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Abstract. Solving polynomial systems with noise over F2 is a funda-
mental problem in computer science, especially in cryptanalysis. ISBS
is a new method for solving this problem based on the idea of incremen-
tally solving the noisy polynomial systems and backtracking all the pos-
sible noises. It had better performance than other methods in solving the
Cold Boot Key recovery problem. In this paper, some further researches
on ISBS are presented. We proposed a polynomial ordering scheme by
which we can accelerate the incremental solving process of ISBS. We
present some computation complexity bounds of ISBS. Two major im-
provement strategies, artificial noise-bound strategy and two-direction
searching strategy, are proposed and theoretically analyzed. Based on
these improvements, we propose a variant ISBS algorithm, and by the
experiments of solving the Cold Boot key recovery problem of Serpent
with symmetric noise, we show that our new algorithm is more efficient
than the old one.
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1 Introduction

Solving polynomial systems with noise over F2, which is called as the Max-PoSSo
problem over F2, is the problem of finding an optimal solution of a given Boolean
polynomial system, which can satisfy the maximum number of polynomials. It
is a fundamental problem in several areas of cryptography, such as algebraic
attacks, side-channel attacks and the cryptanalysis of LPN/LWE-based schemes.
For example, in the Cold Boot attack, which is a kind of side-channel attack, we
can recover the initial key of a block cipher from noisy round keys by solving
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a Max-PoSSo problem [1, 11]. In computation complexity field, this problem is
also significant and is known as the maximum equation satisfying problem [10,
20]. In the general case, this problem is NP-hard even when the polynomials are
linear.

In this paper, we will discuss Max-PoSSo problems with all the polynomials
are nonlinear. Obviously, Max-PoSSo problems over F2 are analogous to the well-
known Max-SAT problems, thus a natural way to solve a Max-PoSSo problem
is converting it into a Max-SAT problem and then solve it with a Max-SAT
solver. However, this method has a disadvantages that the original algebraic
structure is destroyed. In [1], the authors proposed a method to convert Max-
PoSSo problems into mixed integer programming (MIP) problems, and then
solved it with a MIP solver SCIP. Essentially, these methods are all based on
the idea of searching all the possible values of variables, and their differences are
the techniques of pruning redundant branches of the search tree.

In [15], we proposed a new method called ISBS for solving Max-PoSSo over
F2. The basic idea of ISBS is searching the values of polynomials, which is equal
to searching all the possible noises. Precisely speaking, given a noisy polynomi-
als system {f1, f2, . . . , fm}, we try to solve polynomial systems {f1 + e2, f2 +
e2, . . . , fm+em}, where (e1, e2, . . . , em) can be equal to (0, 0, . . . , 0), (1, 0, . . . , 0),
. . . , (1, 1, . . . , 1). Then, the solution of a system {f1 + e2, f2 + e2, . . . , fm + em}
with (e1, e2, . . . , em) having the smallest Hamming weight is the solution of the
Max-PoSSo problem. In the ISBS method, we combined the above idea with
the ideas of incrementally solving {f1 + e1, f2 + e2, . . . , fm + em} and searching
all possible (e1, e2, . . . , em) with backtracking. By this way, we can prune a lot of
search branches when searching the values of (e1, e2, . . . , em). From the experi-
mental results of [15], we showed that compared with SCIP, ISBS had better
performances on the Cold Boot Key recovery problem of AES and Serpent.

Since ISBS is a new method, some problems are open, for example, the
complexity estimation problem. Moreover, there is still a lot of room for im-
proving the efficiency of ISBS. Therefore, the motivation of this paper is to do
some further research on the properties of Max-PoSSo and ISBS, and give some
improvements to ISBS. The main contributions of this paper are as follows.

In cryptanalysis, in most cases the purpose of solving Max-PoSSo is recov-
ering the true solution, which is the solution of an original noiseless polynomial
system. Hence, we study the success rate of recovering the true solution by solv-
ing Max-PoSSo, and show that when the error rate are fixed, the success rate
will increase as the number of input polynomials increases.

For the complexity estimation problem, it is too hard to analyze the exact
complexity of ISBS. In this paper, we presents some complexity bounds of ISBS,
and from these bounds we can illuminate how the randomness of the input system
affects the complexity of ISBS. Moreover, we show an important fact that the
complexity of ISBS increases linearly (not exponentially) with the number of
input polynomials, which contradicts our intuition.

We propose two improvements of ISBS for the general cases. The first one is
an ordering scheme for the input polynomials when we use the characteristic set



Solving Polynomial Systems with Noise over F2: Revisited 3

method [9, 15] as the incremental solving tool, by which we can accelerate the
incremental solving process of ISBS. The second one is the artificial noise-bound
strategy, in which we artificially bound the Hamming weight of the noise vectors
and gradually increase the bound until we find the optimal solution. By this way,
we can control the search space, thus reducing the computation complexity of
ISBS.

When the input polynomial system satisfies m = sn, where m is the number
of polynomials, n is the number of variables and s ≥ 2 is an integer, we propose
a strategy called the s-direction strategy, by which we can reduce the negative
influence of the number of the input polynomials to the efficiency of ISBS. The
idea is dividing the input polynomials into s parts and searching the possible
noise by beginning with different parts. This idea is similar with that in [16] for
decoding random linear codes. Furthermore, we give some theoretical analysis
of this strategy and prove that with this strategy ISBS will be more efficient.

We implement a variant ISBS algorithm by applying the above improve-
ments, and test it by solving some Cold Boot key recovery problems of Serpent.
We compare our experimental results with those in [1, 15], and from these ex-
perimental results, we show that by our modification, the efficiency of ISBS is
improved significantly.

The rest of this paper is organized as follows. In Section 2, we introduce the
ISBS method. In Section 3, we discuss the incremental solving process in ISBS.
In Section 4, we analyze the success rate of Max-PoSSo. In Section 5, we present
some complexity bounds of ISBS. In Section 6, we propose an improvements of
ISBS by using an artificial noise-bound. In Section 7, the strategy for solving
the problem with m = sn is proposed. In Section 8, we show some experimental
results. In Section 9, we compare the algorithms for solving Max-PoSSo from
the viewpoint of complexity. In Section 10, the conclusions are presented.

2 Solving Max-PoSSo Problems over F2

Let F2 be the finite field with two elements and P = {f1, . . . , fm} ⊂ F2[x1, . . . , xn]
be a Boolean polynomial system. The polynomial system solving (PoSSo) prob-
lem over F2 is finding a solution (x1, ..., xn) ∈ Fn

2 such that ∀fi ∈ P, we have
fi(x1, ..., xn) = 0. The Max-PoSSo problem over F2 is defined as below.

Max-PoSSo: Let P = {f1, . . . , fm} ⊂ F2[x1, . . . , xn] be a Boolean polynomial
system. Find a point (x1, . . . , xn) ∈ Fn

2 such that {i ∈ N |fi(x1, . . . , xn) = 0, fi ∈
P} has maximal cardinality.

The name “Max-PoSSo” was first proposed in [1]. In the computational com-
plexity field, this problem is sometimes called the maximum equation satisfying
problem [10, 20]. Obviously, Max-PoSSo is at least as hard as PoSSo. Moreover,
whether the polynomials in P are linear or not, Max-PoSSo is anf NP-hard prob-
lem. Besides Max-PoSSo, in [1], the authors introduced another variant problem:
Partial Weighted Max-PoSSo, in which the optimal solution is constrained by
another polynomial system and it has to maximize a cost function.
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In this paper we only focus on the Max-PoSSo problem, since it is a more
fundamental problem and study this problem can help us illustrate the major
properties of these similar problems. Moreover, the skills for solving Max-PoSSo
can be simply applied into solving Partial Weighted Max-PoSSo and other similar
problems.

In the following paragraphs of this paper, unless otherwise stated, the prob-
lems we discuss are all over F2, and we use n to denote the number of variables
and m to denote the number of input polynomials. Moreover, we assume m ≥ n.

2.1 The Incremental Solving and Backtracking Search (ISBS)
Method

In this part, we will introduce the ISBS method for solving Max-PoSSo prob-
lems[15]. As we know, almost all existing algorithms for solving Max-PoSSo
problems are based on the idea of searching the values of variables, such as the
Max-SAT solvers. The idea of ISBS is based on another point of view which is
searching the values of polynomials.

Let’s show this idea more specifically. Given a noisy polynomial set P =
{f1, f2, . . . , fm}, for every vector E = (e1, e2, . . . , em) ∈ Fn

2 , we can solve the
polynomial system {f1 + e1, f2 + e2, . . . , fm + em} by some method. Hence, we
can exhaustively searching all such E in order of increasing Hamming weight
and solve the corresponding polynomial system for each E. If the corresponding
polynomial system of some E has a solution, then it is the solution of the Max-
PoSSo problem.

The above approach uses the most common way in searching E, and obvi-
ously there are a lot of redundant computations. For example, if {f1 + e′1, f2 +
e′2, . . . , fk + e′k} has no solution for some fixed (e′1, e

′
2, . . . , e

′
k), we don’t need to

solve any system with the form {f1+e′1, f2+e′2, . . . , fk+e′k, fk+1+ek+1, . . . , fm+
em}, since it will always be a contradiction system. Therefore, in order to avoid
this kind of redundant computations, ISBS combines the incremental solving
method and the backtracking search method with the above idea.

First let’s introduce the incremental solving method. Given a polynomial set
P, we can solve it by some algebraic method, such as the Characteristic Set(CS)
method [4, 9] and the Gröbner Basis method [7, 8]. Note that the SAT-solver is
not suitable for the incremental solving method, since it cannot represent a lot
of solutions with a simple form. We denote the output results of such a solving
algorithm with input P as Result(P). From Result(P), all the solutions of P can
be derived easily. We remind the reader that, for different methods, Result(P)
can be different.

For example, if we use the CS method to solve P, Result(P) = ∪iAi is a
group of triangular sets(A triangular set Ai is a polynomial set which can be
easily solved, and its precise definition will be given in next section). If we use
the Gröbner Basis method to solve P, Result(P) is the Gröbner Basis of idea
< P >. In the following paragraphs, for any solving method, when the polynomial
system P has no solution, we set Result(P) = {1}.
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We show that given Result(P) and a polynomial g, Result({Result(P), g})
can be achieved. For example, for the CS method, we need to compute each
Result({Ai, g}) and output the union of them. For the Gröbner Basis method,
we need to compute the Gröbner Basis of the idea generated by the new polyno-
mial set. Therefore, given a polynomial system P = {f1, f2, . . . , fm}, Result(P)
can be achieved by recursively computing

Result({f1}), Result({Result({f1}), f2}), . . . ,

and this is the incremental solving method. Now let’s present the processes of
ISBS.

(i) We try to incrementally solve {f1 + e1, f2 + e2, . . . , fi + ei} for i from 1
to m with each ei = 0. If Result({f1, f2, . . . , fi}) = 1 for some i, we
flip ei to 1 and continue solving the remainning polynomials based on
Result({f1, f2, . . . , fi+1}). At last, we will obtain a candidate Result({f1+
e1, f2+e2, . . . , fm+em}) where (e1, . . . , em) is equal to some fixed (e′1, . . . , e

′
m).

Then, we set the backtracking index k to be m.
(ii) Then, in order to obtain a better candidate, we search all the possible values

of (e1, . . . , em) with backtracking based on the value (e′1, . . . , e
′
m). That is

for i from k to 1 we find the first e′i which are equal to 0, and similarly as
step (i) we try to incrementally solve fi+1, . . . , fm based on Result({f1 +
e′1, . . . , fi + 1}). If we find a better candidate Result({f1 + e′1, . . . , fi +
1, fi+1 + e′′i+1, . . . , fm + e′′m}), we set k to be m, replace (e′1, . . . , e

′
m) with

(e′1, . . . , e
′
i−1, 1, e

′′
i+1, . . . , e

′′
m), and do step (ii) again. Otherwise, set k = i−1

and if k > 0 do step (ii) again.
(iii) Finally, we have searched all the possible (e1, . . . , em) and obtain the opti-

mal solution.

In the following algorithm, we present the ISBS method specifically. In this
algorithm, a vector (e1, e2, . . . , es) ∈ Fs

2 with s ≤ m is called a noise vector.
Moreover, we call the Hamming weight of a noise vector its noise weight and a
bound of the noise weight a noise-bound.

For the proof of the correctness and termination of ISBS, the reader is
referred to [15].

Algorithm 1: ISBS algorithm

input : A polynomial sets P = {f1, f2, . . . , fm}.
output: (x1, . . . , xn) ∈ Fn

2 s.t. {i ∈ N |fi(x1, . . . , xn) = 0, fi ∈ P} has
maximal cardinality.

1 Compute Candidate(P, ∅,m, 0);
2 Let t, u, {Q0,Q1, . . . ,Qm} and E = (e1, e2, . . . , em) be the corresponding

output ; /* Here t is always equal to m */

3 ubound ← u− 1, S← Qm;
4 Let S1 be the output of Backtracking(P, E, {Q0,Q1, . . . ,Qm}, ubound, u);
5 if S1 6= ∅ then S← S1

6 Get (x1, . . . , xn) from S and return (x1, . . . , xn);
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Function: Candidate
input : P = {fs+1, fs+2, . . . , fm}: a polynomial set,

Result(R) : the common zero of a polynomial set R,
ubound: a noise-bound;
u: the noise weight of (e1, . . . , es);

output: t: a index number,
u: the noise weight of (e1, . . . , es+t),
QS = {Qs,Qs+1, . . . ,Qs+t}: a sequence of zero sets,
E = (es+1, es+2, . . . , es+t): a vector

1 Qs ← Result(R);
2 for i from s+ 1 to m do
3 Pi ← {Qi−1, fi}, solve Pi and achieve Result(Pi);
4 if Result(Pi) = {1} then /* In this case,

Result(Qi−1, fi + 1) = Result(Qi−1) */

5 Qi ← Qi−1, ei ← 1, u← u+ 1;
6 if u > ubound then
7 t← i− s, and break;

8 else if Result(Pi) and Qi−1 have the same zero set then /* In this

case, Result(Qi−1, fi + 1) = {1} */

9 Qi ← Qi−1, ei ← 0;
10 else
11 Qi ← Result(Pi), ei ← 0;

12 return t, u, {Qs,Qs+1, . . . ,Qs+t}, (es+1, es+2, . . . , es+t);

Function: Backtracking

input : P = {f1, f2, . . . , fm}: a polynomial set,
E = (e1, e2, . . . , em): a noise vector,
{Q0,Q1, . . . ,Qm}: a sequence of zero sets
ubound: a noise-bound;
u: the noise weight of E;

output: A zero set S.

1 k ← m, S← ∅; /* k is the backtracking index */

2 while k ≥ 1 do
3 if ek = 0, Qk 6= Qk−1 and u+ 1 ≤ ubound then
4 ek ← 1, u← u+ 1;
5 Solve Pk = {Qk−1, fk + 1} and achieve Result(Pk);
6 Qk ← Result(Pk);
7 Set t, u, {Qk,Qk+1, . . . ,Qk+t}, (ek+1, . . . , ek+t) to be the output of

Candidate({fk+1, fk+2, . . . , fm},Qk, ubound, u);
8 k ← k + t;
9 if u ≤ ubound then /* In this case, k = m */

10 S← Qm, ubound ← u− 1;

11 else
12 u← u− ek, k ← k − 1;

13 return S.
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Remark 1. This version of ISBS is slightly different with the version in [15].
We add the comparisons of the zero sets of Result(Pi) and Qi−1 (Step 8) in
Candidate. When this condition is true, we always have Result(Qi−1, fi + 1) =
{1}. Thus, in this case we don’t need to check whether Result(Qi−1, fi + 1) is
equal to {1} in Backtracking (That is what we did in [15]). Therefore, we add
a condition Qk 6= Qk−1 in Step 3 of Backtracking to verify whether this case
happens.

Note that checking whether Result(Pi) and Qi−1 have the same zero set is
very easy, thus the cost is much less than that of solving {Qi−1, fi + 1}. For
example, when using the characteristic set method as the incremental solving
tool, the number of points in the zero set can be compute easily, thus we only
need to check whether Result(Pi) and Qi−1 have the same number of points.

3 The Incremental Solving Process

From the processes of ISBS, it is easy to see that each time we call the function
Candidate, we are incrementally solving a polynomial system. As we know,
solving a polynomial system is a NP problem. In ISBS, we need to solve lots
of similar polynomial systems. The differences of these systems are the constant
terms, thus the time for solving them are almost the same. Obviously, if we
cannot solve the input system in a short time, ISBS will not end in a practical
time. Thus, in this paper, we assume that the input system can be solved in
constant time. A lot of polynomial systems satisfy this assumption, for example,
the systems generated by presenting the Serpent round keys w.r.t. the initial
key, which were considered in [1, 15] and the experiments in Section 8 of this
paper.

3.1 The Characteristic Set Method

In our implementation of ISBS, we used the Characteristic Set(CS) method as
the incremental solving tool. The CS method is an important method in sym-
bolic computation [6, 19], and a powerful tool for solving Boolean polynomial
systems [4, 9, 13]. Here we introduce the CS method for solving Boolean polyno-
mial systems. For more details, the reader is referred to [9].

First, let’s introduce some basic notations. For a Boolean polynomial P ∈
F2[x1, x2, . . . , xn], the class of P , denoted as cls(P ), is the largest index c such
that xc occurs in P . If P is a constant, we set cls(P ) to be 0. If cls(P ) = c > 0,
we call xc the leading variable of P , denoted as lvar(P ). The leading coefficient of
P as a univariate polynomial in lvar(P ) is called the initial of P , and is denoted
as init(P ).

A sequence of nonzero polynomials

A : A1, A2, . . . , Ar

is a triangular set if either r = 1 and A1 = 1, or 0 < cls(A1) < · · · < cls(Ar). For
example, {x1 + c1, x2 + c2, . . . , xn + cn} is a triangular set which corresponds to
the point (c0, c1, . . . , cn).
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A Boolean polynomial P is called monic, if init(P ) = 1. Moreover, if the
elements of a triangular set are all monic, we call it a monic triangular set.

Given a polynomial system P, we use Zero(P) to denote the common zero of
this system, that is

Zero(P) = {(a1, · · · , an), ai ∈ F2, s.t.,∀fi ∈ P, fi(a1, · · · , an) = 0}.

Obviously, for a monic triangular set A : A1, A2, . . . , Ar, |Zero(A)| = 2n−r.

By the characteristic set method, we can decompose Zero(P) into the disjoint
union of the zero sets of several monic triangular sets. That is

Zero(P) =
⋃
i

Zero(Ai)

where each Ai is a monic triangular sets and Zero(Ai) ∩ Zero(Aj) = ∅ for any
i 6= j. Obviously, if the number polynomials in Ai is di, we have |Zero(P)| =∑

i 2n−di .1

In the following Algorithm 4, we present the ICS algorithm which is an
incremental solving algorithm based on the CS method. This algorithm can be
use in the Step 3 of Candidate and Step 5 of Backtracking.

Algorithm 4: ICS

input : A polynomial system {f1, f2, . . . , fm}
output: Zero(f1, f2, . . . , fm)

1 RS← {∅};
2 for i from 1 to m do
3 QS← ∅;
4 Let k be the number of elements in RS = {R1, . . . ,Rk}; /* Ri is a

monic triangular set */

5 for j from 1 to k do
6 For every linear polynomials L = xc + l in Rj , substitute xc with l in

fi; /* The simplification process */

7 Rj = Rj ∪ {fi};
8 QS = QS ∪BCS(Rj);

9 RS← QS;
10 if RS = ∅ then return ∅
11 return RS;

1 This formula of counting the number of solutions can be used in the checking process
mentioned in Remark 1(The step 8 of Candidate).
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Algorithm 5: BCS

input : A polynomial system P = {f1, f2, . . . , fm}.
output: Monic triangular sets {A1,A2, . . . ,At} such that

Zero(P) = ∪t
i=1Zero(Ai) and Zero(Ai) ∩ Zero(Aj) = ∅

1 P∗ = {P},A∗ = ∅;
2 while P∗ 6= ∅ do /* P∗ is a group of polynomial sets */

3 Select a polynomial set Q from P∗;
4 Let A and Q∗ be the output of Triset(Q);
5 if A 6= ∅ then A∗ = A∗ ∪ {A} P∗ ← P∗ ∪Q∗;
6 return A∗.

Function: Triset
input : A polynomial system P = {f1, f2, . . . , fm}.
output: A monic triangular set A and a group of polynomial sets P∗ such

that Zero(P) = Zero(A) ∪Q∈P∗ Zero(Q), Zero(Qi) ∩ Zero(A) = ∅,
Zero(Qi) ∩ Zero(Qj) = ∅ for any Qi,Qj ∈ P∗.

1 P∗ ← ∅, A ← ∅ and nmonic = 0;
2 while P 6= ∅ do
3 Let A′ and P′ be the output of Simplify(P);
4 if A′,P′ = ∅; then return ∅ and P∗ else A = A ∪A′, P = P′ if The

elements in P are all monic then
5 if For every class, there is only one element in P then
6 A ← A∪ P;
7 return A and P∗;
8 else
9 P′ ←AddReduce(P);

10 if P′ = ∅ then return ∅ and P∗ else P← P′

11 else /* The decomposition process */

12 Choose a polynomial P = Ixc + U with lowest degree from P;
13 P1 ← (P \ {P}) ∪ A ∪ {I, U}, and P∗ ← P∗ ∪ {P1};
14 P← (P \ {P}) ∪ {xc + U} ∪ {I + 1};
15 nmonic ← nmonic + 1;

16 return A and P∗.

Function: Simplify

input : A polynomial set P
output: A monic triangular set A, and a polynomial set P

1 A ← ∅;
2 if 1 ∈ P then return ∅ and ∅ while P has a linear polynomial P = xc + L

do /* cls(P ) = c */

3 Substitute xc with L for the other elements in P;
4 A = A ∪ {xc + L};
5 if 1 ∈ P then return ∅ and ∅
6 return A and P.
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Function: AddReduce
input : A polynomial set P
output: A polynomial set P′

1 Sort the elements of P by classes and obtain polynomial sets Q1,Q2, . . . ,Qt ;
/* The class of elements in Qi is ci */

2 for i← 1 to t do
3 Let Q ∈ Qi be the polynomial with lowest total degree;
4 Qi ← Qi \ {Q}, P′ = P′ ∪ {Q};
5 while Qi 6= ∅ do
6 Choose an element Qj ∈ Qi, Qi ← Qi \ {Qj};
7 Qj ← Qj +Q;
8 if Qj = 1 then return ∅ if Qj 6= 0 then P′ = P′ ∪ {Qj}

9 return P′.

The BCS algorithm presented here has some differences with the MFCS
algorithm in [9]. We add Simplify into the algorithm, and in Step 15 we choose
the polynomial with lowest degree, while in MFCS we choose the polynomial
with highest class. These modification can highly decrease the complexity of the
CS method.

Now let’s show some results about the complexity of BCS. For BCS, when
we say a solving branch, we mean one execution of Triset. The complexity of
BCS can be achieved by combining the complexity of a solving branch and the
number of branches.

Similarly as the proof in [9], we can prove that the bit-size complexity of
Triset is O(dmnd+2log(n)), where d is the degree of these polynomials. Further-
more, we estimate the number of solving branches when the input polynomial
system is random. Obviously, all these solving branches consist a binary tree.
Note that, we generate a new branch by zero-decomposition of P = Ixc + U
at Step 15-17 of Triset. Then, we add I + 1 to the current branch and I
to the new generated branch. This means that the two branches both have a
new polynomial with degree at most d − 1. Since we assume that P is a ran-
dom polynomial, this new polynomial will be non-monic. Thus, when we do the
zero-decomposition next time, we will choose this new generated polynomial, or
another polynomial with lower degree. In any cases, the degree of this chosen
polynomial will be at most d − 1. Then after decomposing this polynomial, we
we generate a new polynomial with degree at most d − 2. Thus, after do the
zero-decomposition d − 1 times, we will achieve a linear polynomial. Then by
Simplify, we can use this linear polynomial to eliminate one variable. Since we
have n variables, the above process can be repeated at most n times. Hence, we
can do the zero-decomposition at most (d− 1)n times, which means the number
of solving branches is bounded by 2(d−1)n. Furthermore, we have the bit-size
complexity of BCS can be bounded by O(2(d−1)ndmnd+2log(n)) when solving
a random polynomial system.

Note that in Step 15 of Triset, if we choose the polynomial which is gen-
erated from the fi with smallest index i, and has the lowest degree, BCS
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is equivalent to ICS. By this modification, the above complexity bound of
BCS will not change, thus the bit-size complexity of ICS is also bounded by
O(2(d−1)ndmnd+2log(n)).

Although the above complexity bound is worse than the complexity of ex-
haustive search, BCS and ICS can be much faster than the exhaustive search
when solving a lot of practical systems. For these systems, the complexities of
BCS and ICS are still unknown. Unfortunately, the polynomial systems we talk
about in this paper are such systems, so we don’t know the precise complexity of
solving them by ICS, but we know some properties about the complexity. This
will be discussed in Section 3.2

3.2 Some Properties of Incremental Solving

In this section, we will talk about the following four problems.

1. The comparison of the efficiencies of the incremental solving method and the
general solving method.

2. Why we use the incremental solving method.
3. Why we choose the CS method for incremental solving.
4. Properties of the complexity of incremental solving.

Problem 1. It is well known that the complexity of solving a polynomial system
highly depends on n, the number of its variables, and m, the number of polyno-
mials. In most cases, a system with large m will be more easily to be solved. For
example, when m = O(nd), where d is the degree of the polynomials, the system
can be solved in a polynomial time by the Gröbner Basis method. Note that,
by the incremental solving method, at the beginning of the process, m is much
smaller than n. It means that the incremental solving method is less efficient
than the general solving method in most cases.

However, there are still some cases in which the incremental solving method is
more efficient than the general solving method. Here we present an example. We
consider the above Serpent system generated form round keys without noise. In
this case, the polynomial system has 128 variables, and 128r polynomials, where
r is the number of rounds. We tried to solve this kind of systems by the CS
method and the Gröbner method under general solving mode and incremental
solving mode. For the CS method, we used our implementation of algorithms
BCS and ICS. For the Gröbner Basis method, we used the Boolean Gröbner
Basis function in Magma (Version 2.20) under graded reverse lexicographical
order. Table 1 lists the running time of solving these systems by using different
methods. The column “r” is the number of rounds.

Table 1. Solving the Serpent problem by GB and CS

r GB Incre. GB BCS ICS

1 0.08 s 0.23 s 0.08 s 0.05 s
2 132.41 s 3.47 s 0.67 s 0.18 s
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From the results, we can see that for the Gröbner Basis method, when r = 2,
the incremental solving method is better than the general solving method. For
the CS method, when r = 1, 2, the incremental solving method is always better
than the general solving method.

From our solving experiments on this system and other systems, we found
that when the “hardness” of each input polynomial is different, the incremental
solving method may be better than the general solving method. For example, in
the above system with r = 2, the polynomials generated by the first round keys
are easier than the polynomials generated by the second round keys. We remind
the reader that the above system is a special instance, and in most cases, the
general solving method is better.

Probelm 2. A natural question is why we use the incremental solving method
when it is not so efficient in most cases. Actually, as mentioned before, our
purpose of using the incremental solving method in ISBS is to decrease the
redundant computations. Compared to the general solving method, when solving
Max-PoSSo, by combining with backtracking, the incremental solving method
has two major advantages.

• If the input system doesn’t have good randomness, by incremental solv-
ing method and backtracking, we can prune a lot of redundant searching
branches.
• For different noises, the polynomial systems are almost the same. By in-

cremental solving method, we can save the former results then reduce the
repeating computations.

Here, we present a example to show the effect of the incremental solving
method. For the above Serpent system with r = 1, we try to solve the corre-
sponding Max-PoSSo problem under a noise-bound 4. By the general solving
method, we have to solve

∑4
i=0

(
128
i

)
≈ 223.4 different systems. Even if we as-

sume that the time for solving one system is about 0.05 seconds (the best result
in the above table), it will take 219.07 seconds to achieve the optimal solution. In
comparison, our experiment show that, by our implementation of ISBS method,
we can solved this problem in about 2 seconds. Obviously, this is a significantly
improvement.

Problem 3. It is easy to see that a method for solving PoSSo problems can
be modified into an incremental solving method. To the best of the authors’
knowledge, the major methods for solving PoSSo problems are: the exhaustive
search method, the SAT solver, the Gröbner Basis method, the XL method, and
the Characteristic Set method.

The exhaustive search and the SAT solver are both based on the idea of
searching all the possible points in Fn

2 . As mentioned before, their disadvantage
in incremental solving is we cannot represent and store the former results by an
easy way, since at the beginning of solving, a lot of points can satisify the first
several polynomials. Then it is hard to use the former results to reduce repeating
computations. Thus, these two methods are not suitable for incremental solving.
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Since the XL method and the Gröbner Basis method are similar, we only need
to compare the Gröbner Basis method with the CS method. The Gröbenr Basis
method and the CS method are all algebraic solving method. They can represent
and store the former results well. Thus, they are suitable for incremental solving.
The difference is their solving efficiencies. From the experimental results in Table
1, we can see that for solving the Serpent problem, ICS is much faster than the
incremental Gröbner Basis method (IGB).

Actually, from our experiments, we found that for the systems which can be
solved by incremental methods in a practical time, ICS is faster than IGB. We
think the main reason is that the systems which can be solved by incremental
solving methods always have some triangular structure, therefore by ICS we
can make use of this structure feature. In comparison, in the incremental solving
process, since m is small at the beginning, IGB cannot well use the advantage of
its fast Gaussian elimination techniques. Another reason is that we have our own
implementation of the CS method, so ICS is implemented by C language. In
comparison, we don’t have a good implementation of the Gröbner Basis method,
so IGB is implemented by Magma functions.

In summary, since the better performance of the CS method in incremental
solving, we choose it as the incremental solving approach in our implementation
of ISBS.

Problem 4. As mentioned before, when a system can be solved easily, we don’t
know the exact complexity of solving it. What we know is the following property
of the complexity.

First, let’s define a kind of polynomial systems which are called perfectly ran-
dom polynomial systems. For a ordered polynomial system {f1, f2, . . . , fm} with
m ≥ n, we can define a map Sn : Fn

2 → Fn
2 : Sn(x) = (f1(x), f2(x), . . . , fn(x)).

Definition. A ordered polynomial system with m ≥ n is called a perfectly
random system, if the corresponding Sn is a bijection.

For a perfectly random system, since Sn is a bijection, we can know that, for
any point e = (e1, e2, . . . , en), it has a unique preimage w.r.t. Sn. It implies that
for any noise vector (e1, e2, . . . , en), {f1(x) + e1, f2(x) + e2, . . . , fn(x) + en} has
a unique solution. Then the complexity of incremental solving the system can
be divided into two parts. The first part is the complexity of solving the first
n polynomials, and the second part is the complexity of solving the remaining
m−n polynomials. We can denote the first part by Cn. Note that, this Cn may
be exponential in general cases. Under our assumption that polynomial systems
can be easily solved, this Cn may be a polynomial w.r.t to n,m. After solving
the first n polynomials, we will obtain a unique solution. If we use ICS, this
solution will be represented by {x1 + c1, x2 + c2, . . . , xn + cn}. Then the process
of incrementally solving the rest m − n polynomials is easy. For ICS, we only
need to substitute each xi by ci in each of the remaining m − n polynomials.
We suppose the complexity of substitution for one polynomial can be bounded
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by C. In general cases, C is equal to O(
(
n
d

)
d), where d is the degree of these

polynomials. If the densities of these polynomials (the number of monomials)
are almost same, then C is equal to O(dt), where t is the number of monomials.
Note that compared to Cn, this C is very small. Then, the complexity of solving
these remaining polynomials is about (m− n)C.

For most polynomial systems in cryptanalysis, since they have good ran-
domness property, after we solve the first n polynomials, we may have several
solutions or no solution. Hence, the behavior of the complexity of incremental
solving these systems are similar as above.

3.3 The polynomial ordering problem

From the process of incremental solving , it is easy to see that the order of the
input polynomials {f1, f2, . . . , fm} is a major factor that affect the efficiency of
the whole solving process. Thus, a critical problem for the incremental solving
process is that given a polynomial system, in what order we can solve the system
fastest.

Intuitively, a natural ordering scheme is putting a “easy” polynomial in front
of a “hard” one, since with the results achieved from the “easy” polynomials we
can simplify the “hard” ones. Obviously, the definitions of “easy” and “hard”
should be combined with the algebraic solving method. In this section, we will
discuss this problem when using ICS as the solving tool.

For ICS, when we say a component, we mean a loop of Step 5 in the Algo-
rithm. It is obvious that the number of total components significantly affect the
efficiency of ICS.

As we mentioned before, the main principle for a good polynomial ordering
scheme is that we should use the “easy” polynomials achieved from the zero
decomposition of the former polynomials to simplify the latter ones. From the
description of ICS, we can observe that the main simplification process of ICS
is doing the substitution by the appeared linear polynomials. For a polynomial
P , if we solve it with CS, then we will achieve a group of triangular sets, we
denote the number of these sets by Ncs and the number of linear polynomials
in these triangular sets by Nlin. By these notations, we proposed the following
two principles for polynomial ordering.

1. The linear polynomials in Zero(f1, f2, . . . , fi−1) can be used to simplify fi.

2. For the front polynomial, the corresponding value of
∑Ncs

i=0 2n−Nlin should
be as small as possible.

Principle 1 means that the classes of the linear polynomials in Zero(f1, . . . , fi−1)
should be smaller than cls(fi). Principle 2 means that the output of the zero de-
composition of the front polynomial should contain more linear polynomials and
less components.

We can define a order vector (c, term(I) + term(R), term(I) · term(R)) for
a polynomial P = Ixc + R, where c = cls(P ), term(P ) denotes the number of
monomials in P . Then we can order the input polynomials by ordering their
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corresponding order vector. We order these order vectors by the lexicographical
order, and say a polynomial f1 has lower ordering than a polynomial f2, which
denoted by f1 ≺ f2, if the order vector of f1 has lower ordering than that of f2.
Based on this ordering scheme, we have:

1. In ICS, the classes of the linear polynomials, which are achieved from the
zero decomposition of Zero(f1, . . . , fi−1), are not bigger than cls(fi−1). Fur-
thermore, from the definition of the order vector, we know that cls(fi−1) ≤
cls(fi) if fi−1 ≺ fi, which means Principle 1 can always be satisfied.

2. The satisfaction of Principle 2 is based on our extensive experiments, by
which we found that in most cases

∑Ncs

i=0 2n−Nlin increases with term(I) +
term(R) = term(P ) decreasing. Moreover, for two polynomials P1 = I1xc +
R1, P2 = I2xc + R2, with term(P1) = term(P2), if the sizes of I1 and R1

are more balanced, then the value of
∑Ncs

i=0 2n−Nlin corresponding to P1 is
smaller. The theoretical proof of this observation is still an open problem.

The following table is some experimental results about the running time
of ICS for solving the same systems with different polynomial orders. These
polynomial systems are generated from the key schedule process of Serpent. We
present round keys of Serpent by the polynomials with respect to the initial
keys, and try to solve the initial keys with the first two round keys. In this
case, the polynomial system has 128 variables and 256 equations. The reason we
choose this kind of problems is that in the following sections, we will solve the
problem of recovering the initial key of Serpent from some noisy round keys, and
incrementally solving this kind of systems is a basic process when solving that
problem.

In the experiments, we used three different orders and for each order we tried
to solve 100 groups of systems. In this table, “Random” means we sort the input
polynomials by a random order, and “Natural” means we sort the polynomials
by the natural order of the round key bits.

Table 2. Solving the Serpent problem by ICS with different polynomial orders

Order min t avg. t max t

Random • • •
Natural 0.187 s 0.233 s 0.297 s

Proposed 0.156 s 0.180 s 0.249 s

• means time out: 1 hour without output

From the experimental results, we can observe that for this Serpent key re-
covery problem, the order we proposed is the best one compared to the others,
and the efficiency of ICS is indeed strongly related to the polynomial order.
Actually, for most polynomial systems generated from cryptanalysis, if the or-
der is bad, such as the random order, sometimes we cannot solve the systems
by incremental method. Natural order is a good order for most cryptanalysis
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problem, since the polynomials we generate will become more complex as the
cryptographic algorithm proceeds further, but it is not the best one in most
cases.

4 The Success Rate of Recovering the True Solution

In cryptanalysis, the input polynomial system P of a Max-PoSSo problem is
always originated from another system P0 which has a solution. Moreover, the
difference between P0 and P is that t polynomials of them have different constant
terms. If |P0| = |P| = m, the ratio r = t/m is called the error rate of P. We call
the solution of P0 the true solution of P.

Actually, in cryptanalysis, the major motivation of solving a Max-PoSSo
problem is to recover the true solution which is the sensitive information in
most cases. Unfortunately, sometimes when the error rate is big, the optimal
solution of a Max-PoSSo problem is not the true solution. Therefore, in order
to predict the effectiveness of recovering the true solution via the Max-PoSSo
model, we have to estimate the probability of recovering the true solution based
on the basic information, such as the number of variables n, the number of
polynomials m and the error rate r, of the input polynomial system. Moreover,
we want to know how this probability changes when m, n and r change. In this
section, we will present some results about this problem under the assumption
that the input system is random and balance. In the following of this section,
when we say the success rate, we mean the probability of recovering the true
solution by solving a Max-PoSSo problem.

Given a input system, P = {f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)} with
m ≥ n, we define a map Sm : Fn

2 → Fm
2 , with Sm(x) = (f1(x), f2(x), . . . , fm(x)).

Assume for any x1 6= x2, Sm(x1) and Sm(x2) are independent, and Im(Sm)
is uniform distributed over Fm

2 . Obviously, this assumption is reasonable when
f1, f2, . . . , fn are random and balance. Under this assumption, we have the fol-
lowing proposition about the success rate.

Proposition 1 Let P be the input system of a Max-PoSSo problem with error
rate r. Suppose P is a random balance polynomial system which has n variables

and m polynomials. Then the success rate P is equal to (1−
∑rm

i=0 (m
i )−1

2m )2
n

.

Proof: Suppose P is generated from P0. Then t polynomials of P and P0 have
different constant terms. We denote the differences between the elements of P
and P0 by e′1, e

′
2, . . . , e

′
m, then e′i = 0 or 1 for 1 ≤ i ≤ m. The optimal solution

of P is the true solution when the following condition is satisfied:

• For any noise vector (e1, e2, . . . , em) such that its noise weight w ≤ t = mr
and (e1, e2, . . . , em) 6= (e′1, e

′
2, . . . , e

′
m), Result(f1 + e1, . . . , fm + em) = {1}.

Result(f1 + e1, . . . , fm + em) = {1} implies that for any point x0 ∈ Fn
2 ,

(f1(x0), f2(x0) . . . , fm(x0)) 6= (e1, e2, . . . , em). Therefore, the number of noise
vectors satisfying the above condition is

∑t
i=0

(
m
i

)
− 1. By the assumption that
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Im(Sm) is uniform distributed over Fm
2 , for any point x0, the probability of

Sm(x0) being not equal to these noise vectors is 1−
∑t

i=0 (m
i )−1

2m . Since there are
2n points in Fn

2 , then P is equal to the probability of the above condition being

satisfied, which is (1−
∑mr

i=0 (m
i )−1

2m )2
n

. �

To observe the change of P when m increases, we need to following proposi-
tion.

Proposition 2 Let r ≤ 1/2 be a fixed real number and m1r be a positive integer.
For any integers m2, such that m2 > m1 and (m2−m1)r is an integer, we have∑m2r

i=0

(
m2

i

)
2m2

≤
∑m1r

i=0

(
m1

i

)
2m1

.

Moreover, the equality holds when r = 1/2.

Proof: The completely strict proof of this proposition is complicated. Here we
present an approximate proof by the normal distribution theory, and a strict
proof of this proposition when 1/r is an integer is given in Appendix.

By the central limit theorem, we know that when m is large enough,
∑mr

i=0 (m
i )

2m

is approximately equal to

1√
mπ/2

∫ mr

−∞
e
− 1

2 (
t−m/2√

m/4
)2

dt =
1√
2π

∫ mr−m/2√
m/4

−∞
e−

1
2 s

2

ds

Thus, it is sufficient to prove m1r−m1/2√
m1/4

≥ m2r−m2/2√
m2/4

⇔ (
√
m1 −

√
m2)(2r −

1) ≥ 0. Obviously, when r ≤ 1/2, this inequality holds, and when r = 1/2, the
equality holds. �

From the above proposition, we can deduce that when n, r are fixed,
∑mr

i=0 (m
i )−1

2m

decreases with m increasing, which means P increase with m increasing. Sim-
ilarly, we can prove that when n,m are fixed, P decreases with r increasing.
Actually, in cryptanalysis, r and n are always fixed in most problems, such as
the Cold Boot key recovery problem we will introduced in Section 8, and the
probabilistic algebraic attacks on LFSR-based stream ciphers [2]. It means that
by increasing the number of input polynomials, we can increase the success rate
of recovering the true solution.

5 The Complexity Bound of ISBS

In this section, we will analyze the size of the backtracking search tree, and then
give some bounds of the complexity of ISBS under the following complexity
assumption about the incremental solving process.

According to Problem 4 of Section 3.2, we assume that the polynomial system
we consider in the following of this paper has the property that, the behavior of
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the complexity of incremental solving the system is similar as that of incremental
solving a perfectly random system. Then, we suppose the complexity of incre-
mentally solving a system {f1 + e1, f2 + e2, . . . , fk + ek} is Ck for any 1 ≤ k ≤ n,
and for any k > n the complexity of solving {f1 + e1, f2 + e2, . . . , fk + ek} based
on Result(f1 + e1, f2 + e2, . . . , fk−1 + ek−1) is C. Here we set C0 = 0. For these
Ck and C, we have Ck1

> Ck2
for k1 > k2 and C is much less than Cn.

Our complexity bounds of ISBS will be represented by these Ck and C. In
general cases, we can set Ck to be the complexity bound of solving a polynomial
system with i polynomials by ICS proposed in Section 3.1, and C to be the com-
plexity of substitution proposed in Problem 4 of Section 3.2. As we mentioned
before, when the assumption that the polynomial systems can be easier solved,
is valid, the exact values of these Ck are unknown. Hence, we cannot get the
exact value of these complexity bounds of ISBS. However, these bounds are still
meaningful. Actually, these bounds can help us to observe the relation between
the backtracking search process and the incremental solving process, and inspire
us to improve the algorithm.

Now let’s introduce the backtracking search tree of ISBS. This binary search
can be generated by following the procedures of the algorithm.

First, let the root node of the tree be the empty set. We set the depth of the
root node to be 0, and use a pointerM pointing to the root node. Then run the
algorithm and generate the new nodes by the following operations.

• In Candidate, each time we set the value of some ei, we generate a new node
fi + ei, and draw an edge from the node pointed by M to this new node,
then let M point to this new node.

• In Backtracking, each time we decreasing the backtracking index k by 1,
we let M point to the parent node of the node pointed by M currently.
Besides, when we set the value of some ei, we generate a new node fi + ei,
and draw a edge from the node pointed byM to this new node, then letM
point to this new node.

This way, we can generate a binary tree with depth m after running ISBS.
It is easy to see that in this tree the external (or called root-to-leaf) paths
with length k can be one-to-one corresponding to the processes of incrementally
solving a system with k polynomials in ISBS, and we call this tree the search tree
of ISBS. Now, we can use the size of the search tree to estimate the complexity
of the whole algorithm.

Remark 2. For a path {f1 +e1, f2 +e2, . . . , fs +1, . . . , fk +ek} in the search tree,
the corresponding solving process in ISBS may be that we incrementally solve
{f1 + e1, f2 + e2, . . . , fs} first, and then solve {f1 + e1, f2 + e2, . . . , fs−1, fs+1 +
es+1, . . . , fk + ek} based on Result(f1 + e1, f2 + e2, . . . , fs−1). We assume the
complexity of the above solving process is equal to the complexity of incremen-
tally solving {f1 + e1, f2 + e2, . . . , fs + 1, . . . , fk + ek}, since the number and the
structure of polynomials involved in the solving process are the same.
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Since the depth of the binary tree is m, the number of paths in the whole
search tree is roughly bounded by 2m. However, our search tree is not a perfect
binary tree, since a lot of subtrees will be pruned in the following four cases:

(1) Result(Pi) = {1} in Step 4 of Candidate
(2) Result(Pi) and Qi−1 have the same zero set in Step 8 of Candidate.
(3) u > ubound in Step 6 of Candidate
(4) u+ 1 > ubound in Step 3 of Backtracking

From the four cases, we can conclude two major factors which affect the size
of the search tree. Cases (1) and (2) are corresponding to the first factor, the
randomness of the input system. Cases (3) and (4) are corresponding to the
second factor, the value of the noise-bound. In this section, we will mainly talk
about the first factor. Now we present some propositions about the external
paths of the search tree

Proposition 3 The leaf node with depth k < m has the form fk + 1

Proof: Suppose the leaf node fk + ek is the terminal node of the external path
f1 + e1, f2 + e2, . . . , fk + ek. From the processes of ISBS, we can check that
in the above cases (1), (2) and (4), although we prune some paths, we will not
generate a terminal node. Only in case (3), we can generate a terminal node
fk + ek with k < m. In this case, we have Result({Qk−1, fk}) = {1} and the
noise weight of (e1, e2, . . . , ek−1, 1) exceeds the noise-bound. Then, the terminal
node we generate is fk + 1. �

Proposition 4 Suppose the input of ISBS is a polynomials system {f1, . . . , fm}.
For the search tree of ISBS, we denote the number of paths with length k
by Nk, for 1 ≤ k ≤ m. We define a map Sk : Fn

2 → Fk
2 , with Sk(x) =

(f1(x), f2(x), . . . , fk(x)). Then, we have

(a) Nk ≤ |Im(Sk)| ≤ 2t, for any 1 ≤ k < m, where t = min(k, n).
(b) Nm ≤ |Im(Sm−1)| ≤ 2t, where t = min(m− 1, n).

Proof: a) For a path f1 + e1, f2 + e2, . . . , fk + ek, we have Result({f1 + e1, f2 +
e2, . . . , fk +ek}) 6= {1}, otherwise, this path will be pruned at some node fs +es,
where 1 ≤ s < k. Thus, (e1, e2, . . . , ek) ∈ Im(Sk), which means we can build an
injection from paths with length k < m to Im(Sk). Hence, Nk ≤ |Im(Sk)| ≤ 2t.

b) Suppose the first m − 1 nodes of a path with length m is f1 + e1, f2 +
e2, . . . , fm−1+em−1. Obviously, Result({f1+e1, f2+e2, . . . , fm−1+em−1} 6= {1}.

• If Result(f1 + e1, f2 + e2, . . . , fm−1 + em−1, fm) 6= {1}, there is an ex-
ternal path whose terminal node is fm in the tree. Since the weight of
(e1, e2, . . . , em−1, 0) is smaller than (e1, e2, . . . , em−1, 1), the new leaf node
fm + 1 will not be generated.

• If Result(f1 + e1, f2 + e2, . . . , fm−1 + em−1, fm) = {1}, we set em = 1 in
Candidate, which means we only generate a node fm + 1, and the leaf node
fm will not be generated.
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Hence, in both cases, there is only one path with length m whose first m−1 nodes
are fixed. As the proof of (a), we can build an injection from all the external
paths with length m to Im(Sm−1). This implies that Pm ≤ |Im(Sm−1)| ≤ 2t,
where t = min(m− 1, n). �

When we estimate the size of the search tree, the influence of the noise-
bound is hard to predict. Like in the proof of Proposition 4, the only thing we
can predict is that by using the noise-bound at depth m, the node fm−1 + em−1
of an external path with length m always has unique child node. Thus, in order
to estimate the complexity bound of ISBS, we need to build a tree in which
the noise-bound only used to prune the redundant nodes with depth m. To do
this, we need to slightly modify ISBS and build the corresponding search tree.
That is we only compare the noise weight with ubound when i = m in Candidate

and k = m in Backtracking. Obviously, the complexity of the modification
algorithm is higher than that of ISBS. If we can obtain a complexity bound of
this algorithm, it is also a complexity bound of ISBS. We call the search tree
of this modification algorithm the quasi search tree. By analyzing the structure
of this tree, we can estimate the complexity bound we needed and illuminate
the influence of the randomness of the input system to the complexity of ISBS
more clearly. We have the following proposition about a quasi search tree.

Proposition 5 Let Nk and Sk be defined as Proposition 4. For a quasi search
tree, we have:

(a) Nk = |Im(Sk)|, for any 1 ≤ k < m.
(b) Nm = |Im(Sm−1)|
(c) All the external paths have length m.

Proof: (a) Similarly as the proof of Proposition 4, we can build an injection M
from paths with length k to Sk. It is sufficient to show thatM is also a surjection.
Since we only use the noise-bound at depth m, for any (e1, e2, . . . , ek) ∈ Im(Sk),
path f1 + e1, f2 + e2, . . . , fk + ek will not be pruned in the tree. Thus, M is a
surjection.

(b) Similarly as (a), it is sufficient to show the injection we build is also a
surjection. For any point (e1, e2, . . . , em−1) ∈ Sm−1, we have Result(f1+e1, f2+
e2, . . . , fm−1+em−1) 6= {1}. Since we only use the noise-bound at depth m, path
f1 + e1, f2 + e2, . . . , fm−1 + em−1 will exist in the tree. If Result(f1 + e1, f2 +
e2, . . . , fm) 6= {1}, the external path f1 +e1, f2 +e2, . . . , fm will exist in the tree.
Otherwise, the external path f1 + e1, f2 + e2, . . . , fm + 1 will exist in the tree.
Hence, each (e1, e2, . . . , em−1) ∈ Sm−1 has a preimage.

(c) As we mentioned in Proposition 3, in a search tree a external path with
length k < m occurs when the noise weight exceeds the noise-bound. However,
in a quasi search tree, the noise-bound is only used at depth m, thus no external
path with length k < m will exist. �
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Theorem 6 Let the input system of ISBS be {f1, f2, . . . , fm}. Suppose Ci and
C are defined as in the beginning of this section. Denote the complexity of ISBS
by CISBS. We have the following two complexity bounds

(i) CISBS ≤
∑n

k=1 |Im(Sk)|(Ck −Ck−1) +
∑m−1

k=n+1 |Im(Sk)|C + |Im(Sm−1)|C

(ii) CISBS ≤ 2nCn + (m− n)2nC

Proof: (i) For a path f1 + e1, f2 + e2, . . . , fk + ek, if we have already taken into
account the complexity of solving all paths with length k − 1, then the cost of
solving Result({f1 +e1, f2 +e2, . . . , fk +ek}) is Ck−Ck−1. From Proposition 5,
we have Nk = Im(Sk), thus, the complexity of solving all the paths with length
k based on the former results is Im(Sk)(Ck − Ck−1). Hence, by adding up the
complexities of solving paths with different lengths, we have the conclusion.

(ii) From (c) of Proposition 5, we have the number of external paths N =
Nm ≤ 2n. Since any external path has length m, the complexity of such path is
Cn + (m− n)C. Therefore, CISBS ≤ 2n(Cn + (m− n)C). �

From Theorem 6, we have the following three important facts about the
complexity of ISBS.

Fact 1. From the proof of conclusion (ii) of Theorem 6, we can conclude that
for any input polynomial system, the number of external paths in the search tree
of ISBS is always bounded by 2n.

Fact 2. Note that, if we consider the complexity of ISBS corresponding to the
quasi search tree, the equality of (i) will hold. By this equality, we can better
illuminate the influence of the randomness of the input system to the complexity.

For a random input system, we can assume that Sn is an injection, then for
any k > n we have Sk is also an injection. Moreover, for any k < n we have Sk is
a surjection and the number of preimage for any points in Fk

2 is the same. Then
|Im(Sk)| = 2k for k ≤ n and |Im(Sk)| = 2n for k > n, which means that each
Im(Sk) has the maximal cardinality. It is clear that Ci+1 − Ci, C > 0, thus the
complexity of ISBS is maximal for a random input system.

When the randomness of the input system is not good, some points in Fn
2

may have the same image, which means |Im(Sk)| < 2k. Moreover, |Im(Sk)| will
decrease with the randomness of the system becoming worse, and the complexity
of ISBS will be smaller.

Fact 3. Since Cn and C are not relevant to m, conclusion (ii) of Theorem 6
shows that:

When the number of variables n is fixed, the complexity of ISBS increases
linearly (not exponentially) with the number of the input polynomials m.

As we mentioned before, for a general system, the influence of the noise-
bound to the complexity is hard to predict. However, its influence is significant,
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thus in the next section we will propose a method to control the noise-bound
artificially, by which we can greatly improve the efficiency of ISBS.

6 The Artificial Noise-bound Strategy

In ISBS, ubound is determined by the current candidate solution. If the noise
weight of the optimal solution is small, the procedure of ubound decreasing to this
value will take a long time. In this case, we can construct an artificial bound and
then try to find the optimal solution under this bound. If there isn’t a solution,
we can gradually increase the artificial bound by a step size s until we find
the optimal solution. Actually, the idea of this method is similar to the idea of
exhaustively searching all the possible noise with incremental noise weight. The
specific steps of this method are showed in Algorithm 2.

Algorithm 2: ISBSb algorithm

input : A polynomial sets P = {f1, f2, . . . , fm};
A step size s.

output: (x1, . . . , xn) ∈ Fn
2 s.t. {i ∈ N |fi(x1, . . . , xn) = 0, fi ∈ P} has

maximal cardinality.

1 Compute Candidate(P, ∅,m, 0);
2 Let t, um, {Q0,Q1, . . . ,Qm} and E = (e1, e2, . . . , em) be the corresponding

output ; /* Here t is always equal to m */

3 ubound ← 0, S← Qm;
4 while ubound < um − 1 do
5 ubound = min(ubound + s, um − 1);
6 Let S1 be the output of

Backtracking(P, E, {Q0,Q1, . . . ,Qm}, ubound, um);
7 if S1 6= ∅ then S← S1 and break

8 Get (x1, . . . , xn) from S and return (x1, . . . , xn);

Similarly as the method proposed in last section, we can give some complexity
bounds of ISBSb by analyze the structure of the corresponding search tree. Let
Nk and Sk be defined as in the last section, we have the following proposition
about the search tree.

Proposition 7 Let Im(S0k) be the points (e1, e2, . . . , ek) in Im(Sk) with ek = 0.
If we assume that the elements in Im(Sk) are uniformly distributed over Fk

2 , then
under a noise-bound u we have

(1) Nk = |Im(Sk)|·
∑u

i=0

(
k
i

)
/2k+(|Im(Sk−1)|−|Im(S0k)|)

(
k−1
u

)
/2k−1, for k < m.

(2) Nm = |Im(Sm−1)| ·
∑u

i=0

(
m−1

i

)
/2m−1.

Without the assumption of uniformly distribution, we have
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(3) Nk ≤ min(2k, 2n,
∑u

i=0

(
k
u

)
)

(4) Nm ≤ min(2m−1, 2n,
∑u

i=0

(
m−1
u

)
)

Proof: (1) There are two kinds of paths with length k, the external paths and
the internal paths. For any external path f1 + e1, f2 + e2, . . . , fk + ek, we have
ek = 1, Result({f1+e1, f2+e2, . . . , fk−1+ek−1) 6= {1} and Result({f1+e1, f2+
e2, . . . , fk−1 + ek−1, fk}) = {1}, which means (e1, e2, . . . , ek−1) ∈ Im(Sk−1) and
(e1, e2, . . . , ek−1, 0) /∈ Im(Sk). Let

M = {(a1, a2, . . . , ak−1, 0) ∈ Fk
2 |(a1, a2, . . . , ak−1 ∈ Im(Sk−1)},

then (e1, e2, . . . , ek−1, 0) ∈ M \ Im(S0k). Moreover, we have the noise weight of
(e1, e2, . . . , ek−1, 1) is u+ 1, which means the noise weight of (e1, e2, . . . , ek−1, 0)
is u. By the assumption of uniformly distribution, in M \ Im(S0k), the number

of vectors whose noise weight is u is (|Im(Sk−1)| − |Im(S0k)|)
(
k−1
u

)
/2k−1.

For any internal path f1 + e1, f2 + e2, . . . , fk + ek, we have (e1, e2, . . . , ek) ∈
Im(Sk). Since it is not pruned by the noise-bound u, we have the noise weight
of (e1, e2, . . . , ek) is not greater than u. Thus, the number of such vectors is
|Im(Sk)| ·

∑u
i=0

(
k
i

)
/2k.

Since the above two kinds of vectors are one-to-one corresponding to external
paths and internal paths, by adding the numbers of these vectors, we obtain the
conclusion.

(2) All the path with length m are external paths. Note that in last section,
we use the noise-bound at depth m for the quasi search tree, thus, same as the
proof of (b) of Proposition 5, we can prove that Nm is equal to the number of
the internal paths with length m− 1, which is |Im(Sm−1)| ·

∑u
i=0

(
m−1

i

)
/2m−1.

(3) For a path f1 + e1, f2 + e2, . . . , fk + ek with k < m, no matter whether it
is an internal path or an external path, we have (e1, e2, . . . , ek) ∈ Im(Sk). Thus
Nk ≤ |Im(Sk)| ≤ min(2k, 2n).

If this path is an internal path, obviously, the noise weight of (e1, e2, . . . , ek)
is not bigger than u. If it is an external path, then ek = 1, and we have the noise
weight of (e1, e2, . . . , ek−1, 0) is equal to u. Moreover, the first k−1 nodes of other
paths with length k are not equal to f1 + e1, f2 + e2, . . . , fk−1 + ek−1. Thus, we
can build an injection, by mapping an internal path to (e1, e2, . . . , ek) and an
external path to (e1, e2, . . . , ek+1). We have the noise weight of these vectors are
not bigger than u. Hence, Nk ≤

∑u
i=0

(
k
u

)
. By combining with Nk ≤ min(2k, 2n),

we have Nk ≤ min(2k, 2n,
∑u

i=0

(
k
u

)
)

(4) As shown in (2), Nm is equal to the number of internal paths of length
m− 1, thus we can deduce the conclusion from (3). �

Based on Proposition 7, we have the following theorem about the complexity
of ISBSb under the assumption about the complexity of incremental solving
proposed in Theorem 6.

Theorem 8 Let {f1, f2, . . . , fm} be the input system of ISBS, and Ck and C
are defined as in Theorem 6. Let s be the step size of ISBSb. Suppose u = rs is
the noise weight of the optimal solution.
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(a) If the elements in Im(Sk) are uniformly distributed over Fk
2 for any k, the

complexity of ISBSb is

r∑
t=1

n∑
k=1

N t
k(Ck − Ck−1) +

r∑
t=1

m∑
k=n+1

N t
kC,

where N t
k = |Im(Sk)| ·

∑ts
i=0

(
k
i

)
/2k + (|Im(Sk−1)|− |Im(S0k)|

(
k−1
ts

)
|/2k−1, for

any 1 ≤ k < m, and Nm = |Im(Sm−1)| ·
∑ts

i=0

(
m−1

i

)
/2m−1.

(b) Otherwise, ISBSb has two complexity bounds

1.

r∑
t=1

ts∑
i=0

(
m

i

)
(Cn + (m− n)C),

2.

r∑
t=1

n∑
k=1

Mt
k(Ck − Ck−1) +

r∑
t=1

m−1∑
k=n+1

Mt
kC +

r∑
t=1

Mt
m−1C,

where Mt
k = min(2n, 2k,

∑ts
i=0

(
k
i

)
).

Proof: a) When the assumption of uniform distribution holds, the bound can
be derived from (1) and (2) of Proposition 7.

b) For an external path f1 + e1, f2 + e2, . . . , fk−1 + ek−1, we can extend
the noise vector (e1, e2, . . . , ek−1) to a m-dim vector (e1, e2, . . . , ek−1, 0, . . . , 0)
by adding 0 at the end. From the proof of Proposition 7, we can find that for
different external paths their corresponding m-dim vectors are distinct , and the
noise weights of these m-dim vectors are not bigger than the noise-bound u.
Hence, under a noise-bound u, the number of external paths can be bounded by∑u

i=0

(
m
i

)
, and the length of these external paths are not greater than m. There-

fore, by summing up the complexities with different noise-bounds, we achieve
the complexity bound

∑r
t=0

∑ts
i=0

(
m
i

)
(Cn + (m− n)C)

The second bound can be derived from (3) and (4) of Proposition 7 directly.
�

Remark 3. When rs is small enough, we have
∑ts

i=0

(
k
i

)
≤ 2n and

∑ts
i=0

(
k
j

)
≤ 2k

for 1 ≤ t ≤ r and ts ≤ k, which means Mt
k =

∑ts
i=0

(
k
i

)
. In this case, by

comparing the last bound presented in the Theorem 8 with the complexity bound
of ISBS, we know that ISBSb is much more efficient.

7 The improvements of the backtracking searching
process when m = sn

From Section 4, we know that the success rate of recovering the true solution
increases whenm, the number of polynomials, increases. Moreover, for cryptanal-
ysis problems, we have an overdetermined system in most cases, and especially,
for some systems, we have m = sn, where s > 1 is an integer. For example, in the
Cold Boot Key recovery problem presented in Section 8, we have m = rn where
r is the number of rounds used in the attack. In this section, we will propose a
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modification of ISBS in the case of m = sn, and by this modification we can
improve the efficiency of ISBS significantly. Note that this modification with
s = 2 was mentioned in the Appendix of [15]. In this paper we do some theoret-
ical analysis on this modification, and propose some further improvements.

As we mentioned before, when we have a system with n polynomials, in most
cases, the number of solutions of this system is very small. For most cryptanalysis
problem, we may have the unique solution. Thus, when the first n elements of
a noise vector is determined, after we solving the first n polynomials, we will
achieve a small zero set Zero(Pn). The process of finding a better candidate from
Zero(Pn) is quite easy. For example, if Zero(Pn) has only one point, then the
values of the following polynomials will be determined uniquely.

In ISBS, when we have a noise-bound u for (e1, e2, . . . , em). From the above
observation, we know that the algorithm can be divided into two procedures.
In the first procedure, we incremental solving the first n polynomials and back-
tracking search a possible noise vector (e1, e2, . . . , en) under noise-bound u, then
in the second procedure we achieve the rest (en+1, en+2, . . . , em) very fast by
solving the remaining polynomials.

Compared with the first procedure, the second procedure is so easy that its
complexity can be ignored. Thus we only need to consider a truncate tree which
consists of all the paths with length k ≤ n in the original search tree. Based on
this idea, in this section we will propose a method to significantly reduce the
number of external paths if this truncate tree, thus improving the efficiency of
ISBS.

In order to illustrate this method more clearly, in the following of this section
we assume that the input system is a perfectly random system. In this case, no
contradiction will occur when dealing with the first n polynomials, and each
{f1 + e1, . . . , fn + en} has a unique solution, which means for any nodes with
depth n, there is one and only one path from it to the external nodes. Under
this assumption, similarly as the proof of (b) of Theorem 8, we know that the
number of external paths in the truncate tree is equal to

∑u
i=0

(
n
i

)
. We call an

external path in this truncate tree a branch for convenience.

7.1 The case m=2n

Lemma 9 Let u1, u2, u be non-negative integers, with u1 + u2 ≤ u. For any
non-negative integers a, b, such that a + b = u − 1, we have either u1 ≤ a or
u2 ≤ b.

Proof: Suppose u1 > a and u2 > b. Since u1, u2 are integers, we have u1 ≥ a+ 1
and u2 ≥ b+ 1. Then u ≥ u1 + u2 ≥ a+ b+ 2 = u+ 1, which is a contradiction.
�

This lemma shows the following fact. We can divide a noise vector E =
(e1, . . . , em) into two parts E1 = (e1, . . . , en), E2 = (en+1, . . . , em). If E has a
noise-bound u, then either E1 has a noise-bound a or E2 has a noise-bound
b. We call such noise-bound of E1 or E2 a partial noise-bound. For a noise
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vector (e1, . . . , es), we define its partial noise weight to be the noise weight of
(e1, . . . , en) when s > n, or the noise weight of itself when s ≤ n. Then, we can
build the following two-direction strategy. That is first we solve the system from
the forward direction, which means we find the optimal solution of the system
{f1, f2, . . . , fn, fn+1, . . . , fm} under the conditions:

• The partial noise weight of (e1, e2, . . . , em) is bounded the partial noise-
bound a

• The noise weight of (e1, e2, . . . , em) is bounded the total noise-bound u

Then, we solve the system from the backward direction, which means we
find the optimal solution of the system {fn+1, fn+2, . . . , fm, f1, . . . , fn} under
the conditions:

• The partial noise weight of (e1, e2, . . . , em) is bounded the partial noise-
bound b

• The noise weight of (e1, e2, . . . , em) is bounded the total noise-bound u

Then the better one of the optimal solutions of the two systems is the op-
timal solution of the original system. Since the partial noise-bounds a, b can be
any integers, thus an important problem about improving the efficiency of this
strategy is how to choose a and b such that the total number of branches for the
two systems is minimum.

Lemma 10 Let a, b, u, n be non-negative integers, with n/2 ≥ u and a + b =
u− 1. Then we have:

u∑
i=0

(
n

i

)
>

a∑
i=0

(
n

i

)
+

b∑
i=0

(
n

i

)
≥
b a+b

2 c∑
i=0

(
n

i

)
+

d a+b
2 e∑

i=0

(
n

i

)

Proof: Without loss of generality, we can assume a ≤ b. First we prove
u∑

i=0

(
n
i

)
>

a∑
i=0

(
n
i

)
+

b∑
i=0

(
n
i

)
. It is equal to prove

u∑
i=a+1

(
n
i

)
>

b∑
i=0

(
n
i

)
. Note that the numbers

of terms in two sides of the inequality are both b + 1. Moreover, since n/2 ≥
u ≥ a+ 1 > 0, we have

(
n

a+1

)
>
(
n
0

)
,
(

n
a+2

)
>
(
n
1

)
,
(
n
u

)
>
(
n
b

)
. By summing up all

these inequalities, we have
u∑

i=a+1

(
n
i

)
>

b∑
i=0

(
n
i

)
.

Now we prove the second inequality. Obviously, when a = ba+b
2 c, which

means that either u is odd and a = b or u is even and a = b − 1, the equality
holds. Without loss of generality, we can assume a < ba+b

2 c, which implies a <

ba+b
2 c ≤ d

a+b
2 e < b. Then it is sufficient to show that(

n

a+ 1

)
+

(
n

a+ 2

)
+ · · ·+

(
n

ba+b
2 c

)
<

(
n

da+b
2 e+ 1

)
+

(
n

da+b
2 e+ 2

)
+ · · ·+

(
n

b

)
.
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Since n/2 ≥ u ≥ b, we have the numbers of terms in both sides of the above in-
equality are same, and

(
n

a+1

)
<
(

n
d a+b

2 e+1

)
,
(

n
a+2

)
<
(

n
d a+b

2 e+2

)
, . . . ,

(
n

b a+b
2 c
)
<
(
n
b

)
.

Therefore, we can deduce our conclusion by summing up all these inequalities.
�

Corollary 11 Let a, b, u, n be non-negative integers, with n/2 ≥ u and a+ b =
u− 1. Let T be a positive constant. Then we have:

u∑
i=0

(
n

i

)
T >

a∑
i=0

(
n

i

)
T +

b∑
i=0

(
n

i

)
T ≥

b a+b
2 c∑

i=0

(
n

i

)
T +

d a+b
2 e∑

i=0

(
n

i

)
T

Remark 4. When the condition n/2 ≥ u doesn’t hold, the conclusion of Lemma
10 is still valid. The interested reader is referred to the appendix of [15] for
detailed proof. In this paper, we only consider the case of n/2 ≥ u which holds
for most Max-PoSSo problems.

Lemma 10 shows that given a noise-bound u, the branches we need to solve
in the two-direction strategy is less than those in the one-direction strategy. If
the running times for solving polynomial systems from different directions are
the same, from Corollary 11, we can conclude that the best scheme is using
the partial noise-bound ba+b

2 c for one system and da+b
2 e for another system.

For example, let n = 128, u = 10. If we consider the random system, for the
one-direction strategy we need to solve

∑10
i=0

(
128
i

)
≈ 247.8 branches. For the

optimal two-direction strategy we need to solve
∑4

i=0

(
128
i

)
+
∑5

i=0

(
128
i

)
≈ 228.1

branches. Obviously, this is a significant improvement.
From Section 3.3, we know that for different polynomial order, the efficiency

of incrementally solving is different. Thus, when we use the two-direction strat-
egy, the times for solving the two systems are different. Hence, we should mod-
ification the above conclusions under more specific conditions, and we have the
following lemma.

Theorem 12. Let a, b, u, n be non-negative integers, with n/2 ≥ u and a+ b =
u − 1. Let T1 ≤ T2 be two positive constants. If T2/T1 ≤

(
n

d a+b
2 e+1

)
/
(

n
b a+b

2 c
)

=(
n

du−1
2 e+1

)
/
(

n
bu−1

2 c
)
, then we have:

1.
a∑

i=0

(
n
i

)
T2 +

b∑
i=0

(
n
i

)
T1 ≥

b a+b
2 c∑

i=0

(
n
i

)
T2 +

d a+b
2 e∑

i=0

(
n
i

)
T1

2.
u∑

i=0

(
n
i

)
T1 >

b a+b
2 c∑

i=0

(
n
i

)
T2 +

d a+b
2 e∑

i=0

(
n
i

)
T1

Proof: First, we compareA =
b a+b

2 c∑
i=0

(
n
i

)
T2+

d a+b
2 e∑

i=0

(
n
i

)
T1 withB1 =

b a+b
2 c+1∑
i=0

(
n
i

)
T2+

d a+b
2 e−1∑
i=0

(
n
i

)
T1. Then B1−A =

(
n

b a+b
2 c+1

)
T2−

(
n

d a+b
2 e
)
T1. Since ba+b

2 c+ 1 ≥ da+b
2 e

and T2 ≥ T1, we have B1 −A > 0.
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Let Bt be
b a+b

2 c+t∑
i=0

(
n
i

)
T2 +

d a+b
2 e−t∑
i=0

(
n
i

)
T1. For any 2 ≤ t ≤ da+b

2 e, we have

Bt − Bt−1 =
(

n
b a+b

2 c+t

)
T2 −

(
n

d a+b
2 e−t+1

)
T1. Since ba+b

2 c+ t ≤ a + b < u ≤ n/2,

we have
(

n
b a+b

2 c+t

)
>
(

n
d a+b

2 e−t+1

)
and T2 ≥ T1. Therefore, Bt − Bt−1 > 0 holds,

which implies A ≤ Bt for any 2 ≤ t ≤ ba+b
2 c.

Now let C1 be
b a+b

2 c−1∑
i=0

(
n
i

)
T2+

d a+b
2 e+1∑
i=0

(
n
i

)
T1. C1−A =

(
n

d a+b
2 e+1

)
T1−

(
n

b a+b
2 c
)
T2.

From the hypothesis T2/T1 ≤
(

n
d a+b

2 e+1

)
/
(

n
b a+b

2 c
)
, we can deduce C1 ≥ A.

Similarly, we can define Ct to be
b a+b

2 c−t∑
i=0

(
n
i

)
T2 +

d a+b
2 e+t∑
i=0

(
n
i

)
T1. Then Ct −

Ct−1 =
(

n
d a+b

2 e+t

)
T1 −

(
n

b a+b
2 c−t+1

)
T2. Obviously, when 1 < t < u − da+b

2 e, we

have
(

n
d a+b

2 e+t

)
>
(

n
d a+b

2 e+1

)
and

(
n

b a+b
2 c−t+1

)
<
(

n
b a+b

2 c
)
. It means that

(
n

da+b
2 e+ t

)
/

(
n

ba+b
2 c − t+ 1

)
>

(
n

da+b
2 e+ 1

)
/

(
n

ba+b
2 c

)
≥ T2/T1.

Hence, we have Ct > Ct−1 for any 2 ≤ t ≤ ba+b
2 c, which implies Ct ≥ A. From

A ≤ Bt and A ≤ Ct, we can derive the first inequality of the theorem.

From the above proof, we know that A < Cb a+b
2 c

= T2 +
u−1∑
i=0

(
n
i

)
T1. Then, we

have
u∑

i=0

(
n
i

)
T1−Cb a+b

2 c
=
(
n
u

)
T1−T2 > 0, since T2/T1 ≤

(
n

d a+b
2 e+1

)
/
(

n
b a+b

2 c
)
<
(
n
u

)
.

This proves the second inequality of the theorem. �

Theorem 12 shows the following fact. Suppose that the average time for
solving one branches from the forward direction is T1, and the average time for
solving one branches from the backward direction is T2. Assume the polynomial
system corresponding to the forward direction has the best polynomial ordering,
then T1 ≤ T2. Moreover, if T2/T1 ≤

(
n

du−1
2 e+1

)
/
(

n
bu−1

2 c
)
, where u is the total noise-

bound. Then the best scheme is setting the partial noise-bound to be du−12 e for
the forward direction, and bu−12 c for the backward direction.

Furthermore, from the proof of Theorem 12, we know that if(
n

du−12 e+ t

)
/

(
n

bu−12 c − t+ 1

)
< T2/T1 ≤

(
n

du−12 e+ t+ 1

)
/

(
n

bu−12 c − t

)
,

the best scheme is setting the partial noise-bound to be du−12 e+t for the forward
direction, and bu−12 c − t for the backward direction.

Based on the above two-direction strategy and the artificial noise-bound
strategy proposed in Section 6, we present the following algorithm ISBS2.
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Algorithm 3: ISBS2 algorithm

input : A sorted Boolean polynomial sets P0 = {f1, f2, . . . , fm} with n
variables, where m = 2n;

An integer G which is the step size;
output: (x1, . . . , xn) ∈ Fn

2 s.t. {i ∈ N |fi(x1, . . . , xn) = 0, fi ∈ P0} has maximal
cardinality;

1 P1 ← {fn+1, fn+2, . . . , fm, f1, f2, . . . , fn};
2 Let t0, u0,up0 , E = [e1, e2, . . . , em],QS = {Q0,Q1, . . . ,Qm} be the output of

Candidate2(P0, ∅,m, 0, n, 0);
3 Let t1, u1,up1 , B = [b1, b2, . . . , bm],RS = {R0,R1, . . . ,Rm} be the output of

Candidate2(P1, ∅,m, 0, n, 0); /* Here t0 = t1 = m */

4 Let T0 be the running time of Candidate2(P0, ∅,m, 0, n, 0), and T1 be the
running time of Candidate2(P1, ∅,m, 0, n, 0);

5 r ← T1/T0; /* The time ratio */

6 um ← min(u0 − 1, u1 − 1), us ← 0;
7 if um = u0 − 1 then S = Qmelse S = Rm

8 while us < um do
9 us ← min(us +G, um);

10 us0 ←PartialBound(us, n, 0, r);
11 Let S0 and us be the output of

Backtracking2(P0, E,QS, us, u0, us0 , up0 , 0, r) ;
12 us1 ←PartialBound(us, n, 1, r);
13 Let S1 and us be the output of

Backtracking2(P1, B,RS, us, u1, us1 , up1 , 1, r);
14 if S1 6= ∅ then
15 S← S1 and break;

16 else if S0 6= ∅ then
17 S← S0 and break;

18 Get (x1, . . . , xn) from S, and return (x1, . . . , xn).
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Function: Candidate2
input : P = {fs+1, fs+2, . . . , fm}: a polynomial set with n variables,

Result(R) : the common zero of a polynomial set R,
ubound: a noise-bound;
u: the noise weight of (e1, . . . , es);
upartial: a partial noise-bound;
up: the partial noise weight of (e1, . . . , es);

output: t: an index number;
u: the noise weight of (e1, . . . , es+t);
up: the partial noise weight of (e1, . . . , es+t);
{Qs,Qs+1, . . . ,Qs+t}:a sequence of zero sets;
E = (es+1, . . . , es+t): a vector;

1 Qs ← Result(R);
2 for i from s+ 1 to m do
3 Pi ← {Qi−1, fi}, solve Pi and achieve Result(Pi);
4 if Result(Pi) = {1} then
5 Qi ← Qi−1,ei ← 1, u← u+ 1;
6 if i ≤ n then up = up + 1
7 if u > ubound or up > upartial then
8 t← i− s and break;

9 else if Result(Pi) and Qi−1 have the same zero set then
10 Qi ← Qi−1, ei = 0;
11 else
12 Qi ← Result(Pi), ei = 0;

13 return t, u, up,{Qs,Qs+1, . . . ,Qs+t} and (es+1, es+2, . . . , es+t).

Function: PartialBound
input : u: a total noise-bound

n: the number of variables
d: a Boolean value indicating the direction of searching
r: time ratio.

output: up: a partial noise-bound

1 Find the t s.t.
(

n
du−1

2
e+t

)
/
(

n
bu−1

2
c−t+1

)
< r ≤

(
n

du−1
2
e+t+1

)
/
(

n
bu−1

2
c−t

)
;

2 if d = 0 then return du−1
2
e+ t

3 else return bu−1
2
c − t
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Function: Backtracking2
input : P = {f1, f2, . . . , fm}: a polynomial set with n variables,

E = (e1, e2, . . . , em): a noise vector,
{Q0,Q1, . . . ,Qm}: a sequence of zero sets;
ubound: a noise-bound;
u: the noise weight of E
upartial: a partial noise-bound;
up: the partial noise weight of E
d: a Boolean value indicating the forward or backward direction
r: time ratio.

output: A zero set S and a noise-bound ubound

1 k ← m, S← ∅; /* k is the backtracking index */

2 while k ≥ 1 do
3 if k ≤ n then c← 1else c← 0
4 if ek = 0, Qk 6= Qk−1, u+ 1 ≤ ubound and up + c ≤ upartial then
5 ek ← 1, u← u+ 1, up ← up + c;
6 Solve Pk = {Qk−1, fk + 1} and achieve Result(Pk);
7 Set Qk = Result(Pk);
8 Let t, u, up, {Qk,Qk+1, . . . ,Qk+t}, (ek+1, . . . , ek+t) be the output of

Candidate2({fk+1, . . . , fm},Qk, ubound, u, upartial, up);
9 k ← k + t;

10 if u ≤ ubound and up ≤ upartial then /* In this case, k = m */

11 S← Qm, ubound ← u− 1;
12 upartial ←PartialBound(ubound, r, d);

13 else
14 u← u− ek, up ← up − c · ek, k ← k − 1;

15 return S and ubound.

For the complexity of ISBS2, we have the following theorem.

Theorem 13 Let {f1, f2, . . . , fn, fn+1, fn+2, . . . , f2n} be the input polynomial
system of ISBS2, and Ck and C are defined are defined as in Theorem 6. Let s be
the step size of ISBS2, and u = rs be the noise weight of the optimal solution. If
{f1, f2, . . . , fn, fn+1, fn+2, . . . , f2n} and {fn+1, fn+2, . . . , f2n, f1, f2, . . . , fn} are
both perfectly random systems, and the complexity of solving the polynomials
systems from two directions are the same, then the complexity of ISBS2 is

(

r∑
t=1

b(ts−1)/2c∑
i=0

(
n

i

)
+

r∑
t=1

d(ts−1)/2e∑
i=0

(
n

i

)
)(Cn + (m− n)C)

Proof: Since we assume the complexity of solving from two directions are the
same, we will set the partial noise-bounds to be b(u − 1)/2c and d(u − 1)/2e,
when the total noise-bound is u. Without loss of generality, suppose b(u−1)/2c is
set to be the partial noise-bound of {f1, . . . , fn, fn+1, . . . , f2n}. Since this poly-
nomial system is perfectly random, for any node with depth n in the search
tree, there is a unique path from it to the terminal nodes, which means the
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number of the external paths of this tree is equal to the number of the exter-
nal paths of its truncate searching tree. Thus, when the partial noise-bound is

b(u−1)/2c, the number of external paths is
∑b(u−1)/2c

i=0

(
n
i

)
. Hence the complex-

ity of finding the optimal solution of {f1, . . . , fn, fn+1, . . . , f2n} by ISBS2 under

total noise-bound u and partial noise-bound b(u− 1)/2c, is
∑b(u−1)/2c

i=0

(
n
i

)
(Cn +

(m − n)C). Therefore, by summing up the complexities of finding the optimal
solution of {f1, . . . , fn, fn+1, . . . , f2n} and {fn+1, . . . , f2n, f1, . . . , fn} under in-
creasing noise-bounds, we have the conclusion. �

Remark 5. When m 6= 2n, ISBS2 can work with slight modification. The differ-
ence is in this case the partial noise-bound is w.r.t. the first m/2 polynomials.
In this case, the complexity of solving the whole system is not dominated by the
complexity of solving the first m/2 polynomials, thus the efficiency improvement
will not be as significant as that in the case of m = 2n.

7.2 The Optimal Division Strategy

In the above section, we divide the input system with 2n elements into two
sub-systems with n elements. A natural problem for ISBS2 is that if we divide
the input system into one system with n− k elements and another system with
n+k elements, whether the algorithm will be better. In this section, we will talk
about this problem.

For convenience, in this section, when we say a k-partial noise-bound, we
mean the noise-bound about the noise vector (e1, e2, . . . , ek). Then, the above
division strategy is:

(A) Given a total noise-bound u, we will find the optimal solution from P1 =
{f1, f2, . . . , fn−k, fn−k+1, . . . , f2n} under a (n − k)-partial noise-bound a
and P2 = {fn−k+1, fn−k+2, . . . , f2n, f1, f2, . . . , fn−k} under a (n+k)-partial
noise-bound b , where a+ b = u− 1.

The division strategy proposed in last section is:

(B) Given a total noise-bound u, we will find the optimal solution from P1 =
{f1, f2, . . . , fn−k, fn−k+1, . . . , f2n} under a n-partial noise-bound a and P3 =
{fn+1, fn+2, . . . , f2n, f1, f2, . . . , fn} under a n-partial noise-bound b , where
a+ b = u− 1.

In the following we will prove that when k > 0 Strategy B is always better
than Strategy A, if P1,P2,P3 are perfectly random systems and the complexity of
incremental solving are the same when the order of the polynomials is changed.

Firstly, let’s consider the forward direction. That is we deal with P1 in Strat-
egy A and B. We show that each external path exists in the search tree of
Strategy B will be in the search tree of Strategy A. Since P1 is a perfect
random system, the number of the external paths of its search tree is equal
to that of its truncate search tree with depth n. When we incremental solv-
ing all possible {f1 + e1, f2 + e2, . . . , fn−k + en−k}, since the (n − k)-partial
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noise-bound of this system is a, the number of paths generated from the root
with depth n − k is

(
n−k
a

)
. Then when we go on to incrementally solve all

possible {fn−k+1 + en−k+1, . . . , fn + en}, the only constrain is that the noise
weight of (e1, . . . , en) should be bounded by u. Therefore, if the noise weight of
(e1, . . . , en−k) is u1, we have to keep the noise weight of (en−k+1, . . . , en) no big-
ger than u−u1. Hence, the number of external paths of the truncate search tree
with depth n is equal to

∑a
i=0

(
n−k
i

)∑u−i
j=0

(
k
j

)
. We have the following inequality

about this value.

Lemma 14
∑a

i=0

(
n−k
i

)∑u−i
j=0

(
k
j

)
≥
∑a

i=0

(
n
i

)
Proof: By Vandermonde’s identity, we have(

n
a

)
=
(
n−k
a

)(
k
0

)
+
(
n−k
a−1
)(

k
1

)
+ · · ·+

(
n−k
0

)(
k
a

)
(

n
a−1
)

=
(
n−k
a−1
)(

k
0

)
+
(
n−k
a−2
)(

k
1

)
+ · · ·+

(
n−k
0

)(
k

a−1
)

...(
n
0

)
=
(
n−k
0

)(
k
0

)
.

Since u − i + i = u ≥ a, the terms in the right of the above equalities are
all in

∑a
i=0

(
n−k
i

)∑u−i
j=0

(
k
j

)
, and these terms are distinct. Thus, the inequality is

valid. �

Note that
∑a

i=0

(
n
i

)
is equal to the number of external paths in the search

tree of Strategy B. Since the change of the partial noise-bound before depth n
doesn’t effect the incremental solving process after depth n, which means the
complexity of incremental solving the external paths of different strategies are
the same. Hence, by Lemma 14, we can deduce that Strategy B is better than
Strategy A for the forward direction.

Secondly, let’s consider the backward direction. That is we deal with P2 in
Strategy A, and P3 in Strategy B. Similarly as above, we consider the truncate
search tree of P2 with depth n. For P2, we have a (n + k)-partial noise-bound
b, when we are incremental solving all the possible {fn+1 + e1, . . . , f2n + en}.
Therefore we should keep the noise weight of (e1, . . . , en) no bigger than b. Hence

the number of external paths of this truncate search tree is
∑b

i=0

(
n
i

)
. Note that,

for Strategy B the number of external paths of the truncate search tree is also∑b
i=0

(
n
i

)
. Since P2 and P3 are perfectly random system, we can deduce that the

numbers of external paths of the two search trees are the same.
For the two search trees, the only difference is that in the tree of Strategy A,

some external paths may have depth n+ d1, where 0 < d1 ≤ k, while in the tree
of Strategy B, the corresponding external paths may have depth n + d2, where
d1 < d2. The reason is that, in Strategy A, there may be some noise vectors
(e1, e2, . . . , en+d1

) such that the noise weight of (e1, e2, . . . , en) is bound by b,
but that of (e1, e2, . . . , en+d1

) exceeds b. In Strategy B, since we don’t constrain
the noise weight of (e1, e2, . . . , en+k), this path will be pruned only when the
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the noise weight exceeds the total noise-bound u. From our assumption of the
complexity of incremental solving, we know that C is much smaller than Cn,
thus we have Cn + d1C ≈ Cn + d2C, which means the complexity of solving
these external paths are almost the same. Hence, Strategy A and Strategy B are
almost equivalence for the backward direction.

By combining the conclusions of the two directions, we can conclude that
Strategy B is always the optimal strategy.

For the practical problems, the input systems are not perfectly random, and
theoretically finding the optimal is nearly impossible. In this case, from the
above proof, we can know that Strategy B is still a very good strategy, when the
assumption of incremental solving is valid.

7.3 The case m = sn

In this section, we present some theoretical results by which we can show that the
two-direction strategy can be extended to a s-direction strategy when m = sn.

Similarly as Lemma 9, we have the following lemma.

Lemma 15 Let u1, u2, . . . , us, u be s+ 1 non-negative integers, with u1 + u2 +
· · · + us ≤ u. For any non-negative integers a1, a2, . . . , as, such that a1 + a2 +
· · ·+ as = u− 1, we have at least one of the following inequalities hold u1 ≤ a1,
u2 ≤ a2,. . ., us ≤ as.

This lemma shows the following fact. We can divide a noise vector E =
(e1, . . . , em) into s parts

E1 = (e1, . . . , en), E2 = (en+1, . . . , e2n), . . .,Es = (e(s−1)n+1, . . . , esn)

If E has a noise-bound u, then there is a Ei whose noise-bound is ai. Thus, we
can build an s-direction searching strategy like the case m = 2n. That is solving
the system {f1, f2, . . . , fn, . . .} under the partial noise-bound a1 and total noise-
bound u, solving the system {fn+1, fn+2, . . . , f2n, . . .} under the partial noise-
bound a2 and total noise-bound u, . . . , solving the system {fm−s+1, fm−s+2, . . . ,
fm, . . .} under the partial noise-bound as and total noise-bound u. Now, let’s
show the best scheme to set the values of these ai’s.

Theorem 16. Let u, n be two non-negative integers with n/2 ≥ u. s ≥ 2 is an
integer. Suppose u − s + 1 ≡ r mod s, and p = (u − s + 1 − r)/s. a1, a2, . . . , as
are s non-negative integers, s.t. a1 + a2 + · · ·+ as = u− s+ 1. We have

u∑
i=0

(
n

i

)
>

s∑
j=1

aj∑
i=0

(
n

i

)
(1)

s∑
j=1

aj∑
i=0

(
n

i

)
≥

s−r∑
j=1

p∑
i=0

(
n

i

)
+

r∑
j=1

p+1∑
i=0

(
n

i

)
(2)
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Proof: First, let’s prove inequality (1). Since u+ 1 = (a1 + 1) + (a2 + 1) + · · ·+
(as + 1), we can divide

∑u
i=0

(
n
i

)
into s parts :(

n
0

)
+ . . .+

(
n
a1

)
,
(

n
a1+1

)
+ . . .+

(
n

a1+a2+1

)
, . . . ,

(
n

u−as

)
+ . . .+

(
n
u

)
.

Note that the j-th part is the sum of aj elements. In the following, when we say
a left-part, we mean one of these parts. We can write

∑s
j=0

∑aj

i=0

(
n
i

)
as the sum

of s parts
∑a1

i=0

(
n
i

)
, . . . ,

∑as

i=0

(
n
i

)
. In the following, when we say a right-part, we

mean one of such parts. Obviously the first left-part
∑a1

i=0

(
n
i

)
is equal to the

first right-part. For the j-th left-part with j > 1, since n/2 ≥ u, we can check
that each element in this left-part is bigger than the corresponding element in
the j-th right-part. Hence the j-th left-part is bigger than the j-th right-part.
Since s ≥ 2, we at least have two parts. Thus, we can derive the first inequality.

Now, let’s prove inequality (2). Without loss of generality, we can assume
a1 ≤ a2 ≤ · · · ≤ as Note that a1 + a2 + · · ·+ as = u− s+ 1 = (s− r)p+ r(p+ 1).
Suppose among these ai, there are s1 elements being smaller than p, b elements
being equal to p, c elements being equal to p + 1 and s2 elements being bigger
than p+ 1. Then a1, a2, . . . , as can be written as

a1, a2, . . . , as1 , p, p, . . . , p︸ ︷︷ ︸
b

, p+ 1, p+ 1, . . . , p+ 1︸ ︷︷ ︸
c

, as−s2+1, as−s2+2, . . . , as,

where s1 + b+ c+ s2 = s
Now we consider the following three cases:

1. s1 + b = s− r and c+ s2 = r. In this case, the left side of (2) minus the right
side of (2) is equal to

s2∑
j=1

as−s2+j∑
i=p+2

(
n

i

)
−

s1∑
j=1

p∑
i=aj+1

(
n

i

)
(3)

Since a1+a2+· · ·+as+s = (s−r)(p+1)+r(p+2), the first and second parts of
(3) have the same number of terms. Moreover, as−s2+j ≥ p+ 2 > p ≥ ai + 1,
which means every term in the left part of (3) is bigger than that in the right
part of (3). Then we have (3) is not smaller than 0, which implies that the
second inequality of (2) is valid, and the equality holds when b = s− r and
c = r.

2. s1 + b > s− r and c+ s2 < r. In this case, the left side of (2) minus the right
side of (2) is equal to

s2∑
j=1

as−s2+j∑
i=p+2

(
n

i

)
− (

b+s1−s+r∑
j=1

(
n

p+ 1

)
+

s1∑
j=1

p∑
i=aj+1

(
n

i

)
) (4)

Similarly as case 1, the first and second parts of (3) have the same number
of terms, and every term in the left is bigger than that in the right, which
implies the correctness of the second inequality of (2).
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3. s1 + b < s− r and c+ s2 > r. In this case, then the left side of (2) minus the
right side of (2) is equal to

(

s2∑
j=1

as−s2+j∑
i=p+2

(
n

i

)
+

c+s2−r∑
j=1

(
n

p+ 1

)
)−

s1∑
j=1

p∑
i=aj+1

(
n

i

)
(5)

Similarly as the above cases, the first and second parts of (5) have the same
number of terms, and every term in the left is bigger than that in the right,
which implies the correctness of the second inequality of (2).

In summary, inequality (2) is valid in any cases. �

This theorem shows that when the times for solving different systems are
equal, s-direction method is always better than one-direction method, and the
best strategy is setting the noise-bounds of s − r systems to be p and those of
the rest r systems to be p+ 1.

The next theorem shows that when the time ratios for solving different sys-
tems are bounded by some values, the best strategy is setting the partial noise-
bounds of the s− r harder systems to be p and those of the rest r easier ones to
be p+ 1.

Theorem 17. Let u, n be two non-negative integers with n/2 ≥ u. s ≥ 2 is an
integer. Suppose u−s+1 ≡ r mod s, and p = (u−s+1−r)/s. a1, a2, . . . , as are
s non-negative integers, s.t. a1 + a2 + · · ·+ as = u− s+ 1. Let T1 ≥ T2 ≥ · · · ≥
Ts > 0 be s constants. If T1/Ts ≤

(
n

d(u−s+1)/se+1

)
/
(

n
b(u−s+1)/sc

)
, T1/Ts−r ≤(

n
b(u−s+1)/sc+1

)
/
(

n
b(u−s+1)/sc

)
, Ts−r+1/Ts ≤

(
n

d(u−s+1)/se+1

)
/
(

n
d(u−s+1)/se

)
, then

s∑
j=1

aj∑
i=0

(
n

i

)
Tj ≥

s−r∑
j=1

p∑
i=0

(
n

i

)
Tj +

r∑
j=1

p+1∑
i=0

(
n

i

)
Tj (6)

u∑
i=0

(
n

i

)
Ts >

s−r∑
j=1

p∑
i=0

(
n

i

)
Tj +

r∑
j=1

p+1∑
i=0

(
n

i

)
Tj (7)

Proof: Since the full proof of inequality (6) is complicated, here we only prove
the most typical step. We can assume r > 0, since for the case r = 0, the
result can be proved similarly. Then we have d(u − s + 1)/se + 1 = p + 2 and

b(u− s+ 1)/sc = p. Let A =
s−r∑
j=1

p∑
i=0

(
n
i

)
Tj +

r∑
j=1

p+1∑
i=0

(
n
i

)
Tj . Now we consider the

case of a1, a2, . . . , as being equal to

p− 1, p, p, . . . , p︸ ︷︷ ︸
s−r−1

, p+ 1, p+ 1, . . . , p+ 1︸ ︷︷ ︸
r−1

, p+ 2

We can set B1 =
p−1∑
i=0

(
n
i

)
T1 +

s−r−1∑
j=1

p∑
i=0

(
n
i

)
Tj +

r−1∑
j=1

p+1∑
i=0

(
n
i

)
Tj +

p+2∑
i=0

(
n
i

)
Ts. Then

by the hypothesis, we have B1 −A =
(

n
p+2

)
Ts −

(
n
p

)
T1 ≥ 0.
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Similarly as the proof of Theorem 12, we can generate all the possible a1, a2, a3,
. . . , as from p, p, . . . , p, p+1, p+1, . . . , p+1 step by step. That is at each step we
decrease some ai by one and increase another aj by one. Similarly as above,
we can prove that the value of

∑s
j=1

∑aj

i=0

(
n
i

)
Tj will increase, after we do-

ing such minor adjustment to these ai. Therefore, we can conclude that all∑s
j=1

∑aj

i=0

(
n
i

)
Tj are not smaller than A.

Now let’s prove inequality (7). Based on (6), it is sufficient to show that
u∑

i=0

(
n
i

)
Ts >

s−1∑
j=1

(
n
0

)
Tj +

u−s+1∑
i=0

(
n
i

)
Ts. Since we have

Tj/Ts ≤ T1/Ts ≤
(

n
d(u−s+1)/se+1

)
/
(

n
b(u−s+1)/sc

)
<
(

n
u−s+1+j

)
/
(
n
0

)
it means

u∑
i=0

(
n
i

)
Ts −

u−s+1∑
i=0

(
n
i

)
Ts =

u∑
i=u−s+2

(
n
i

)
Ts >

s−1∑
j=1

(
n
0

)
Tj . �

Based on the above theoretical results, similarly as algorithm ISBS2, we can
implement an algorithm by using the s-direction strategy. Completely presenting
this algorithm step by step is too complicated, thus here we only present the
sketch of this algorithm:

1. Given an input system P : {f1, . . . , fn, fn+1, . . . , f2n, . . . , f(s−1)n+1, . . . , fsn}.
2. Generate s systems

P1 : {f1, . . . , fn, fn+1, , . . . , f2n, . . . , f(s−1)n+1, . . . , fsn}
P2 : {fn+1, . . . , f2n, f1, . . . , fn, f2n+1, f2n+1, . . . , f3n, . . . , f(s−1)n+1, . . . , fsn}
...
Ps : {f(s−1)n+1, . . . , fsn, f1, . . . , fn, fn+1, . . . , f2n, . . . , f(s−2)n+1, . . . , f(s−1)n}

3. Set a total noise-bound u. Suppose u−s+1 ≡ r mod s. Let p = (u−s+1−r)/s.
4. For P1, . . . ,Ps−r, set their partial noise-bounds to be p. For Ps−r+1, . . . ,Ps,
set their partial noise-bounds to be p+ 1.

5. For i from 1 to s, solve Pi with ISBS method under total noise-bound u and
its partial noise-bound minus 1.

• If for some Pk, we achieve a solution x, set x0 to be x and u to be w(x)− 1,
where w(x) is the noise weight of x. Change the partial noise-bounds of
Pk+1,Pk+2, . . . ,Ps by the strategy used in Step 4.

6. If x0 is not empty, then its the solution we need. Otherwise, increase u by a
step size, and repeat Step 4-5.

Remark 6. If the conditions of Theorem 17 are satisfied, the partial noise-bounds
in Step 4 are optimal. Otherwise, they are good ones not the optimal ones.

8 Experimental Results

In order to test our improvements of ISBS, we generated some benchmarks from
the Cold Boot key recovery problem of Serpent. The Cold Boot key recovery
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problem originated from the Cold Boot attack, which was first proposed and
discussed in the seminal work of [11]. The Cold Boot attack relies on the data
remanence property of DRAM to retrieve memory contents after power off. In
the Cold Boot attack to a block cipher, the attacker is able to retrieve the round
keys, but some bits of the round keys is flipped since the decay of the memory
data. Thus, the Cold Boot key recovery problem for a block cipher is to recover
the initial key for these decayed round keys.

In [1], Cid and Albrecht proposed a mathematical model, by which they can
convert the Cold Boot problem into the Partial Weighted Max-PoSSo problem,
and they solved the Cold Boot key recovery problem of AES and Serpent by
mixed integer programming solver SCIP. With this model, we used the original
ISBS method to solve the same problems and achieved some better experimental
results[15].

Since in this paper we only focus on solving the Max-PoSSo problem, unlike
the general cold boot key recovery model, in our experiments we should assume
that the bit decay in DRAM is symmetric: bit flips 0 → 1 and 1 → 0 occur
with same probabilities δ. Under this assumption, the Cold Boot key recovery
problem of a block cipher can be described as follows.

Let KS : Fn
2 → FN

2 be the key schedule function of a block cipher. where
N > n. Let GK be an equation system corresponding to KS such that the only
pairs (k,K) that satisfy GK are any k ∈ Fn

2 and K = KS(k). Moreover, each
gi ∈ GK has the form hi +Ki where hi is some polynomial and Ki is the i-th bit
of K. Let K ′ be the decayed round keys, and set fi = hi +K ′i for any 1 ≤ i ≤ N .
Then, P = {f1, f2, . . . , fN} is the input of the Max-PoSSo problem we need to
solve.

In [1] and [15], benchmarks with symmetric noise generated from the 128-
bit versions of Serpent were tested, thus in the experiments of this paper, we
solved the same benchmarks. Since we only use 256-bit round keys which means
m = 2n, the improved ISBS algorithm we test is ISBS2 proposed in Section 7.1.
The modified ISBS algorithm used in [15] is denoted by ISBSm in the table,
and SCIP correspond to the mixed integer programing method in [1].

We remind the reader that as mentioned in [15] when solving these bench-
marks by ISBSm, the artificial bound strategy and the two-direction strategy
were used, but the values of partial noise-bounds is not decided by PartialBound.
Comparing with ISBSm, the main improvement of ISBS2 is that

• We apply the modification mentioned in Remark 1.
• We apply the order proposed in Section 3.3 when executing the incrementally

solving process
• We compute the optimal partial noise-bound by PartialBound when using

the two-direction strategy.

Our experimental platform is a PC with i7 2.8Ghz CPU(only one core is
used), and 4G Memory, which is same as the one used in [15]. In our experiments,
for each δ we generated 100 instances with random initial keys and random noise.
As in [1, 15], we interrupted the solver when the running time exceeded the time
limit 3600 seconds.
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In the following table, the column “r” gives the success rate, which is the
percentage of the instances we recovered the correct initial key, while the values
in the brackets are the percentage of the instances we achieved the optimal
solution within the time limit. Note that, there are two cases in which we cannot
recover the correct initial key.

1. The solver was interrupted after the time limit.
2. The optimal solution achieved from the Max-PoSSo problems is not the true

solution.

The column “avg. time” gives the average running time of the instances which
are solved within the time limit, and the column “max t” gives the maximal
running time for the instances which are solved with the time limit.

Table 3. Serpent considering 32 ·N bits of key schedule output (symmetric noise)

δ0 = δ1 Method N limit t r min t avg. t max t

ISBS2 8 3600.0 s 100% 0.60 s 2.46 s 30.62 s
0.01 ISBSm 8 3600.0 s 100% 0.78 s 9.87 s 138.19 s

SCIP 12 3600.0 s 96% 4.60 s 256.46 s -

ISBS2 8 3600.0 s 96(99)% 0.82 s 55.67 s 996.65 s
0.02 ISBSm 8 3600.0 s 96(99)% 0.80 s 163.56 s 2001.59 s

SCIP 12 3600.0 s 79% 8.20 s 1139.72 s -

ISBS2 8 3600.0 s 91(95)% 0.58 s 171.17 s 2138.77 s
0.03 ISBSm 8 3600.0 s 90(92)% 1.74 s 314.78 s 3463.00 s

SCIP 12 7200.0 s 53% 24.57 s 4205.34 s -

ISBS2 8 3600.0 s 40(98)% 3.67 s 382.61 s 1916.91 s
0.05 ISBSm 8 3600.0 s 38(94)% 12.37 s 745.80 s 2993.81 s

SCIP 12 3600.0 s 18% 5.84 s 1921.89 s -

From the experimental results, we can see that when δ = 0.01, ISBS2 is
about 4 times faster than ISBSm. When δ = 0.02, 0.03, 0.05, ISBS2 is about 2
times faster than ISBSm.When δ = 0.05, as in [15], we interrupted the solver
after we have searched all the possible noise vectors under the noise-bound 12,
thus although 98 instances returned the optimal solutions, only 40 of them were
the true solutions. In summary, these experimental results show that with our
modification we significantly improve the efficiency of ISBS.

9 The Comparison of the Algorithms for Solving
Max-PoSSo Problems

In the precious sections, we introduced several algorithms for solving Max-PoSSo
problems. They all based on the idea of exhaustive searching all the possible
noise. In the three algorithms proposed above, ISBS is the basic algorithm. The
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number of external paths of ISBS can reach its maximal value 2n when the input
system is totally random. In this case, the complexity of ISBS is O(Ca · 2n),
where Ca is the average complexity of solving a system corresponding to an
external path in the search tree. When the input system is totally random and
uopt, the noise weight of the optimal solution, is n, the complexities of ISBSb

and ISBS2 can also reach this value. But when the input system satisfies some
assumptions, ISBSb and ISBS2 may have lower complexity. As we mentioned
in Remark 3, the complexity of ISBSb is lower than that of ISBS when uopt is
small. From the results in Section 7.1, we know that the complexity of ISBS2

is always lower than that of ISBSb when uopt ≤ n/2. In general, ISBSb and
ISBS2 are originated from ISBS by adding some techniques to reduce the size
of the searching tree. When these techniques are valid, the size of the search
tree will be smaller than 2n, hence ISBSb and ISBS2 have lower complexity.
However, there are a worst case in which these techniques are invalid and the
size of the searching tree reachs its maximal value 2n. This means that the upper
bounds of the asymptotic complexities of these algorithms are almost the same.

Now we compare the class of ISBS algorithms with the algorithms based on
the idea of searching the values of variables. A trivial algorithm based on this idea
is evaluating f1(x), f2(x), . . . , fm(x) at all the 2n points in Fn

2 , and outputing
the point x0 such that the Hamming weight of (f1(x0), f2(x0), . . . , fm(x0)) is
minimal. The complexity of this trivial algorithm is O(cm · 2n), where c is the
complexity of evaluating one fi at a point x in Fn

2 . Obviously, in most time cm
is much less than Ca since evaluating is much easier than solving. Hence, in the
worst cases, the complexity of the class of ISBS algorithms is worse than that
of this trivial algorithm. However, a disadvantage for this trivial algorithm is
that when the input system have some special properties, its complexity will not
change. Therefore, when the randomness of the input system is not so good or
uopt is small, the class of ISBS algorithms is much more efficient. For example,
for a system generated from Serpent in last section, which has 128 variables and
256 polynomials, evaluating the system 216 times costs 26.2 ≈ 24.7 seconds by
our implementation on the platform mentioned in last section, thus it will take
about 2116.7 seconds to search all 2128 possible values of variables2. By comparing
to the results in Table 8, we can see that ISBS2 is much more efficient when
δ ≤ 0.05. In summery, when considering the upper bound of complexity, this
trivial algorithm is slightly better than the class of ISBS algorithms, but from
the viewpoint of practically computation, the class of ISBS algorithms is much
better in most cases.

To the best of the author’s knowledge, except the class of ISBS algorithms,
other algorithms for solving Max-PoSSo problems, such as the Max-SAT and
MIP solver, are all based on the idea of this trivial algorithm, and have different
techniques to reduce the size of the searching space. For example, efficient MIP
solver use a branch-and-cut algorithm as one of their core components, which

2 Our implementation of evaluating may be not optimal, but even by an implemen-
tation which is 210 times faster, it takes more than 2100 seconds to evaluate all 2128

possible values.
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relaxes the problem to a floating point linear programming problem in order to
prune search branches. As mentioned before, there is always a worst cases, in
which these techniques are invalid, hence the size of the searching space is still 2n.
It means that the asymptotic complexities of these algorithms can be written as
O(C ·2n), where C is a non-exponential term when the size of input system is not
exponential. We can see that except the differences of the non-exponential terms,
the asymptotic complexities of these improved algorithms and the above trivial
algorithm are the same. Hence, we think this trivial algorithm is almost the best
algorithm for solving Max-PoSSo problems from the viewpoint of asymptotic
complexity. For other algorithms based on the idea of searching the values of
variables, they may have better performances than this trivial algorithm when
the input system have some special properties. Since the specific complexities
of these algorithm are unknown, we can only compare them with the class of
ISBS algorithms by experiments. For example, in last section, we compared
SCIP, which is one of these algorithms, with ISBS2 by solving the benchmarks
generated from the problem of attacking Serpent.

Actually, a similar phenomenon occurs in the problem of solving Boolean
polynomial system. To the best of the author’s knowledge, for solving this prob-
lem, the algorithm with the best asymptotic complexity bound is the fast ex-
haustive search algorithm whose complexity is O(dm · 2n), where d is the degree
of the polynomial system [3]. Compared with the complexity of the trivial ex-
haustive search algorithm, this value only has a smaller non-exponential term.
For other symbolic computation algorithms, such as the Gröbner basis method,
the XL algorithm, and the characteristic set method, although they have good
performances on solving some specific systems, their asymptotic complexity for
solving general systems are all higher than that of the trivial exhaustive search
algorithm. Hence, for solving PoSSo and Max-PoSSo problems over F2, an inter-
esting open problem is whether there is a deterministic algorithm whose com-
plexity is lower than O(2n) in any cases.

10 Conclusions

In this paper, we revisit the Max-PoSSo problem and the ISBS method. For the
basic of Max-PoSSo, we show some results about the behavior of the success rate
of recovering the true solution. For ISBS, we present several complexity bounds
of it and propose some improvements in the general cases and overdetermined
cases. We implement a new algorithm based on these improvements and test it
by the Cold Boot Key recovery problem of Serpent with symmetric noise. The
experimental results show that compared with the modified ISBS in [15], the
new algorithm is about 2-4 times faster for different benchmarks.

There are two ideas of further improving ISBS which can be applied in the
future. First, in our algorithm ISBSb and ISBS2, when the noise-bound are
gradually increased there are some repeated computations can be avoid. Actu-
ally, if a path is pruned because of the contradiction of polynomials, this path
will also be pruned after the artificial noise-bound is increased. In other word,
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after we increase the artificial noise-bound we only need to continue searching
the paths which are pruned because of the former noise-bound. Therefore, if
we can store the information of all these paths, we will reduce a lot of repeated
computations. The second idea is that, for the two-direction or s-direction strate-
gies, if we can find a better polynomial order such that incrementally solving
the ordered system from all directions is more efficient, then we can improve the
efficiency of the algorithm.
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Appendix: The strict proof of Proposition 2

In the following, we assume 1/r is an integer. First, we need the following
two lemmas by which we can present the binomial cumulative function by the
incomplete beta function. The two lemmas can be easily proved by integration
by parts.

Lemma 18 [12] Let n,c be positive integer, and 0 ≤ p ≤ 1 is a real number. We
have

c∑
k=0

(
n

k

)
pk(1− p)n−k =

∫ 1−p
0

tn−c−1(1− t)2dt
B(n− c, c+ 1)

,

where B(a, b) is the Beta function.

Lemma 19 [12] Let Ix(a, b) =
∫ x
0

ta−1(1−t)b−1dt

B(a,b) . This Ix(a, b) is called the in-

complete beta function. Then, we have

(1) Ix(a, b) = 1− I1−x(b, a)

(2) Ix(a+ 1, b) = Ix(a, b)− xa(1− x)b

aB(a, b)
.

Proof of Proposition 2:

a∑
i=0

(

(
n− k
i

) a+b−i∑
j=0

(
k

j

)
) +

b∑
i=0

(
n

i

)
≥

a∑
i=0

(
n

i

)
+

b∑
i=0

(
n

i

)
.

Let k = mr, and s = 1/r is an integer. From the above two lemmas, we

have f(k) =
∑k

i=0 (m
i )

2m = I1/2(k(s− 1), k+ 1). Then, the conclusion is equivalent
to f(k + t) ≤ f(k) for any k, t ∈ N . Thus, it is sufficient to prove f(k + 1) ≤
f(k), ∀k ∈ N .
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Note that by Lemma 19, we have

f(k + 1) = I1/2((k + 1)(s− 1), k + 2) = 1− I1/2(k + 2, (k + 1)(s− 1))

= 1− I1/2(k + 1, (k + 1)(s− 1)) +
1

2(k+1)s(k + 1)B(k + 1, (k + 1)(s− 1))

= I1/2((k + 1)(s− 1), k + 1) +
1

2(k+1)s(k + 1)B(k + 1, (k + 1)(s− 1))

For simplicity, we set a = (k+1)(s−1), b = k+1. By applying (2) of Lemma
19 s− 1 times, we have

I1/2(a, b) = I1/2(a− (s− 1), b)−
s−1∑
i=1

1

2a+b−i(a− i)B(a− i, b)
.

Note that I1/2(a− (s− 1), b) = I1/2(k(s− 1), k + 1) = f(k). Thus,

f(k + 1)− f(k) =
1

2a+bbB(b, a)
−

s−1∑
i=1

1

2a+b−i(a− i)B(a− i, b)
(8)

Since 1 ≤ i ≤ s, we have

1

(a− i)B(a− i, b)
=

1

(a+ b− i)B(a− i+ 1, b)

=
a− i+ 1

(a+ b− i)(a+ b− i+ 1)B(a− i+ 2, b)

= · · · = (a− i+ 1)(a− i+ 2) · · · (a− 1)

(a+ b− i)(a+ b− i+ 1) · · · (a+ b− 1)B(a, b)

≥ (a− s+ 1)i−1

(a+ b− 1)iB(a, b)

Therefore, by applying the above inequality to (8), we have

f(k + 1)− f(k) ≤ 1

2a+bbB(b, a)
− 1

2a+b(a− s+ 1)B(a, b)

s−1∑
i=1

(
2(a− s+ 1)

a+ b− 1
)i.

Let q = 2(a−s+1)
a+b−1 , then f(k + 1)− f(k) = 1

2a+bB(b,a)
( 1
b −

2
a+b−1 ( 1−qs−1

1−q )).

Now, it is sufficient to show 1
b −

2
a+b−1 ( 1−qs−1

1−q ) ≤ 0. If s = 2, the conclusion
is correct obviously. Now we consider the case s ≥ 3. In this case, q − 1 =
2(a−s+1)
a+b−1 = (k−1)(s−2)−1

a+b−1 > 0. Thus, 1−qs−1

1−q = 1 + q + · · · + qs−2 > s − 1. Then

1
b −

2
a+b−1 ( 1−qs−1

1−q ) < 1
k+1 −

2(s−1)
(k+1)s−1 <

1
k+1 −

2(s−1)
(k+1)s <

2−s
(k+1)s < 0. �


