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Abstract

Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert repeated noisy readings of a high-entropy
secret into the same uniformly distributed key. A minimum condition for the security of the key is the
hardness of guessing a value that is similar to the secret, because the fuzzy extractor converts such a
guess to the key. We define fuzzy min-entropy to quantify this property of a noisy source of secrets.

High fuzzy min-entropy is necessary for the existence of a fuzzy extractor; moreover, there is evidence
that it may be sufficient when only computational security is required. Nevertheless, information-
theoretic fuzzy extractors are not known for many practically relevant sources of high fuzzy min-entropy.
In this work, we ask: is fuzzy min-entropy sufficient to build information-theoretic fuzzy extractors?

We give a positive answer to this question when the fuzzy extractor knows the precise distribution
of the physical source. On the other hand, because it is imprudent to assume precise knowledge of a
complicated distribution, fuzzy extractors are typically designed to work for families of sources. We
show that this uncertainty is an impediment to security by building a family of high fuzzy min-entropy
sources for which no fuzzy extractor can exist.

We provide similar but stronger results for secure sketches, whose goal is not to derive a consistent
key, but to recover a consistent reading of the secret.
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1 Introduction

Sources of reproducible secret random bits are necessary for many cryptographic applications. In many
situations these bits are not explicitly stored for future use, but are obtained by repeating the same
process (such as reading a biometric or a physically unclonable function) that generated them the first
time. However, bits obtained this way present a problem: noise [Dau04, ZH93, BS00, EHMS00, MG09,
MRW02, PRTG02, GCVDD02, TSv+06, SD07, BBR88]. That is, when a secret is read multiple times,
readings are close (according to some metric) but not identical. To utilize such sources, it is often necessary
to remove noise, in order to derive the same value in subsequent readings.

The same problem occurs in the interactive setting, in which the secret channel used for transmitting
the bits between two users is noisy and/or leaky [Wyn75]. Bennett, Brassard, and Robert [BBR88]
identify two fundamental tasks. The first, called information reconciliation, removes the noise without
leaking significant information. The second, known as privacy amplification, converts the high entropy
secret to a uniform random value. In this work, we consider the noninteractive version of these problems,
in which these tasks are performed together with a single message.

The noninteractive setting is modeled by a primitive called a fuzzy extractor [DORS08], which consists
of two algorithms. The generate algorithm (Gen) takes an initial reading w and produces an output key
along with a nonsecret helper value p. The reproduce (Rep) algorithm takes the subsequent reading w′

along with the helper value p to reproduce key. The correctness guarantee is that the key is reproduced
precisely as long as the distance between w and w′ is at most t.

The security requirement for fuzzy extractors is that key is uniform even to a (computationally un-
bounded) adversary who has observed p. This requirement is harder to satisfy as the allowed error
tolerance t increases, because it becomes easier for the adversary to guess key by guessing a w′ within
distance t of w and running Rep(w′, p).

Fuzzy Min-Entropy We introduce a new entropy notion that precisely measures how hard it is for the
adversary to guess a value within distance t of the original reading w, thus subverting the security of key
by running Rep. Suppose w is sampled from a distribution W . To have the maximum chance that w′ is
within distance t of w, the adversary would want to maximize the total probability mass of W within the
ball Bt(w′) of radius t around w′. We therefore define fuzzy min-entropy Hfuzz

t,∞ (W ) def= − log maxw′ Pr[W ∈
Bt(w′)]. Observe that this quantity can be bounded in terms of min-entropy: H∞(W ) ≥ Hfuzz

t,∞ (W ) ≥
H∞(W )− log |Bt|.

Superlogarithmic fuzzy min-entropy is necessary for nontrivial key extraction (Proposition 2.6 formal-
izes the above intuition). However, existing constructions do not measure their security in terms of fuzzy
min-entropy; instead, their security is shown to be H∞(W ) minus some loss that is at least log |Bt| due
to error-tolerance. Since H∞(W )− log |Bt| ≤ Hfuzz

t,∞ (W ), it is natural to ask whether this loss is necessary.
This question is particularly relevant when the gap between the two sides of the inequality is high. As
an example, iris scans appear to have significant Hfuzz

t,∞ (W ) (because iris scans for different people appear
to be well-spread in the metric space [Dau06]) but negative H∞(W ) − log |Bt| [BH09, Section 5]. We
therefore ask: is fuzzy min-entropy sufficient for fuzzy extraction? There is evidence that it may be when
the security requirement is computational rather than information-theoretic—see Section 1.2.

Tight Characterization for the Case of a Known Distribution We show that for every source
W with superlogarithmic Hfuzz

t,∞ (W ), it is possible to construct a fuzzy extractor with a superlogarithmic
length key (Corollary 3.8). We thus show that Hfuzz

t,∞ (W ) is a necessary and sufficient condition for building
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a fuzzy extractor for a known distribution W . It is important to emphasize that these constructions
incorporate the knowledge of the complete distribution of W (and, in particular, they are not polynomial-
time).

A number of previous works in this known-distribution setting have provided efficient algorithms and
tight bounds for specific distributions—generally the uniform distribution or i.i.d. sequences (for example,
[JW99, LT03, TG04, HAD06, WRDI11, IW12]). Our characterization may be seen as unifying previous
work, and justifies using Hfuzz

t,∞ (W ) as the measure of the quality of a noisy distribution, rather than cruder
measures such as H∞(W )− log |Bt|.

Impossibility of Fuzzy Extractors for Families of Distributions Assuming full knowledge of a
distribution is often unrealistic. Indeed, high-entropy distributions can never be fully observed directly
and must therefore be modeled. It is imprudent to assume that the designer’s model of a distribution is
completely accurate—the adversary, with greater resources, would likely be able to build a better model.
Therefore, fuzzy extractor designs cannot usually be tailored to one particular source. Existing designs
work for a family of sources (for example, all sources of min-entropy at least m with at most t errors).
Thus, the design is fixed before the distribution is fully known, and the adversary may therefore know
more about the distribution than the designer of the fuzzy extractor.

We show that this extra adversarial knowledge can be devastating (Theorem 5.1). Specifically, we show
a family of distributionsW such that not even a 2-bit fuzzy extractor can be secure for most distributions
in W. We emphasize that each distribution W ∈ W has superlogarithmic fuzzy min-entropy—in fact,
Hfuzz
t,∞ (W ) = H∞(W ), because all points in W are distance at least t apart. Our proof relies on high

dimensionality of W and on perfect correctness of the Rep procedure.

Known Distribution Family of Distributions
Secure Sketch Yes (Corollary 3.8) No (Theorem 4.1)

Fuzzy Extractor Yes (Corollary 3.8) No (Theorem 5.1)

Table 1: Is fuzzy min-entropy sufficient to extract a superlogarithmic length key? Results are information-
theoretic.

Stronger Results on Information Reconciliation (Secure Sketches) Traditionally, fuzzy ex-
tractors use a secure sketch to perform information reconciliation (mapping w′ back to w), followed by
randomness extractor [NZ93] to transform w into a uniform key. The security losses incurred in the first
of these two steps dominate for typical sources and, indeed, this step is less well understood.1 Formally, a
secure sketch performs non-interactive information reconciliation via pair of algorithms: SS takes w and
produces a nonsecret value ss, while Rec takes a value w′ within distance t of w and uses SS to output
the original reading w.

We show comparable, but stronger, results for secure sketches. Namely, we show in Corollary 3.8
that secure sketches are possible if the distribution W is precisely known. (In fact, we obtain our fuzzy
extractors for the case of a known distribution from this result by applying a randomness extractor.)

On the other hand, there is a family of sources with superlogarithmic Hfuzz
t,∞ (W ) = H∞(W ) for which

no secure sketch correcting even a few errors is possible (Theorem 4.1). The impossibility result applies
1Randomness extractors have matching upper and lower bounds on the security loss: for every extra two bits of output

key, they lose one bit of security
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even when Rec is allowed to be incorrect with probability up to 1/4 (as opposed to our fuzzy extractor
impossibility result).

1.1 Our Techniques

Techniques for Positive Results for Known Distributions We now explain how to construct
a secure sketch for an arbitrary known distribution W (we already explained how to construct a fuzzy
extractor from it). We begin with distributions in which all points in the support have the same probability
(so-called “flat” distributions). Consider some subsequent reading w′. To achieve correctness, the sketch
algorithm must disambiguate which point w ∈ W within distance t of w′ was sketched. Disambiguating
multiple points can be accomplished by universal hashing, as long as the size of hash output space is
slightly greater than the number of possible points. Thus, our sketch is computed via a universal hash
of w. To determine the length of that sketch, consider the heaviest (according to W ) ball of radius t.
Because the distribution is flat, it is also the ball with the most points of nonzero probability. Thus, the
length of the sketch needs to be slightly greater than the logarithm of the number of non-zero probability
point in that ball. Since Hfuzz

t,∞ (W ) is determined by the weight of that ball, the number of points cannot
be too high and there will be entropy left after the sketch is published.

For an arbitrary distribution, we cannot afford to disambiguate points in the ball with the greatest
number of points, because there could be too many low-probability points in a single ball despite a high
Hfuzz
t,∞ (W ). We solve this problem by splitting the arbitrary distribution into a number of nearly flat

distributions we call “levels.” We then write down, as part of the sketch, the level of the original reading
w and apply the above construction considering only points in that level. We call this construction leveled
hashing.

Techniques for Negative Results for Distribution Families We construct a family of distributions
W and prove impossibility for a uniformly random W ∈ W (instead of proving impossibility for a worst-
case W ). We start by observing the following asymmetry: Gen sees only the sample w (obtained via
W ←W and w ←W ), while the adversary knows W . To exploit the asymmetry, we construct W so that
conditioning on the knowledge of W reduces the distribution to a single affine line, but conditioning on
w leaves the rest of the distribution uniform on a large fraction of the entire space.

Then we show how the adversary can exploit the knowledge of the affine line to reduce the uncertainty
about w (in the secure sketch case) or key (in the fuzzy extractor case). In the secure sketch case, ss
can be used to find fixed points of Rec(·, ss) which, by the correctness requirement of the sketch, must
be separated by minimum distance t. This means there aren’t too many of them, so few can lie on an
average line, permitting the adversary to guess one easily.

In the fuzzy extractor case, the nonsecret value p partitions the metric space into regions that produce
a consistent value under Rep (preimages of each key under Rep(·, p)). For each of these regions, the
adversary knows that possible w lie t-far from the boundary of the region. However, in the Hamming
space, the vast majority of points lie near the boundary (this follows by combining the isoperimetric
inequality [Har66] showing that the ball has the smallest boundary and Hoeffding’s inequality [Hoe63] for
bounding the volume that is t-away from this boundary). This allows the adversary to rule out so many
possible w that, combined with the adversarial knowledge of the affine line, many regions become empty,
leaving key far from uniform.

The result for fuzzy extractors is delicate. It uses the fact that p partitions the space into nonoverlap-
ping regions, which is implied by perfect correctness. Extending this result to imperfect correctness seems
challenging and is an interesting open problem. It also uses the fact that there are few points far from the
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boundary of every region, which is implied by the geometry of the high-dimensional Hamming space. This
fact seems crucial: in contrast, in low-dimensional Euclidean space, which does not have this property, a
single fuzzy extractor can work for any distribution with sufficient Hfuzz

t,∞ . (Such a construction would use
quantization or tiling, similar to, for example, [CK03, LT03, CZC04, LC06, BDH+10, VTO+10]. Each
sample from W would map to the “tile” containing it, from which the output key would be extracted.
A randomly chosen quantizer would have the property that few samples lie near the boundary, giving
almost-perfect correctness; if perfect correctness is desired, we can give up on security for those rare
samples and simply use a special value of p to indicate that one of them was the input.)

1.2 Related Settings

Other settings with close readings: Hfuzz
t,∞ is sufficient The security definition of fuzzy extrac-

tors and secure sketches can be weakened to protect only against computationally bounded adver-
saries [FMR13]. In this computational setting, fuzzy extractors and secure sketches can be constructed
for the family of all distributions W with superlogarithmic Hfuzz

t,∞ by using virtual grey-box obfuscation
for all circuits [BCKP14]. The construction places into p the obfuscated program for testing proximity to
w and outputting the appropriate value if the test passes. In addition to relying on strong assumptions
for security (namely, the existence of semantically-secure multilinear maps), this construction is not of
practical efficiency. Note that if this construction is used for a secure sketch, W will remain unpredictable
conditioned on p, but will not have pseudoentropy (see Section 4.1 for details).

Furthermore, the functional definition of fuzzy extractors and secure sketches can be weakened to
permit interaction between the party having w and the party having w′. Such a weakening is useful
for secure remote authentication [BDK+05]. When both interaction and computational assumptions are
allowed, secure two-party computation can produce a key that will be secure whenever the distribution
W has fuzzy min-entropy. The two-party computation protocol needs to be secure without assuming
authenticated channels; it can be built under the assumptions that collision-resistant hash functions and
enhanced trapdoor permutations exist [BCL+11].

Correlated rather than close readings A different model for the problem of key derivation from
noisy sources does not explicitly consider the distance between w and w′, but rather views w and w′ as
samples of drawn from a correlated pair of random variables. This model is considered in multiple works,
including [Wyn75, CK78, AC93, Mau93]; recent characterizations of when key derivation is possible in
this model include [RW05] and [TW14].

Organization The remainder of the paper is organized as follows. In Section 2, we cover preliminaries
and fuzzy extractor definitions. In Section 3, we construct a fuzzy extractor for every known distribution
with fuzzy min-entropy. In Sections 4 and 5 we provide negative results for families of distributions for
secure sketches and fuzzy extractors, respectively.

2 Preliminaries

Usually, we use capitalized letters for random variables and corresponding lowercase letters for their sam-
ples. Unless otherwise noted logarithms are base 2. The min-entropy ofW is H∞(W ) = − log(maxw Pr[W =
w]), and the average (conditional) min-entropy of W given P is H̃∞(W |P ) = − log(Ep∈P maxw Pr[W =
w|P = p]) [DORS08, Section 2.4]. Let H0(W ) be the logarithm of the size of the support of W , that
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is H0(W ) = log |{w|Pr[W = w] > 0}|. We use an average case of remaining support size H̃0(W |P ) =
log(Ep∈P |{w|Pr[W = w|P = p] > 0}|).

The statistical distance between random variables X and Y with the same domain is SD(X,Y ) =
1
2

∑
x |Pr[X = x] − Pr[Y = x]|. For a distinguisher D we write the computational distance between X

and Y as δD(X,Y ) = |E[D(X)]− E[D(Y )]| (we extend it to a class of distinguishers D by taking the
maximum over all distinguishers D ∈ D). We denote by Ds the class of randomized circuits which output
a single bit and have size at most s.

For a metric space (M, dis), the (closed) ball of radius t around w is the set of all points within radius
t, that is, Bt(w) = {w′|dis(w,w′) ≤ t}. If the size of a ball in a metric space does not depend on w,
we denote by |Bt| the size of a ball of radius t. We consider the Hamming metric over vectors in Zγ ,
defined via dis(w,w′) = {i|wi 6= w′i} where Z is some alphabet. For this metric, |Bt| =

∑t
i=0

(
γ
i

)
(|Z|−1)i.

Uκ denotes the uniformly distributed random variable on {0, 1}κ. Throughout this work, we consider
a sequence of metric spaces Mn parameterized by n, but we write M for notational convenience. A
negligible function ngl(n) is one that decreases faster than any positive inverse polynomial as n→∞.

2.1 Fuzzy Extractors and Secure Sketches

In this section, we define fuzzy extractors and secure sketches. Definitions and lemmas are drawn from
the work of Dodis et. al. [DORS08, Sections 2.5–4.1] with modifications. First we allow for error, as
discussed in [DORS08, Section 8]. Second, in the family of distributions setting we consider an arbitrary
family W of distributions instead of families containing all distributions of a given min-entropy. Let M
be a metric space with distance function dis.

Definition 2.1. An (M,W, κ, t, ε)-fuzzy extractor with error δ is a pair of randomized procedures, “gen-
erate” (Gen) and “reproduce” (Rep). Gen on input w ∈ M outputs an extracted string key ∈ {0, 1}κ and
a helper string p ∈ {0, 1}∗. Rep takes w′ ∈ M and p ∈ {0, 1}∗ as inputs. (Gen,Rep) have the following
properties:

1. Correctness: if dis(w,w′) ≤ t and (key, p) ← Gen(w), then Pr[Rep(w′, p) = key] ≥ 1 − δ (note that
correctness holds for any w′ with probability 1− δ over the coins on Gen and Rep, but w′ cannot be
a function of p).

2. Security: for any distribution W ∈ W, if (Key, P )← Gen(W ), then SD((Key, P ), (Uκ, P )) ≤ ε.

Fuzzy extractors perform two tasks, information-reconciliation and privacy amplification. The standard
construction is sketch-and-extract: the uniform key is extracted from w (using a randomness extrac-
tor [NZ93]) and the error-tolerance is obtained by using a secure sketch [DORS08, Lemma 4.1]. Secure
sketches produce a string ss that minimally decreases the entropy of w, while mapping nearby w′ to w:

Definition 2.2. An (M,W, m̃, t)-secure sketch with error δ is a pair of randomized procedures, “sketch”
(SS) and “recover” (Rec). SS on input w ∈ M returns a bit string ss ∈ {0, 1}∗. Rec takes an element
w′ ∈M and ss ∈ {0, 1}∗. (SS,Rec) have the following properties:

1. Correctness: ∀w,w′ ∈M if dis(w,w′) ≤ t then Pr[Rec(w′,SS(w)) = w] ≥ 1−δ (note that correctness
holds for any w′ with probability 1− δ over the coins of SS and Rec, but w′ cannot be a function of
SS(w)).

2. Security: for any distribution W ∈ W, H̃∞(W |SS(W )) ≥ m̃.
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In the above definitions, the errors are chosen before ss (resp., p) is known in order for the correctness
guarantee to hold: correctness holds for any w′ with probability 1 − δ over the coins of the algorithms,
but w′ cannot be a function of the output of SS(w).

The Case of Known Distribution If in the above definitions we take W to be a one-element set
containing a single distribution W , then the fuzzy extractor/secure sketch is said to be constructed for a
known distribution. In this case, we need to require correctness only for w that have nonzero probability2.

Note that we have no requirement that the algorithms are compact or efficient, and so the distri-
bution can be fully known to them. Finding a natural model of specifying distributions that allows
for efficient (yet generic) known distribution constructions of sketches and extractors is an interesting
problem.

From Secure Sketches to Fuzzy Extractors A fuzzy extractor can be produced from a secure sketch
and an average case randomness extractor :

Definition 2.3. Let M, χ be finite sets. A function ext : M × {0, 1}d → {0, 1}κ a (m̃, ε)-average
case extractor if for all pairs of random variables X,Y over M, χ such that H̃∞(X|Y ) ≥ m̃, we have
SD((ext(X,Ud), Ud, Y ), Uκ × Ud × Y ) ≤ ε.
Lemma 2.4. Assume (SS,Rec) is an (M,W, m̃, t)-secure sketch with error δ, and let ext :M×{0, 1}d →
{0, 1}κ be a (m̃, ε)-average case extractor. Then the following (Gen,Rep) is an (M,W, κ, t, ε)-fuzzy ex-
tractor with error δ:

• Gen(w) : generate x← {0, 1}d, set p = (SS(w), x), r = ext(w;x), and output (r, p).

• Rep(w′, (s, x)) : recover w = Rec(w′, s) and output r = ext(w;x).

2.2 Fuzzy Min-Entropy: a Necessary Condition

The value p allows everyone, including the adversary, to find the output of Rep(·, p) on any input w′.
Ideally, p should not provide any useful information beyond this ability, and the outputs of Rep on inputs
that are too distant from w should provide no useful information, either. In this ideal scenario, the
adversary is limited to trying to guess a w′ that is t-close to w. Letting w′ be the center of the maximum-
weight ball in W would be optimal for the adversary. We therefore measure the quality of a source by
(the negative logarithm of) this weight.

Definition 2.5. The t-fuzzy min-entropy of a distribution W in a metric space (M, dis) is:

Hfuzz
t,∞ (W ) = − log

max
w′

∑
w∈W |dis(w,w′)≤t

Pr[W = w]


Fuzzy min-entropy is a necessary condition for security (proof in Appendix B):

Proposition 2.6. Let W be a distribution over (M, dis) and let n = log |M|. If Hfuzz
t,∞ (W ) = Θ(log n)

there is no (M,W, κ, t)-fuzzy extractor with error δ = ngl(n) for κ = ω(log n).

There are many distributions with Hfuzz
t,∞ with no known fuzzy extractor (or corresponding impossibility

result). Our goal is to provide a superlogarithmic length key when provided with superlogarithmic fuzzy
min-entropy.

2We can extend correctness to all of M by defining Gen/SS to output the point w as part of p/ss on zero-probability
inputs, which will ensure that Rep/Rec can always be correct; this does not affect security.
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3 Sufficiency of Hfuzz
t,∞ (W ) When the Algorithms Know the Distribution

In this section, we show it is possible to build known-distribution secure sketches (and thus fuzzy extractors
through Lemma 2.4) whenever Hfuzz

t,∞ (W ) = ω(log n). We first consider flat distributions and show that
hashing maintains fuzzy min-entropy and suffices to disambiguate points. We then turn to arbitrary
distributions.

3.1 Flat Distributions

A distribution is flat if all points in its support have the same probability. Let supp(W ) denote the
support of W , i.e., the set of points with nonzero probability.

Definition 3.1. A distribution W is flat if for all w0, w1 ∈ supp(W ), Pr[W = w0] = Pr[W = w1].

Denote the largest number of points in a ball of radius t in the support of W as βt = maxw′∈M |{w|w ∈
supp(W ) ∧ dis(w,w′) ≤ t}|. For flat distributions, the weight of this maximum-probability ball (which
determines Hfuzz

t,∞ (W ) by Definition 2.5) is proportional to the number of points in it. More precisely,

Hfuzz
t,∞ (W ) = − log

(
max
w′∈M

∣∣{w|w ∈ supp(W ) ∧ dis(w,w′) ≤ t}
∣∣ · Pr[W = w]

)
= − log

(
max
w′∈M

|{w|w ∈ supp(W ) ∧ dis(w,w′) ≤ t}| · 2−H∞(W )

)
= H∞(W )− log βt. (1)

We use universal hashes to construct secure sketches for flat distributions. Skoric et al. constructed secure
sketches from universal hashes to correct a polynomial number of error patterns [STGP09].

Definition 3.2 ([CW79]). Let F : K ×M → R be a function. We say that F is universal if for all
distinct x1, x2 ∈M:

Pr
K←K

[F (K,x1) = F (K,x2)] =
1
|R|

.

Construction 3.3. Let F : K ×M → R be a universal hash function. Let W be a distribution. Define
SSW ,RecW as:

SSW

1. Input: w.

2. Sample K ← K.

3. Set p = F (K,w),K.

RecW

1. Input: (w′, p = y,K)

2. Let W ∗ = {w ∈ supp(W )|dis(w,w′) ≤ t}.

3. For w∗ ∈W ∗, if F (K,w∗) = y,
output w∗.

4. Output ⊥.

Lemma 3.4. (Proof in Appendix C) Let W be a flat distribution with H∞(W ) ≥ m. Then Construction 3.3
is a (M, {W},m− log |R|, t)-known distribution secure sketch with error δ ≤ βt−1

|R| .

Corollary 3.5. Let n = log |M|. If |R| ≥ |βt| · nω(1) then Construction 3.3 is correct with overwhelming
probability. That is, setting log |R| = log βt + ω(log n) suffices.
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Construction 3.3 writes down enough information to disambiguate any ball of points. The remaining
entropy for this construction is H̃∞(W |SS(W )) = H∞(W )− log βt − ω(log n). For a flat distribution this
is within a superlogarithmic factor of optimal (see Equation (1)). By choosing δ based on Hfuzz

t,∞ (W ) we
build (SS,Rec) such that H̃∞(W |SS(W )) = ω(log n).

3.2 Arbitrary Distributions

The worst-case hashing approach does not work for arbitrary sources. The reason is that some balls
may have many points but low total weight. For example, let W be a distribution consisting of the
following balls. Denote by B1

t a ball with 2H∞(W ) points with probability Pr[W ∈ B1
t ] = 2−H∞(W ). Let

B2
t , ..., B

2−H∞(W )

t be balls with one point each with probability Pr[W ∈ Bi
t] = 2−H∞(W ). Then the hashing

algorithm needs to write down H∞(W ) bits to achieve correctness on B1
t . However, with probability

1− 2−H∞(W ) the initial reading is outside of B1
t , and the hash completely reveals the point.

Dealing with non-flat distributions requires a new strategy. Many solutions for manipulating high
entropy distributions leverage a solution for flat distributions and use the fact that high entropy distribu-
tions are convex combinations of flat distributions. However, a distribution with high fuzzy min-entropy
may be formed from component distributions with little or no fuzzy min-entropy. It is unclear how to
leverage the convex combination property in this setting.

The main obstacle in the arbitrary setting is distinguishing between a setting where a ball has a few
high probability points and a large number of low probability points. To overcome this problem, we write
the probability of w ∈ W in the sketch output. To ensure this information does not completely reveal w
we write down blog Pr[W = w]c. We then use a universal hash whose output length is proportional to the
number of close points of the same probability as w. This construction divides the distribution W into
probability levels. Each level is nearly flat.

Construction 3.6. LetM be a metric space and let n = log |M|. Let W be a distribution with H∞(W ) =
m. Let ` ∈ Z+ be a parameter. Let Li = (2−(i+1), 2−i] for i = m, ...,m + `. Let Fi : Ki ×M → Ri be a
parameterized family of universal hash functions. Define SSW ,RecW as:

SSW

1. Input: w.

2. If Pr[W = w] ≤ 2−(m+`). Set p = 0, w.

3. Else

(a) Find i such that Pr[W = w] ∈ Li.
(b) Sample K ← Ki.
(c) Set ss = 1, i, Fi(K,w),K.

RecW

1. Input: (w′, ss)

2. If ss0 = 1, output ss1,...,|y|.

3. Else

(a) Parse (i, y,K) = ss1,...,|y|.

(b) W ∗ = {w ∈ supp(W )|dis(w,w′) ≤ t
∧ Pr[W = w] ∈ Li}.

(c) For w∗ ∈W ∗, if Fi(K,w∗) = z,
output w∗.

(d) Output ⊥.

We extend our notation for the maximum likelihood ball to the leveled case. Define βt,i as the maximum
number of points in a ball in level i. That is,

βt,i = max
w′∈M

∣∣{w|w ∈ supp(W ) ∧ dis(w,w′) ≤ t ∧ Pr[W = w] ∈ Li}
∣∣ .
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Theorem 3.7. Let W be a distribution over M where n = logM. Let δ > 0 be an function of n.
Let Fi : Ki ×M → Ri be a parameterized family of universal hash functions where |Ri| = (βt,i − 1)/δ.
When ` = n Construction 3.6 is a (M, {W}, m̃, t)-known distribution secure sketch with error δ for
m̃ = Hfuzz

t,∞ (W )− log n− log 1/δ − 3.

We provide a proof in Appendix D. The main idea is to show that an adversary that knows the level
of w cannot perform much better than an adversary without this information.

Corollary 3.8. Let M be a metric space where n = log |M|. For any distribution W over M with
Hfuzz
t,∞ (W ) = ω(log n), there exists a (M, {W}, m̃, t)-known distribution secure sketch with m̃ = ω(log n)

and δ = ngl(n). (Extendible to a fuzzy extractor using Lemma 2.4.)

In our positive results we considered an arbitrary finite metric space. The relevant parameters were the
size of balls and the size of the metric space. Our negative results are specific to the Hamming metric.

4 Impossibility of Secure Sketches for a Family with Hfuzz
t,∞

In the previous section, we showed the sufficiency of Hfuzz
t,∞ (W ) for known distribution algorithms. Unfor-

tunately, it is unrealistic to assume that W is completely known. Traditionally, algorithms deal with this
uncertainty by providing security for a family of distributions W.

In this section, we show uncertainty of W comes at a real cost. The security game of a fuzzy extractor
can be thought of as a three stage process: 1) the challenger specifies (SS,Rec), 2) the adversary sees
(SS,Rec) and specifies W ∈ W 3) the adversary wins if H̃∞(W |SS(W )) < m̃. We prove impossibility
in a game that is harder for the adversary to win: 1) the challenger specifies (SS,Rec) 2) the adversary
samples a random distribution from W ←W 3) the adversary wins if H̃∞(W |SS(W )) < m̃.

Let V be the process of uniformly sampling W ← W and then sampling w ← W . Let the random
variable Z indicate which W was sampled. The view of the challenger is V , while the view of the adversary
is a distribution V |Z. Our results rule out security for an average member of W. It may be possible to
improve parameters by ruling out only a worst case W . In Appendix A, we show that providing security
for a family W is equivalent to providing security for all distributions over that family.

We now show a family of distributions W that does not admit a secure sketch.

Theorem 4.1. Let n be a security parameter. There exists a family of distributions W such that for each
element W ∈ W, Hfuzz

t,∞ (W ) = ω(log n), and yet for any (M,W, m̃, t)-secure sketch (SS,Rec) with error
δ < 1/4 and distance t ≥ 4, the remaining entropy m̃ < 2.

Furthermore, this is true on average. Let V be process of uniformly sampling W ← W and sampling
w ←W , and let Z indicate which W is sampled. Then

H̃∞(V |SS(V ), Z) < 2.

Proof. We prove the stronger average case statement. We first describe a family W. Let F be some field
of size q = ω(poly(n)). Let W be the set of all distributions of the form

W =


~1
a2
...
aγ

W1 +


0
b2
...
bγ
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where W1 is uniform and Wi = aiW1 + bi for 2 ≤ i ≤ γ and ai, bi ∈ F, ai 6= 0. This type of distribution
is an affine line in space Fγ . Define V as the process of uniformly choosing W ← W and then sampling
from w ←W . The adversary sees SS(V ) and Z. Z is the description of the line Z = a2, b2, ..., aγ , bγ . The
algorithms SS,Rec never see Z. Fix some 4 ≤ t < γ. We show the following (in Appendix E):

• Proposition E.2: for all W ∈ W, Hfuzz
t,∞ (W ) = ω(log n). That is, ∀z,Hfuzz

t,∞ (V |Z = z) = ω(log n).

• Proposition E.3: the distribution V is uniform.

• Lemma E.4: for any secure sketch on V , the support size of V |SS(V ) decreases significantly. Here
we show the minimum distance of V |SS(V ) is at least t.

• Lemma E.5: for most lines Z, the intersection of the support of V |Z and V |SS(V ) is small.
That is, H̃0(V |SS(V ), Z) < 2.

Note: There is a tradeoff between the size of F and the error tolerance required for the counter example.
By increasing t it is possible to show a counter example for a smaller F.

4.1 Implications for Computational Secure Sketches

Fuller et al. showed that computational secure sketches that provide pseudoentropy imply information-
theoretic secure sketches with almost the same parameters [FMR13, Corollary 3.8]. The definition of
Fuller et al. uses a weak version of pseudoentropy [HILL99] due to Gentry and Wichs [GW11].

Definition 4.2. Let (W,S) be a pair of random variables. W has relaxed HILL entropy at least m̃
conditioned on S, denoted HHILL-rlx

εsec,ssec (W |S) ≥ m̃ if there exists a joint distribution (X,Y ), such that
H̃∞(X|Y ) ≥ m̃ and δDssec ((W,S), (X,Y )) ≤ εsec.

A HILL secure sketch is obtained by replacing the security condition in Definition 2.2 with HILL
entropy (adding parameters εsec, ssec to the definition, representing the distinguishing circuit). By the
contrapositive of [FMR13, Corollary 3.8], no sketch can retain HILL entropy for the same family of
distributions:

Corollary 4.3. Let n be a security parameter and let M = |F|γ. There exists a family of distributions
W over M such that for each element W ∈ W, Hfuzz

t,∞ (W ) = ω(log n) and for any (M,W, m̃, t)-HILL
secure sketch (SS,Rec) that is (ssec, εsec)-hard and error δ. If ssec ≥ t(|Rec| + γ log |F|), t ≥ 4, and
εsec + tδ < 1/16, then m̃ < 4.

Secure sketches that provide computational unpredictability are implied by virtual-grey box obfus-
cation of proximity functions [BCKP14]. Our impossibility result says nothing about this weaker form
of a secure sketch. Extraction from unpredictability entropy can be done using an extractor with a re-
construction property [BSW03, HLR07]; however, in the computational setting, the obfuscated function
can simply hide a randomly generated key, and therefore extraction is not necessary to obtain a fuzzy
extractor.
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5 Impossibility of Fuzzy Extractors for a Family with Hfuzz
t,∞

In the previous section, we showed a family of distributions that does not admit a secure sketch. We
provide a similar result for fuzzy extractors.

Theorem 5.1. Let n be a security parameter. There exists a family of distributions W over {0, 1}n
satisfying the following conditions. For each element W ∈ W, Hfuzz

t,∞ (W ) = ω(log n). Let κ ≥ 2 and
t = ω(n1/2 log n). Any (M,W, κ, t, ε)-fuzzy extractor with error δ = 0 has ε > 1/8− ngl(n).

Furthermore, this is true on average. Let V be process of uniformly sampling W ← W and sampling
w ←W and let Z indicate which W is sampled. Let (Key, P )← Gen(V ). Then,

SD((Key, P, Z), (Uκ, P, Z)) > 1/8− ngl(n) .

Proof Outline. We prove the stronger average case statement. Let ν = ω(log n) and ν = o(n1/2/ log n).
Let t = 4νn1/2 and note that n/ν > t.

Our counterexample uses a slightly different family of distributions W than the counterexample for
secure sketches. We will work over a binary alphabet (we used a large alphabet in our counterexample for
secure sketches). A property of the binary Hamming space is that a large fraction of any set of bounded
size is the near “boundary” of that set. This will be crucial in our proof. We will embed the larger
alphabet we used into the binary Hamming metric. Let x1, ..., xν ∈ {0, 1}ν . Let F denote the field of size
2ν . Let a2, ..., an/ν ∈ F such that ai 6= 0 and let b2, ..., bn/ν ∈ F. Interpret x1, ..., xν as a element x ∈ F
and let

w =


~1
a2
...

an/ν

x+


0
b2
...

bn/ν

 .

The multiplication is in F. Define a distribution W as the uniform distribution over values of x for a
particular value of a2, ..., an/ν , b2, ..., bn/ν . Let W be the set of all such W .

Define V as the process of uniformly choosing W ← W and then sampling from w ← W . The
adversary sees SS(V ) and Z, where Z is the description of the line Z = a2, ..., an/ν , b2, ..., bn/ν .

We now present an outline of the proof (proofs in Appendix F):

• Proposition F.1: for all W ∈ W, Hfuzz
t,∞ (W ) = ω(log n). That is, ∀z,Hfuzz

t,∞ (V |Z = z) = ω(log n).

• Proposition F.2: the distribution V is uniform.

• Lemma F.3: In expectation across Z, a large subset of keys that are not possible. In more detail,

– Half the keys have at most 2n−κ pre images in the metric space (this is at most half the metric
space). Denote this set as Rsmall.

– Consider some key ∈ Rsmall. Consider the set of Vkey = {w|Rep(w, p) = key}. All points
in V |SS(V ) are distance t from a boundary of Vkey (the functionality of Rep guarantees that
for the true w all nearby points map to the same key). We show that most of Vkey is near a
boundary. A result of Frankel and Füredi says that the boundary of a region is minimized by
a ball containing the same number of points [FF81]. Hoeffding’s inequality says that most of
a ball lies near its boundary [Hoe63]. Together these two results imply that Vkey is small.
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– As before, there are many possible values for z1, z2 for the side information Z (and these
possible values are equally likely). Furthermore, the distributions V |Z = z1 and V |Z = z2
have disjoint support outside of v.

– For most values of possible Z, the intersection between the viable pre images of V |Z and Vkey

contains at most one point (the received point v). Checking if V |Z ∩ Vkey is nonempty is an
effective distinguisher.

Note: As stated in Section 1.2, using strong computational assumptions it is possible to avoid this result.
We note that the specific family W, Canetti et al. [CFP+14, Construction 5.3] construct computational
fuzzy extractors for this family of distributions when F is large enough under weaker assumptions. (Their
construction is stated with imperfect correctness. A construction with perfect correctness is obtained by
using a code that corrects t bidirectional errors instead of a code that corrects t unidirectional errors.)

Comparison with Theorem 4.1 The parameters in this result are weaker than those in Theorem 4.1.
This result requires: 1) higher error tolerance t = ω(n1/2 log n) 2) the fuzzy extractor must have perfect
correctness. The secure sketch counter example needs t = 4 and allows the Rec to be wrong almost 1/4
of the time.
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A A Definitional Equivalence

As described in Section 4, our negative results rule out security for an average member of W. It may be
possible to significantly improve parameters by only ruling out security for a single member W .

Recall the security game of a fuzzy extractor: 1) the challenger specifies (SS,Rec), 2) the adversary
specifies a source W ∈ W 3) The challenger wins if H̃∞(W |SS(W )) ≥ m̃. Instead of just thinking of
the uniform distribution over W, consider an arbitrary distribution V over elements of W. The minimax
theorem says we can reverse which of these actions is announced first [vN28] if A announces V instead of
a single element W . That is, the following two player games have the same equilibrium:
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Experiment ExpW1 (A, C, m̃):
(SS,Rec)← C(W)
W ← A(W,SS,Rec)
If W 6∈ W, C wins.
If H̃∞(W |SS(W )) ≥ m̃, C wins.
Else A wins.

Experiment ExpW2 (A, C, m̃):
V ← A(W)
(SS,Rec)← C(V,W)
W ← V
If W 6∈ W, C wins.
If H̃∞(W |SS(W )) ≥ m̃, C wins.
Else A wins.

This means that showing security for a family of distributions W is equivalent to showing security
for all distributions V when the distribution is known to the algorithms V . In our negative results, the
adversary uses the uniform distribution V over W. However, it may be possible to improve parameters
by using a different V . This would just rule out some member of W not an average member. This is true
for fuzzy extractors as well and is resilient to changes in parameters including imperfect correctness.

B Proof of Proposition 2.6

Proof. Let W be a distribution where Hfuzz
t,∞ (W ) = Θ(log n). This means that there exists a point w′ ∈M

such that Prw∈W [dis(w,w′) ≤ t] ≥ 1/poly(n). Consider the following distinguisher D:

• Input r, p.

• If Rep(w′, p) = r, output 1.

• Else output 0.

Clearly, Pr[D(Key, P ) = 1] ≥ 1/poly(n)− δ, while Pr[D(Uκ, P ) = 1] = 1/2−κ. Thus, when κ = ω(log n):

δD((R,P ), (Uκ, P )) ≥ 1
poly(n)

− δ − 1
2−κ

= 1/poly(n).

Note that D only provides an input and looks at the output, thus it extends to an interactive protocol.
Also, D is of size max |M|+ |Rep| where max |M| is the longest description of an item in the metric space.
Thus, D is also a distinguisher in the computational setting.

C Proof of Lemma 3.4

Proof. We first argue security. Fix some W ∈ W. Since K and W are independent H̃∞(W |K) = H∞(W ) =
m. Then by [DORS08, Lemma 2.2b], H̃∞(W |K, F (K,W )) ≥ H∞(W )− log |F (W,W )| ≥ m− log |R|.

We now argue correctness. Fix some w,w′. Let W ∗ denote the set of elements in W within distance
t of w′. The size of W ∗ is at most βt. Since w,w′ are independent of SS this set is independent of the
choice of K. The algorithm Rec will never output ⊥ as the correct w will match the hash. The probability
that another element w∗ collides is:

Pr[∃w∗ ∈W ∗|w∗ 6= w ∧ F (K,w∗) = F (K,w)] ≤
∑

w∗∈W ∗|w∗ 6=w

Pr[F (K,w∗) = F (K,w)]

=
∑

w∗∈W ∗|w∗ 6=w

1
|R|
≤ βt − 1
|R|
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The inequality proceeds by union bound. The first equality proceeds by the universality of F and the
second inequality proceeds by noting the number of wrong neighbors is bounded by βt−1. This completes
the proof.

D Proof of Theorem 3.7

Proof. Throughout the proof we assume that ` = n is the number of levels. The proof can be carried out
for an arbitrary ` but it leads to a complicated theorem statement.
Correctness: Fix some w,w′. If Pr[W = w] ≤ 2−(m+`) = 2−(m+n), then w is simply transmitted to Rec
and correctness is clear. When Pr[W = w] > 2−(m+n) let L∗i be the level of Pr[W = w].

Let W ∗ denote the set of elements of W in Li within distance t of w′. The size of W ∗ is at most βt,i.
The choice of w,w′ is independent of SS, so this set is independent of Ki (it does effect the value of i but
not the particular outcome from Ki). The probability that another element w∗ matches the hash is:

Pr[∃w∗ ∈W ∗|w∗ 6= w ∧ F (K,w∗) = F (K,w)] ≤
∑

w∗∈W ∗|w∗ 6=w

Pr[F (K,w∗) = F (K,w)]

=
∑

w∗∈W ∗|w∗ 6=w

1
|Ri|

≤ βt,i − 1
|Ri|

= δ

The inequality is by union bound. The first equality follows from the universality of F . The second
inequality follows since the number of neighbors is bounded by βt,i.
Ideal Adversary with access to Level Information: To aid in the argument in security, we show
the level information on its own is not too harmful.

The best strategy for an adversary that receives i as is to guess a point that has the most nearby
weight in that level. The adversary chooses

w∗ = arg max
w′∈M

Pr
w∈W |2−(i+1)<Pr[W=w]≤2−i∧dis(w,w∗)

[W = w].

The success of this adversary is at least 2−(i+1)βt,i as there at βt,i nearby points in that layer each with
probability at least 2−(i+1). There are n outcomes for i. The overall success of such an adversary is at
most n better than an adversary without such input (by [DORS08, Lemma 2.2]). That is,

E
i|m≤i≤m+n

2−(i+1)βt,i ≤ E
i|m≤i≤n+m

max
w∗∈W

∑
w∈W |2−(i+1)<Pr[W=w]≤2−i∧dis(w,w∗)≤t

Pr[W = w]


≤ n

max
w∗∈W

∑
w∈W |dis(w,w∗)≤t

Pr[W = w]


= n2−Hfuzz

t,∞(W ) (2)

Security: We now argue security. First note that the total weight of points whose probability is less
than 2−(n+m) is at most 2−m (there are at most 2n points in the distribution). Let 1low be the indicator
random variable for Pr[W = w] ≤ 2−(n+m). Then

H̃∞(W |SS(W )) = − log
(

Pr[1low = 1] ∗ 1 + Pr[1low = 0]2−H̃∞(W |SS(W )∧1low=0)
)

− log
(

2−m + (1− 2−m)2−H̃∞(W |SS(W )∧1low=0)
)
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For the remainder of the proof, we seek a bound on

2−H̃∞(W |SS(W )∧1low=0 = max
w∈W |2−(n+m)<Pr[W=w]

Pr[W = w|SS(W )].

We separate out this quantity into levels:

max
w∈W |Pr[W=w]>2−(m+n)

(Pr[W = w|SS(W )]) = E
i|m≤i≤m+n

(
max

w∈W |Pr[W=w]∈Li
Pr[W = w|SS(W ), i]

)
= E

i|m≤i≤m+n

(
max

w∈W |Pr[W=w]∈Li
Pr[W = w] · 2|SS(W )|i|

)
≤ E

i|m≤i≤m+n

(
max

w∈W |Pr[W=w]∈Li
Pr[W = w] · 2H0(SS(W )|i)

)
≤ E

i|m≤i≤m+n

(
2−i ∗ βt,i/δ

)
≤

Ei|m≤i≤m+n

(
2−(i+1) · βt,i

)
2δ

=
n2−Hfuzz

t,∞(W )

2δ
.

Where the last line follows by Equation (2). Combining both cases we have:

H̃∞(W |SS(W )) = − log

(
2−m +

(1− 2−m)(n)2−Hfuzz
t,∞(W )

2δ

)

≥ − log min{2−m, (1− 2−m)n2−Hfuzz
t,∞(W )

2δ
})− 1

≥ Hfuzz
t,∞ (W )− log n+ log δ − log(1− 2−m)− 2

≥ Hfuzz
t,∞ (W )− log n+ log δ − 3

Where the third line follows from the second because Hfuzz
t,∞ (W ) ≤ H∞(W ) = m. The last line follows

from the fourth because if m ≥ 1 then log(1 − 2−m) ≤ 1 and if m < 1 the entire bound is vacuous as
Hfuzz
t,∞ (W ) < 1.

E Proof of Theorem 4.1

Let c′ ← Neight(c) sample a uniform point within distance t of c. The proof of Theorem 4.1 uses the
definition of a Shannon code:

Definition E.1. Let C be a set over space M. We say that C is an (t, δ)-Shannon code if there exists a
procedure Rec such that for all t′ ≤ t and for all c ∈ C, Pr[c′ ← Neight(c) ∧ Rec(c′) 6= c] ≤ δ.

We now prove item in the outline of Theorem 4.1.

Proposition E.2. For each W ∈ W, Hfuzz
t,∞ (W ) = ω(log n).
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Proof. Consider some W ∈ W. The value w1 is uniform in a field of size ω(poly(n)), so H∞(W ) =
ω(log n). We now show that for any w,w′ ∈W , dis(w,w′) = γ > t. This shows that Hfuzz

t,∞ (W ) = H∞(W ).
Fix some w,w′ ∈ W . Clearly, w1 6= w′1, for any i, wi = aiw1 + bi and w′i = aiw

′
1 + bi. Since ai 6= 0,

aiw1 6= aiw
′
1 and thus aiw1 + bi 6= aiw

′
1 + bi. That is, dis(w,w′) = γ.

Proposition E.3. V is the uniform distribution over Fγ.

Proof. Consider some w ∈ V . Then w was drawn from some intermediate distribution W with coefficients
a2, b2, ..., aγ , bγ . The value w1 is uniformly random and wi are uniformly random since b2, ..., bγ are
uniformly random.

Lemma E.4. Fix some SS,Rec algorithm with error δ < 1/4, then H̃0(V |SS(V )) ≤ (γ− t+1) log |F|+1.3

Proof. We assume that Rec is deterministic in our analysis. Any randomness necessary for the Rec
algorithm can be provided by SS. This is the same as considering Rep that outputs any coin it flips. Since
w,w′ are independent of p this does not effect correctness. Security is defined based on the output of Rec
so outputting the coins of Rep does not effect security. By the definition of correctness for (SS,Rec),

∀w,w′, Pr
ss←SS(w)

[Rec(w′, ss) 6= w] < 1/4.

Fix some w. By Markov’s inequality, there exists a set Ass such that Pr[ss ∈ Ass] ≥ 1/2 and ∀ss ∈ Ass,

{w′|dis(w′, w) ≤ t ∧ Rec(w′, p) 6= w} ≤ 2δ < 1/2.

Consider some ss∗ ∈ Ass. We now show that H0(V |SS(V ) = ss∗) ≤ (γ−t+1) log |F|. For the sketched
value w, {w′|dis(w,w′) ≤ t ∧ Rec(w′, p) 6= w] ≤ 2δ.

For every value in V |SS(V ) = ss∗ this is also true. This makes the support of V |SS(V ) = ss∗ a (t, 2δ)-
Shannon code (see Definition E.1). This implies that for all w1, w2 ∈ V |SS(V ) = ss∗, dis(w1, w2) ≥ t (since
2δ < 1/2). That is V |SS(V ) = ss∗ is a set with minimum distance at least t.

By the Singleton bound, this implies that H0(V |SS(V ) = ss∗) ≤ (γ − t + 1)|F|. Averaging over
SS(V ) = ss∗ one has that H̃0(V |P ) ≤ (γ − t+ 1) log |F|+ 1.

Lemma E.5. H̃∞(V |SS(V ), Z) < 2.

Proof. Recall that Z consists of 2γ coefficients and there are (|F| − 1)γ−1|F|γ−1 equally likely values for
Z. As described above, the view of SS,Rec is a uniform distribution V . The only information seen by SS
algorithm is in the point V = v. The length of this point is |F|γ . Conditioned on this information there
are still many possible values for Z. That is,

∀v,H0(Z|V = v) = log
(

(|F| − 1)γ−1|F|γ−1

|F|γ

)
= log

(
(|F| − 1)γ−1/|F|

)
.

Consider two possible z1, z2 that are possible values of Z (having seen v). The distributions V |Z = z1
and V |Z = z2 intersect at one point (namely v).

We now show for any sketch algorithm there are few possible values of V |Z in the support of V |SS(V ).
The distributions V |Z = z1 and V |Z = z2 for possible z1, z2 (having seen v) overlap only at the point

3This result is an extension of lower bounds from [DORS08, Appendix C]. Dealing with imperfect correctness makes the
bound more complicated. In particular, we can only argue about the average remaining support size.
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v. This means for any v∗ ∈ V |SS(V ) (other than the true v) there is at most one z such that v∗ ∈
V |SS(V ), Z = z.

The optimum strategy is to include these values uniformly from different Z values. We show this
across different sketch values. Consider some fixed sketch value s and let hs = H0(V |SS(V ) = s). Recall
that

H̃0(V |SS(V )) = log E
s∈SS(V )

2H0(V |SS(V )=s) = log E
s∈SS(V )

2hs

Conditioned on seeing the point V there are (|F| − 1)γ−1/|F| possible values for Z with disjoint support
outside of the sketched point. Consider these possible values for Z as containers to be filled with the
2hss items (possible values of V |SS(V ) = ss). Each container receives automatically receives one free
point (all the distributions share v). The average number of items in each container is maximized when
the containers are filled equally. That is, the average number of items in each container is bounded by
the number of items divided by the number of container. That is,

H̃0(V |Z, SS(V ) = ss) ≤ log
(

# items + # containers
# containers

)
= log

(
2hss |F|

(|F| − 1)γ−1
+ 1
)

Then averaging over the possible values of s, we have the following as long as t ≥ 4 (using Lemma E.6,
which appears below):

H̃0(V |Z, SS(V )) = log E
s∈SS(V )

2H̃0(V |SS(V )=ss,(Z|SS(V )=ss))

= log E
s∈SS(V )

(
2hs |F|

(|F| − 1)γ−1
+ 1
)

≤ max
{

log
(

|F|
(|F| − 1)γ−1

E
s∈SS(V )

2hs
)

+ 1, 1
}
.

Where the inequality follows because log x+ 1 ≤ max{1 + log x, 1} for x ≥ 0. The left operand to max is
bounded by 2 (bounding the max by 2):

log
(

|F|
(|F| − 1)γ−1

E
s∈SS(V )

2hs
)

+ 1 = log |F| − (γ − 1) log(|F| − 1) + log
(

E
s∈SS(V )

2hs
)

+ 1

= log |F| − (γ − 1) log(|F| − 1) + H̃0(V |SS(V )) + 1
≤ log |F| − (γ − 1) log(|F| − 1) + (γ − t+ 1) log |F|+ 2
≤ (γ − t+ 2) log |F| − (γ − 1) log(|F| − 1) + 2
< (γ − t+ 2) log |F| − (γ − 2) log |F|+ 2 (by Lemma E.6)
≤ (4− t) log |F|+ 2 < 2 .

Lemma E.6. For any real numbers α ≤ η with η ≥ e + 1 (in particular, η ≥ 4 suffices), the following
holds: α log(η − 1) > (α− 1) log η.
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Proof. Because η − 1 is positive, and 1 + x < ex for positive x,

1 +
1

η − 1
< e

1
η−1 .

Therefore, (
1 +

1
η − 1

)α−1

< e
α−1
η−1 ≤ e < η − 1

(since α ≤ η). Multiplying both sides by (η − 1)α−1, we obtain

ηα−1 < (η − 1)α .

Taking the logarithm of both sides yields the statement of the lemma.

F Proof of Theorem 5.1

Proposition F.1. For each W ∈ W, Hfuzz
t,∞ (W ) = ω(log n).

Proof. Consider some fixed W ∈ W. The bits w1,...,ν are uniform, so H∞(W ) = ω(log n). Recall that
t = o(n/ν). Fix some w,w′ ∈ W . Denote by x, x′ the values that produce w,w′ respectively. Clearly,
x 6= x′. Thus, for any i, aix+ bi 6= aix

′+ bi. This implies that wiν+1,....,(i+1)ν 6= w′iν+1,...,(i+1)ν . That is, at
least one of the bits in each block differs between w and w′, and so dis(w,w′) ≥ n/ν. Since no two values
in the support of W lie in the same ball of radius t, we have Hfuzz

t,∞ (W ) = H∞(W ) = ω(log n).

Proposition F.2. V is the uniform distribution over Fγ.

Proof. Consider some w ∈ V over {0, 1}n. Then w ← W with coefficients a2, b2, ..., aγ , bγ . The value
w1,...,ν = x is uniformly random and wiν+1,...,(i+1)ν are uniformly random since b2, ..., bγ are random.

Lemma F.3. Fix some (Gen,Rep) algorithm with κ ≥ 2. There exists an information-theoretic distin-
guisher between (R,P, Z) and (Uκ, P, Z) with advantage ε = 1/8− ngl(n).

Proof. As in the proof of Theorem 4.1, we assume that Rep is deterministic. Denote by (Key, P ) ←
Gen(V ). By Markov’s inequality, there exists a set Ap such that Pr[p ∈ Ap] ≥ 1/2 and ∀p ∈ Ap,

(Key|P = p, P = p) ≈2ε (Uκ, P = p).

Consider some p∗ ∈ Ap. The distribution Key|P = p∗ is the set of possible keys. The distribution
Key|P = p∗ induces a partition on the metric space. That is, for every w ∈ M, there exists a unique
value key such that Rep(w, p∗) = key. Denote this partition by Qp∗,key = {w|Rep(w, p∗) = key}.

There exists a set Rsmall where |Rsmall| ≥ 2κ−1 such that for all key ∈ Rsmall, |Qp∗,r| ≤ M/2κ = 2n−κ.
If not, then ∪key|Qp∗,key| > |M|. For the remainder of the proof we restrict ourselves to elements in Rsmall.
Only points that are distance t from points outside of Qp∗,r are viable points in the metric space. These
are the interior of Qp∗,r:

Inter(Qp∗,key) = {w|Rep(w, p∗) = key ∧ ∀w′, dis(w,w′) ≤ t ∧ Rep(w′, p∗) = key},

We will use the term deficient ball4:
4In most statements of the isoperimetric inequality, this type of set is simply called a ball. We use the term deficient ball

for emphasis.
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Definition F.4. A set S is a η-deficient ball if there exists a point x such that Bη−1(x) ⊆ S ⊆ Bη(x).

Consider some key∗ ∈ Rsmall. We now proceed to show that the interior of each Qp∗,key∗ is small:

Lemma F.5. |Inter(Qp∗,key∗)| ≤ 2n−4ν .

Proof. By the isoperimetric inequality on the Hamming space (we use a version due to [FF81, Theorem 1],
the original result is due to Harper [Har66]), there exists a η-deficient ball Sp∗,key∗ centered at 0 and a set D
such that |Sp∗,key∗ | = |Inter(Qp∗,key∗)|, |D| = |Q{

p∗,key∗ | and ∀s ∈ Sp∗,key∗ , d ∈ D, dis(s, d) ≥ t (alternatively,
the distance between the sets is t). Furthermore, note that Sp∗,key∗ ∪D is a deficient ball (and its radius
is η + t). We now find bound the size of Sp∗,key∗ .

Recall that |Sp∗,key∗ ∪D| = |Qp∗,key∗ | ≤ 2n−κ ≤ |M|/2. Since this set contains less than half the points
in the metric space we know its radius at most n/2. This means that |Sp∗,key∗ | is a deficient sphere of
radius at most n/2− t. Let X denote a uniform string on {0, 1}n. We use Hoeffding’s inequality [Hoe63]:

|Sp∗,key∗ | ≤ {x|dis(x, 0) ≤ n− t} = 2n Pr
X←{0,1}n

[wt(X) ≤ (1/2− t/n)n] ≤ 2ne−n((t/n)2) = 2ne−4ν ≤ 2n−4ν

We have shown that |Inter(Qp∗,key∗)| ≤ 2n−4ν . To complete the proof it suffices to show that for
most values of the auxiliary information Z there are many parts Qp∗,key∗ that do not receive any points.
Recall that Z consists of 2n/ν coefficients and there are (2n/ν − 1)ν−12n−ν equally likely values for Z. As
described above, the view of Gen,Rep is a uniform distribution V . We know show there are many possible
values for Z|P = p∗. The only information about Z is contained in the point V = v. The length of this
point is 2n. Conditioned on this information there are still many possible values for Z. That is,

∀v,H0(Z|V = v) = log

(
(2n/ν − 1)ν−12n−ν

2n

)

= log
(2n/ν − 1)ν−1

2ν

> log
(2n/ν)ν−2

2ν
(by Lemma E.6)

= log
2(n−2ν))

2ν
= n− 3ν.

Consider two possible z1, z2 that are possible values of Z. The distributions V |Z = z1 and V |Z = z2
intersect at one point (namely v).

This means that the Gen algorithm may include points for possible Z values into parts Qp∗,key∗ (other
than v) and these values are disjoint. The optimum strategy is to include these values uniformly from
different Z values. Consider the set of all preimages of Rsmall denoted Qsmall = ∪key∈Rsmall Inter(Qkey,p∗).
Note that Qsmall ≤ 2n−4ν |Rsmall|. We now show that the intersection between Qkey,p∗ is small for most
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possible values z. As before each container (the values of z) receives one item for free (the point v).

E
z
|Qsmall ∩ (V |P = p∗ ∧ Z = z)| ≤

(
# items + # containers

# containers

)
≤ 2n−4ν |Rsmall|

2n−3ν
+ 1

=
|Rsmall|

2ν
+ 1

In expectation across Z,
|Rsmall|

2ν + 1
|Rsmall|

≤ 1
2ν

+
1

|Rsmall|
fraction of Rsmall receive any support. We now present a distinguisher Dp∗ for a particular p∗:

1. On input x, z.

2. Compute V |P = p∗ ∧ Z = z and Qp∗,x.

3. If (Qp∗,x ∩ V |P = p∗ ∧ Z = z) = ∅ output b = 0.

4. Else output b = 1.

The distinguisher D(x, p, z) is formed by calling Dp(x, z) when p ∈ Ap and outputting a random bit
otherwise. The advantage of D is

Pr[D(Key, P, Z) = 1]− Pr[D(U,P, Z) = 1]
= (Pr[D(Key, P, Z) = 1|P ∈ Ap]− Pr[D(U,P, Z) = 1|P ∈ Ap]) Pr[P ∈ Ap]

≥
∑
p∗∈Ap

Pr[P = p∗] (1− Pr[Dp∗(U,Z) = 1])

≥
∑
p∗∈Ap

Pr[P = p∗] (1− Pr[Dp∗(U,Z) = 1|U ∈ Rsmall] Pr[U ∈ Rsmall]− Pr[U 6∈ Rsmall])

≥
∑
p∗∈Ap

Pr[P = p∗]
(

1−
((

1
|Rsmall|

+
1
2ν

)
Pr[U ∈ Rsmall]

)
− Pr[U 6∈ Rsmall]

)

≥
∑
p∗∈Ap

Pr[P = p∗]
(

1− 1
2ν
− 1

2
Pr[U ∈ Rsmall]− Pr[U 6∈ Rsmall]

)

≥
∑
p∗∈Ap

Pr[P = p∗]
(

1− 1
2ν
− 1

2
Pr[U ∈ Rsmall]− Pr[U 6∈ Rsmall]

)

≥
∑
p∗∈Ap

Pr[P = p∗]
(

1− 1
2ν
− 1 +

1
2

Pr[U ∈ Rsmall]
)

≥
∑
p∗∈Ap

Pr[P = p∗] (1/4− ngl(n)) ≥ 1
8
− ngl(n).

The sixth line follows since Rsmall ≥ 2κ−1 ≥ 2. The eighth line follows because Pr[U ∈ Rsmall] ≥ 1/2.
The last inequality proceeds because Pr[P ∈ Ap] ≥ 1/2. This completes the proof of Lemma F.3.
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