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A Chinese Remainder Theorem Approach to

Bit-Parallel GF (2n) Polynomial Basis

Multipliers for Irreducible Trinomials

Haining Fan

Abstract

We show that the step “modulo the degree-n field generating irreducible polynomial” in the clas-

sical definition of the GF (2n) multiplication operation can be avoided. This leads to an alternative

representation of the finite field multiplication operation. Combining this representation and the Chinese

Remainder Theorem, we design bit-parallel GF (2n) multipliers for irreducible trinomials un + uk + 1

on GF (2) where 1 < k ≤ n/2. For some values of n, our architectures have the same time complexity

as the fastest bit-parallel multipliers – the quadratic multipliers, but their space complexities are reduced.

Take the special irreducible trinomial u2k + uk + 1 for example, the space complexity of the proposed

design is reduced by about 1/8, while the time complexity matches the best result. Our experimental

results show that among the 539 values of n such that 4 < n < 1000 and xn+xk+1 is irreducible over

GF (2) for some k in the range 1 < k ≤ n/2, the proposed multipliers beat the current fastest parallel

multipliers for 290 values of n when (n − 1)/3 ≤ k ≤ n/2: they have the same time complexity, but

the space complexities are reduced by 8.4% on average.

Index Terms

Finite field, multiplication, polynomial basis, the Chinese Remainder Theorem.

I. INTRODUCTION

Finite field GF (2n) multipliers can be classified according to different criteria [1], for exam-

ple, bases (polynomial, normal and dual bases etc.), working mode (bit-serial, bit-parallel and
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digital serial), design approach (polynomial-based and matrix-based) and algorithm complexity

(quadratic, subquadratic and hybrid), etc. In VLSI, the space and time complexities are two

major factors to measure the efficiency of a bit-parallel multiplier. The space complexity is

usually represented in terms of the total number of 2-input XOR gates (the GF (2) addition)

and AND gates (the GF (2) multiplication) used. The corresponding time complexity is given

in terms of the maximum delay faced by a signal due to these XOR and AND gates. Symbols

“TA” and “TX” are often used to represent the delays of one 2-input AND gate and one 2-input

XOR gate, respectively.

The quadratic bit-parallel multipliers usually adopt the schoolbook methods to compute the

product of two polynomials or a Toeplitz matrix-vector product (TMVP), e.g.,

(a1x+ a0) · (b1x+ b0) = a1b1x
2 + (a1b0 + a0b1)x+ a0b0 (1)

and

T · V =

 T1 T0

T2 T1

 V0

V1

 =

 T1V0 + T0V1

T2V0 + T1V1

 , (2)

where T is a 2i×2i Toeplitz matrix and V a 2i×1 column vector, T0, T1 and T2 are 2i−1×2i−1

block submatrices of T , and V0 and V1 are 2i−1 × 1 subvectors of V .

On the other hand, the subquadratic bit-parallel multipliers usually adopt the Karatsuba for-

mulae or their matrix versions, e.g.,

(a1x+ a0)(b1x+ b0) = (a1b1)x
2 + {[(a0 + a1)(b0 + b1)]− [a1b1 + a0b0]}x+ a0b0 (3)

and

T · V =

 T1 T0

T2 T1

 V0

V1

 =

 P0 + P2

P1 + P2

 , (4)

where P0, P1 and P2 are three TMVPs of size 2i−1:
P0 = (T0 + T1)V1,

P1 = (T1 + T2)V0,

P2 = T1(V0 + V1).

The main advantage of the subquadratic multipliers is that their space complexities are often

small. But their time complexities are often larger than their quadratic counterparts. In fact,

the current fastest bit-parallel GF (2n) multiplier are all based on the quadratic approach. For
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practical applications, the hybrid approach can provide a trade-off between the time and space

complexities, see for example, [2], [3] and [4] etc. These multipliers first perform a few sub-

quadratic iterations to reduce the whole space complexities, and then a quadratic algorithm on

small input operands to achieve lower time complexity.

There also exist some other hybrid multipliers. In [5], the Karatsuba formula (3) is used only in

the first step to compute the product of two degree-(n−1) polynomials, and then the schoolbook

formula (1) is used to compute the 3 products of 6 degree-n−1
2

polynomials. Compared to pure

quadratic multipliers, the space complexity of this multiplier is reduced by about 1/4, but its

time complexity increases by 1TX .

Regarding the matrix approach, the block recombination method presented in [6] computes a

2i × 2i TMVP (T · V ) using the following two steps:

(i). Transfer the 2i × 2i TMVP (T · V ) into 4 TMVPs of size 2i−1 using (2);

(ii). Compute these 4 TMVPs using (4).

While keeping the time complexity unchanged, this method reduces the XOR gate complexity

at the cost of an increase of the AND gates. Therefore, “it is more suitable for ASIC implemen-

tations as the area of an XOR gate is larger than that of an AND gate in CMOS libraries”.

In this work, we also follow the “1-subquadratic-and-then-quadratic” computational mode,

and present a “symmetrical” result of [6]. Instead of using the Karatsuba formula (3) in the first

step, we use the Chinese Remainder Theorem (CRT). The key point of the proposed multipliers

is an alternative representation of the finite field multiplication operation, which is introduced in

Section II. Under this representation, the step “modulo the degree-n field generating irreducible

polynomial” in the classical definition of the GF (2n) multiplication operation can be avoided.

In Section III, we present a new explicit formula of the product of two GF (2n) elements for

irreducible trinomials un + uk + 1 (1 < k < n/2). In Section IV, we describe the structures of

two types of parallel multipliers, and compare them with the fastest bit-parallel multipliers – the

quadratic multipliers. For some values of n, our architectures have the same time complexity as

the fastest quadratic multipliers, but their space complexities are reduced. Especially, we present

two types of parallel multipliers for irreducible trinomials u2k + uk + 1 in Section V. The space

complexity of these multipliers is only about 7/8 that of the current fastest multiplier, while

they have the same time complexity. Finally, concluding remarks are made in Section VI.



4

II. BASIC IDEA

Let f(u) = un + uk + 1 (n > 2) be an irreducible trinomial of degree n over GF (2). All

elements of the finite field GF (2n) := GF (2)[u]/(f(u)) can be represented using a polynomial

basis {xi|0 ≤ i ≤ n−1}, where x is a root of f . Given two field elements a(x) =
∑n−1

i=0 aix
i and

b(x) =
∑n−1

i=0 bix
i, where ai, bi ∈ GF (2), the classical polynomial basis multiplication algorithm

computes the GF (2n) product c(x) =
∑n−1

i=0 cix
i of a(x) and b(x) using the following two steps.

For the sake of simplicity, we omit “(x)” in polynomial “a(x)” and denote a(x) by a.

(i) Conventional polynomial multiplication:

s = a · b =
2n−2∑
t=0

stx
t,

where

st =
∑
i+j=t

0≤i,j<n

aibj =


t∑

i=0

aibt−i, 0 ≤ t ≤ n− 1,

n−1∑
i=t+1−n

aibt−i, n ≤ t ≤ 2n− 2.
(5)

(ii) Reduction modf = xn + xk + 1:

c =
∑n−1

i=0
cix

i = s mod f. (6)

For the quadratic parallel multipliers, the schoolbook method is often used in the first step.

On the other hand, the subquadratic parallel multipliers often use the Karatsuba formula, which

is a special case of the following Chinese Remainder Theorem [7].

Theorem 1 (The polynomial CRT): Let F be a field, t > 1, m1,m2, · · · ,mt be pairwise

coprime polynomials in F [x], M =
∏t

i=1mi and Mi = M
mi

. The unique solution y mod M

to the system of linear congruences ⟨y⟩mi
= yi is

y =

⟨
t∑

i=1

yi ·Mi ·
⟨
M−1

i

⟩
mi

⟩
M

,

where ⟨y⟩mi
denotes the remainder of y mod mi, and

⟨
M−1

i

⟩
mi

is the multiplicative inverse of

Mi mod mi and 1 ≤ i ≤ t.

The product c obtained in the second step is the remainder of s divided by f , which is defined

in the following polynomial division algorithm.
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Theorem 2 (The polynomial division algorithm): Let F be a field, f, s ∈ F [x] with deg(f) >

0. Then there exist unique polynomials q (the quotient) and c (the remainder) in F [x] with

0 ≤ degree(c) < degree(f) such that

s = f · q + c. (7)

Because f is irreducible over GF (2), the CRT cannot be used directly in the second step, and

it seems that the step “modulo the degree-n irreducible polynomial f” in this classical definition

of the GF (2n) multiplication operation can not be avoided. In fact, it can be removed.

In the following, we use the CRT to perform the GF (2n) multiplication operation. Instead

of reducing the irreducible polynomial f in (6), we compute the quotient and the remainder of

s modulo the reducible polynomial f + 1 = xn + xk. Our design is based on the following

identity:

s = f · q + c = (f + 1)q + (c+ q). (8)

We note that addition and subtraction are the same in fields of characteristic 2.

Because degree(s) ≤ 2n−2, degree(f+1) = n, degree(c) ≤ n−1 and degree(q) ≤ n−2, the

degree of the polynomial (c+q) satisfies the condition degree(c+q) ≤ n−1. Therefore, equation

(8) is essentially the division algorithm of s divided by the reducible polynomial f+1 = xn+xk.

Based on (8), the product c of two GF (2n) elements a and b can be constructed via the

following two steps:

(i). Compute the quotient q and the remainder (c+ q) of s = a · b divided by f + 1;

(ii). Output the summation of q and (c+ q) obtained in step (i), i.e., c = q + (c+ q).

In the next section, we derive the explicit formula of c = ab in GF (2n) for the case 1 < k <

n/2. For the case k = 1, i.e., f + 1 = xn + x = (xn−1 + 1)x , our multiplier is the same as the

quadratic polynomial basis multipliers, and provides no improvement. In this case, equation (8)

is

s = (f + 1)q + (c+ q) = (xn + x)q + (c+ q) = xnq + (c+ q + xq).

Because degree(xq) ≤ n− 1 and degree(c) ≤ n− 1, the degree of the remainder (c+ q + xq)

is also no more than n − 1. Therefore, the quotient q is just the most significant part of the

degree-(2n − 2) polynomial s = a · b, and the proposed two-step method to compute c is the

same as the direct calculation of s mod xn + x+ 1.
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III. THE EXPRESSION OF c = ab ∈ GF (2n) FOR 1 < k < n/2

In this section, we consider the case 1 < k < n/2. The special case 2k = n will be discussed

later. We first derive the expressions of the quotient and the remainder of s = a · b divided by

(f + 1) = xn + xk, and then present the expression of c = ab in GF (2n).

A. Compute the quotient q of s = a · b divided by (f + 1) = xn + xk

Since degree(q) ≤ n − 2 in (8), we can define q as q :=
∑n−2

i=0 qix
i. Replacing f in (8) by

f = xn + xk + 1, we have

s = (f + 1)q + (c+ q) = q · xn + q · xk + (c+ q).

Table I depicts bit positions of the terms q · xn, q · xk and (c+ q) in this equation.

TABLE I

BIT POSITIONS OF THE TERMS IN s = q · xn + q · xk + (c+ q).

2n−2 2n−k n+k−2 n n−1 k 0

qn−2 ... qn−k ... qk−2 ... q0 Polynomial c+ q

qn−2 ... qn−k qn−k−1 ... q0

It is clear that

qi = si+n, for k − 1 ≤ i ≤ n− 2. (9)

Moreover, we have si+n = qi + qi+n−k for 0 ≤ i ≤ k− 2. The terms qi+n−k for 0 ≤ i ≤ k− 2

are the same as the terms qj for n− k ≤ j ≤ n− 2, which also appear in (9). Thus we have

qi = si+n + si+2n−k, where 0 ≤ i ≤ k − 2. (10)

Using (9) and (10), we get the following expression of q:

q =
n−2∑
i=0

qix
i =

k−2∑
i=0

(si+n + si+2n−k)x
i +

n−2∑
i=k−1

si+nx
i

=
n−2∑
i=0

si+nx
i +

k−2∑
i=0

si+2n−kx
i. (11)
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B. Compute the remainder (c+ q) = ⟨a · b⟩f+1

Because k < n/2, i.e., 2k < n, we have the Bezout identity [8]

xk · xn−2k + (xn−k + 1) · 1 = 1.

So we know that xn−2k is the multiplicative inverse of xk mod (xn−k + 1) and 1 is the multi-

plicative inverse of (xn−k + 1) mod xk. Therefore, the remainder (c + q) = ⟨a · b⟩xn+xk can be

computed using the CRT as follows:

⟨a · b⟩xn+xk =
⟨
⟨a · b⟩xk · (xn−k + 1) · 1 + ⟨a · b⟩xn−k+1 · x

k · xn−2k
⟩
xn+xk . (12)

Thus, we need to compute the terms ⟨a · b⟩xk and ⟨a · b⟩xn−k+1 in (12) first. The expression

of ⟨a · b⟩xk can be derived from the expression of a · b given in (5). It is clear that

⟨a · b⟩xk =
k−1∑
i=0

six
i. (13)

In order to compute the term ⟨a · b⟩xn−k+1 =
⟨
⟨a⟩xn−k+1 · ⟨b⟩xn−k+1

⟩
xn−k+1

in (12), we first

compute ⟨a⟩xn−k+1. Since it is the input of the operation
⟨
⟨a⟩xn−k+1 · ⟨b⟩xn−k+1

⟩
xn−k+1

, we define

it as
∑n−k−1

i=0 gix
i. Because k < n/2, i.e., n− k > n/2, we have

n−k−1∑
i=0

gix
i := ⟨a⟩xn−k+1

=

⟨
n−k−1∑
i=0

aix
i +

n−1∑
i=n−k

aix
i

⟩
xn−k+1

=
n−k−1∑
i=0

aix
i +

⟨
k−1∑
j=0

aj+n−kx
j+n−k

⟩
xn−k+1

=
n−k−1∑
i=0

aix
i +

k−1∑
i=0

ai+n−kx
i

=
n−k−1∑
i=k

aix
i +

k−1∑
i=0

(ai + ai+n−k) x
i. (14)

Similarly, we can obtain the expression of
∑n−k−1

i=0 hix
i := ⟨b⟩xn−k+1.
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Now the term ⟨a · b⟩xn−k+1 in (12) can be calculated using the schoolbook polynomial multi-

plication algorithm in (5).

⟨a · b⟩xn−k+1 =
⟨
⟨a⟩xn−k+1 · ⟨b⟩xn−k+1

⟩
xn−k+1

=

⟨(
n−k−1∑
i=0

gix
i

)(
n−k−1∑
i=0

hix
i

)⟩
xn−k+1

=

⟨
n−k−1∑
i=0

(
i∑

j=0

gjhi−j

)
xi +

2n−2k−2∑
i=n−k

(
n−k−1∑

j=i−n+k+1

gjhi−j

)
xi

⟩
xn−k+1

=
n−k−1∑
i=0

(
i∑

j=0

gjhi−j

)
xi +

n−k−2∑
t=0

(
n−k−1∑
j=t+1

gjht+n−k−j

)
xt

=

(
n−k−1∑
j=0

gjhn−k−1−j

)
xn−k−1 +

n−k−2∑
i=0

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi. (15)

Based on the above equations (12), (13) and (15), we can obtain the following expression of

the remainder (c+ q) = ⟨a · b⟩f+1.

(c+ q) = ⟨a · b⟩xn+xk

=
⟨
⟨a · b⟩xk · (xn−k + 1) · 1 + ⟨a · b⟩xn−k+1 · x

k · xn−2k
⟩
xn+xk

=

⟨(
k−1∑
i=0

six
i

)
· (xn−k + 1)+[(

n−k−1∑
j=0

gjhn−k−1−j

)
xn−k−1 +

n−k−2∑
i=0

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi

]
xn−k

⟩
xn+xk

=
k−1∑
i=0

six
i+n−k +

k−1∑
i=0

six
i +

(
n−k−1∑
j=0

gjhn−k−1−j

)
xn−k−1 +

⟨
n−k−2∑
i=0

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi+n−k

⟩
xn+xk

. (16)

The degree of the polynomial in the last angle bracket, i.e.,
∑n−k−2

i=0 (...) xi+n−k, is 2n−2k−2.

It is greater than or equal to n when 2k ≤ n− 2. In such cases, monomials in the angle bracket

with degrees greater than or equal to n should be reduced by xn + xk. For the cases 2k = n− 1

and 2k = n, the degree of the polynomial in the angle brackets is less than n, so we have⟨∑n−k−2
i=0 (...) xi+n−k

⟩
xn+xk

=
∑n−k−2

i=0 (...) xi+n−k. Therefore, these two cases have different
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expressions of (c + q) from the case 2k ≤ n − 2, and we discuss them later. For the case

2k ≤ n− 2, equation (16) can be rewritten as

(c+ q)

=
k−1∑
i=0

six
i +

(
n−k−1∑
j=0

gjhn−k−1−j

)
xn−k−1 +

k−1∑
i=0

six
i+n−k+

⟨
k−1∑
i=0

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi+n−k

⟩
xn+xk

+

⟨
n−k−2∑
i=k

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi+n−k

⟩
xn+xk

=
k−1∑
i=0

six
i +

(
n−k−1∑
j=0

gjhn−k−1−j

)
xn−k−1 +

∑
k−1
i=0

(
si+

i∑
j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi+n−k +

∑
n−k−2
i=k

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi

=
k−1∑
i=0

six
i +
∑

n−k−2
i=k

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi +

(
n−k−1∑
j=0

gjhn−k−1−j

)
xn−k−1 +

∑
n−1
t=n−k

(
st−n+k +

t−n+k∑
j=0

gjht−n+k−j +
n−k−1∑

j=t−n+k+1

gjht−j

)
xt. (17)
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C. The expression of c = ab in GF (2n)

Based on the expressions of q, i.e., (11), and c+ q, i.e., (17), we can obtain the expression of

c = q + (c+ q) in GF (2n).

c =
n−2∑
i=0

si+nx
i +

k−2∑
i=0

si+2n−kx
i +

k−1∑
i=0

six
i +

n−k−2∑
i=k

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi +

(
n−k−1∑
j=0

gjhn−k−1−j

)
xn−k−1 +

n−1∑
i=n−k

(
si−n+k +

i−n+k∑
j=0

gjhi−n+k−j +
n−k−1∑

j=i−n+k+1

gjhi−j

)
xi

=
n−k−1∑
i=0

si+nx
i +

n−2∑
i=n−k

[si+n + si−n+k] x
i +

k−2∑
i=0

[si+2n−k + si]x
i + sk−1x

k−1 +

n−k−2∑
i=k

(
i∑

j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

)
xi +

(
n−k−1∑
j=0

gjhn−k−1−j

)
xn−k−1 +

n−1∑
i=n−k

(
i−n+k∑
j=0

gjhi−n+k−j +
n−k−1∑

j=i−n+k+1

gjhi−j

)
xi + sk−1x

n−1

=
k−2∑
i=0

{si+n + [si+2n−k + si]}xi + {sn+k−1 + (sk−1)}xk−1 +

n−k−2∑
i=k

{
si+n +

i∑
j=0

gjhi−j +
n−k−1∑
j=i+1

gjhi+n−k−j

}
xi +

{
s2n−k−1 +

n−k−1∑
j=0

gjhn−k−1−j

}
xn−k−1 +

n−2∑
i=n−k

{
[si+n + si−n+k] +

i−n+k∑
j=0

gjhi−n+k−j +
n−k−1∑

j=i−n+k+1

gjhi−j

}
xi +

{
(sk−1) +

k−1∑
j=0

gjhk−1−j +
n−k−1∑
j=k

gjhn−1−j

}
xn−1. (18)

It is clear that the term sk−1 in the two round brackets are the same, and the two terms in the

two square brackets are also the same. Therefore these expressions can be reused.

D. An Example

From the expression of the quotient q of a · b divided by (f +1) = x5+x2, i.e., (11), we have

q = a4b4x
3 + (a3b4 + a4b3)x

2 + (a2b4 + a4b2 + a3b3)x+ a1b4 + a4b1 + a2b3 + a3b2 + a4b4.
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In order to obtain (c+ q) = ⟨a · b⟩x2(x3+1) using the CRT, we compute ⟨a⟩x3+1 = a2x
2+(a1+

a4)x + (a0 + a3) and ⟨b⟩x3+1 = b2x
2 + (b1 + b4)x + (b0 + b3) first. Next, we compute the two

intermediate values in the CRT formula, i.e., (13) and (15), using the schoolbook polynomial

multiplication algorithm:

⟨a · b⟩xk = (a0b1 + a1b0)x+ a0b0

and

⟨a · b⟩xn−k+1 =
⟨
⟨a⟩x3+1 · ⟨b⟩x3+1

⟩
x3+1

= [(a0 + a3)b2 + a2(b0 + b3) + (a1 + a4)(b1 + b4)]x
2 +

[(a0 + a3)(b1 + b4) + (a1 + a4)(b0 + b3) + a2b2]x+

(a0 + a3)(b0 + b3) + (a1 + a4)b2 + a2(b1 + b4).

Then, from the CRT expression of the remainder (c+ q) = ⟨a · b⟩f+1, i.e., (12), we have

c+ q =
⟨
⟨a · b⟩xk · (xn−k + 1) · 1 + ⟨a · b⟩xn−k+1 · x

k · xn−2k
⟩
xn+xk

= [a0b1 + a1b0 + (a0 + a3)(b1 + b4) + (a1 + a4)(b0 + b3) + a2b2]x
4 +

[a0b0 + (a0 + a3)(b0 + b3) + (a1 + a4)b2 + a2(b1 + b4)]x
3 +

[(a0 + a3)b2 + a2(b0 + b3) + (a1 + a4)(b1 + b4)]x
2 +

(a0b1 + a1b0)x+ a0b0.

Finally, by (18), the expression of c = ab = q + (c+ q) is

([a0b1 + a1b0] + (a0 + a3)(b1 + b4) + (a1 + a4)(b0 + b3) + a2b2)x
4 +

([a0b1 + a1b0] + a2b4 + a4b2 + a3b3)x+

([a0b0 + a4b4] + (a0 + a3)(b0 + b3) + (a1 + a4)b2 + a2(b1 + b4))x
3 +

([a0b0 + a4b4] + a1b4 + a4b1 + a2b3 + a3b2) +

(a3b4 + a4b3 + (a0 + a3)b2 + a2(b0 + b3) + (a1 + a4)(b1 + b4))x
2,

where the two reusable terms are in the square brackets. It is equal to the following one obtained
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using the schoolbook method.

(a0b4 + a4b0 + a1b3 + a3b1 + a2b2 + a3b4 + a4b3)x
4 +

(a0b3 + a3b0 + a1b2 + a2b1 + a2b4 + a4b2 + a3b3 + a4b4)x
3 +

(a0b2 + a2b0 + a1b1 + a1b4 + a4b1 + a2b3 + a3b2 + a3b4 + a4b3 + a4b4)x
2 +

(a0b1 + a1b0 + a2b4 + a4b2 + a3b3)x+

(a0b0 + a1b4 + a4b1 + a2b3 + a3b2 + a4b4).

The space and time complexities of the proposed multipliers are as follows: 22 AND gates,

23 XOR gates and 1TA + 3TX gate delays. On the other hand, the complexities of the current

fastest quadratic GF (25) parallel multipliers, i.e., [9], [10] and [11] etc., are 25 AND gates,

24 XOR gates and 1TA + 3TX gate delays (see Table III in the end of the next section). We

note that these multipliers adopt either the polynomial basis Montgomery representation ([10])

or the shifted polynomial basis ([9] and [11]). On the other hand, the minimal gate delay of the

polynomial basis non-Montgomery multipliers is 1TA+4TX . Please refer to multipliers of [12],

[13] and [14] in Table III.

IV. TWO TYPES OF THE CRT-BASED MULTIPLIERS

In this section, we present two different computational procedures to compute the reusable

terms, and thus lead to two types of multipliers. The type-A multipliers can achieve the minimal

number of the XOR gates. For some irreducible trinomials un + uk + 1, the time complexity of

this type of multiplier is not optimal. The other type of multipliers – Type-B multipliers – can

overcome this disadvantage at the cost of some more XOR gates. Therefore, these two types of

CRT-based multipliers can provide a space-time trade-off.

A. Complexities of the Type-A multipliers

We need to determine the complexities of all coefficients ci’s (0 ≤ i ≤ n − 1) in equation

(18). This equation includes only terms si, hi and gi.

The expressions of si (0 ≤ i ≤ 2n − 2) are given in (5). For 0 ≤ i ≤ n − 1, the term

si =
∑i

j=0 ajbi−j is the summation of i+ 1 product terms ajbi−j . For n ≤ i ≤ 2n− 2, the term

si =
∑n−1

j=i+1−n ajbi−j is the summation of 2n− 1− i product terms ajbi−j .
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The expressions of gi (0 ≤ i ≤ n− k − 1) are given in (14). The expression of hi is similar

to that of gi and they have the same complexity. Clearly, the complexities to compute all gi and

hi for 0 ≤ i ≤ n− k − 1 are 2k XOR gates and 1 TX gate delay due to the parallelism.

TABLE II

THE NUMBER OF THE PRODUCT TERMS IN THE COEFFICIENT ci OF xi .

xi The number of the product terms

0 ≤ i ≤ k − 2 (2n− 1− (n+ i)) + [(2n− 1− (i+ 2n− k)) + (i+ 1)] = n+ k − 1− i

i = k − 1 (2n− 1− (n+ k − 1)) + (k) = n

k ≤ i ≤ n− k − 2 (2n− 1− (n+ i)) + (n− k) = 2n− k − 1− i

i = n− k − 1 (2n− 1− (2n− k − 1)) + (n− k) = n

n− k ≤ i ≤ n− 2 [(2n− 1− (i+ n)) + (i− n+ k + 1)] + (n− k) = n

i = n− 1 (k) + (n− k) = n

For the simplicity of description, we also call gihj in (18) a product term. Therefore, the

number of the AND gates in the proposed multipliers is equal to the number of the product

terms excluding the reusable terms. Table II lists the number of the product terms in each

coefficient of xi. The numbers of the two groups of the reusable product terms are overlined

and underlined in the table. It is easy to see that k+ k(k− 1) = k2 AND gates and k ∗ (k − 1)

XOR gates can be saved. Therefore, the total number of the AND gates used in the Type-A

multiplier is

∆ = (k + 2)n+
k−2∑
i=0

(n+ k − 1− i) +
n−k−2∑
i=k

(2n− k − 1− i)− k2

= (3n2 + 3k2 − 4kn− n+ k)/2

= n2 +
(n− k)(n− 1− 3k)

2
. (19)

The total number of the XOR gates is the summation of 2k (computing gi and hi) and the

number of “+” in equation (18) excluding the reusable terms:

2k + [(∆ + k2)− n]− k ∗ (k − 1) = ∆ + 3k − n. (20)

The time complexity of a multiplier is the maximum AND and XOR gate delays of the

coefficient ci for 0 ≤ i ≤ n − 1. Before deriving it using Table II, we prove the following

lemma.
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Lemma 3: Let v and i be positive integers. If i ≥ 2v then v +
⌈
log2

⌈
i
2v

⌉⌉
= ⌈log2 i⌉.

Proof: Suppose i is a t-bit binary number. It is clear that t− 1 ≥ v for i ≥ 2v.

Let integers Q and R be the quotient and the remainder of i divided by 2v. It is obvious that

the lemma is true if R = 0.

Otherwise, 2t > i > 2t−1 and we have ⌈log2 i⌉ = log2 2
t = t. On the other hand, because the

(t−v)-bit quotient Q is in the range 2t−v−1 ≤ Q ≤ 2t−v−1, we have 2t−v−1+1 ≤
⌈

i
2v

⌉
≤ 2t−v.

Therefore, we have
⌈
log2

⌈
i
2v

⌉⌉
= t− v, and the lemma is also true for 2v > R > 0.

For k ≤ i ≤ n− k − 2, the maximum gate delay is from the coefficient

ck = sk+n +
k∑

j=0

gjhk−j +
n−k−1∑
j=k+1

gjhn−j,

which includes (2n−1−(k+n)) = n−k−1 product terms aibj (in sk+n) and n−k product terms

gihj . In order to compute ck, the terms gi and hi should be generated first according to equation

(14), and then they are ANDed in the schoolbook multiplication (15). The product terms gihj

are just the intermediate result of this multiplication operation, and they can be generated at the

cost of (1TA + 1TX) gate delays. During this period, the n− k − 1 product terms aibj in sk+n

can be XORed pairwise and produce
⌈
n−k−1

2

⌉
summations. After the above (1TA + 1TX) gate

delays, these summations and the n− k product terms gihj are XORed using a binary XOR tree

of the smallest height to obtain the coefficient ck. Therefore, the total gate delay is

TA +

⌈
1 + log2(

⌈
n− k − 1

2

⌉
+ n− k)

⌉
TX = TA + ⌈log2(3n− 3k − 1)⌉TX (21)

by lemma 3.

For 0 ≤ i ≤ k − 2, the maximum gate delay is from the coefficient c0 = sn + [s2n−k + s0],

which includes (n − 1) + [k] = n + k − 1 product terms aibj . In order to obtain the explicit

gate delay formula of c0, we assume that 2v−1 < k ≤ 2v for some positive integer v. Because

the term [s2n−k + s0], which is the summation of k product terms aibj , will be reused, these

k product terms can be XORed using a single binary XOR subtree of height v. Therefore, the

total gate delay to compute the subtree of [s2n−k + s0] is TA + vTX .

The (n− 1) product terms aibj in sn can then be processed as follows. Let n− 1 = y · 2v + z

by the division algorithm, where 0 ≤ z < 2v. We split these (n − 1) product terms into
⌈
n−1
2v

⌉
groups, where the last group may have z product terms if z > 0 and the other groups have
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2v product terms each. During the period to compute [s2n−k + s0], i.e., TA + vTX , the product

terms in these
⌈
n−1
2v

⌉
groups can be XORed in parallel using

⌈
n−1
2v

⌉
binary XOR subtrees of the

same height v. Finally, these
⌈
n−1
2v

⌉
summations and the result of [s2n−k + s0] are XORed using

a binary XOR tree at the cost of
⌈
log2(

⌈
n−1
2v

⌉
+ 1)

⌉
XOR gate delays. Therefore, the total XOR

gate delay to compute the coefficient c0 is

v +

⌈
log2(

⌈
n− 1

2v

⌉
+ 1)

⌉
= ⌈log2(n− 1 + 2v)⌉ ≤ ⌈log2(n+ 2k − 1)⌉ (22)

by lemma 3 and 2v < 2k ≤ 2v+1.

We now count the gate delay of the coefficient ci for n− k ≤ i ≤ n− 2, i.e.,

ci =
n−2∑

i=n−k

[si+n + si−n+k] +
i−n+k∑
j=0

gjhi−n+k−j +
n−k−1∑

j=i−n+k+1

gjhi−j.

Each coefficient ci includes a reusable term [si+n + si−n+k] and n− k product terms gihj . This

reusable term, which is also in ci for 0 ≤ i ≤ k−2, includes (2n−1−(i+n))+(i−n+k+1) = k

product terms aibj . Therefore, these coefficients ci’s have the same distribution pattern of the

product terms aibj and gihj , and their gate delays are equal. These coefficients ci’s can be

computed similar to the way we computed c0. The only difference is that all product terms in

c0 are of the form aibj , but the terms gi and hi here should be generated first using 1TX delay.

Therefore, the size of the groups should be halved, and the total XOR gate delay to compute

these coefficients is

v +

⌈
log2(

⌈
n− k

2v−1

⌉
+ 1)

⌉
= ⌈log2(2n− 2k + 2v)⌉ ≤ ⌈log2(2n)⌉ (23)

by lemma 3 and 2v < 2k ≤ 2v+1.

By (18), the gate delays of ci for the other two cases, i.e., i = k − 1 and i = n− k − 1, are

not greater than those for c0 and ck.

Therefore, the XOR gate delay of the Type-A multiplier is the largest one among (21), (22)

and (23). Because 2n− 2k+2v > n− 1+2v iff 2k < n+1, the time complexity of the Type-A

multiplier is equal to TA + ⌈log2(max(3n− 3k − 1, 2n− 2k + 2v))⌉TX .

B. Complexities of the Type-B multipliers

The method to compute the coefficient c0 presented before (22) is not optimal for some values

of n and k. For example, u68+u33+1 is irreducible on GF (2). The coefficient c0 = sn+[s2n−k+
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s0] includes 67+[33] = 100 product terms, The term [s2n−k+s0] is the summation of 33 product

terms and it will be reused in c35. Following the above method, we should compute the summation

of these 33 product terms using a single binary XOR tree of height 6, for 25 < 33 ≤ 26. The

corresponding gate delay is 1TA + 6TX . Then we should split the other 67 product terms of sn

into 2 groups: one includes 26 = 64 product terms and the other 67− 64 = 3. These two groups

can also be computed at the cost of 1TA + 6TX gate delays. Finally, the two summations of

these two groups and the value of [s2n−k + s0], i.e., 3 values, are XORed at the cost of 2TX .

Therefore, the time complexity of this method is 1TA +8TX . However, from Table III, the time

and space complexities of the fastest quadratic bit-parallel GF (268) multipliers are: 682 = 4624

AND gates, 682 − 1 = 4623 XOR gates and 1TA + ⌈log2(2 ∗ 68− 33)⌉TX = 1TA + 7TX gate

delays.

The Type-B multiplier is designed to overcome this disadvantage at the cost of some more

XOR gates. Suppose that there are l product terms aibj and m product terms gihj in the coefficient

ct, we compute ct using a binary XOR tree of the smallest height with at least (l + 2m) leaf

nodes. The product terms aibj are placed at the first level – the leaf nodes, and gihj the second

level. Finally, the coefficient ct is computed similar to the way we computed ck in the Type-A

multiplier before (21).

Return to the above example, the Type-B multiplier computes c0 using a binary XOR tree of

height 7 (100 < 27): the 100 product terms of s2n−k, s0 and s2n−k are placed at the leaf nodes

starting from the leftmost position successively. Therefore, the 32 product terms in s2n−k form

a subtree of height 5, and the only product term a0b0 in s0 a subtree of height 0. The results of

these two subtrees, i.e., the values of s2n−k and s0, can then be reused in the coefficient c35.

The coefficient c35 is the summation of the reusable term [s2n−k+s0] and 35 product terms gihj .

It can be computed using a binary XOR tree of the smallest height with at least 32+1+2∗35 =

103 leaf nodes so that the above two height-5 and height-0 subtrees can be embedded into it.

Because 26 < 103 < 27, the height of this tree is 7. The structure of this height-7 tree is similar

to that of ck in the Type-A multiplier before (21), i.e., the 33 product terms of s2n−k and s0 are

placed at the leaf nodes starting from the leftmost position successively, and then the 35 product

terms gihj at the second level. Clearly, the two values of the height-5 and height-0 subtrees

constructed from the product terms in s2n−k and s0 have been obtained in the binary XOR tree

of c0. Compared to the Type-A multiplier, it means that the Type-B multiplier first deletes the
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whole height-6 subtree of the reusable term [s2n−k+s0], and then XORs the height-5 and height-0

subtrees of s2n−k and s0 into the height-7 binary XOR tree of c35 using 2 XOR gates. From (18)

and Table II, we know that there are k reusable summations. Therefore, by (19) and (20), the AND

and XOR complexities of the Type-B multiplier are ∆ = (3n2 + 3k2 − 4kn− n+ k)/2 = 4064

AND gates and ∆ + 3k − n + (2−1) · k = 4128 XOR gates respectively. Moreover, from

Table II, the time complexity of the multiplier is the gate delay to compute ck = c33, and it

is 1TA + ⌈log2(3 ∗ 68− 3 ∗ 33− 1)⌉TX = 1TA + 7TX . Clearly, this scheme has the same time

complexity as the fastest parallel multiplier, but the AND and XOR gate complexities are reduced

by about 12.1% and 10.7% respectively.

We note that it is a coincidence that s2n−k of the reusable term [s2n−k + s0] in this example

includes 32 product terms, and they form the height-5 subtree. Generally, for a reusable term

[si + sj] in the Type-B multiplier, the leaf nodes of its subtrees may come from either si, sj , or

both si and sj .

The other examples of both types of multipliers in GF (26) are given in the end of the next

section.

In order to generalize this idea, we define w(k) as the Hamming weight of the integer k. The

k reusable summations are in ci and ci+n−k for 0 ≤ i ≤ k − 1. They each include k product

terms aibj , and we arrange them in the way discussed above. Thus we have w(k) subtrees:

the j-th nonzero bit in the binary expansion of k corresponds to the subtree of height j. After

constructing the binary XOR tree of ci, we obtain the summation of leaf nodes in each subtree.

These w(k) subtree summations can then be XORed into the binary XOR tree of ci+n−k at the

cost of w(k) XOR gates.

Therefore, the number of the AND gates used in this type of multiplier is equal to that of the

Type-A multiplier, but the number of the XOR gates increases by [w(k)−1] · k. By (20), this

number is ∆+ 3k − n+ k · [w(k)−1] = ∆ + 2k − n+ k · w(k).

The time complexity of the Type-B multiplier can be obtained similar to the way we processed

ck in the Type-A multiplier before (21). For k ≤ i ≤ n−k−2, the maximum XOR gate delay is

also from the coefficient ck, and it was given in (21) as TA + ⌈log2(3n− 3k − 1)⌉TX . For 0 ≤

i ≤ k−2, the maximum gate delay is from the coefficient c0, which is TA+⌈log2(n+ k − 1)⌉TX .
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The gate delays of the other coefficients are not greater than those of ck and c0. Because

3n− 3k − 1 > n+ k − 1 for k < n/2,

the time complexity of the Type-B multiplier is equal to TA + ⌈log2(3n− 3k − 1)⌉TX .

C. The case n = 2k + 1

For the case xn+xk+1 where n = 2k+1, the expression of c = ab is slightly different from

equation (18), i.e., the summation
∑n−k−2

i=k {· · · } in (18) should be deleted. But the space and

time complexities of the two types of multipliers coincide with the values in Table III.

D. Comparisons

We list the complexities of the proposed multipliers and other trinomial-based quadratic

parallel multipliers in Table III, where WDB, PB and SPB denote weekly dual bases, polynomial

bases and shifted polynomial bases respectively. Because their AND gate delays are all 1TA, we

ignore them and list only the XOR gate delays in the last column.

TABLE III

COMPLEXITIES OF f(u) = un + uk + 1-BASED PARALLEL MULTIPLIERS FOR 2 ≤ k < n/2

Multipliers # AND Gate # XOR Gate XOR Gate Delay

PB reduction matrix [12] 2004 n2 n2 − 1 ⌈log2(4n− 4)⌉

WDB [15] 1998 n2 n2 − 1 ⌈log2(2n+ 2k − 2)⌉

PB Mastrovito [13] 2007 n2 n2 − 1 ⌈log2(2n+ 2k − 3)⌉

PB Mastrovito [14] 2003 n2 n2 + (k2 − 3k)/2 ⌈log2(2n+ k − 2)⌉

SPB Mastrovito [16] 2005 n2 n2 − 1 ⌈log2 2n⌉

SPB matrix [9] 2007 n2 n2 + [(n− k)2 + k2 − 3n]/2 ⌈log2(2n− k)⌉

PB Montgomery [10] 2009 n2 n2 − 1 ⌈log2(2n− k)⌉

SPB XOR tree [11] 2006 n2 n2 − 1 ⌈log2(2n− k)⌉

Karatsuba hybrid n even [5] 1999 3n2

4
3n2

4
+ 2.5n+ k − 4 ⌈log2(8n− 8)⌉

Karatsuba hybrid n odd [5] 1999 3n2+2n−1
4

3n2

4
+ 4n+ k − 5.75 ⌈log2(8n− 8)⌉

PB Type-A ∆ ∆+ 3k − n ⌈log2(max(3n− 3k − 1, 2n− 2k + 2v))⌉

PB Type-B ∆ ∆+ 2k − n+ k · w(k) ⌈log2(3n− 3k − 1)⌉

where ∆ = n2 + (n−k)(n−1−3k)
2

≤ n2 when n−1
3

≤ k < n
2

, 2v−1 < k ≤ 2v .
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The space complexity of the fastest quadratic parallel multipliers for irreducible trinomials are

n2 AND gates and n2 − 1 XOR gates. For the purpose of comparison, we derive the condition

that the proposed Type-A multipliers outperforms these results. The inequalities are as follows: # AND gates: ∆ = n2 + (n−k)(n−1−3k)
2

≤ n2,

# XOR gates: ∆+ 3k − n ≤ n2 − 1,

and their solutions are  # AND gates: (n− 1)/3 ≤ k < n/2,

# XOR gates: (n− 1)/3 ≤ k < n/2.

As for the time complexity, thanks to the property of the ceiling function “⌈·⌉”, these mul-

tipliers may have the same XOR gate delay, depending on the values of n and k. But the

distribution of the irreducible trinomials over GF (2) is not regular. Thus we can not give an

explicit comparison result. Moreover, in Table III, the expression of the XOR gate delay of

the Type-A multiplier involves the value of v, and the expression of the XOR gate number of

the Type-B multiplier the Hamming weight w(k). Therefore, it is hard to carry out a simple

theoretical evaluation of these multipliers. So we resort to experiments.

In order to compare the proposed two types of multipliers with the current fastest parallel

multipliers – the quadratic multipliers, we compute their space and time complexities for the

539 values of n such that 4 < n < 1000 and xn + xk + 1 is irreducible over GF (2) for some

k ∈ [2, n/2]. Our experimental results show that the proposed multipliers beat the current fastest

parallel multipliers for 290 values of n: they have the same time complexity, but the space

complexities are reduced by 8.4% on average.

V. TYPE-A AND TYPE-B MULTIPLIERS FOR n = 2k > 2

The trinomial u2k+uk+1 is irreducible over GF (2) if and only if k = 3i for some nonnegative

integer i [17]. In this case, we have (f+1) = x2k+xk = xk(xk+1), and thus the corresponding

Bezout identity is

xk · 1 + (xk + 1) · 1 = 1.
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Similarly, we can obtain the following expression of c = ab:

c =
k−2∑
i=0

(si+n + [si+3k + si])x
i +

(
(sk−1) +

k−1∑
j=0

gjhk−1−j

)
xn−1 +

n−2∑
i=k

(
[si+n + si−k] +

i−k∑
j=0

gjhi−k−j +
k−1∑

j=i−k+1

gjhi−j

)
xi + (s3k−1 + (sk−1))x

k−1.(24)

A. Type-A and Type-B multipliers

The two types of multipliers are similar to those presented in the previous section.

Table IV lists the number of the product terms in each coefficient ci of xi. The numbers of

the AND gates in the Type-A and Type-B multipliers are all equal to the number of the product

terms excluding the reusable terms. Similarly, k2 AND gates and k ∗ (k − 1) XOR gates can be

saved. Therefore, the total number of the AND gates is

(n− k + 1)n+
k−2∑
i=0

(3k − 1− i)− k2 = (7n2 − 2n)/8,

which coincides with the value of ∆ in (19).

The total number of the XOR gates in the Type-A multiplier is the summation of 2k (computing

gi and hi) and the number of “+” in equation (24) excluding the reusable terms:

2k + [((7n2 − 2n)/8 + k2)− n]− k ∗ (k − 1) = (7n2 + 2n)/8.

TABLE IV

THE NUMBER OF THE PRODUCT TERMS IN THE COEFFICIENT ci OF xi .

xi The number of the product terms

0 ≤ i ≤ k − 2 (2n− 1− (n+ i)) + [(2n− 1− (i+ 3k)) + (i+ 1)] = 3k − 1− i

i = k − 1 (2n− 1− (3k − 1)) + (k) = n

k ≤ i ≤ n− 2 [(2n− 1− (n+ i)) + (i− k + 1)] + k = n

i = n− 1 (k) + k = n

For 0 ≤ i ≤ k−1, the maximum gate delay is from the coefficient c0 = sn+[s3k+s0], which

includes 3k − 1 product terms aibj . Therefore, the gate delay of c0 in the Type-B multiplier is

TA + ⌈log2(3k − 1)⌉TX .

As for the Type-A multiplier, the reusable term [s3k+s0], which includes k product terms aibj ,

should be computed using a subtree at the cost of ⌈log2 k⌉TX gate delays. The rest of terms in
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c0, i.e., sn, includes 2k−1 product terms aibj , and they should be divided into ⌈(2k − 1)/k⌉ = 2

groups: one includes k product terms and the other k − 1. Finally, the two subtrees constructed

from these two groups and the reusable term [s3k+s0] are XORed at the cost of 2TX gate delays.

Therefore, in the Type-A multiplier, the total gate delay to compute c0 is TA+⌈2 + log2 k⌉TX =

TA + ⌈log2 4k⌉TX .

For k ≤ i ≤ n− 1, the maximum gate delay is from the coefficient

ck = [s3k + s0] + g0h0 +
k−1∑
j=1

gjhk−j,

which includes (2n − 1 − 3k) + 1 = k product terms aibj (in [s3k + s0]) and k product terms

gihj . Therefore, the gate delay of ck in the Type-B multiplier is TA+
⌈
1 + log2(

⌈
k
2

⌉
+ k)

⌉
TX =

TA + ⌈log2(3k)⌉TX .

As for the Type-A multiplier, the gate delay of ck can be counted similar to the way we

derived (23), and it is

v +

⌈
log2(

⌈
k

2v−1

⌉
+ 1)

⌉
= ⌈log2(2k + 2v)⌉ ≤ ⌈log2(4k)⌉

for 2v < 2k ≤ 2v+1.

Similarly, k · (w(k)− 1) more XOR gates are required in the Type-B multiplier.

Table V compares space and time complexities of different GF (2n) parallel multipliers for

irreducible trinomial un + uk + 1 (n = 2k > 2). Because w(k) ≤ ⌈log2 k⌉, we have k · w(k) ≤

n ⌈log2 n− 1⌉ /2. Therefore, the space complexity of the Type-B multiplier is only about 7/8

that of the current fastest multipliers, but they have the same time complexity.

B. An example

By (24), The expression of c = ab for the irreducible trinomial u6 + u3 + 1 is

([a1b1 + a0b2 + a2b0] + (a0 + a3)(b2 + b5) + (a1 + a4)(b1 + b4) + (a2 + a5)(b0 + b3))x
5 +

([a1b1 + a0b2 + a2b0] + a4b4 + a3b5 + a5b3)x
2 +

([a0b1 + a1b0 + a5b5] + (a0 + a3)(b1 + b4) + (a1 + a4)(b0 + b3) + (a2 + a5)(b2 + b5))x
4 +

([a0b1 + a1b0 + a5b5] + a2b5 + a5b2 + a3b4 + a4b3)x+

([a4b5 + a5b4 + a0b0] + (a1 + a4)(b2 + b5) + (a2 + a5)(b1 + b4) + (a0 + a3)(b0 + b3))x
3 +

[a4b5 + a5b4 + a0b0] + a1b5 + a5b1 + a2b4 + a4b2 + a3b3.
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TABLE V

COMPLEXITIES OF f(u) = un + uk + 1-BASED PARALLEL MULTIPLIERS FOR 2k = n > 2

Multipliers # AND Gate # XOR Gate XOR Gate Delay

PB Mastrovito [17] 1988 n2 (2n2 − n)/2 ⌈log2(8k)⌉

PB Mastrovito [18] 1999 n2 (2n2 − n)/2 ⌈log2(4k)⌉

PB mod reduction [19] 2002 n2 (2n2 − n)/2 ⌈log2(4k − 2)⌉

PB reduction matrix [12] 2004 n2 (2n2 − n)/2 ⌈log2(4k)⌉

WDB [15] 1998 n2 (2n2 − n)/2 ⌈log2(3k)⌉

SPB XOR tree [11] 2006 n2 (2n2 − n)/2 ⌈log2(3k)⌉

PB Mastrovito [13] 2007 n2 (2n2 − n)/2 ⌈log2(3k)⌉

PB Montgomery [10] 2009 n2 (2n2 − n)/2 ⌈log2(3k)⌉

Karatsuba hybrid [5] 1999 3n2/4 3n2/4 + 3n− 4 ⌈log2(16k − 8)⌉

PB Type-A (7n2 − 2n)/8 (7n2 + 2n)/8 ⌈log2(4k)⌉

PB Type-B (7n2 − 2n)/8 (7n2 − 2n)/8 + k · w(k) ⌈log2(3k)⌉

It is equal to the following one obtained using the schoolbook method.

(a0b5 + a5b0 + a1b4 + a4b1 + a2b3 + a3b2 + [a3b5 + a5b3 + a4b4])x
5 +

(a0b4 + a4b0 + a1b3 + a3b1 + a2b2 + [a2b5 + a5b2 + a3b4 + a4b3])x
4 +

(a0b3 + a3b0 + a1b2 + a2b1 + [a1b5 + a5b1 + a2b4 + a4b2 + a3b3])x
3 +

(a0b2 + a2b0 + a1b1 + a3b5 + a5b3 + a4b4)x
2 +

(a0b1 + a1b0 + a2b5 + a5b2 + a3b4 + a4b3 + a5b5)x+

a0b0 + a1b5 + a5b1 + a2b4 + a4b2 + a3b3 + a4b5 + a5b4.

The Type-A multiplier computes c0 and c3 using the following formulae:

reusable = [a4b5 + a5b4 + a0b0];

c0 = [reusable] + [a1b5 + a5b1 + a2b4 + a4b2] + [a3b3];

c3 = [reusable] + [(a1 + a4)(b2 + b5) + (a2 + a5)(b1 + b4)] + [(a0 + a3)(b0 + b3)].

The Type-B multiplier computes c0 and c3 using the following formulae:

subtree1 = a5b4 + a4b5;

subtree2 = a0b0;

c0 = [subtree1] + [subtree2] + [a1b5 + a5b1] + [a2b4 + a4b2] + [a3b3];

c3 = [subtree1]+ [subtree2]+ [(a1+a4)(b2+b5)]+[(a2+a5)(b1+b4)]+[(a0+a3)(b0+b3)].
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The complexities of the Type-B multiplier are as follows: 30 AND gates, 36 XOR gates and

1TA + 4TX gate delays. It is less efficient than the Type-A multiplier, whose complexities are

as follows: 30 AND gates, 33 XOR gates and 1TA + 4TX gate delays. On the other hand, the

complexities of the current fastest quadratic GF (26) parallel multipliers are 36 AND gates, 33

XOR gates and 1TA + 4TX gate delays, and it is also less efficient than the Type-A multiplier.

We note that 6 is a solution to (7n2 + 2n)/8 = (2n2 − n)/2. Therefore, the Type-A multiplier

and the current fastest quadratic GF (26) parallel multiplier have the same XOR gate complexity

for only this special case.

VI. CONCLUSIONS

We have presented an alternative representation of the finite field multiplication operation,

and designed two types of bit-parallel GF (2n) multipliers for irreducible trinomials. For the

539 values of n such that 4 < n < 1000 and un + uk + 1 is irreducible over GF (2) for some

k ∈ [2, n/2], our experimental results show that the proposed multipliers beat the current fastest

parallel multipliers for 290 values of n when k ∈ [(n − 1)/3, n/2]: they have the same time

complexity, but the space complexities are reduced by 8.4% on average. Especially, for the

special irreducible trinomial u2k + uk + 1, the proposed multipliers set a new record for the

space complexity.

Finally, we note that any polynomial e of degree less than 2 can be used in (8), i.e.,

a · b = f · q + c = (f + e)q + (c+ e · q).

REFERENCES

[1] H. Fan and M. A. Hasan, “A survey of some recent bit-parallel GF (2n) multipliers,” Finite Fields and Their Applications,

vol. 32, pp. 5–43, March 2015.

[2] C. Grabbe, M. Bednara, J. Shokrollahi, J. Teich, and J. von zur Gathen, “FPGA designs of parallel high performance

GF (2233) multipliers,” in Proc. Int. Symposium on Circuits and Systems (ISCAS 2003), vol. II, 2003, pp. 268–271.
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