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1 Introduction

Predicate encryption [BW07, SBC+07, KSW08] is a new paradigm for public-key encryption that supports
search queries on encrypted data. In predicate encryption, ciphertexts are associated with descriptive
values x in addition to a plaintext, secret keys are associated with a query predicate f , and a secret
key decrypts the ciphertext to recover the plaintext if and only if f (x) = 1. The security requirement
for predicate encryption enforces privacy of x and the plaintext even amidst multiple search queries,
namely an adversary holding secret keys for different query predicates learns nothing about x and the
plaintext if none of them is individually authorized to decrypt the ciphertext.

Multi-dimensional range queries. Following [BW07, SBC+07], we focus on predicate encryption for
multi-dimensional range queries, as captured by the following examples:

– For network intrusion detection on logfiles, we would encrypt network flows labeled with a set of
attributes from the network header, such as the source and destination addresses, port numbers,
time-stamp, and protocol numbers. We could then issue auditors with restricted secret keys that can
only decrypt the network flows that fall within a particular range of IP addresses and some specific
time period.

– For credit card fraud investigation, we would encrypt credit card transactions labeled with a set of
attributes such as time, costs and zipcodes. We could then issue investigators with restricted secret
keys that decrypt transactions over $1,000 which took place in the last month and originated from a
particular range of zipcodes.

– For online dating, we would encrypt personal profiles labeled with dating preferences pertaining to
age, height, weight and salary. Secret keys are associated with specific attributes and can only decrypt
profiles for which the attributes match the dating preferences.

More generally, in multi-dimensional range queries, we are given a point (z1, . . . , zD ) ∈ [T ]D and interval
ranges [x1, y1], . . . , [xD , yD ] ⊆ [T ] and we want to know if (x1 ≤ z1 ≤ y1)∧ ·· · ∧ (xD ≤ zD ≤ yD ). We also
consider more general multi-dimensional subset queries where we are given subset S1, . . . ,SD ⊆ [T ] and
we want to know if (z1 ∈ S1)∧ ·· · ∧ (zD ∈ SD ). Note that in the first two examples, the search queries
are associated with the keys, whereas in the third example, the search queries are associated with the
ciphertext. We will refer to encryption schemes for the former as “key-policy” schemes, and schemes
for the latter as “ciphertext-policy” schemes. In all of these examples, it is important that unauthorized
parties do not learn the contents of the ciphertexts, nor of the meta-data associated with the ciphertexts,
such as the network header or dating preferences. On the other hand, it is often okay to leak the meta-
data to authorized parties. We stress that privacy of the meta-data is an additional security requirement
provided by predicate encryption but not attribute-based encryption [GPSW06].

Prior works. The first constructions of predicate encryption for multi-dimensional range queries
were given in [BW07, SBC+07]. Both constructions build upon techniques in [BSW06]. In particular,
both constructions rely on composite-order bilinear groups, for which group operations and especially
pairing computations are prohibitively slow [Gui13], and are based on assumptions more complex than
decisional subgroup assumptions. In spite of the recent progress in converting cryptosystems relying
on composite-order groups to cryptosystems based on prime-order groups [OT09, Fre10, Lew12], we do
not seem to have techniques for translating the prior constructions into prime-order ones under the
standard decisional linear assumption.
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1.1 Our contributions

In this work, we construct a lattice-based predicate encryption scheme for multi-dimensional range
queries, whose security is based on the standard learning with errors (LWE) assumption. Our scheme
is selectively secure and weakly attribute-hiding. The schemes are best suited for applications where
the range T is very large but the number of dimensions D is a small constant, as is the case for the
three applications outlined earlier and also the scenario considered in [SBC+07]. In addition, we extend
our techniques to multi-dimensional subset queries, where we obtain improved efficiency over prior
schemes [BW07]. We summarize our schemes in Fig 1 and 2.

Our approach. At a high level, our approach follows that of Shi et al. [SBC+07], who showed how to boost
an anonymous IBE scheme into a predicate encryption scheme for multi-dimensional range queries. We
show how to carry out a similar transformation over lattices, starting from the LWE-based anonymous
IBE schemes in [CHKP10, ABB10a, AFV11]. We highlight the main novelties in this work:

– First, we present a more modular approach and conceptually simpler approach for handling
multi-dimensional range queries. We construct our scheme for the simpler AND-OR-EQ predicate
(conjunction of disjunction of equalities), and present a combinatorial reduction from multi-
dimensional range queries to this predicate. The simpler AND-OR-EQ predicate is symmetric, which
immediately yields both key-policy and ciphertext-policy schemes for multi-dimensional range
queries. We can only prove security for our lattice-based AND-OR-EQ predicate encryption under an
“at most one” promise, which necessitates a more delicate reduction from multi-dimensional range
queries to AND-OR-EQ where we decompose range queries into disjoint sub-intervals. Indeed, the
same technical issue arises in the previous pairing-based schemes.

– To handle the inner disjunction of equality like (X = a) ∨ (X = b) for the key-policy AND-OR-EQ
predicate where X is associated with the ciphertext and (a,b) with the key, our new ciphertext is
an anonymous IBE ciphertext for the identity X , and the key comprises two IBE keys for a and b;
decryption works by trying all possible IBE keys. Following [SBC+07], we will pad the plaintext with
zeroes, so that we know which of the decryptions corresponds to the correct plaintext. To handle the
outer conjunction, we rely on secret sharing, as with prior lattice-based fuzzy IBE [ABV+12].

– Correctness for the inner disjunction requires more care than that in the bilinear groups. Roughly
speaking, we need to show that when decrypting an IBE ciphertext for identity a with a key for
identity b 6= a yields a random-looking value. The straight-forward argument that relies on IBE
security yields computational correctness. To achieve statistical correctness in the lattice-based
setting, we rely on a simple but seemingly novel analysis of the output of lattice-based trapdoor
sampling algorithms (c.f Lemma 13).

– The intuition for security for the inner disjunction is as follows: if X is different from a and b, then
both X and the plaintext remain hidden via security of the underlying IBE. On the other hand, if
X is equal to one of a,b, then the decryptor does learn the exact value of X , which means that
we cannot hope to achieve strong attribute-hiding using these techniques. To establish the weak
attribute-hiding for the general AND-OR-EQ, we rely on techniques from lattice-based inner product
encryption [AFV11].

To the best of our knowledge, this is the first lattice-based predicate encryption scheme for function-
alities beyond IBE and inner product [CHKP10, ABB10a, AFV11, Xag13], and we hope that it would
inspire further research into lattice-based predicate encryption. We defer a more detailed overview of
our construction to Section 4.
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Source Public key size Ciphertext size Secret key size Encryption time Decryption time Attribute-hiding

[BW07] (KP) O(D ·T ) O(D ·T ) O(D) O(D ·T ) O(D) fully

[SBC+07] (KP, CP) O(D logT ) O(D logT ) O(D logT ) O(D logT ) O((logT )D ) weakly

this paper (KP, CP) O(D logT ) O(D logT ) O(D logT ) O(D logT ) O((logT )D ) weakly

Fig. 1. Summary of existing predicate encryption schemes for multi-dimensional range queries: given a point (z1, . . . , zD ) ∈ [T ]D

and interval ranges [x1, y1], . . . , [xD , yD ] ⊆ [T ] and we want to know if (x1 ≤ z1 ≤ y1)∧·· ·∧ (xD ≤ zD ≤ yD ). Here, D denotes the
number of dimensions and T the number of points in each dimension. We omit the poly(n) multiplicative overhead, where n
is the security parameter.

Source Public key size Ciphertext size Secret key size Encryption time Decryption time Attribute-hiding

[BW07] O(D ·T ) O(D ·T ) O(D ·T ) O(D ·T ) O(D ·T ) fully

this paper (KP) O(D) O(D) O(D ·T ) O(D) O(T D ) weakly

this paper (CP) O(D ·T ) O(D ·T ) O(D) O(D ·T ) O(D) weakly

Fig. 2. Summary of existing predicate encryption schemes for multi-dimensional subset queries: given a point (z1, . . . , zD ) ∈
[T ]D and subsets S1, . . . ,SD ⊆ [T ] and we want to know if (z1 ∈ S1)∧·· ·∧ (zD ∈ SD ). Here, D denotes the number of dimension
and T the size of the sets. We omit the poly(n) multiplicative overhead, where n is the security parameter. (KP) stands for
key-policy an (CP) stands for ciphertext-policy.

Organization. The rest of the paper is organized as follows. We recall the relevant background on lattices
and the security model of predicate encryption in Section 2. We introduce the so-called AND-OR-EQ
predicate, and show how to reduce multi-dimensional subset queries and multi-dimensional range
queries to AND-OR-EQ in Section 3. We give our lattice-based predicate encryption scheme for AND-
OR-EQ in Section 4, and we show that it gives an efficient construction for multi-dimensional range
queries. Finally, we show in Section 5 how to improve the construction of Section 4 in order to obtain an
efficient scheme for multi-dimensional subset queries.

2 Preliminaries

Notations. We denote by s ←R S the fact that s is picked uniformly at random from a finite set S or from
a distribution. By PPT, we denote a probabilistic polynomial-time algorithm. Throughout this paper, we
use 1n as the security parameter. For every vector u ∈ Zn

q , we write u = (u1, . . . ,un), and for any matrix
M ∈Zn×m

q , we write Mi , j the (i , j ) entry of M. For any x ∈R, we denote by bxc the largest integer less than
or equal to x. For any z ∈ [0,1], we denote by bze the closest integer to z.

Randomness extraction. The following result is a generalization of the left-over hash lemma by Agrawal,
Boneh and Boyen in [ABB10a]. The left-over hash lemma is originally due to Dodis et al. [DORS08].

Lemma 1 ([ABB10a], Lemma 13). Let m > (n + 1)log q +ω(logn), q > 2 be a prime number, R ←R

{−1,1}m×` mod q, where ` = `(n) is polynomial in n. Let A ←R Z
n×m
q ,B ←R Z

n×`
q ; For all vectors u ∈ Zm

the distribution (A,AR,u>R) is statistically close from the distribution (A,B,u>R).

LWE Assumption. The decisional Learning With Error problem (dLWE) was introduced by Regev
[Reg05],
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Definition 1 (dLWE). For an integer q = q(n) ≥ 2, an adversary A and an error distribution χ= χ(n) over
Zq , we define the following advantage function:

Adv
dLWEn,m,q,χ

A
:= |Pr[A(A,z0) = 1]−Pr[A(A,z1) = 1]|

where

A ←R Z
n×m
q ,s ←R Z

n
q ,e ←R χ

m ,z0 := s>A+e> and z1 ←R Z
m
q

The dLWEn,m,q,χ assumption asserts that for all PPT adversaries A, the advantage Adv
dLWEn,m,q,χ

A
is a

negligible function in n.

Throughout the paper, we denote by χmax < q the bound on the noise distribution χ.

2.1 Lattice preliminaries

Lattices. For any matrix A ∈Zn×m
q and any vector p ∈Zn

q , we define the orthogonal q-ary lattice of A:

Λ⊥
q (A) := {u ∈Zm : Au = 0 mod q}

and the shifted lattice:

Λ
p
q (A) := {u ∈Zm : Au = p mod q}

Similarly, for any matrix P ∈Zn×`
q , we define:

ΛP
q (A) := {U ∈Zm×` : AU = P mod q}

Matrix norms. For any vector x, we denote by ‖x‖ its `2 norm. For any matrix R ∈ Zn×`
q we define the

three following norms:

1. ‖R‖ denotes the maximum of the `2 norm over the columns of R.
2. ‖R‖GS denotes the Gram-Schmidt norm of R (see [BGG+14] for further details).
3. ‖R‖2 denotes the operator norm of R defined as ‖R‖2 = sup‖x‖=1 ‖Rx‖.

Note that for any matrix S ∈ Z`×m
q , and any vector e ∈ Zn

q , we have ‖R ·S‖ ≤ ‖R‖2 · ‖S‖, and ‖e>F‖∞ ≤
‖e‖ ·‖F‖.

Gaussian distributions. For any positive parameter σ ∈R>0, let

ρσ(x) := exp(−π‖x‖2/σ2)

be the Gaussian function on Rn of center 0 and parameter σ.
For any n ∈N and any subset D of Zn , we define

ρσ(D) := ∑
x∈D

ρσ(x)

the discrete integral of ρσ over D , and DD,σ the discrete Gaussian distribution over D of parameter σ.
That is, for all y ∈ D , we have

DD,σ(y) := ρσ(y)

ρσ(D)
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Lemma 2 ([BGG+14], Lemma 2.5). Let n,m,`, q > 0 be integers and σ > 0 be a Gaussian parameter. For
all A ∈Zn×m

q , P ∈Zn×`
q , U ←R DΛP

q (A),σ and R ←R {−1,1}m×m , with overwhelming probability in m,

‖U‖ ≤σpm , ‖R‖2 ≤ 20
p

m

Trapdoor generators. The following lemmas state properties of algorithms for generating short basis of
lattices.

Lemma 3 ([Ajt96, AP09, MP12]). Let n,m, q > 0 be integers with q prime and m =Θ(n log q). There is a
PPT algorithm TrapGen defined as follows:

TrapGen(1n ,1m , q):
Inputs: a security parameter n, an integer m such that m =Θ(n log q), and a prime modulus q.
Outputs: a matrix A ∈ Zn×m

q and a basis TA ∈ Zm×m
q for Λ⊥

q (A) such that the distribution of A is negl(n)-

close to uniform and ‖TA‖GS =O(
√

n log q), with all but negligible probability in n.

Lemma 4 ([MP12]). Let n,m, q > 0 be integers with q prime and m = Θ(n log q). There is a full-rank
matrix G such that the lattice Λ⊥

q (G) has a publicly known basis TG ∈Zm×m with ‖TG‖GS ≤
p

5.

Lemma 5 ([GPV08], Lemmas 5.1 and 5.2).

– Let m ≥ 2n log q. With all but negl(n) probability, A ←R Z
n×m
q is full rank (i.e. the subset-sums of the

columns of A generate Zn
q ).

– Assume A ∈ Zn×m
q is full-rank and σ = ω(

√
logn). Then, the following distributions are statistically

close:

{(u,Au) : u ←R DZm ,σ} and {(u,p) : p ←R Z
n
q ,u ←R DΛ

p
q (A),σ}

2.2 Sampling algorithms

Given a matrix F := [A‖B] and a matrix P, we would like to sample random low-norm matrices U such
that FU = P. Specifically, we want to sample U from the distribution DΛP

q (F),σ. The following lemma tells

us we could do so given either (1) a low-norm basis TA of Λ⊥
q (A) using RightSample, or (2) a low-norm

matrix R and an invertible matrix H such that B = HG+AR using LeftSample. We will use (1) in the actual
scheme, and (2) in the security proof.

Lemma 6 ( [GPV08, ABB10b, CHKP10, MP12] and [BGG+14](Lemma 2.8)).
There exist PPT algorithms RightSample and LeftSample such that:

RightSample(A,TA,B,P,σ):
Inputs: full-rank matrices A,B ∈ Zn×m

q , a basis TA of Λ⊥
q (A), a matrix P ∈ Zn×(`+n)

q and a Gaussian
parameter σ=O(‖TA‖GS).
Output: a matrix U ∈Z2m×(`+n)

q whose distribution is statistically close to D
ΛP

q [A‖B],σ·ω(
p

logm).

Remark 1. We can sample a short matrix U =
(
U1>U2

)
∈Z2m×(`+k)

q in the same way that [ABB10b]. That is,

we first sample the bottom part U2 ∈ Zm×(`+k)
q from D

Z
m×(`+k)
q ,σ·ω(

p
logn) and then, we sample the top part

U1 ∈Zm×(`+k)
q from a distribution statistically close to D

Λ
P−BU2
q (A),σ·ω(

p
logm)

, using TA.
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LeftSample(A,R,G,H,P,σ) :
Inputs: a full-rank matrix A ∈ Zn×m

q , a matrix R ∈ Zm×m
q , a full-rank matrix G ∈ Zn×m

q as defined in

Lemma 4, an invertible matrix H ∈Zn×n
q , a matrix P ∈Zn×(`+n)

q and a Gaussian parameter σ=O(‖R‖2).

Output: a matrix U ∈Z2m×(`+n)
q whose distribution is statistically close to D

ΛP
q [A‖HG+AR],σ·ω(

p
logm).

2.3 Predicate Encryption

A predicate encryption scheme for a predicateP( · , · ) consists of four algorithms (Setup,Enc,KeyGen,Dec):

Setup(1λ,X,Y,M) → (mpk,msk). The setup algorithm gets as input the security parameter λ, the
attribute universe X, the predicate universe Y, and the message space M.

Enc(mpk, x,m) → ct. The encryption algorithm gets as input mpk, an attribute x ∈ X and a message
m ∈M. It outputs a ciphertext ct.

KeyGen(mpk,msk, y) → sky . The key generation algorithm gets as input msk and a value y ∈Y. It outputs
a secret key sky . Note that y is public given sky .

Dec(mpk,sky ,ct) → m. The decryption algorithm gets as input sky and a ciphertext ct. It outputs a
message m.

Correctness. We require that for all (x, y) ∈X×Y such that P(x, y) = 1 and all m ∈M,

Pr[ct←Enc(mpk, x,m);Dec(sky ,ct) = m)] = 1−negl(n),

where the probability is taken over (mpk,msk) ← Setup(1λ,X,Y,M) and the coins of Enc.

Security Model. For a stateful adversary A, we define the advantage function

AdvPE
A (n) := Pr


β=β′ :

(x∗
0 , x∗

1 ) ←A(1λ);

β←R {0,1};

(mpk,msk) ← Setup(1n ,X,Y,M);

(m0,m1) ←AKeyGen(msk,·)(mpk);

ct←Enc(mpk, xβ,mβ);

β′ ←AKeyGen(msk,·)(ct)


− 1

2

with the restriction that all queries y that A makes to KeyGen(msk, ·) satisfies P(x∗
0 , y) =P(x∗

1 , y) = 0 (that
is, sky does not decrypt ct). A predicate encryption scheme is selectively secure and weakly attribute-
hiding if for all PPT adversaries A, the advantage AdvPE

A (n) is a negligible function in n.

3 Reductions Amongst Predicates

3.1 AND-OR-EQ predicate

In this section we state our general predicate, and exhibit the reductions from multi-dimensional subset
queries and multi-dimensional range queries to the latter. This general predicate is symmetric (c.f.
Lemma 11), which will allow us to obtain both ciphertext-policy and key-policy predicate encryption
schemes in Section 4.
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Disjunction of equality queries. Here, POR-EQ :Z`q ×Z`q → {0,1}, and POR-EQ(x,y) = 1 iff
∨̀

i=1

(
xi = yi

)
.

We generalize the previous predicate to a multi-dimensional setting as follows PAND-OR-EQ : ZD×`
q ×

ZD×`
q → {0,1}, and:

PAND-OR-EQ(X,Y) = 1 iff
D∧

i=1

∨̀
j=1

(
Xi , j = Yi , j

)
We impose a so-called “at most one” promise on the input domains of the predicate for our predicate
encryption scheme in Section 4. This technical property is required for our lattice-based instantiations
(see Remark 3 in Section 4) and also implicitly used in prior pairing-based ones. We define the predicate
PAT MOST ONE :Z`q ×Z`q → {0,1} and its multi-dimensional variant PAND AT MOST ONE :ZD×`

q ×ZD×`
q → {0,1} by:

PAT MOST ONE(x,y) = 1 iff there exists at most one j ∈ [`], x j = y j

PAND AT MOST ONE(X,Y) = 1 iff for all i ∈ [D], there exists at most one j ∈ [`] such that Xi , j = Yi , j

We require that the input domains X,Y⊆ZD×`
q for PAND-OR-EQ satisfy the “at most one” promise, namely

for all X ∈X,Y ∈Y,

PAND AT MOST ONE(X,Y) = 1

Indeed, the promise is satisfied by all of our reductions in this section.

3.2 Multi-dimensional subset queries

Predicate (ciphertext-policy). Here, PCP-SUBSET : {0,1}D×T × [T ]D → {0,1} and

PCP-SUBSET(W,z) = 1 iff
D∧

i=1
Wi ,zi = 1

For each dimension i ∈ [D], the i ’th row of W is the characteristic vector of a subset of [T ].

Reducing PCP-SUBSET to PAND-OR-EQ. We map (W,z) ∈ {0,1}D×T × [T ]D to (W̃, Z̃) ∈ZD×T
q ×ZD×T

q where

– W̃ is the matrix W where zeros are replaced by −1, that is, for all (i , j ) ∈ [D]× [T ], W̃i , j = 1 if Wi , j = 1,
and W̃i , j =−1 otherwise. (We need this modification in order to satisfy the “at most one” promise.)

– Z̃ ∈ ZD×T
q denotes the matrix whose i ’th row is ezi ∈ Z1×T

q , where (e1, . . . ,eT ) denotes the standard

basis of Z1×T .
For instance, we map ((0,1,1),2) to ((−1,1,1), (0,1,0)).

We can check that the following lemma holds:

Lemma 7 (PCP-SUBSET to PAND-OR-EQ). Let (W,z) ∈ {0,1}D×T × [T ]D , and (W̃, Z̃) ∈ ZD×T
q ×ZD×T

q defined as
above.

– PCP-SUBSET(W,z) = 1 iff PAND-OR-EQ(W̃, Z̃) = 1
– PAND AT MOST ONE(W̃, Z̃) = 1

3.3 Multi-dimensional range queries

Predicate (key-policy). Here,PKP-RANGE : [T ]D×I(T )D → {0,1} andPKP-RANGE(z,I) = 1 iff
D∧

j=1
(z j ∈ I j ), where

I(T ) denotes the set of all intervals of [T ].
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We show how to reduce PKP-RANGE to PAND-OR-EQ, which involves rewriting points and intervals as vectors.

Writing points and intervals as vectors. For simplicity, we write t for dlogT e. In order to realize the “at
most one” promise, we need to decompose intervals into disjoint sub-intervals where each sub-interval
contains all the points with some fixed prefix, e.g. [010,110] can be written as [010,011]∪ [100,101]∪
[110,110]. Indeed, any interval in [T ] can be partitioned into at most 2t disjoint sub-intervals with this
property [DVOS00, Lemma 10.10].1 In addition, we can ensure that there are exactly 2t sub-intervals by
padding with empty intervals ε (using empty intervals ensures that no point ever lies in more than one
of these 2t sub-intervals).

Lemma 8 (interval to vector [DVOS00]). There is an efficient PPT algorithm IntVec that on input I ⊆ [T ]
outputs (w1, w2, . . . , w2t ) ∈ (

{0,1}∗∪ {ε}
)2t , where t := dlogT e, with the following properties:

– for each i = 1, . . . , t , we have w2i−1, w2i ∈ {0,1}i ∪ {ε};

– for all z ∈ [T ], we have z ∈ I iff one of w1, . . . , w2t is a prefix of z;

– for all z ∈ [T ], at most one of w1, . . . , w2t is a prefix of z.

Here, ε is not a prefix of any string.

For instance, IntVec([010,110]) = (ε,ε,01,10,110,ε).

Remark 2 (Hashing bit strings into Zq ). We map {0,1}t ∪ {ε} where t := dlogT e into Zq in the straight-
forward way, which requires that q ≥ T +1. We can handle also larger T by using matrices over Zq à la
[ABB10a, Section 5].

Now we give the description of algorithm PtVec, used to map points to vectors.

PtVec: On input z ∈ [T ], output (v1, . . . , v2t ) ∈Z2t
q , where v2i−1 = v2i := i -bit prefix of z, i = 1, . . . , t .

For instance, PtVec(011) = (0,0,01,01,011,011).

Lemma 9. For any point z ∈ [T ] and any interval I ⊆ [T ],

– z ∈ I iff POR-EQ(PtVec(z), IntVec(I )) = 1
– PAT MOST ONE(PtVec(z), IntVec(I )) = 1.

Lemma 9 follows readily from Lemma 8.

Reducing PKP-RANGE to PAND-OR-EQ. We map (z,I) to (PtVecD (z), IntVecD (I)) where

– PtVecD (z) ∈ZD×2t
q denotes the matrix whose i ’th row is PtVec(zi )

– IntVecD (I) ∈ZD×2t
q denotes the matrix whose j ’th row is IntVec(I j )

Lemma 10 (PKP-RANGE to PAND-OR-EQ). For all z ∈ [T ]D and I ⊆ (I[T ])D ,

– PKP-RANGE(z,I) = 1 iff PAND-OR-EQ(PtVecD (z), IntVecD (I)) = 1
– PAND AT MOST ONE(PtVecD (z), IntVecD (I)) = 1

Lemma 10 follows readily from Lemma 9, applied to each dimension i ∈ [D].

1 See http://en.wikipedia.org/wiki/Segment_tree for a visualization.
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Predicate (ciphertext-policy). Here, PCP-RANGE : I(T )D × [T ]D → {0,1} and

PCP-RANGE(I,z) = 1 iff
D∧

j=1

(
z j ∈ I j

)
The predicates POR-EQ and PAT MOST ONE are symmetric:

Lemma 11 (Symmetry of POR-EQ and PAT MOST ONE). For all x,y ∈Z`q , we have:

– POR-EQ(x,y) = 1 ⇐⇒ POR-EQ(y,x) = 1
– PAT MOST ONE(x,y) = 1 ⇐⇒ PAT MOST ONE(y,x) = 1

Thanks to this symmetry, we can reduce PCP-RANGE to PAND-OR-EQ in the same way we did for PKP-RANGE.

ReducingPCP-RANGE toPAND-OR-EQ. Following the previous reduction, we map (I,z) to (IntVecD (I),PtVecD (z)).

Lemma 12 (PCP-RANGE to PAND-OR-EQ). For all I ⊆ (I[T ])D and z ∈ [T ]D ,

– PCP-RANGE(I,z) = 1 iff PAND-OR-EQ(IntVecD (I),PtVecD (z)) = 1
– PAND AT MOST ONE(IntVecD (I),PtVecD (z)) = 1.

Lemma 12 follows from Lemma 10 and Lemma 11.

4 Predicate Encryption for AND-OR-EQ

Here we describe our predicate encryption schemes for the AND-OR-EQ predicate defined in Section 3.1,
selectively secure and lattice-based. Recall that PAND-OR-EQ :ZD×`

q ×ZD×`
q → {0,1}, and

PAND-OR-EQ(X,Y) = 1 iff
D∧

i=1

∨̀
j=1

(
Xi , j = Yi , j

)
The security of our scheme relies on the fact the ciphertext attributes and secret key predicates come
from a restricted domain X,Y⊆ZD×`

q satisfying the “at most one” promise, namely for all X ∈X,Y ∈Y,

PAND AT MOST ONE(X,Y) = 1

Indeed, the promise is satisfied by all of our reductions in Section 3.1.

Overview We begin with the special case D = 1. Given an attribute matrix x ∈ Z1×`
q , the ciphertext is an

LWE sample corresponding to the matrix[
A‖A1 +x1G‖· · ·‖A`+x`G

]
and the message is masked using an LWE sample corresponding to a public matrix P. The secret-key
corresponding to y ∈Z1×`

q is a collection of ` short matrices U1, . . . ,U` such that for all j ∈ [`],[
A‖A j + y j G

]
U j = P

For correctness, observe that if there exist one j such that x j = y j , then the decryptor can use U j to
recover the plaintext. However, since the decryptor does not know x, he will try to decrypt the ciphertext
using each of U1, . . . ,U`. We will need to pad the plaintext with redundant zeros so that the decryptor can
identify the correct plaintext.
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To establish security with respect to some selective challenge x∗, we will need to simulate secret keys for
all y such that x∗

j 6= y j for all j ∈ [`]. We can then simulate U j using an “all-but-one” simulation (while
puncturing at x∗

j ) exactly as in prior IBE schemes in [ABB10a]. In order to establish weak attribute-hiding,
we adopt a similar strategy to that for inner product encryption in [AFV11].

Higher dimensions. Given an attribute matrix X ∈ZD×`
q , the ciphertext is an LWE sample corresponding

to the matrix [
A‖A1,1 +X1,1G‖· · ·‖A1,`+X1,`G‖A2,1 +X2,1G‖· · ·‖AD,`+XD,`G

]
The secret key corresponding to Y ∈ZD×`

q is a collection of D ·` short matrices U1,1, . . . ,UD,` such that for
i ∈ [D], j ∈ [`]: [

A‖Ai , j +Yi , j G
]
Ui , j = Pi

where P1, . . . ,PD is an additive secret-sharing of P.
For correctness, observe that if there exist indices ( j1, . . . , jD ) ∈ [`]D such that for all i ∈ [D] Xi , ji = Yi , ji

then the decryptor can use U1, j1 , · · · ,UD, jD to recover the plaintext. As with the case D = 1, the decryptor
will need to enumerate over all ( j1, . . . , jD ) ∈ [`]D .

To simulate secret keys for Y with respect to some selective challenge X∗, we first fix i∗ such that
X ∗

i∗, j 6= Yi∗, j for all j ∈ [`]. Without loss of generality, suppose i∗ = 1, that is, for all j ∈ [`], X ∗
1, j 6= Y1, j .

Using the "at most one" promise on X and Y, we know that for all i ≥ 2, we have X ∗
i , j = Yi , j for at most

one j ∈ [`], which we call ji . That is, there exists a vector of indices ( j2, . . . , jD ) ∈ [`]D−1 such that for all
i ≥ 2 and all j 6= ji , we have X ∗

i , j 6= Yi , j . We then proceed as follows:

– Sample random short matrices U2, j2 , . . . ,UD, jD , which in turn determines the shares P2, . . . ,PD .

– Use an all-but-one simulation strategy to sample the short matrices Ui , j , for all i ≥ 2, and j 6= ji .

– Define P1 := P−∑D
i=2 Pi and use an all-but-one simulation strategy to sample the remaining short

matrices in the secret key.

4.1 Construction

Let n ∈N be the security parameter. Let the attribute space X and predicate space Y be subsets of ZD×`
q

satisfying the “at most one” promise. Let q = q(n) , m = m(n,`,D) and χmax =χmax(n, q,`,D) be positive
integers. Let σ=σ(n, q,`,D) be a Gaussian parameter.

Setup(1n ,X,Y,M): On inputs the security parameter n, X⊆ZD×`
q , Y⊆ZD×`

q and M := {0,1}k , do:

– Pick (A,TA) ←TrapGen(1n ,1m , q).

– For all i ∈ [D] and all j ∈ [`], pick Ai , j ←R Z
n×m
q .

– Pick P ←R Z
n×(k+n)
q .

– Compute (G,TG) as defined in Lemma 4.

– Output mpk := (P,A,A1,1, . . . ,AD,`,G,TG) and msk := TA

Enc(mpk,X,b): On input mpk, X ∈ZD×`
q and b ∈ {0,1}k , do:

– Pick s ←R Z
n
q , e ←R χ

m , and compute c0 := s>A+e>.

– For all i ∈ [D] and all j ∈ [`], do:

• Pick Ri , j ← {−1,1}m×m .

• Compute ci , j := s>
(

Ai , j +Xi , j G
)+e>Ri , j .
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– Set b′ := (b,0, . . . ,0) ∈ {0,1}k+n , pick e′ ←R χ
k+n , and compute c f := s>P+e′>+b′> · bq/2c.

– Output ct := (c0,c1,1, . . . ,cD,`,c f )

KeyGen(mpk,msk,Y): On input the public parameters mpk, the master secret key msk, and a predicate
matrix Y, do:

– Secret share P as {Pi , i ∈ [D]}, such that
D∑

i=1
Pi = P.

– For all i ∈ [D] and all j ∈ [`] :
Sample a short matrix Ui , j ∈Z2m×(k+n)

q such that
[
A‖Ai , j +Yi , j G

]
Ui , j = Pi using

RightSample(A,TA,Ai , j +Yi , j G,Pi ,σ) with σ=O(
√

n log q).

– output the secret key skY = (U1,1, . . . ,UD,`)

Dec(mpk,skY,ct): On input the public parameters mpk, a secret key skY = (U1,1, . . . ,UD,`) for a predicate
matrix Y, and a ciphertext ct= (c0,c1,1, . . . ,cD,`,c f ), do:

– For all ( j1, . . . , jD ) ∈ [`]D , compute d := c f −
D∑

i=1

[
c0‖ci , ji

]
Ui , ji mod q .

– If
⌊

d
q/2

⌉
∈ {0,1}k × 0n , then output the first k bits of

⌊
d

q/2

⌉
. For any z ∈ [0,1], we denote by bze the

closest integer to z.

– Otherwise, abort.

Running time. The running times are:

– O(D ·` ·poly(n)) for encryption;

– O(D ·` ·poly(n)) for key generation;

– O(`D ·poly(n)) for decryption.

The above numbers take into account matrix multiplications and additions. When done naively,
the above Dec algorithm takes O(D ·`D ·poly(n)) time. However, if one saves the intermediate results[
c0‖ci , j

]
Ui , j for all (i , j ) ∈ [D]× [`], one can do it in O(`D ·poly(n)) time.

4.2 Correctness

Lemma 13. Suppose that χmax is such that

χmax ≤ q/4 · (1+D · (1+20
p

m) · s ·2m
)−1

where s =σ ·ω(
√

logn). Let (X,Y) ∈ZD×`
q ×ZD×`

q such that PAND-OR-EQ(X,Y) = 1. Let

skY = (U1,1, . . . ,UD,`) ←KeyGen(mpk,msk,Y), ct= (c0, . . . ,c f ) ←Enc(mpk,X,b),

With overwhelming probability in n, Dec does not abort and outputs b.

Proof. Recall that Dec computes d for all ( j1, . . . , jD ) ∈ [
`
]D . We consider two cases:

Case 1: ∀i , Xi , ji = Yi , ji . We show that with overwhelming probability in n,
⌊

d
q/2

⌉
= (b,0, . . . ,0) := b′.

For all i ∈ [D], [
A||Ai , ji +Xi , ji G

]
Ui , ji = Pi thus

D∑
i=1

[
A||Ai , ji +Xi , ji G

]
Ui , ji = P

11



This implies

D∑
i=1

[c0‖ci , ji

]
Ui , ji ≈

D∑
i=1

s>
[
A||Ai , ji +Xi , ji G

]
Ui , ji = s>P ≈ c f −b′>

and thus d ≈ b′ · bq/2c. To obtain
⌊

d
q/2

⌉
= b′, it suffices to bound the error term and show that

∥∥∥e′>−
D∑

i=1
(e>||e>Ri , ji )Ui , ji

∥∥∥∞ < q/4.

We know that ‖e′>‖∞ ≤χmax. In addition, for all i ∈ [D],∥∥∥(e>||e>Ri , ji )Ui , ji

∥∥∥∞ ≤
∥∥∥(e>||e>Ri , ji )

∥∥∥ ·∥∥∥Ui , ji

∥∥∥≤
(
‖e‖+∥∥Ri , ji

∥∥
2 · ‖e‖) ·∥∥∥Ui , ji

∥∥∥
By Lemma 6,

∥∥Ui , ji

∥∥≤σ·ω(
√

logn)·p2m and by Lemma 2,
∥∥Ri , ji

∥∥
2 ≤ 20

p
m. Combining these bounds,

we obtain ∥∥∥e′>−
D∑

i=1
(e>||e>Ri , ji )Ui , ji

∥∥∥∞ ≤χmax +D ·χmax · (1+20
p

m) ·σ ·ω(
√

logm) ·p2m

We will set the parameters in Section 4.4 so that the quantity on the right is bounded by q/4.

Case 2: ∃i∗, Xi∗, ji∗ 6= Yi∗, ji∗ . We show that the computed value d has a distribution which is statistically

close to uniform, and therefore the probability that the last n bits of
⌊

d
q/2

⌉
are all 0 is negligible in n.

By an analogous calculation to that in Case 1, we have:

D∑
i=1

[
A||Ai , ji +Xi , ji G

]
Ui , ji = P+

D∑
i=1

[0||(Xi , ji −Yi , ji )G
]
Ui , ji

We know that there exists some i∗ ∈ [D] such that Xi∗, ji∗ 6= Yi∗, ji∗ , and we focus on[
0>||s>(Xi∗, ji∗ −Yi∗, ji∗ )G

]
Ui∗, ji∗

By Remark 1, we know that the bottom part U2 ∈ Zm×(k+n)
q of Ui∗, ji∗ is sampled from D

Zm
q ,σ·ω(

p
logn).

Therefore, since Xi∗, ji∗−Yi∗, ji∗ 6= 0 and G is a full-rank matrix, by Lemma 5, we know that the distribution

of GU2 is indistinguishable from uniform over Z n×(k+n)
q and then, the entire sum is indistinguishable

from uniform over Zk+n
q . Therefore,

d = c f −
D∑

i=1

[
c0||ci , ji

]
Ui , ji mod q

is indistinguishable from uniform over Zk+n
q , and the probability that the last n bits of

⌊
d

q/2

⌉
are all 0 is

negligible in n.

4.3 Proof of Security

Lemma 14. For any adversary A on the predicate encryption scheme, there exists an adversary B on the
LWE assumption whose running time is roughly the same as that of A and such that

AdvPE
A (n) ≤Adv

dLWEn,m+n+k,q,χ

B
+negl(n)
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The proof follows via a series of games, analogous to those in [AFV11]. We first define several auxiliary
algorithms for generating the simulated ciphertexts and secret keys, upon which we can describe the
games.

Auxiliary algorithms. We introduce the following auxiliary algorithms:�Setup(1n ,X,Y,M,A,P,X∗): on a security parameter n, an attribute space X ⊆ ZD×`
q , a predicate space

Y ⊆ ZD×`
q , a message space M := {0,1}k , a matrix A ∈ Zn×m

q , a matrix P ∈ Zn×(k+n)
q and the challenge

attribute matrix X∗, do:

– Compute (G,TG) as defined in Lemma 4.

– For all i ∈ [D] and all j ∈ [`], pick Ri , j ← {−1,1}m×m and set Ai , j := ARi , j −X ∗
i , j G.

– Output mpk := (P,A,A1,1, . . . ,AD,`,G,TG) and m̃sk := (X∗,R1,1, . . . ,RD,`,TA)

Ẽnc(mpk,b;m̃sk,d0,d f ): On input the public parameters mpk, a message b ∈ {0,1}k , the master secret

key m̃sk, and the extra inputs d0 ∈Zm
q , d f ∈Zk+n

q do:

– Set c0 := d>
0,

– For all i ∈ [D] and all j ∈ [`], compute ci , j := d>
0Ri , j ,

– Compute b′ := (b,0, . . . ,0) ∈ {0,1}k+n , and set c f := d>
f +b′>bq/2c.

– Output (c0, . . . ,c f ).ãKeyGen(mpk,m̃sk,Y,X∗): On input the public parameters mpk, the master secret key m̃sk, a predicate
matrix Y and the challenge attribute matrix X∗ do:

– If P(X∗,Y) = 1, abort.

– Otherwise, since P(X∗,Y) = 0, there must exist a i∗ ∈ [D] such that for all j ∈ [`], X ∗
i∗, j 6= Yi∗, j . By the

“at most one” property, for all i ∈ [D], there is at most one ji ∈ [`] such that X ∗
i , ji

= Yi , ji .
We proceed in three steps :

1. First, for all i ∈ [D] \ {i∗} we sample: Ui , ji ←R DZ
2m×(k+n)
q ,σ·ω(

p
logn) with σ=O(

√
n log q) and set

Pi :=
[

A||ARi , ji

]
Ui , ji ∈Zn×(k+n)

q

2. Next, we set Pi∗ to be: Pi∗ := P− ∑
i 6=i∗

Pi

3. We sample the remaining matrices as follows:

Ui , j ← LeftSample(A,Ri , j ,G,Yi , j −X ∗
i , j ,Pi ,σ).

This is possible because Yi , j −X ∗
i , j 6= 0, whenever i = i∗ or whenever j 6= ji .

– Output (U1,1, . . . ,UD,`).

Game sequence. We present a series of games. We write Advxxx to denote the advantage of A in Gamexxx.

– Game0: is the real security game.

– Game1: same as Game0, except that the challenger runs�Setup(1n ,X,Y,M;A,P,X∗
β) and Ẽnc(mpk,bβ;m̃sk,s>A+e>,s>P+e′>)

with (A,TA) ←R TrapGen(1n ,1m),P ←R Z
n×(k+n)
q , s ←R Z

n
q , e ←R χ

m , and e′ ←R χ
k+n .

– Game2: same as Game1 except that the challenger runs ãKeyGen.
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– Game3: same as Game2 except that the challenger runs

Ẽnc(mpk,bβ;m̃sk,d0,d f )

where d0 ←R Z
m
q and d f ←R Z

k+n
q .

– Game4: is the same as Game3 except that the challenger runs KeyGen.

We show in the following lemmas that each pair of games (Gamei ,Gamei+1) are either statistically
indistinguishable or computationally indistinguishable under the decision-LWE assumption. Finally, we
show in Lemma 19 that no information is leaked about β is the last game Game4.

Lemma 15 (Game0 to Game1). For all m > (n +1)log q +ω(logn), we have |Adv0 −Adv1| = negl(n).

Proof. From Game0 to Game1, we switch from Setup,Enc to �Setup, Ẽnc.
Note that the only difference between Game0 and Game1 is that for all i ∈ [D] and j ∈ [`], the matrix

Ai , j is set to be Ai , j ←R Z
n×m
q in Game0, whereas is is set to be Ai , j := ARi , j − X ∗

i , j G in Game1, where

Ri , j ←R {−1,1}m×m , and e ←R χ
m . The matrix Ai , j only appears in the mpk and in the component ci , j =

s>(Ai , j +X ∗
i , j G)+e>Ri , j of the ciphertext.

Therefore it suffices to show that the distribution of (A,e,Ai , j ,e>Ri , j ) in Game0 and Game1 are
statistically close, that is,

(A,e,Ai , j ,e>Ri , j ) ≈s (A,e,ARi , j −X ∗
i , j G,e>Ri , j )

where Ai , j ←R Z
n×m
q , Ri , j ←R {−1,1}m×m , and e ←R χ

m . Observe that

(A,e,Ai , j ,e>Ri , j )

≡ (A,e,Ai , j −X ∗
i , j G,e>Ri , j ) since Ai , j ←R Z

n×m
q

≈s (A,e,ARi , j −X ∗
i , j G,e>Ri , j ) by Lemma 1

Lemma 16 (Game1 to Game2). |Adv1 −Adv2| = negl(n).

Proof. From Game1 to Game2, we switch from KeyGen to ãKeyGen. Therefore, it suffices to show that for
any predicate Y such that P(X∗,Y) = 0, the following distributions are statistically close:

KeyGen(mpk,msk,Y) ≈s ãKeyGen(mpk,m̃sk,Y,X∗)

We write: Fi , j := (
A‖Ai , j +Yi , j G

)= (
A‖ARi , j + (Yi , j −X ∗

i , j )G
)
∈Zn×2m

q .

Since P(X∗,Y) = 0, we know that there must exist a i∗ ∈ [D] such that Yi∗, j 6= X ∗
i∗, j for all j ∈ [`]. Because

PAND AT MOST ONE(X∗,Y) = 1, we know that for all i ∈ [D], there is at most one ji ∈ [] such that Yi ,i j = X ∗
i ,i j

.

We proceed in three steps:

1. First, we argue that the joint distribution {Pi ,Ui , ji : i ∈ [D], i 6= i∗} is statistically close in KeyGen and

in ãKeyGen. This follows readily from Lemma 5.

2. Next, we argue that the joint distribution {Pi : i ∈ [D]} is statistically close in KeyGen and in ãKeyGen.
This follows readily from secret sharing.

3. Finally, fix P1, . . . ,PD . We argue that the distribution of the remaining matrices is statistically close
in KeyGen and in ãKeyGen. This follows from Lemma 6, which tells us that the output Ui , j of both

RightSample in KeyGen and LeftSample in ãKeyGen, are statistically close to D
Λ

Pi
q (Fi , j ),σ·ω(

p
logn)

.

We can sample these Ui , j in ãKeyGen applying LeftSample because Yi , j − X ∗
i , j 6= 0 whenever i = i∗ or

whenever j 6= ji .
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Remark 3. Note that the "at most one" promise is crucial here, because when Yi , j − X ∗
i , j = 0, we cannot

use LeftSample to sample a short matrix Ui , j such that
(
A‖ARi , j + (Yi , j −X ∗

i , j )G
)

Ui , j = Pi . If there exists

"at most one" ji ∈ [`] such that Yi , ji − X ∗
i , ji

= 0, we can sample a short matrix Ui , ji from some discrete

Gaussian distribution, and set Pi to be Pi := (
A‖ARi , j +0 ·G

)
Ui , j . Lemma 5 ensures that both Ui , j and Pi

are correctly distributed. However, if there exist at least 2 indices ji and j ′i ∈ [`] such that Yi , ji −X ∗
i , ji

= 0,
then there is more than one matrix that we cannot sample using LeftSample, and the previous technique
does not work anymore.

Lemma 17 (Game2 to Game3). There exists an adversary B whose running time is roughly the same as
that of A and such that

|Adv2 −Adv3| ≤Adv
dLWEn,m+k+n,q,χ

B

Note that only difference between Game2 and Game3 is that we switch the distribution of the inputs
(d0,dD+1) to Ẽnc from LWE instances to random ones.

Proof. On input an LWE challenge

(A,P,d0,dD+1)

where A ←R Z
n×m
q and P ←R Z

n×(k+n)
q and (d0,dD+1) is either (s>A+e>,s>P+e′>) or random, B simulates

A and proceeds as follows:

– runs �Setup(1n ,X,Y,M;A,P,X∗
β

) as in Game2;

– answers A’s private key queries by using ãKeyGen as in Game2;

– runs Ẽnc(mpk,bβ;m̃sk,d0,dD+1) to generate the challenge ciphertext;

– Finally, A guesses if it is interacting with a Game2 or a Game3 challenger. B outputs A’s guess as the
answer to the LWE challenge it is trying to solve.

When the LWE challenge is pseudorandom as in Definition 1, the adversary’s view is as in Game2. When
the LWE challenge is random the adversary’s view is as in Game3. Therefore, B’s advantage in solving
LWE is the same as A’s advantage in distinguishing Game2 and Game3.

Lemma 18 (Game3 to Game4). |Adv3 −Adv4| = negl(n)

Proof. The differences between Game3 and Game4 are:

– In Game3, A ←R Z
n×m
q , and TA :=⊥, whereas in Game4, (A,TA) ←R TrapGen(1n ,1m).

– In Game3, the challenger answers the adversary’s secret key using the ãKeyGen algorithm, whereas he
answers using the KeyGen algorithm in Game4.

The proof is the same as the one of Lemma 16, by symmetry of the games.

Lemma 19 (Game4). We have |Adv4 −1/2| = negl(n)

Proof. In Game4, both the challenge ciphertext and the secret keys are independent of β. Moreover, by
Lemma 1, we know that for all i ∈ [D], for all j ∈ [`] the two following distributions are statistically close

(A,Ai , j ) ≈s (A,ARi , j −X ∗
i , j G)

where Ai , j ←R Z
n×m
q , Ri , j ←R {−1,1}m×m , and e ←R χ

m . Thus, the mpk does not leak any information on
X∗
β

. Therefore, we get |Adv4 −1/2| = negl(n).
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4.4 Parameter selection

– By Lemma 1, we need m > (n +1)log q +ω(logn)

– By Lemma 3, and Lemma 4, we require m =Θ(n log q)

– By Lemma 5, we need m ≥ 2n log q

– By Lemma 6, we need σ=O(‖TA‖GS) and σ=O(‖TG‖GS · (1+‖R‖2))
where ‖TA‖GS = O(

√
n log q) and ‖R‖2 ≤ 20

p
m with overwhelming probability in n, according to

Lemma 3 and Lemma 5, respectively.

– For correctness of decryption, we require χmax ≤ q/4 · (1+D · (1+20
p

m) · s ·2m
)−1, where s = σ ·

ω(
√

logn).

Consequently we take m =Θ(n log q) , σ=O
(√

n log q
)

and χmax =O
(
q · (D · (n log q)3/2 · s)−1

)
where s =σ ·ω(

√
logn).

4.5 Putting everything together for multi-dimensional range queries

When D denotes the number of dimensions and T the number of points in each, combining the
preceding scheme with the reduction in Section 3.3, we get a scheme for PCP-RANGE and PKP-RANGE with
ciphertexts and secret keys of sizes O(D logT ) and running times O(D · logT ·poly(n)) for encryption and
key generation, O((logT )D ·poly(n)) for decryption.

5 Shorter Ciphertexts and Secret Keys for Multi-Dimensional Subset Queries

The predicate encryption scheme for PAND-OR-EQ exhibited in Section 4 together with the reductions
presented in Section 3 lead to efficient predicate encryption schemes for multi-dimensional subset
queries.
Indeed, when D denotes the dimension and T denotes the size of the sets, we obtain a predicate
encryption scheme for PKP-SUBSET and PCP-SUBSET with ciphertexts and secret keys of size O(D ·T ).
However, in this section we show how we can improve the size of the secret keys and ciphertexts in order
to obtain:

– ciphertexts of size O(D) for PKP-SUBSET

– secret keys of size O(D) for PCP-SUBSET

5.1 Multi-dimensional subset queries, ciphertext policy

We can obtain a predicate encryption scheme for PCP-SUBSET using the reduction to PAND-OR-EQ defined in
section 3.2, with secret keys of size O(D ·T ). We reduce the size of the secret keys size down to O(D) using
the fact that in each dimension, only one of the T matrices in the secret key is needed to decrypt.
On the one hand, for each dimension i , the reduction maps a point z ∈ [T ] into the vector ez . Therefore,
for all j 6= z the KeyGen algorithm generates a short matrix Ui , j which is a preimage of some target for
the matrix [

A‖Ai , j +0 ·G
]
.

On the other hand, a characteristic vector w ∈ {0,1}T , is mapped into a −1,1 vector. Thus, for all j , the
(i , j )’th component of the ciphertext is an LWE sample corresponding to the matrix[

Ai , j +∗G
]
,∗ ∈ {−1,1}.

16



Consequently, the matrices Ui , j for j 6= z do not yield any useful information to decrypt the ciphertext.
Therefore, we can remove them, and still satisfies correctness. Moreover, it is clear that removing parts of
the secret key will not affect the security. Removing these matrices, we obtain a scheme whose secret keys
have size O(D), and whose decryption algorithm runs in time O(D ·poly(n)) (instead of O(T D ·poly(n))).

Construction. Let n ∈ N be the security parameter and T , D positive integers. Let q = q(n,T,D) , m =
m(n,T,D) and χmax =χmax(n,T,D) be positive integers, and σ=σ(n,T,D) be a Gaussian parameter.

Setup(1n ,X,Y,M): on a security parameter n, an attribute space X := {0,1}D×T , a predicate space Y :=
ZD

q , and a message space M := {0,1}k , do:

– Pick (A,TA) ←TrapGen(1n ,1m , q).
– Pick A1,1, . . . ,AD,T ←R Z

n×m
q .

– Pick P ←R Z
n×(k+n)
q .

– Compute (G,TG) as defined in Lemma 4.
– Output: mpk := (P,A,A1,1, . . . ,AD,T ,G,TG) and msk := TA

Enc(mpk,X,b): On input the public parameters mpk, an predicate matrix X ∈ ZD×T
q , and a message b ∈

{0,1}k , do:

– Pick s ←R Z
n
q , e ←R χ

m , and compute c0 := s>A+e>.
– for all i ∈ [D] and all j ∈ [T ], do:

• Pick Ri , j ← {−1,1}n×m .

• Compute ci , j := s>
(

Ai , j +Xi , j G
)+e>Ri , j .

– Set b′ := (b,0, . . . ,0) ∈ {0,1}k+n , pick an e′ ←R χ
k+n , and compute c f := s>P+e′>+b′> · bq/2c.

– Output: ct := (c0,c1,1, . . . ,cD,T ,c f )

KeyGen(mpk,msk,y): On input the public parameters mpk, the master secret key msk, and an attribute
vector y ∈ZD

q , do:

– Secret share P as {Pi , i ∈ [D]}, such that
D∑

i=1
Pi = P.

– For all i ∈ [D]:
Sample a short matrix Ui ∈Z2m×(k+n)

q such that
[
A‖Ai ,yi +G

]
Ui = Pi

using RightSample(A,TA,Ai ,yi +G,Pi ,σ) with σ=O(
√

n log q).
– Output the secret key skY = (U1, . . . ,UD ).

Dec(mpk,sky,ct): On input the public parameters mpk, a secret key sky = (U1, . . . ,UD ) for an attribute
vector y, and a ciphertext ct= (c0,c1,1, . . . ,cD,T ,c f ), do:

– Compute d := c f −
D∑

i=1

[
c0‖ci ,yi

]
Ui mod q.

– Output the first k bits of
⌊

d
q/2

⌉
. For any z ∈ [0,1], we denote by bze the closest integer of z.

Correctness and security. Correctness and security proofs follow readily from those of PAND-OR-EQ in
Section 4.

5.2 Multi-dimensional subset queries, key-policy

We give a similar (however simpler) construction to the one presented in Section 4 for PAND-OR-EQ.
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Overview. We begin with the special case D = 1. Given an attribute vector x ∈ [T ]D , the ciphertext is an
LWE sample corresponding to the matrix

[
A‖A1 + xG

]
and the message is masked using an LWE sample

corresponding to a public matrix P. The secret key corresponding to Y ∈ {0,1}T is a collection of T short
matrices U1, . . . ,UT such that: [

A‖A1 + j G
]
U j = P if Y j = 1

U j = ⊥ if Y j = 0

For correctness, observe that if Yx = 1, then the decryptor can use Ux to recover the plaintext. However,
since the decryptor does not know x, he will try to decrypt the ciphertext using each of U1, . . . ,UT . We will
need to pad the plaintext with redundant zeroes so that the decryptor can identify the correct plaintext.
To establish security with respect to some selective challenge x∗, we will need to simulate the secret keys
for all Y such that Yx∗ = 0. Observe that for all j = 1, . . . ,T ,

Y j = 1 =⇒ j 6= x∗

We can then simulate U j using an “all-but-one” simulation (while puncturing at x∗) exactly as in prior
IBE schemes in [ABB10a]. In order to establish weak attribute-hiding, we adopt a similar strategy to that
for inner product encryption in [AFV11].

Higher dimensions. Given an attribute vector x ∈ [T ]D , the ciphertext is an LWE sample corresponding
to the matrix

[
A‖A1 +x1G‖· · ·‖AD +xD G

]
.

The secret key corresponding to Y ∈ {0,1}D×T is a collection of D ·T short matrices U1,1, . . . ,UD,T such
that for j = 1, . . . ,T, i = 1, . . . ,D : [

A‖Ai + j G
]
Ui , j = Pi if Yi , j = 1

Ui , j = ⊥ if Yi , j = 0

where P1, . . . ,PD is an additive secret-sharing of P.
For correctness, observe that if Y1,x1 = Y2,x2 = . . . = YD,xD = 1, then the decryptor can use U1,x1 , · · · ,UD,xD

to recover the plaintext. As with the case D = 1, the decryptor will need to enumerate over all x′ ∈ [T ]D .
To simulate secret keys for Y with respect to some selective challenge x∗, first we fix k such that Yk,x∗

k
= 0.

Without loss of generality, suppose k = 1, that is, Y1,x∗
1
= 0. We then proceed as follows:

– Sample random short matrices U2,x∗
2

, . . . ,UD,x∗
D

, which in turn determines the shares P2, . . . ,PD .

– Define P1 := P−∑D
i=2 Pi and use an all-but-one simulation strategy to sample the remaining short

matrices in the secret key.

Construction. Let n ∈ N be the security parameter and T , D be positive integers. Let q = q(n,T,D) ,
m = m(n,T,D) and χmax =χmax(n,T,D) be positive integers, andσ=σ(n,T,D) be a Gaussian parameter.

Setup(1n ,X,Y,M): on n, X :=ZD
q , Y := {0,1}D×T and M := {0,1}k , do:

– Pick (A,TA) ←TrapGen(1n ,1m , q).

– Pick A1, . . . ,AD ←R Z
n×m
q .

– Pick P ←R Z
n×(k+n)
q .

– Compute (G,TG) as defined in Lemma 4.

– Output: mpk := (P,A,A1, . . . ,AD ,G,TG) and msk := TA
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Enc(mpk,x,b): On input mpk, x ∈ZD
q and b ∈ {0,1}k :

– Pick s ←R Z
n
q , e ←R χ

m , and compute c0 := s>A+e>.
– For all i ∈ [D]:

• Pick Ri ← {−1,1}n×m .

• Compute ci := s>
(

Ai +xi G
)+e>Ri .

– Set b′ := (b,0, . . . ,0) ∈ {0,1}k+n , pick e′ ←R χ
k+n , and compute c f := s>P+e′>+b′> · bq/2c.

– Output: ct := (c0,c1, . . . ,cD ,c f )

KeyGen(mpk,msk,Y): On input mpk, msk, and Y, do:

– Secret share P as {Pi , i ∈ [D]}, such that
D∑

i=1
Pi = P.

– For all i ∈ [D] and j ∈ [T ]:

• If Yi , j = 1 then sample a short matrix Ui , j ∈Z2m×(k+n)
q such that[

A‖Ai + j G
]
Ui , j = Pi

using RightSample(A,TA,Ai + j G,Pi ,σ) with σ=O(
√

n log q).

• Otherwise set Ui , j :=⊥.

– Output the secret key skY = (U1,1, . . . ,UD,T ).

Dec(mpk,skY,ct): On input the public parameters mpk, a secret key skY = (U1,1, . . . ,UD,T ) for a predicate
matrix Y, and a ciphertext ct= (c0,c1, . . . ,cD ,c f ), do:

– For all x′ = (x ′
1, . . . , x ′

D ) ∈ [T ]D , compute dx′ := c f −
D∑

i=1

[
c0‖ci

]
Ui ,x ′

i
mod q.

– If
⌊

dx′
q/2

⌉
∈ {0,1}k ×0n for exactly one vector x′ ∈ [T ]D , then output the first k bits of

⌊
dx′
q/2

⌉
. For any

z ∈ [0,1], we denote by bze the closest integer of z.
– Otherwise, abort.

Correctness.

Lemma 20. Suppose that parameters χmax is such that χmax ≤ q/4 · (1+D · (1+20
p

m) · s ·2m
)−1 . where

s =σ ·ω(
√

logn). Let

skY = (U1,1, . . . ,UD,T ) ←KeyGen(mpk,msk,Y), ct= (c0, . . . ,cD+1) ←Enc(mpk,x,b),

and d ←Dec(mpk,skY ,ct)

If P(x,Y) = 1, then with overwhelming probability in n, Dec does not abort and d = b.

The proof of Lemma 20 is essentially the same than the proof of Lemma 13, for PAND-OR-EQ. We refer
to the latter for further details.

Proof of Security.

Lemma 21. For any adversary A, there exists an adversary B whose running time is roughly the same as
that of A and such that

AdvPE
A (n) ≤Adv

dLWEn,m+n+k,q,χ

B
+negl(n)

We proceed exactly as in Section 4.3 with the same auxiliary algorithms.
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Auxiliary algorithms.�Setup(1n ,X,Y,M;A,P,x∗): on n, X := [T ]D , Y := {0,1}T×D , M := {0,1}k , A ∈Zn×m
q , P ∈Zn×(k+n)

q and x∗, do
the following:

– Compute (G,TG) as defined in Lemma 4.

– For all i ∈ [D], pick Ri ← {−1,1}m×m and set Ai := ARi −x∗
i G.

– Output mpk := (P,A,A1, . . . ,AD ,G,TG) and m̃sk := (x∗,R1, . . . ,RD ,TA).

Ẽnc(mpk,b;m̃sk,d0,dD+1): On mpk, b ∈ {0,1}k , m̃sk, and the extra inputs d0 ∈ Zm
q , dD+1 ∈ Zk+n

q do the
following:

– Set c0 := d>
0,

– For all i ∈ [D], compute ci := d>
0Ri ,

– Compute b′ := (b,0, . . . ,0) ∈ {0,1}k+n , and set cD+1 := d>
D+1 +b′>bq/2c.

– Output (c0, . . . ,cD+1).ãKeyGen(mpk,m̃sk,Y): On mpk, m̃sk and Y, do:

– If P(x∗,Y) = 1, abort.

– Otherwise, since P(x∗,Y) = 0, there must exist a i∗ ∈ [D] such that Yi∗,x∗
i∗
= 0. We proceed in three

steps :

1. First, for all i ∈ [D] \ {i∗}:

• If Yi ,x∗
i
= 1 we sample: Ui ,x∗

i
←R DZ

2m×(k+n)
q ,σ·ω(

p
logn)

with σ=O(
√

n log q) and set Pi :=
[

A||ARi

]
Ui ,x∗

i
∈Zn×(k+n)

q .

• Otherwise we set Ui ,x∗
i
=⊥ and Pi ←R Z

n×(k+n)
q .

2. Next, we set Pi∗ to be: Pi∗ := P− ∑
i 6=i∗

Pi .

3. We sample the remaining matrices as follows:

• If Yi , j = 1, we sample: Ui , j ← LeftSample(A,Ri ,G, j −x∗
i ,Pi ,σ).

This is possible because j −x∗
i 6= 0, whenever i = i∗ or whenever j 6= x∗

i .

• Otherwise set Ui , j =⊥.

– Output (U1,1, . . . ,UD,T ).

Game sequence. We present a series of games, as in Section 4.3. We writeAdvxxx to denote the advantage
of A in Gamexxx.

– Game0: is the real security game (c.f. Section 2.3).

– Game1: same as Game0, except that the challenger runs�Setup(1n ,X,Y,M;A,P,x∗β) and Ẽnc(mpk,bβ;m̃sk,s>A+e>,s>P+e′>)

with (A,TA) ←R TrapGen(1n ,1m),P ←R Z
n×(k+n)
q , s ←R Z

n
q , e ←R χ

m , and e′ ←R χ
k+n .

– Game2: same as Game1 except that the challenger runs ãKeyGen.

– Game3: same as Game2 except that the challenger runs Ẽnc(mpk,bβ;m̃sk,d0,dD+1) where d0 ←R Z
m
q

and dD+1 ←R Z
k+n
q .

– Game4: is the same as Game3 except that the challenger runs KeyGen.
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We show in the following lemmas that each pair of games (Gamei ,Gamei+1) are either statistically
indistinguishable or computationally indistinguishable under the decision-LWE assumption. Finally, we
show in Lemma 19 that no information is leaked about β is the last game Game4.
Except for Lemma 23, we omit the proof of the following lemmas which are almost identical to the
corresponding lemmas in Section 4.3.

Lemma 22 (Game0 to Game1). For all m > (n +1)log q +ω(logn), we have |Adv0 −Adv1| = negl(n).

The proof of this lemma is almost identical to the proof of Lemma 15 and we will thus not go into further
details.

Lemma 23 (Game1 to Game2). |Adv1 −Adv2| = negl(n).

Proof. From Game1 to Game2, we switch from KeyGen to ãKeyGen. Therefore, it suffices to show that for
any predicate Y such that P(x∗,Y) = 0, the following distributions are statistically close:

KeyGen(mpk,msk,Y) ≈s ãKeyGen(mpk,m̃sk,Y)

In this proof, we write

Fi , j := (
A‖Ai + j G

)= (
A‖ARi + ( j −x∗

i )G
) ∈Zn×2m

q .

Since P(x∗,Y) = 0, we know that there must exist a i∗ ∈ [D] such that Yi∗,x∗
i∗

= 0. We proceed in three
steps:

– First, we argue that the joint distribution {Pi ,Ui ,x∗
i

: i ∈ [D], i 6= i∗}

are statistically close in KeyGen and in ãKeyGen. This follows readily from Lemma 5.

– Next, we argue that the joint distribution {Pi : i ∈ [D]} are statistically close in KeyGen and in ãKeyGen.
This follows readily from secret sharing.

– Finally, fix P1, . . . ,PD . We argue that the distribution of the remaining matrices

{Ui , j : i ∈ [D], j 6= x∗
i }∪ {Ui∗,x∗

i∗
}

are statistically close in KeyGen and in ãKeyGen. This follows from Lemma 6, which tells us that
the output Ui , j of both RightSample in KeyGen and LeftSample in ãKeyGen, are statistically close to
D
Λ

Pi
q (Fi , j ),σ·ω(

p
logn)

.

We can sample these Ui , j in ãKeyGen as follows :

• For i ∈ [D], and all j 6= x∗
i , we sample using LeftSample because j −x∗

i 6= 0.

• For i = i∗, j = x∗
i∗ , we have Yi∗,x∗

i∗
= 0 then Ui∗,x∗

i∗
=⊥.

Lemma 24 (Game2 to Game3). There exists an adversary B whose running time is roughly the same as
that of A and such that

|Adv2 −Adv3| ≤Adv
dLWEn,m+k+n,q,χ

B

Note that only difference between Game2 and Game3 is that we switch the distribution of the inputs
(d0,dD+1) to Ẽnc from LWE instances to random ones. We refer to the proof of Lemma 17 for further
details.

Lemma 25 (Game3 to Game4). |Adv3 −Adv4| = negl(n)
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Lemma 26 (Game4). |Adv4 −1/2| = negl(n)

We omit the proof of Lemmas 25 and 26 and refer to the proof of Lemma 18 and Lemma 19, respectively,
for further details.
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