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Abstract

We provide a new result that links two crucial entropy notions: Shannon Entropy H1 and
collision entropy H2. Our formula gives the worst possible amount of collision entropy in a
probability distribution, when its Shannon Entropy is fixed.

Our results and techniques used in the proof immediately imply many quantitatively tight
separations between Shannon and smooth Renyi entropy, which were previously known as qual-
itative statements or one-sided bounds. In particular, we precisely calculate the number of bits
that can be extracted from a Shannon Entropy source, and calculate how far from the uniform
distribution is a distribution with the given amount of Shannon Entropy. To illustrate our
results we provide clear numerical examples.

In the typical situation, when the gap between Shannon Entropy of a distribution and its
length is bigger than 1, the length of the extracted sequence is very small, even if we allow the
randomness quality to be poor. In the case of almost full entropy, where the gap is close to 0,
the `2-distance to uniform is roughly of the same order as the gap. Therefore, it is actually not
possible to decide the strong quality of supposed true randomness, efficiently and at extremely
high confidence level, by means of Shannon Entropy estimators, like Maurer’s Universal Test or
others.

Our approach involves convex optimization techniques, applied to characterize worst case
distributions, and the use of the Lambert W function, by which we resolve equations coming
from Shannon Entropy constraints. We believe that it may be useful and of independent interests
elsewhere, particularly for studying Shannon Entropy with constraints.

Keywords. Renyi Entropy, Smooth Entropy, Entropy Estimators, Convex Optimization, Lambert
W Function

1 Introduction

1.1 Entropy Measures

Entropy, as a measure of randomness contained in a probability distribution, is the fundamental
concept in information theory and cryptography. There exists many entropy definitions and they
are not equally good for all applications. While the most famous (and most liberal) Shannon
Entropy [Sha48] is extremely useful in information theory, the use of much more conservative
measures, like min-entropy or collision entropy, is necessary in cryptographic applications, like
extracting randomness. Misunderstanding about what is a suitable entropy notion, is a common
problem in practical designs and not only of a theoretical concern because it leads to vulnerabilities
due to overestimating security. In fact, when entropy is underestimated, security of real-world
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applications can be broken [DPR+13]. That’s why the standards for random bits generating [BK12]
strongly recommend the use of min-entropy for secure implementations.

However, under some circumstances it is possible to relate the Shannon Entropy and the amount
of extractable entropy. Basically, this is when the entropy source generates bits or blocks of bits in
an independent way. Such an assumption (even if idealistic) is of a crucial importance for provable
secure analysis of true random number generators [BL05, BKMS09, VSH11, LPR11], one of the
fundamental and most challenging topics in real-world cryptography.

1.2 Our Results and Techniques

1.2.1 Brief Summary.

We investigate in deep details the gap between Shannon Entropy and Renyi Entropy (focusing
on smooth collision entropy and smooth min-entropy) in a given entropy source. We impose no
restrictions on the source and obtain general and tight bounds as well as identify worst cases. Our
results are mostly negative, in the sense that the gap might be extremely big and even almost full
Shannon Entropy does not guarantee the closeness to the uniform distribution. Our negative results
are partially known in the literature or in folklore. However, to the best of our knowledge, our
analysis for the first time provides a comprehensive and detailed study of this problem, establishing
really tight bounds. Moreover, it may be of independent interest because of the techniques we
successfully applied.

1.2.2 Results.

Bounding Renyi Entropy by Shannon Entropy. Interested in establishing a bound on the
amount of extractable entropy in terms of Shannon Entropy only, we ask the following question

Q: Suppose that the Shannon Entropy H1(X) of a random variable X ∈ {0, 1}n is at
least k. What is the best possible lower bound on the collision entropy H2(X)?

Our Theorem 1 gives a complete answer to this question. The conclusion has been briefly summa-
rized in the table below

Domain of X H1(X) Region Min. `2-distance to uniform Min. value of H2(X)

{0, 1}n n−∆
2n∆ > 13 Θ

(
∆ log−1(2n∆

)
n− log2

(
1 + Θ

(
2n∆ log−1(2n∆

))
2n∆ 6 13 O (∆) n− log2 (1 +O (2n∆))

Table 1: Minimal collision entropy given Shannon Entropy constraints

The statement and some further discussions can be found in Section 3. Interestingly, the shape
of the “worst” distribution X is pretty simple: a combination of a one-point heavy mass with a
flat distribution outside. In fact, it has been already observed in the literature that such a shape
provides good separations for Shannon Entropy [Cac97]. But to our knowledge, we first prove the
opposite: this shape is really best possible.

Infeasibility of uniformity tests based on entropy estimators. If an n-bit random
variable X satisfies H1(X) = n then it must be uniform. It might be tempting then to think that
the very small entropy gap ∆ = n − H1(X) (when entropy is extremely “condensed”) implies the
closeness to the uniform distribution.
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Q: Suppose that the Shannon Entropy H1(X) of a random variable X ∈ {0, 1}n is at
least n − ∆ where ∆ ≈ 0. What is the best possible upper bound on the distance
between X and the uniform distribution Un?

Using Theorem 1 we prove that for the statistical distance (`1 distance) the gap ∆ can be as small
as ε but still the source is Ω(ε log−1 ε)-far from the uniform distribution. This shows that an appli-
cation of entropy estimators to test sequences of truly random bits might be problematic, because
estimating entropy within an additive error smaller than negligible value ε is computationally in-
efficient. Having said this, we stress that entropy estimators like Maurer’s Universal Test [Mau92]
are still powerful tools of discovering the most of defects, which appear within a broader margin of
error. See Corollary 3 and Remark 4 for the statement and a short discussion.

Large gap between Shannon and smooth collision entropy. The collision entropy of
a distribution X constitutes a lower bound on the number of extractatable almost-uniform bits.
Therefore, the following question is natural

Q: Suppose that the Shannon Entropy H1(X) of a random variable X ∈ {0, 1}n is at
least n −∆ where ∆ 6 1. What is the best possible lower bound on H2(X)? Does it
help if we relax the problem and consider H2(X ′) where X ′ is close to X?

As a negative result, we demonstrate that the gap between the Shannon Entropy and Renyi Entropy
could be almost as big as the length of the entropy source output (that is almost maximal possible).
Moreover, smoothing entropy, even with weakly security, does not help. For example, we construct
a 256-bit string of more than 255 bits of Shannon Entropy, but only 19 bits of (smooth) Renyi
entropy. For more details and the precise statement we refer to Corollary 4 in Section 4.2. To our
knowledge, our analysis of smooth Renyi entropy is original, though the separation for non-smooth
entropy is known [BBM95]. The separation is an easy corollary from the proof of Theorem 1.

Large gap between Shannon and extractable Entropy. Min entropy gives only a lower
bound on extractable entropy. However, its smooth version can be used to establish an upper
bound on the amount of almost random bits, of required quality, that can be extracted from a
given source.

Q: Suppose that the Shannon Entropy H1(X) of a random variable X ∈ {0, 1}n is at
least n −∆ where ∆ < 1. How many bits that are close to uniform can be extracted
from X?

Again, analogously to the previous result, we provide a separation between Shannon and extractable
entropy, where the gap is almost as big as the length of the random variable. For example, we
construct a 256-bit string of more than 255.5 bits of Shannon Entropy, but only 10 bits of extractable
entropy, even if we allow them to be of very weak quality, not really close! For more details and
the precise statement we refer to Corollary 5 in Section 4.2. To our knowledge, the concrete tight
bounds we provide are new, though a similar “extreme” numerical example can be found in [Cac97].
The separation is again a straightforward application of ideas behind Theorem 1.

Converting Shannon Entropy into Renyi Entropy. Even though the gap in our separations
are almost as big as the length of the source output, there might be some small amount of Renyi
Entropy present in every distribution of high Shannon Entropy.

Q: Suppose that the Shannon Entropy of a random variable X ∈ {0, 1}n is at least
n−∆ where ∆ > 1. Does X have some non-trivial amount of collision entropy?
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Using our Theorem 1 we establish a simple and tight bound on this amount: it is about 2 log2 n−
2 log2 ∆. For example, in the concrete case of a 256-bit string of Shannon Entropy 255 we find that
the necessary amount of Renyi entropy is 15. We also establish an interesting rule of thumb: for
much more than one bit of Renyi entropy in the output of a source, its Shannon Entropy must be
bigger than the half of its length. The more details can be found in Corollary 6 in Section 4.2. Our
conversion can be applied in some settings where Shannon Entropy is the easiest or most reliable
entropy notion to measure, but for security reasons a more conservative measure of randomness is
preferable.

1.2.3 Techniques

To prove our main technical results, we use standard convex optimization techniques combined
with some calculus which allows us to deal with implicit equations. In particular, we demonstrate
that the Lambert-W function is useful in studying Shannon Entropy constraints.

1.3 Organization of the paper

We start with necessary definitions and explanations of basic concepts in Section 2. Our main result
is discussed in Section 3. Further applications are given in Section 4. We end with the conclusion
in Section 5. The proofs of main results, which are technical and complicated a bit, appear in
Section 5.

2 Preliminaries

2.1 Basic Notions.

By US we denote the uniform distribution over a set S, and Un is a shortcut for the uniform n-bit
distribution. The closeness of two distributions X,Y over the same domain is most commonly
measured by the so called statistical or variational distance SD(X;Y ). It is defined as the half of
the `1-distance between the probability mass functions SD(X;Y ) = 1

2

∑
x |Pr[X = x]− Pr[Y = x]|.

In this paper we use also the `2-distance between probability distributions, defined as d2(X;Y ) =√∑
x (Pr[X = x]− Pr[Y = x])2. For convenience we define also the collision probability of X as

the probability that two independent copies of X collide: CP(X) =
∑

x Pr[X = x]2.

2.2 Entropy Definitions.

Below we define the three key entropy measures, already mentioned in the introduction. It is worth
of noting that they all are special cases of a much bigger parametrized family of Renyi entropies.
However the common convention in cryptography, where only these three matter, is to slightly
abuse the terminology and to refer to collision entropy when talking about Renyi entropy, keeping
the names for Shannon and Min-Entropy.

Definition 1 (Entropy notions). The Shannon Entropy H(X) = H1(X), the collision entropy (or
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Renyi entropy) H2(X), and the Min-Entropy H∞(X) of a distribution X are defined as follows

H(X) =
∑
x

Pr[X = x] log Pr[X = x] (1)

H2(X) = − log

(∑
x

Pr[X = x]2

)
(2)

H∞(X) = − log max
x

Pr[X = x]. (3)

Remark 1 (Comparing different entropies). It is easy to see that we have

H(X) > H2(X) > H∞(X),

with the equality if and only if X is uniform.

2.3 Entropy Smoothing

The Concept. Entropy Smoothing is a very useful concept of replacing one distribution by a
distribution which is very close in the statistical distance (which allows keeping its most important
properties, like the amount of extractable entropy) but more convenient for the application at hand
(e.g. a better structure, removed singularities, more entropy).

Applications. The smoothing technique is typically used to increase entropy by cutting of big
but rare “peaks” in a probability distribution. Probably the most famous example is the so called
Asymptotic Equipartition Property (AEP). Imagine a sequence X of n independent Bernoulli
trials, where 1 appears with probability p > 1/2. Among the all n-bit sequences the most likely
ones are those with 1 on almost all places. In particular H∞(X) = −n log p. However, for the
most of sequences the number of 1’s oscillates around pn (these are so called typical sequences).
By Hoeffding’s concentration inequality, the number of 1’s is at most pn + h with probability
1−exp(−2h2/n). For large n and suitably chosen h, the distribution of X approaches a distribution
X ′ of min-entropy H∞(X ′) ≈ −n(p log p + (1 − p) log(1 − p)) ≈ H(X) (the relative error here is
of order O(n−1/2)), much larger than the min-entropy of the original distribution! A quantitative
version of this fact was used in the famous construction of a pseudorandom generator from any one-
way function [HILL88]. Renner and Wolf revisited the smoothing technique in entropy framework
and came up with new applications [RW04].

Definition 2 (Smooth Entropy, [RW04]). Suppose that α ∈ {1, 2,∞}. We say that the ε-smooth
entropy of order α of X is at least k if there exists a random variable X ′ such that SD(X;X ′) 6 ε
and Hα(X ′) > k.

For shortness, we also say smooth Shannon Entropy, smooth Renyi entropy or smooth min-
entropy. We also define the extractable entropy of X as follows

Definition 3 (Extractable Entropy, [RW05]). The ε-extractable entropy of X is defined to be

Hε
ext(X) = max

U : ∃f∈Γε(X→U)
log |U| (4)

where Γε(X → U) consists of all functions f such that SD(f(X,R);UU , R) 6 ε where R is uniform
and independent of X and UU .
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2.4 Extractors.

Roughly speaking, an extractor is a randomized function which produces an almost uniform string
from a longer string but not of full entropy. The randomization here is necessary if one wants an
extractor working for high-entropy sources; the role of that auxiliary randomness is similar to the
purpose of catalysts in chemistry.

Definition 4 (Strong Extractors [NZ96]). A strong (k, ε)-extractor is a function Ext : {0, 1}n ×
{0, 1}d → {0, 1}k such that

SD(Ext(X,Ud);Uk+d) 6 ε. (5)

A very simple, efficient and optimal (regarding to the necessarily entropy loss) extractor is based
on universal hash functions. Recall that a class H of functions from n to m bits is universal [CW79]
if for any different x, y there are exactly |H|/2m functions h ∈ H such that h(x) = h(y).

Lemma 1 (Leftover Hash Lemma). Let H be a universal class of functions from n to m bits,
let H be chosen from H at random and let X be an n-bit random variable. If H2(X) > k, then

SD(H(X), H;Um, H) 6 1
2 · 2

m−k
2 .

By Lemma 1 and the properties of the statistical distance we obtain

Corollary 1 (Bound on extractable entropy, [RW05]). We have Hε
ext(X) > H

ε/2
2 (X)−2 log(1/ε)−1.

Note that to extract k bits ε-close to uniform we need to invest k+2 log(1/ε) bits of entropy; the
loss of 2 log(1/ε) bits here is optimal [RTS00]. Wile there are many other extractors, the Leftover
Hash Lemma is particularly often used in the TRNG design [BST03, BKMS09, VSH11] because it
is simple, efficient, and provable secure. Extractors based on the LHL are also very important in
key derivation problems [BDK+11].

3 Main Result

3.1 Maximizing Collisions given Shannon Entropy

Below we answer the posted question on the best bound on H2 in terms of H1. The “worst case”
distribution, which minimizes the gap, is pretty simple: it is a combination of a one-point mass at
some point and a uniform distribution outside.

Theorem 1. Let X be a random variable with values in a d-element set. If H(X) = k, then

H2(X) > − log2

(
b2 +

(1− b)2

d− 1

)
(6)

where b is the unique solution to

H(b) + (1− b) log2(d− 1) = k (7)

under the restriction b > 1
d (H(b) denotes the entropy of a bit equal 1 with probability b). The

bound in Equation (6) is best possible.

Remark 2 (The implicit equation in Theorem 1). The number b is defined nondirectly depending
on d and k. In Section 3.2, we will show how to accurately approximate the solution of this equation.

The proof of Theorem 1 appears in Appendix A. The main idea is to write down the posted question
as a constrained optimization problem and apply standard Lagrange multipliers techniques.
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3.2 Closed-Form Bounds for Solutions

Below we present a tight formula approximating the solution to Equation (7). We will substitute
it to Equation (6) in order to obtain a closed-form expression.

Lemma 2 (The solution for moderate gaps). Let b be the solution to Equation (7) and let ∆ =
log2 d− k be the entropy gap. Suppose d∆ > 13. Then we have

0.84∆

log2(d∆)− 1.52
6 b 6

1.37∆

log2(d∆)− 1.98
(8)

The proof is referred to Appendix B. The main idea is to solve Equation (8) approximately using
the so called Lambert W function, that matches Shannon-like expressions of the form y log y. Here
we discuss the lemma and its applications.

Remark 3 (Establishing tighter constants). The numerical constants in Lemma 2 can be made
sharper if needed. Under the (mild) assumption that ∆−1 = 2o(log2 d) and d∆ = ω(1) (as d grows),
one can get

b =
(1 + o(1))∆

log2(d∆)− log2 e− log2 log2 e + o(1)
(9)

The gap between 1.52 and 1.98 is self-improving, in the sense that knowing in advance a better
upper bound on b one makes it closer to 0. In turn, the gap between 0.84 and 1.37 can be made
closer to 0 by choosing in the proof a more accurate approximation for the Lambert W function.

Now we are ready to compute minimal collision entropy given Shannon Entropy.

Corollary 2 (Minimal collision entropy, general case). let X∗ minimizes H2(X) subject to H(X) >
n−∆ where X takes values in a given d-element set. If d∆ > 13 then

0.6∆

log(d∆)
6 d2(CP(X∗), U) 6

1.89∆

log(d∆)
(10)

where U is uniform over the domain of X. Hence, d2(CP(X∗), U) = Θ
(
∆ log−1(d∆)

)
for d∆ > 13

and d2(CP(X∗), U) = O (∆) if d∆ 6 13.

Proof of Corollary 2. We will consider two cases.
Case I: d∆ > 13. By Lemma 2 we get

0.84∆

log2(d∆)
6 b 6

2.95∆

log2(d∆)
(11)

By the last inequality and the fact that x→ x
log2 x

is increasing for x > e we get

bd >
0.84d∆

log2(d∆)
> 2.95

Let b0 = 1
d . By the last inequality we get b− b0 > 0.66b. Since

b2 +
(1− b)2

d− 1
= b0 +

d

d− 1
· (b− b0)2,
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by the identity d2(X;U)2 =
∑

x Pr[X = x]2 − 1
d and the definition of collision entropy we get

d2(X∗, U)2 = CP(X∗)− b0 =
d

d− 1
· (b− b0)2.

Note that d∆ > 13 implies d log2 d > 13 (because ∆ 6 log2 d) and hence d > 5. By this inequality
and b− b0 > 0.66b we finally obtain

0.43b2 6 d2(X∗, U)2 6 1.2b2 (12)

and the result for the case d∆ > 13 follows by combining Equation (11) and Equation (12).
Case II: d∆ < 13. We do a trick to “embed” our problem into a higher dimension. If p ∈ Rd is the
distribution of X, define p′ ∈ Rd+1 by p′i = (1 − γ)p′i for i 6 d and p′d+1 = γ. It is easy to check

that H1(p′) = −(1− γ) log2(1− γ)− γ log2 γ + (1− γ)H1(p). Setting γ = 1
1+2H1(p)

we get

H1(p′)−H1(p) = −(1− γ) log2(1− γ)− γ log2 γ − γH1(p)

− (1− γ) log2(1− γ)− γ log2

(
2H1(p)γ

)
= log2

2H1(p) + 1

2H1(p)

> log2

d+ 1

d

> (1− b) log2

d

d− 1

where we use b > 1
d in the last line. Since H1(p′) − H1(p) = 0 for γ = 0, by the continuity we

conclude that there exists γ = γb such that p′ satisfies

(1− b) log2

d+ 1

d
= H1(p′)−H1(p).

Now we see that the same b solves Equation (7) with the dimension d′ = d+ 1 and the constraint
k′ = H1(p′). By H1(p′) − H1(p) > log2

d+1
d we conclude that ∆′ = log2(d + 1) − H1(p′) 6

log2 d− H1(p) = ∆ so the entropy gap is even smaller. After a finite number of step, we end with
∆′ 6 ∆, the same b and d′∆′ > 13. Then by the first case we get that the squared distance is at
most O(∆′2) = O(∆2).

4 Applications

4.1 Negative Results

Corollary 3 (Shannon Entropy estimators are inefficient as uniformity tests). Suppose that n �
1 and ε > 2−0.9n. Then there exists a distribution X ∈ {0, 1}n such that H1(X) > n − ε but
SD(X;Un) = Ω(ε log−1 ε).

Remark 4. Note that typically one estimates Shannon Entropy within an additive error O(1). The
margin required here is however much tighter! The best known bounds on the running time for an
additive error O(ε) are polynomial in ε [AOST14,Hol06]1 . With ε secure (meaning small) enough
for cryptographic purposes, such a precision is simply not achievable in a reasonable time!

1More precisely they require poly(ε−1) independent samples.

8



Proof of Corollary 3. Take d = 2n in Corollary 2 and ∆ = ε. Suppose that ∆ = Ω(2−0.9n). we have
d2(X;Un) = Θ(∆n−1). In the other hand we have the trivial inequality d2(X;Un) 6 4 · SD(X;Un)
(which is a consequence of well known inequalities for `p-norms) and the result follows.

Corollary 4 (Separating Smooth Renyi Entropy and Shannon Entropy). For any n,δ such that
2−n < δ < 1

6 , there exists a distribution X ∈ {0, 1}n such that H(X) > (1− 2δ)n + log2(1− 2−n),
H2(X) 6 2 log2(1/δ)− 2 and Hε

2(X) 6 H2(X) + 1 for every ε 6 δ. For a concrete setting consider
n = 256 and δ = 2−10. We have H(X) > 255 but H2(X) 6 18 and Hε

2(X) 6 19 for every ε < 2−9!

Proof. We use a distribution of the same form as the optimal distribution as for problem (14).
Denote N = 2n and define pi = 1−2δ

N−1 for i = 2, . . . , N , and p1 = 2δ. It is easy to see that
H(p) > (1− 2δ)n+ log2(1− 2n) and H2(p) < log(1/δ)− 2. Consider now arbitrary distribution p′

such that SD(p;p′) 6 ε. We have p′i = pi + εi where
∑

i εi = 0 and
∑

i |εi| = 2ε. Note that∑
i>1

p′
2
i −

∑
i>1

p2
i > 2

∑
i>1

piεi

> −2(1− 2δ)ε

N − 1

= − 2ε

1− 2δ
·
∑
i>1

pi
2,

and p′21 − p2
1 > −δ2 = −1

2p
2
1. Thus, for 2ε+ δ < 1

2 it follows that
∑

i>1 p
′2
i >

(
1− 1

2

)∑
i>1 p

2
i and

the result follows.

Corollary 5 (Separating Extractable Entropy and Shannon Entropy). For any n > 1, ε ∈ (0, 1)
and δ > 2−n, there exists a random variable X ∈ {0, 1}n such that H(X) > (1−ε−δ)n+log2(1−2−n)
but Hε

ext(X) 6 log(1/δ). For a concrete setting consider n = 256 and δ = 2−10. We have H(X) >
255.5 but Hε

ext(X) 6 10 for every ε < 2−10!

Proof of Corollary 5. We use a distribution of the same form as the optimal distribution as for
problem (14). Fix ε, δ (we can assume ε + δ < 1) and denote N = 2n. We define pi = 1−ε−δ

N−1 for
i = 2, . . . , N , and p1 = ε + δ. Note that pi < δ for i 6= 1. It follows then that Hε

∞(p) 6 log(1/ε).
In the other hand, note that p is a convex combination of the distribution uniform over the first
N − 1 points (with the weight 1 − ε − δ and a point mass at N (with the weight ε + δ. It follows
that Shannon Entropy of p is at least (1− ε− δ) · log2(N − 1).

4.2 Positive Results

Corollary 6 (Collision entropy when the Shannon gap is moderate). Let k 6 n − 1 and let
X∗ ∈ {0, 1}n minimizes H2(X) subject to H(X) > k where X ∈ {0, 1}n. Then

2 log2 n− 2 log2(n− k) 6 H2(X∗) 6 2 log2 n− 2 log2(n+ 1− k) + 1. (13)

For instance, if k = 255 then 15 < H2(X∗) < 16.

Proof of Corollary 6. Let b be the solution to Equation (7) (here we have d = 2n). Since 0 6
H(b) 6 1 we have k

log2(d−1) > 1− b > k−1
log2(d−1) . We improve the left-hand side inequality a little bit

Claim 1. We have 1− k−1
log2 d

> b > 1− k
log2 d

.
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Proof of Claim 1. Since b > 1
d we have log2(d− 1)− log(1− b) > log2 d and therefore

k = −b log2 b− (1− b) log2(1− b) + (1− b) log2(d− 1)

> −b log2 b+ (1− b) log2 d

from which it follows that 1− b 6 k
log2 d

. The left part is already proved.

The result now easily follows by observing that (1−b)2
d−1 > b2 holds true for b 6 −1+

√
d−1

d−2 6 1
2 , also

for d = 2. This is indeed satisfied by Claim 1 and k 6 log2 d− 1.

5 Conclusion

Our results put in a quantitative form the well-accepted fact that Shannon Entropy does not have
good cryptographic properties, unless additional strong assumptions are imposed on the entropy
source. The techniques we applied may be of independent interests.
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A Proof of Theorem 1

Proof of Theorem 1. Consider the corresponding optimization problem

minimize
p∈Rd

− log2

(
d∑
i=1

p2
i

)
subject to 0 6 pi, i = 1, . . . , d.

d∑
i=1

pi − 1 = 0

d∑
i=1

−pi log2 pi > k

(14)

The Lagrangian associated to (14) is given by

L(p, (λ1, λ2)) = − log2

(
d∑
i=1

p2
i

)
− λ1

(
d∑
i=1

pi − 1

)
− λ2

(
−

d∑
i=1

pi log2 pi − k

)
(15)

Claim 2. The first and second derivative of the Lagrangian (15) are given by

∂L

∂pi
= −2 log2 e · pi

p2
− λ1 + λ2 log2 e + λ2 log2 pi (16)

∂2L

∂pipj
= 4 log2 e ·

pipj
(p2)2

+ [i = j] ·
(
−2 log2 e

p2
+
λ2 log2 e

pi

)
(17)

Claim 3. Let p∗ be a non-uniform optimal point to 14. Then it satisfies p∗i ∈ {a, b} for every i,
where a, b are some constant such that

−2 log2 e

p∗2
+
λ2 log2 e

a
> 0 > −2 log2 e

p∗2
+
λ2 log2 e

b
(18)

Proof of Claim 3. At the optimal point p we have ∂L
∂pi

= 0 which means

−2 log2 e · pi
p2
− λ1 + λ2 log2 e + λ2 log2 pi = 0, i = 1, . . . , d. (19)

Think of p2 as a constant, for a moment. Then the left-hand side of Equation (19) is of the form
−c1pi + c2 log2 pi + c3 with some non-negative constants c1, c2 and a real constant c3. Since the
derivative of this function equals −c1 + c2

pi
with some non-negative constants c1, c2, the left-hand

side is concave. Hence the equation Equation (19) has at most two solutions {a, b}, where a < b and
both are not dependent on i. Moreover, its left-hand side has the maximum between a and b, thus
we must have −c1 + c2

a > 0 > −c1 + c2
b . Expressing this in terms of λ1, λ2 we get Equation (18).

Claim 4. Let p∗ and a, b be as in Claim 3. Then pi = a for all but one index i.

Proof of Claim 4. The tangent space of the constraints
∑d

i=1 pi−1 = 0 and −
∑d

i=1 pi log2 pi−k =
0 at the point p is the set of all vectors h ∈ Rd satisfying the following conditions∑d

i=1 hi = 0∑d
i=1−(log2 pi + log2 e)hi = 0

(20)
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Intuitively, the tangent space includes all infinitesimally small movements that are consistent with

the constraints. Let D2L =
(

∂2L
∂pipj

)
i,j

be the second derivative of L. It is well known that the

necessary second order condition for the minimizer p is hT (D2)Lh > 0 for all vectors in the tangent
space (20). We have

hT · (D2L) · h = 4 log2 e ·

(∑d
i= pihi

)2

(p2)2
+

d∑
i=1

(
−2 log2 e

p2
+
λ2 log2 e

pi

)
h2
i .

Now, if the are two different indexes i1, i2 such that p∗i1 = p∗i2 = b, we can define hi1 = −δ, hi2 = δ
and hi = 0 for i 6∈ {i1, i2}. Then we get

hT · (D2L) · h = 2

(
−2 log2 e

p2
+
λ2 log2 e

b

)
δ2

which is negative according to Equation (18). Thus we have reached a contradiction.

Finally, taking into account the case of possibly uniform p∗ and combining it with the last claim
we get

Claim 5. The optimal point p∗ satisfies p∗i0 = b and p∗i = 1−b
d−1 for i 6= i0, for some b > 1

d . Then

we have H(p∗) = H(b) + (1− b) log2(d− 1) and H2(p∗) = − log2

(
b2 + (1−b)2

d−1

)
.

It remains to take a closer look at Equation (7). It defines b as an implicit function of k and d.
Its uniqueness is a consequence of the following claim

Claim 6. The function f(b) = H(b)+(1−b) log2(d−1) is strictly decreasing and concave for b > 1
d .

Proof of Claim 6. The derivative equals ∂f
∂b = − log2

b
1−b − log2(d − 1) and hence, for 1

d < b < 1,

is at most − log2

1
d

1− 1
d

− log2(d − 1) = 0. The second derivative is ∂2f
∂b2

= − log2 e
b(1−b) . Thus, the claim

follows.

The statement follows now by Claim 5 and Claim 6.

B Proof of Lemma 2

Proof. Let ∆ = log2 d − k be the gap in the Shannon Entropy. Note that from Equation (7) and
the inequality −2 6 d(log2(d− 1)− log2 d) 6 − log2 e it follows that

−b log2 b− (1− b) log2(1− b)− b log2 d = −∆ + C1(d) · d−1

where log2 e 6 C1 6 2. Note that f
(

1
2

)
= −1 + 1

2 log2(d − 1) < log2 d − 1. Since ∆ 6 1 implies

f(b) > log2 d−1, by Claim 6 we conclude that b < 1
2 . Next, observe that 1 6 −(1−b) log2(1−b)

b 6 log2 e,
for 0 < b < 1

2 . This means that −(1− b) log2(1− b) = −b log2C2(d) where 1
e 6 C2(d) 6 1

2 . Now we
have

−b log2(C2(d) · d · b) = −∆ + C1(d) · d−1.
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Let y = C2(d) · d · b. Our equation is equivalent to y ln y = C3(d) · d · ∆ − C1(d)C3(d). where
C3 = C2/ log2 e. Using the Lambert-W function, which is defined as W (x) ·eW (x) = x, we can solve
this equations as

b =
eW (C3(d)d∆−C3(d)C1(d))

C2(d)d
. (21)

For x > e we have the well-known approximation for the Lambert W function [HH08]

lnx− ln lnx < W (x) 6 lnx− ln lnx+ ln(1 + e−1). (22)

Provided that C3(d)d∆− C3(d)C1(d) > 1, which is satisfied if d∆ > 6, we obtain

b =
C3(d)d∆− C3(d)C1(d)

C3(d)d · log2 (C3(d)d∆− C3(d)C1(d))
· C4(d) (23)

where 1 6 C4(d) 6 1 + e−1. Since the function x → x
log2 x

is increasing for x > e and since for

d∆ > 13 we have C3(d)d∆− C3(d)C1(d) > e, from Equation (23) we get

b 6
C3(d)d∆

C3(d)d · log2 (C3(d)d∆)
· C4(d) =

C4(d)∆

log2 (C3(d)d∆)
(24)

from which the right part of Equation (8) follows by the inequalities on C3 and C4. For the lower
bound, note that for d∆ > 13 we have C3(d)d∆ − C3(d)C1(d) > C3(d)d∆ · 11

13 because it reduces
to C1(d) 6 2, and that C3(d)d∆ · 11

13 > 13 · 1
e log2 e ·

11
13 > e. Therefore, by Equation (23) and the

mononicity of x
log2 x

we get

b >
11
13C3(d)d∆

C3(d)d · log2

(
11
13C3(d)d∆

) · C4(d) =
11
13C4(d)∆

log2

(
11
13C3(d)d∆

) , (25)

from which the left part of Equation (8) follows by the inequalities on C3 and C4.
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