.

Furthermore, if we take a function family of size |F| = 2s for some polynomial s and want to protect against
some polynomial T number of tampering attempts, then we get efficient constructions (in the CRS model) where
the efficiency is poly(s, T, λ). For example, the family F could be all circuits of size s. The rate of such codes
approaches 1. We know that the dependence between the efficiency of the code and s is necessary - for example, if
the tampering functions are all circuits of size s then we know that the circuit-size of the code must exceed O(s) as
otherwise the tampering function could simply decode, flip the last bit, and re-encode. However, we do not know if
the dependence between the efficiency of the code and T is necessary. This dependence comes from the parameters
of repeated leakage-resilient codes and, if we could improve the parameters there as conjectured (see conjecture
5.4) we would get security for up to T = 2λ tampering attempts with a code having efficiency poly(s, λ).

Intermediate Cases. The two intermediate cases lie between the strongest and the weakest setting and corre-
spond to either (I) having persistent tampering but no self-destruct or (II) having self-destruct but non-persistent
tampering. These cases are incomparable to each other.

In case (I) we can allow function families with arbitrarily low-entropy but we need to require that the function
only have few fixed points. The few-fixed points requirement is necessary in this setting as highlighted by the
following attack. Consider the family Fnextbit consisting of n functions {fi(x) : i ∈ [n]} where fi(x) looks at the
i’th bit of x and if it a 0 then keeps x as is and otherwise it flips the (i + 1)’st bit (if i = n then the first bit) of
x. We also add the identity function to the family. This family has full entropy µ = n but the functions (even the
non-identity ones) have many fixed points ϕ = 1/2. The attacker does the following for i = 1, . . . , n: he applies
the function fi and sees whether he gets back same. If so, he learns the i’th bit of the original codeword is a 0
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and otherwise he learns that it was a 1. Either way the attacker applies fi again to set the codeword back to the
original. This is a legal attacker since if we compose the functions chosen by the attacker we get fi ◦ · · · ◦ f1 ◦ f1

which is either just fi or identity and therefore in the family Fnextbit. After n iterations the attacker completely
learns the codeword and therefore also the encoded message. Notice that this attack crucially relies on the fact
that there is no self-destruct, since each tampering attempt could result in ⊥.

In case (II) we can allow function families with many fixed points but require entropy. Intuitively, the high
entropy requirement is necessary in this setting to prevent the following attack. Consider the family F2const

consisting of n22n functions {fi,c0,c1(x) : c0, c1 ∈ {0, 1}n, i ∈ [n]} which output c0 if the ith bit of x is a 0 and
c1 if the ith bit of x is a 1. This family has ϕ = 2−n+1 few fixed points but has low entropy µ = 1. Given any
code (Enc,Dec) the attacker simply chooses any two distinct valid codewords c0 6= c1, Dec(c0),Dec(c1) 6= ⊥. For
i = 1, . . . , n: he applies the tampering function fi,c0,c1 and depending on whether he gets back c0 or c1, he learns
the i’th bit of the original codeword c. After n iterations the attacker completely learns the codeword. Notice that
this attack crucially relies on the fact that tampering is non-persistent, since each tampering attempt completely
overwrites the codeword but the next tampering attempt still tampers the original codeword.

The parameters of our continuous non-malleable codes in these settings matches that of the weakest case. In
particular, for a function family F of size |F| = 22αn satisfying the appropriate entropy and fixed-point requirements,
we can inefficiently protect against even an exponential number T = 2λ tampering attempts with security ε = 2−λ

and get a rate which approaches (1 − α). Furthermore, if we take a function family of size |F| = 2s for some
polynomial s and want to protect against some polynomial T number of tampering attempts, then we get efficient
constructions (in the CRS model) where the efficiency is poly(s, T, λ). Under conjecture 5.4, we would get security
for up to T = 2λ tampering attempts with a code having efficiency poly(s, λ).

6 Conclusion

In this paper, we introduced several new notions of codes that offer protection against tampering attacks. Most
importantly, we defined a general notion of tamper-detection codes and various flavors of continuous non-malleable
codes and explored the question of what families of functions admit such codes. Although some of our constructions
can be made efficient, all of the constructions are Monte-Carlo constructions, which can also be interpreted as
constructions in the CRS model. It remains an open problem to construct explicit and efficient codes (without a
CRS) for interesting families, such as low-degree polynomials or affine functions (etc.).
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