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Abstract

In this paper we consider permutations on n symbols as bijections
on Z/nZ. Treating permutations this way facilitates us with additional
structures such as group, ring defined in the set Z/nZ. We explore
some of the properties of permutations arising out of this treatment.
We propose two properties viz. affine equivalence and non-linearity for
permutations on the lines similar to there description given in the case
of functions. We also establish some results which are quite similar to
those given for Boolean functions. We also define Mode Transform of
a permutation and investigate its relationship with non-linearity.

We propose an efficient algorithm using Mode transform for com-
puting non-linearity of a permutation and show that it is O(n2), as
compared to O(n3) of the direct approach. At the end we discuss
these properties in the context of cryptography.

keywords: Permutation Boolean Function Non-Linearity Affine
Equivalence Cryptography.

1 Introduction

In this paper we consider permutations on n symbols as bijections on the
ring of integers modulo n i.e., Z/nZ. By viewing a permutation on n symbols
as a member of symmetric group Sn only, we miss out on some properties
which deal with relations between elements being permuted. Treating them
as bijections on Z/nZ enables us to explore some interesting properties of
permutations and relations between permutations. We introduce a metric
structure on the set of permutations and extend the notion of non-linearity
and affine equivalence given for Boolean functions[4, 10, 14] to permutations.
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We adopt the idea of Hamming distance to establish a metric structure
in the set of permutations. The same is proposed in Section 2. We term
the evaluation function of affine permutation polynomial defined on Z/nZ
as affine permutations. We also define an equivalence relation viz., Affine
Equivalence on the set of permutations based on composition of a permuta-
tion with an affine permutation. In Section 3 we study affine equivalence of
permutations in detail and derive many counting formulae for them.

In Section 4 we define non-linearity of a permutation as the distance of
it from the set of all affine permutations. Using this notion of non-linearity,
we obtain some relations which are quite similar to the relations for non-
linearity of Boolean functions.

In Section 5 we define Mode Transform and establish its connection with
non-linearity. The naive computation of non-linearity of a permutation has
cubic time complexity. We present an algorithm for efficient computation of
non-linearity of a permutation using Mode transform. Finally, we prove that,
using our algorithm the non-linearity of a permutation can be computed in
quadratic time.

Non-linearity and Affine Equivalence of Boolean functions have cryp-
tographic significance. In Section 6, we try to explore the cryptographic
relevance of non-linearity and affine equivalence for Permutations. We try
to mathematically frame and generalize the existing thumb rules for selection
of permutations for cryptographic applications in terms of these properties.

2 Metric Structure of Sn

We consider set of permutations over Z/nZ. We choose the elements of
symmetric group Sn to be the bijections of Z/nZ. Our aim is to introduce
metric structure in Sn. We translate the idea of Hamming metric to the
set of permutations on Z/nZ. For f1, f2 ∈ Sn we define metric dH as,
dH(f1, f2) = n −

∑n−1
i=0 δ(f1(i) − f2(i)). δ being the Dirac delta function

defined as,

δ(n) =

{
1 if n = 0

0 otherwise

It can be proved that this distance satisfies all the axioms of a metric i.e.,

dH(f1, f2) ≥ 0 (1)

dH(f1, f2) = 0 iff f1 = f2 (2)

dH(f1, f2) = dH(f2, f1) (3)

dH(f1, f2) ≤ dH(f1, f3) + dH(f3, f2) (4)

In this case we observe an additional property we state in form of proposi-
tion.
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Proposition 2.1. For any f ∈ Sn dH(f1, f2) = dH(ff1, ff2) = dH(f1f, f2f)

Proof.

dH(f1f, f2f) = n−
n−1∑
i=0

δ(f1f(i)− f2f(i))

= n−
n−1∑
i=0

δ(f1(f(i))− f2(f(i)))

Let f(i) = j. Then we can write,

dH(f1f, f2f) = n−
n−1∑

f−1(j)=0

δ(f1(j)− f2(j))

As f ∈ Sn, {j : f−1(j) = i, i ∈ Z/nZ} = Z/nZ, we have:

dH(f1f, f2f) = n−
n−1∑
j=0

δ(f1(j)− f2(j)) = dH(f1, f2)

For second part observe that

δ(f1(i)− f2(i)) = 1

⇔ f1(i) = f2(i)

⇔ f(f1(i)) = f(f2(i)) As f ∈ Sn
⇔ δ(ff1(i)− ff2(i)) = 1

Which leads us to conclude

δ(f1(i)− f2(i)) = δ(ff1(i)− ff2(i)) (5)

Summing both sides of eq.(5) over i from 0 to n − 1 we get the desired
result.

3 Affinely Equivalent Permutations

We define shift permutation τb, b ∈ Z/nZ as,

τb(x) = x+ b

Further, we define scaling permutation σa, a ∈ (Z/nZ)∗ as,

σa(x) = ax
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Here we adopt the convention that the operations ’+’ and ’×’ are the addi-
tion and multiplication modulo n when applied on elements of Z/nZ. Here-
after, we will continue to follow this convention throughout the paper.

It is easy to verify that both τb, b ∈ Z/nZ and σa, a ∈ (Z/nZ)∗ are
permutations. The obvious properties of σ and τ functions are given in the
following proposition.

Proposition 3.1. For b ∈ Z/nZ and σa, a ∈ (Z/nZ)∗

1. τ0 = I

2. σ1 = I

3. τ−1b = τ−b

4. σ−1a = σa−1

5. τaτb = τa+b

6. σaσb = σab

The sets of all shifts and scalings (denoted by T and S) are actually the
subgroups of Sn. As Sn is a group, we have σaτb ∈ Sn and τbσa ∈ Sn. We
observe that τbσa(x) = ax + b, x ∈ Z/nZ. We, therefore, term τbσa as an
affine permutation. We denote the set of all affine permutations as A i.e.,

A = {τbσa|a ∈ (Z/nZ)∗, b ∈ Z/nZ}

It is easy to observe that A is also a subgroup of Sn.

Proposition 3.2. o(A) = nφ(n)

Proof. It is easy to show that τb1σa1 = τb2σa2 =⇒ a1 = a2 and b1 = b2.
Therefore,

o(A) = o(Z/nZ) · o(Z/nZ)∗ = nφ(n).

Proposition 3.3. Given a ∈ (Z/nZ)∗, b ∈ Z ∃ c, d ∈ Z/nZ such that

σaτb = τcσa

and
τbσa = σaτd.

Proof. As a ∈ (Z/nZ)∗ we can get its multiplicative inverse. Let c = ab and
d = a−1b. Then for x ∈ Zn we have

σaτb(x) = σa(x+ b)

= ax+ ab

= ax+ c

= τcσa(x)
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⇒ σaτb = τcσa

Again,

τbσa(x) = τb(ax)

= ax+ b

= ax+ ad As d = a−1b

= σa(x+ d)

= σaτd(x)

⇒ τbσa = σaτd

Proposition 3.4. A = {σaτb|a ∈ (Z/nZ)∗, b ∈ Z/nZ}

Proof. Let B = {σaτb|a ∈ (Z/nZ)∗, b ∈ Z/nZ}. Using Proposition 3.3 we
can prove B ⊆ A and A ⊆ B.

Corollary 3.1.
T S = ST = A

Proof. It easily follows from the definition of A and Proposition 3.4.

Definition 3.1 (Affinely Equivalent Permutations). f, g ∈ Sn are said to
be affinely equivalent if ∃ a, u ∈ (Z/nZ)∗, b, v ∈ Z/nZ such that

g = τbσafτvσu

It is to be noted that a, b, u, v are not uniquely determined. For example,
consider S4. For a given f there may be 64 distinct quadruples (a, b, u, v)
but o(S4) = 24. Clearly, there can not be 64 distinct g’s corresponding to

64 distinct quadruples. More precisely, consider f =

(
0 1 2 3
0 1 3 2

)
. We see

that two quadruples, (1, 0, 1, 0) and (1, 2, 3, 3) both give the same function
i.e., f and τ2fτ3σ3 are the same.

Proposition 3.5. Affine equivalence defines an equivalence relation on Sn.

Proof. It is easy to show that the relation is reflexive and symmetric and
transitive using Proposition 3.4 and subgroup property of A.
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3.1 Counting number of Affinely Equivalent Permutations

Let f ∈ Sn. The equivalence class 〈f〉 contains permutations affinely equiv-
alent to f . So, o(〈f〉) counts the number of permutations affinely equivalent
to f . We try to find bounds for o(〈f〉). Recall the definition of affine equiv-
alence. f and g are affinely equivalent if there exist a, u ∈ (Z/nZ)∗, b, v ∈
Z/nZ such that g = τbσafτvσu. One obvious observation is stated in form
of proposition below.

Proposition 3.6. o(〈f〉) ≤ (nφ(n))2

We try to estimate o(〈f〉) using the partitions formed under an equivalence
relation. We define relation ∼f on (Z/nZ)∗ × Z/nZ× (Z/nZ)∗ × Z/nZ as

(a1, b1, u1, v1) ∼f (a2, b2, u2, v2) if τb1σa1fτv1σu1 = τb2σa2fτv2σu2

It is easy to verify that each bijection f on Z/nZ defines an equivalence
relation∼f on (Z/nZ)∗×Z/nZ×(Z/nZ)∗×Z/nZ. We denote the equivalence
class of (a, b, u, v) as 〈(a, b, u, v)〉f . Observe that o(〈f〉) is the number of
equivalence classes under the equivalence relation ∼f . We claim that each
of the equivalence classes under ∼f has the same order. In fact we prove a
bit more.

Proposition 3.7. o(〈(a, b, u, v)〉f ) = o(〈(1, 0, 1, 0)〉f )

Proof. We define a map Φ : 〈(a, b, u, v)〉f → 〈(1, 0, 1, 0)〉f as

Φ((a1, b1, u1, v1)) = (a−11 a, a−11 (b− b1), uu−11 , v − uu−11 v1).

We have

τa−1
1 (b−b1)σa−1

1 afτv−uu−1
1 v1

σuu−1
1

= (τa−1
1 (b−b1)σa−1

1
)σafτv(τ−uu−1

1 v1
σuu−1

1
)

Using prop.(3.3) we can write RHS as

(σa−1
1
τb−b1)σafτv(σuu−1

1
τ−v1)

= σa−1
1
τ−b1τbσafτvσuσu−1

1
τ−v1

= σa−1
1
τ−b1(τbσafτvσu)σu−1

1
τ−v1

For (a1, b1, u1, v1) ∈ 〈(a, b, u, v)〉f we have τb1σa1fτv1σu1 = τbσafτvσu. Which
implies that, τa−1

1 (b−b1)σa−1
1 afτv−uu−1

1 v1
σuu−1

1
= f . This implies that Φ((a1, b1, u1, v1)) ∈

〈(1, 0, 1, 0)〉f . The map Φ is thus well defined. Now consider,

Φ((a1, b1, u1, v1)) = Φ((a2, b2, u2, v2))

⇒ (a−11 a, a−11 (b− b1), uu−11 , v − uu−11 v1)

= (a−12 a, a−12 (b− b2), uu−12 , v − uu−12 v2)

⇒ (a1, b1, u1, v1) = (a2, b2, u2, v2)

⇒ Φ is one-one.
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Further, given any (A,B,U, V ) ∈ 〈(1, 0, 1, 0)〉f , we claim that (A,B,U, V )
is the image of (aA−1, b− aA−1B,U−1u, U−1(v − V )) under Φ. We have

τb−aA−1BσaA−1fτU−1(v−V )σU−1u

= τb(τ−aA−1BσaA−1)f(τU−1(v−V )σU−1)σu

= τb(σaA−1τ−B)f(σU−1τv−V )σu {Using prop.(3.3)}
= τbσa(σA−1τ−BfσU−1τ−V )τvσu (6)

As (A,B,U, V ) ∈ 〈(1, 0, 1, 0)〉f , we have τBσAfτV σU = f . Using this in
eq.(6) we get,

τb−a−1ABσaA−1fτU−1(v−V )σU−1u = τbσafτvσu

which shows that (aA−1, b− aA−1B,U−1u, U−1(v − V )) ∈ 〈(a, b, u, v)〉f .

Φ((aA−1, b− aA−1B,U−1u, U−1(v − V )))

= ((aA−1)−1a, (aA−1)−1(b− (b− a−1AB)),

u(U−1u)−1, v − u(U−1u)−1(U−1(v − V )))

= (A,B,U, V )

This shows that Φ is onto. The proposition is thus proved.

Clearly,
∑
o(〈(a, b, c, d〉)f ) = (nφ(n))2 where the sum runs over the dis-

tinct equivalence classes. From the above proposition

o(〈f〉)o(〈(1, 0, 1, 0〉)f ) = (nφ(n))2

We now state the corollary:

Corollary 3.2. o(〈f〉) = (nφ(n))2/o(〈(1, 0, 1, 0〉)f )

The problem of finding o(〈f〉) is reduced to finding of o(〈(1, 0, 1, 0〉)f ). We
first attempt it for the case when f is affine.

Proposition 3.8. o(〈(1, 0, 1, 0〉)f ) = nφ(n) if f is affine.

Proof. f is affine then f can be written as f = τβσα.

(a, b, u, v) ∈ 〈(1, 0, 1, 0〉)f
⇒ τbσaτβσατvσu = τβσα

⇒ τbτaβσaσατvσu = τβσα

⇒ τb+aβσaατvσu = τβσα

⇒ τb+aβτaαvσaασu = τβσα

⇒ τb+aβ+aαvσaαu = τβσα

⇒ b+ aβ + aαv = β and aαu = α

⇒ b = β − aβ − aαv and a = u−1

⇒ b = β − u−1β − u−1αv and a = u−1 (7)
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The system of equations has only two independent variables viz., u and v.
Clearly, this system has at most nφ(n) solutions. Now, we show that all
the solutions given by (7) are distinct. For any two solutions (a1, b1) and
(a2, b2) of (7) we have,

(a1, b1) = (a2, b2)

⇒ u−11 = u−12 and β − u−11 β − u−11 αv1 = β − u−12 β − u−12 αv2

⇒ u1 = u2 and − u−11 β − u−11 αv1 = −u−12 β − u−12 αv2

⇒ u1 = u2 and v1 = v2

Hence the theorem.

Corollary 3.3. o(〈f〉) = nφ(n) when f is affine.

Proof. The proof directly follows from corollary 3.2 and prop.(3.8).

Corollary 3.4. Any two affine functions on Z/nZ are affinely equivalent.
Also, an affine function and a non-affine function can never be affinely
equivalent.

Proof. The proof is obvious.

Theorem 3.1. For any permutation f , o(〈f〉) = knφ(n), for some k ∈ N.

Proof. Consider the special type of cosets τbσafA of Sn. We notice that

〈f〉 =
⋃

a∈(Z/nZ)∗,b∈Z/nZ

τbσafA.

As o(A) = nφ(n), it is clear from the property of cosets that o(〈f〉) is a
multiple of nφ(n).

If we combine the theorem with corollary (3.2) we get the following
corollary:

Corollary 3.5. For a permutation f , o(〈1, 0, 1, 0〉f ) is a divisor of nφ(n).

Note: We have given order of 〈f〉 when f is affine. Based on our calculations
and experiments, we believe what we state in the form of a conjecture.
Conjecture: For any f ∈ Sn, o(〈f〉) = nφ(n) =⇒ f is affine.

4 Non-linearity of Permutations

Definition 4.1 (Non-Linearity). Non-Linearity of a permutation f ∈ Sn,
denoted by NL(f) is defined as the distance of f from the set A.
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In other words, non-linearity of f ∈ Sn is the minimum of distances of
f from affine permutations.

NL(f) = min{dH(f, τbσa) | a ∈ (Z/nZ)∗, b ∈ Z/nZ}

Remarks: In view of corollary(3.1) the order of τ and σ in definition (3.1)
and (4.1) may be interchanged. Yet another obvious remark, we state in
form of proposition.

Proposition 4.1. The number of permutations in Sn having non-zero non-
linearity is given by n!− nφ(n).

Corollary 4.1. For n < 4, Sn contains all affine permutations.

Proof. We observe that the quantity n! − nφ(n) vanishes for n = 1, 2, 3.
Hence, no permutation in Sn has non-zero non-linearity when n = 1, 2, 3
i.e., all permutations in Sn are affine.

Proposition 4.2. Affinely equivalent permutations have the same non -
linearity.

Proof. Let f ∈ Sn. Then an affinely equivalent permutation g can be written
as, g = τbσafτvσu where a, u ∈ (Z/nZ)∗, b, v ∈ Z/nZ
Now,

NL(g) = min{dH(g, τmσl) | l ∈ (Z/nZ)∗,m ∈ Z/nZ}
= min{dH(τbσafτvσu, τmσl) | l ∈ (Z/nZ)∗,m ∈ Z/nZ}
= min{dH(f, σ−1a τ−1b τmσlσ

−1
u τ−1v ) | l ∈ (Z/nZ)∗,m ∈ Z/nZ}

Using prop.(3.1) and prop.(3.3) and absorbing the constant quantities in l
and m we get

NL(g) = min{dH(f, τmσl) | l ∈ (Z/nZ)∗,m ∈ Z/nZ} = NL(f)

Proposition 4.3.

NL(f) = n− max
a∈(Z/nZ)∗,b∈Z/nZ

{# fixed points of τbσaf}

Proof. We have,

NL(f) = min{dH(f, σaτb) | a ∈ (Z/nZ)∗, b ∈ Z/nZ}
= min{dH(τ−1b σ−1a f, I) | a ∈ (Z/nZ)∗, b ∈ Z/nZ}
= min{dH(τbσaf, I) | a ∈ (Z/nZ)∗, b ∈ Z/nZ}
= min{n−# fixed points of τbσaf | a ∈ (Z/nZ)∗,

b ∈ Z/nZ}
= n−max{# fixed points of τbσaf | a ∈ (Z/nZ)∗,

b ∈ Z/nZ}
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The important consequence of this proposition is that we can easily tell
the upper bound on non-linearity just by observing the function f .

Corollary 4.2. If τsσrf has k fixed points for some r ∈ (Z/nZ)∗, s ∈ Z/nZ
then

NL(f) ≤ n− k

In particular, if f has k fixed points then NL(f) ≤ n− k.

Proof. As f has k fixed points, we have

max{# fixed points of τbσaf | a ∈ (Z/nZ)∗, b ∈ Z/nZ} ≥ k

Therefore,
NL(f) ≤ n− k

5 Algorithm for Computing Non-linearity

5.1 The Exhaustive Search Algorithm

The exhaustive search algorithm computes distance of a given permutation
from every affine permutation and returns the minimum distance. For the

Algorithm 1 Naive algorithm for non-linearity of a permutation

1: function NaiveNL(f ,n)
2: NL← n
3: Compute φ(n) numbers ai such that gcd(ai, n) = 1
4: for i← 1 . . . φ(n) do
5: for j ← 0 . . . n− 1 do
6: dist← d(f, τjσai)
7: if NL > dist then
8: NL← dist
9: end if

10: end for
11: end for
12: return NL
13: end function

time complexity of line 3, recall that the gcd computation of two numbers
≤ n takes O(log n) steps. So, the time complexity for finding ais can be at
most O(n log(n)). Moreover, if we fix the size of permutation n then this step
can be a part of pre-computation. So, now we consider the other parts of
the algorithm. The two For loops require nφ(n) distance calculations. Each
distance computation takes n comparisons which means n2φ(n) comparisons
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in all. The selection of the minimum from the nφ(n) distance values requires
nφ(n) comparisons. So, the total number of operations needed for this
computation is n2φ(n) + nφ(n). As φ(n) ∼ O(n), the algorithm is therefore
O(n3).

5.2 Improvements over Exhaustive algorithm

We define a Mode transform for permutations which in some sense is anal-
ogous to the Walsh transform [1, 11] for Boolean functions.

Definition 5.1 (Mode Transform). Let f be a permutation on Z/nZ. The
mode transform of f is a function Mf : (Z/nZ)∗ → {1, 2, . . . , n} defined as,

Mf (ω) = max
b∈Z/nZ

#{x|f(x)− ωx = b}

It is easy to observe that for a given x0 ∈ Z/nZ, ∃b ∈ Z/nZ such that
x0 ∈ {x|f(x)− ωx = b}. This can be seen by taking b = f(x0)− ωx0. This
shows that Mf (ω) ≥ 1. Also, as the number of choices for x is limited to n,
we have Mf (ω) ≤ n. Hence, Mf is well defined.

Proposition 5.1. The non-linearity of a permutation f on Z/nZ, n > 2 is
given by

NL(f) = n− max
ω∈(Z/nZ)∗

Mf (ω)

Proof. We have

NL(f) = min{dH(f, τbσω) | ω ∈ (Z/nZ)∗, b ∈ Z/nZ}
= min

ω∈(Z/nZ)∗,b∈Z/nZ
#{x|f(x) 6= τbσω(x)}

= n− max
ω∈(Z/nZ)∗,b∈Z/nZ

#{x|f(x) = τbσω(x)}

= n− max
ω∈(Z/nZ)∗,b∈Z/nZ

#{x|f(x)− ωx = b}

= n− max
ω∈(Z/nZ)∗

[
max
b∈Z/nZ

#{x|f(x)− ωx = b}
]

= n− max
ω∈(Z/nZ)∗

Mf (ω)

This formula helps in calculating non-linearity in O(n2) time. This can
be easily seen as Mf (ω) can be calculated in 3n steps. We maintain fre-
quency counters which count the number of times a particular value of b
occurs when for a fixed ω, variable x is allowed to vary over all possible
choices. We need n steps for assigning frequency counters to zero, n steps
for computing f(x)− ωx for x = 0 . . . n− 1 and incrementing the frequency
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counter corresponding to the value of f(x)−ωx. The last n steps are needed
for finding the maximum frequency which will be Mf (ω).

We can calculate maxωMf (ω) in O(nφ(n)) steps which is O(n2) and
thus non-linearity can be computed in O(n2) steps.
Now, we present further modification in the non-linearity formula for the
case n > 2. We show that the maximum can actually be found from a
subset of (Z/nZ)∗.

Theorem 5.1. The non-linearity of a permutation f on Z/nZ, n > 2 is
given by

NL(f) = n−max

{
max
ω∈T

Mf (ω),max
ω∈T

Mf (−ω)

}
where

T =
{
x|(x, n) = 1, 1 ≤ x ≤

⌊n
2

⌋}⋂
(Z/nZ)∗

and
o(T ) = φ(n)/2

Proof. We have
(Z/nZ)∗ = T ∪ T ′

where,

T ′ =
{
x|(x, n) = 1,

⌊n
2

⌋
+ 1 ≤ x ≤ n

}⋂
(Z/nZ)∗

We claim that x ∈ T ⇐⇒ n− x ∈ T ′. We see that

(x, n) = 1⇐⇒ (x− n, n) = 1⇐⇒ (n− x, n) = 1

There may be two cases on n:
Case 1: n is even. Then n = 2k for some k ∈ N, k > 1.
We have

⌊
n
2

⌋
= k. Also, (k, n) = (k, 2k) = k > 1 =⇒ k 6∈ T

x ∈ T ⇒ 1 ≤ x < k

⇒ −k < −x ≤ −1

⇒ n− k < n− x ≤ n− 1

⇒ k < n− x ≤ n
⇒ k + 1 ≤ n− x ≤ n
⇒ n− x ∈ T ′ (8)

Further,

n− x ∈ T ′ ⇒ k + 1 ≤ n− x < 2k {As 2k 6∈ T ′}
⇒ −2k < x− n ≤ −k − 1

⇒ n− 2k < x ≤ n− k − 1

⇒ 0 < x ≤ k − 1

⇒ x ∈ T (9)
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From eq.(8) and eq.(9) the claim is proved for even n.
Case 2: n is odd. Then n = 2k + 1 for some k ∈ N, k > 1.
We have

⌊
n
2

⌋
= k.

x ∈ T ⇒ 1 ≤ x ≤ k
⇒ −k ≤ −x ≤ −1

⇒ n− k ≤ n− x ≤ n− 1

⇒ k + 1 ≤ n− x ≤ n− 1

⇒ n− x ∈ T ′ (10)

Further,

n− x ∈ T ′ ⇒ k + 1 ≤ n− x ≤ 2k {As 2k + 1 6∈ T ′}
⇒ −2k ≤ x− n ≤ −k − 1

⇒ n− 2k ≤ x ≤ n− k − 1

⇒ 1 ≤ x ≤ k
⇒ x ∈ T (11)

Eq.(10) and eq.(11) prove the claim for odd n.
Now, from theorem (5.1) we have

NL(f) = n− max
ω∈(Z/nZ)∗

Mf (ω)

= n−max

{
max
ω∈T

Mf (ω),max
ω∈T ′

Mf (ω)

}
= n−max

{
max
ω∈T

Mf (ω),max
ω∈T

Mf (n− ω)

}
= n−max

{
max
ω∈T

Mf (ω),max
ω∈T

Mf (−ω)

}
Also, from the bijection x→ n−x it is clear that o(T ) = o(T ′) = φ(n)/2

Proposition 5.2. Let f be a permutation on Z/nZ and ω ∈ (Z/nZ)∗.
Define recurrence relation

ti = ti−1 + ∆i − ω with t0 = f(0)

where ∆i = f(i)− f(i− 1), i = 1, 2, . . . , n− 1. Then ti = f(i)− ωi.

Proof. For i = 0 we have t0 = f(0) = f(0)− 0ω. So the proposition is true
for i = 0.
We consider i > 0
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Summing the recurrence relation over 1 to r we get

i∑
r=1

ti =
i∑

r=1

ti−1 +
i∑

r=1

∆i +
i∑

r=1

ω

⇒
i∑

r=1

ti −
i∑

r=1

ti−1 =
i∑

r=1

f(i)−
i∑

r=1

f(i− 1)− iω

⇒ ti = f(i)− iω

We now give the modified algorithm. The correctness of the algorithm
is implied by the above results.

Algorithm 2 Algorithm for non-linearity of a permutation using Mode
Transformation
1: function NL MOD(f , n)
2: max := 0
3: Compute T = {a1, a2, . . . , aφ(n)/2}, where gcd(ai, n) = 1 and ai ≤
bn2 c where i = 1, 2, . . . , φ(n)/2

4: Compute differences ∆i = f(i)− f(i− 1), i = 1, 2, . . . , n− 1.
5: for i := 1 to φ(n)/2 do
6: mode:=0
7: fr+0 := 0, fr+1 := 0, . . . , fr+n−1 := 0
8: fr−0 := 0, fr−1 := 0, . . . , fr−n−1 := 0
9: t+ := f(0), t− := f(0)

10: fr+f(0) := 1, fr−f(0) := 1
11: for j = 1 to n− 1 do
12: t+ := (t+ + ∆j + ai) (mod n), t− := (t− + ∆j − ai) (mod n)
13: fr+

t+
:= fr+

t+
+ 1, fr−

t− := fr−
t− + 1

14: end for
15: for j := 0 to n− 1 do
16: if mode < fr+j then mode := fr+j
17: end if
18: if mode < fr−j then mode := fr−j
19: end if
20: end for
21: if max < mode then max := mode
22: end if
23: end forreturn (n−max)
24: end function

The initialization and calculation steps roughly take 3n additions and
assignment operations. The maximum value of mode transform is calculated
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over Z/nZ which requires φ(n) calculations of mode transform. Therefore
the time complexity of this algorithm is ≈ 3nφ(n). As, φ(n) = O(n), the
algorithm is O(n2). Moreover, the computation of numbers relatively prime
to n is also reduced to φ(n)/2 as compared to earlier φ(n). We also observe
that the algorithm has two chains of similar computations. Therefore, the
time may further be reduced using 2-core parallel implementation of the
algorithm.

6 Cryptographic Significance of NL and AE

Permutations are the fundamental ingredients used for embedding diffusion
in a cryptosystem and hence are used as building blocks for stream and
block ciphers (like RC4, AES [5, 6, 8]). Restricted permutations i.e permu-
tations with minimum assured displacement are used in time domain speech
scramblers [2, 3]. Thus generation or selection of random permutations is
important for cryptological applications.

Depending upon the application, different properties need to be satisfied
by the permutations. Thus it is important to analyze their cryptographic
properties. As far as we know not much work has been done in this di-
rection. Some work has been done on use of permutation polynomials for
cryptographic applications [7, 9, 12, 13]. When permutations are used as
S-Boxes(substitution boxes), or in collections of S-boxes of a cryptosystem,
they should necessarily satisfy the following properties:

(a) It should not have many fixed points i.e., for a bijection f over Z/nZ
and a bound b ∈ N, |{x : f(x) = x, x ∈ Z/nZ}| ≤ b.

(b) It should not be a cyclic shift of identity permutation i.e., f(x) should
not have the form f(x) = (x+ u) mod n, u ∈ Z/nZ.

(c) If a group of permutations is used in a cryptographic design, the per-
mutations should not be cyclic shift of each other i.e., for f1, f2 and any
k ∈ N, the relation f1(x) = f2(x+ k mod n) should not hold identically.

We can include some more properties depending on the application in
question.

If a set of permutations contains permutations which are cyclic shifts
of one-another then knowledge of any one of them will leak information
about others which can be exploited in polynomial time to reveal the other
permutations. If we check affine equivalence in a given set of permutations,
we can effectively avoid these types of cases. We have shown that higher the
fixed point bound, lower will be the non-linearity. Since the non-linearity of
the identity permutation and of all of its shifts is zero, these permutations
are not suitable for cryptographic applications. However, the relevance of
these properties in the field of cryptology is not fully explored as yet.
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The notion of non-linearity and affine equivalence of permutations cap-
tures and generalizes the properties listed above. Permutations with high
non-linearity are desirable for cryptographic. If multiple permutations are
being used, they should not be affinely equivalent.

7 Conclusion

In this paper we have investigated some properties of permutations over
Z/nZ which would help in selecting good permutations for cryptographic
applications. There is a scope of further exploration of the properties we
have studied. In future, we will try to generalize these properties for asym-
metric s-boxes.
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