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Abstract. Shortly following Cheon, Han, Lee, Ryu and Stehlé’s attack against the multilinear map
of Coron, Lepoint and Tibouchi (CLT), two independent approaches to thwart this attack have been
proposed on the cryptology ePrint archive, due to Garg, Gentry, Halevi and Zhandry on the one hand,
and Boneh, Wu and Zimmerman on the other. In this short note, we show that both countermeasures
can be defeated in polynomial time using extensions of the Cheon et al. attack.

1 Introduction

Soon after Garg, Gentry and Halevi proposed a first candidate cryptographic multilinear map
in [GGH13|, multilinear maps and their applications became a very active area of research in the
cryptologic community. However, all current candidate constructions [GGH13,CLT13,GGH14]| are
only approximate multilinear maps. In particular, they require a trusted setup to create public
parameters from secret values; whoever learns these values can break all security notions related to
multilinear maps.

Recently, Cheon, Han, Lee, Ryu and Stehlé described an attack using low-level encodings of
zero [CHL114] against Coron, Lepoint and Tibouchi’s candidate multilinear map over the integers
(CLT) [CLT13]. This attack recovers the secret factors of the public modulus in polynomial time,
which breaks the construction completely.

A week after Cheon et al.’s attack was made public, two different approaches to patch the CLT
multilinear map have been independently proposed by Garg, Gentry, Halevi and Zhandry [GGHZ14,
Sec. 7', and Boneh, Wu and Zimmerman [BWZ14]. In essence, these countermeasures modify the
form of the CLT encodings in an attempt to remove the multiplicative structure obtained during
the zero-testing procedure in Cheon el al.’s attack.

Our Results. In this report, we show that both proposed countermeasures are insecure. They
are susceptible to direct extensions of Cheon et al. attack, that will still recover the factorization
of the public modulus (and hence all secret parameters) in polynomial time. Proof-of-concept
implementations of our attacks are available at https://github.com/coron/cltattack.

2 The CLT Multilinear Map Scheme

In this section, we recall the multilinear map scheme (CLT) of Coron, Lepoint and Tibouchi [CLT13].
From a given security level A and a target multilinearity level x, a trusted setup phase outputs
the public parameters from secret values. In particular, it generates n secret primes pq,...,p, and
publishes the public modulus zy = []}_; pi (where n is large enough to ensure correctness and

! The revised version of [GGHZ14] of November 12 2014 can be accessed from the cryptology ePrint archive.



security), and generates a random invertible z € Z,, multiplicative mask. The (possibly secret)
encoding space is a ring R = Zg, X --- X Zg, for primes g;’s.

A level-k encoding ¢ of some m = (my,...,m,) € R is an integer ¢ such that, for all 1 < i < n:

o= "I (mod ) (1)

where r; is uniformly distributed from a bounded distribution with at least A bits of entropy. The
integer c is therefore defined modulo zg by CRT. Encodings can be homomorphically processed
as long as the noises 7;’s do not wrap modulo p;: if ¢ is a level-k encoding of m € R and ¢ is a
level-k" encoding of m’ € R, then ¢ - ¢ mod x¢ is a level-(k + k') encoding of m - m’, and when
k=F, c+ ¢ mod xq is a level-k encoding of m + m/.

For level-x encodings, the trusted setup publishes a zero-testing parameter? p,; such that

P =S hi-[g7t - 2% mod pi] - (z0/ps) mod ap,
i=1

where the h;’s are uniformly distributed from a bounded distribution with at least A bits of entropy.
Given a level-x encoding ¢ as in Equation (1), one can compute w = p,; - ¢ mod xg, which gives:

w = Zhi . (’I“i +m; - (g;1 mod pl)) - (zo/pi) mod xq .
i=1

The multilinear map parameters are chosen so that if m; = 0 for all ¢, using the bounds on the r;’s
and h;’s, the integer w is small compared to zg; respectively if at least one of the m; # 0, w will
roughly be of the same size as x¢ due to the uncanceled g;- Lin the expression above. This enables
to test whether ¢ is an encoding of 0 € R or not.

Since the leading bits of w only depend on the m;’s and not on the noises r;’s, this enables
to extract from level-x encodings a function of the m;’s only, which eventually defines a degree-x
multilinear map.

Public Sampling and Rerandomization. In order to allow users to publicly create encodings, the
CLT public parameters contain ¢ level-0 encodings x1, ..., zy of random ring elements (as defined
in Equation (1)). The public sampling procedure then amounts in a subset-sum of these z;’s, and
by the leftover-hash lemma one obtains a level-0 encoding of a nearly uniform m € R.

Now, level-0 encodings can be turned in level-k encodings for any k < k using (powers of) a
public level-1 encoding y of 1 = (1,...,1) € R. Without loss of generality and for simplicity, we
assume k = 1 as in [CLT13]. To avoid a naive division after multiplying by y, the public parameters
contains 7 > n level-1 encodings i, ..., z, of 0 € R. Following a multiplication by y, the resulting
encoding is rerandomized by a subset-sum of the z}’s: the output of the rerandomization procedure is
nearly independent from the randomness of the input by a left-over hash lemma over lattices [CLT13,
Sec. 4].

3 The Cheon et al. Attack

Recently, Cheon et al. proposed an attack against the CLT scheme [CHL™14]. This attack makes
use of low-level encodings of 0: if such encodings are made public, one can recover in polynomial
time all values supposed to be kept secret. In particular, one can use the values z}’s used by the
rerandomization procedure. Therefore the Cheon et al. attack completely breaks the CLT scheme.

2In [CLT13], it publishes a vector of such elements. Since Cheon et al. attack, and ours, do not require more than
one element (e.g. the first element of the vector), we omit such setting for simplicity.



Let us recall the attack briefly. We describe a slight simplification of [CHL*14] in which we use
a single ciphertext ¢ instead of two ciphertexts ¢y and ¢;. This enables to obtain as eigenvalues
directly the CRT components of ¢, instead of ratios of the CRT components of ¢y and c¢;.

Let ¢ be a level-0 encoding with ¢ = ¢; mod p;. Let y be a level-1 encoding of 1 € R, let
a’; be level-1 encodings of 0 € R with 2, = r}; - g;/2 mod p;, and x; be level-1 encodings where
xj = x45/z mod p;.

For 1 < 5,k < n, we can compute:

wik = [(c-xj - @} - Y 2)  Patlag (2)

and we have:
n
Wik = Zhi ez -2l - y”72) 22" 'gi_1 mod p;] - (zo/ps)
=1

n
= Z zijhcirh, mod xg (3)

=1

where h; = h; - [y" 2 mod p;] - (zo/p;). Equation (3) actually holds over the integers (instead of only
modulo xg), because the previous encoding is an encoding of 0, and therefore wj, is smaller than
xg. Therefore we can write:

n
ij = Zl‘whicl’r;k
i=1
over the integers. We note that wj; is a quadratic form in the z;;’s and the r},’s. By spanning
1 < j,k < n, one can construct a matrix W, = (wjk)1<jk<n such that

W.=X xC xR,

C1

C2
/ /
where X = (x5 - h})1<ji<n and R = (77} )1<ik<n and C =

Cn
Finally, one can publicly compute:

W=W, W;'=XxCxX",

where I = 1, which is a level-0 encoding of 1; this means that for W; we take ¢ = 1 in Equation (2).
Since C' is a diagonal matrix, by computing the eigenvalues of W one can recover the ¢;’s, and
then the p;’s. Finally, Cheon et al. describe how to recover all the other secret values in [CHL™14].

Remark 1. One can also use the following optimization: perform all computations modulo a known
prime ¢ instead of over Q. It suffices to choose ¢ to be slightly larger than the ¢;’s, so that these
components can be recovered from their value modulo ¢g. Therefore we can perform all computations
modulo a prime ¢ of size O(log, max |¢;|) bits, instead of integers of size O(log, ) bits.

4 Cryptanalysis of the Garg et al. Countermeasure

A transformation of CLT multilinear maps is described by Garg, Gentry, Halevi and Zhandry in
[GGHZ14] in order to resist the Cheon et al. attack. The technique consists in embedding a CLT
encoding into a matrix of encodings; the goal is to eliminate the native encodings of zero that
enables the Cheon et al. attack. In this section we show that the countermeasure is insecure; namely
we show an extension of the Cheon et al. attack that can recover all secret parameters in polynomial
time, as in the original attack.



The Garg et al. countermeasure. Let ¢ be a native level-: CLT encoding of some m € R; then
the level-¢ matrix encoding of the same m € R is a 2k + 1 matrix U of the form:

$ 0 ... 0
0$ ... 0

U= |Tx | . | xTt
00 ... ¢

o

where the ‘$’s represent native CLT encodings of random elements at level i, the 0’s are native
encodings of zero at level ¢, and T is a random (2k + 1) X (2 + 1) matrix modulo z¢, the same
for all encodings. To allow for rerandomization of encodings, one publishes matrix encodings of 0.
With enough such matrix encodings of 0, one can rerandomize U, as in the original CLT scheme.

Zero-testing is done as follows. The CLT single-element zero-test parameter p,; is replaced by
two vectors ¢,; = (s,t) defined as follows:

s=[$...90...08)xTY,, and t=[Tx(0...0%...$%)7 X p.ila,

where 0 and ‘$’ are level-0 native CLT encodings of zero and random elements. Given a matrix U
as above at level k, one computes:

w=8xU xtmod xq.
This gives:
w=($xc+0)-py mod xgy

where ‘$’ is a level-0 native CLT encoding, and 0 is a level-x native CLT encoding of zero. Since
($ x ¢+ 0) is a CLT encoding of 0 when ¢ is (and whp is not when ¢ is not), we get a zero-testing
procedure for ¢, that is w is small compared to xg if U is an encoding of zero (and whp is not when
U is not).

Our Attack. We consider a matrix encoding C of zero at level 0, and we write:

$ 0 ... 0
0% ... 0

C=|Tx|. xT'| =[TxC*"xT™,,. (4)
00 ... c

o

We consider two other matrices X and R which are encodings of 0 at level k — 1 and 1 respectively,
so that we can compute:
w=sxX xCxRxtmod zg.

Writing x = s x X x T and r = T~ ! x R x t, we get:
w=x x C* x rmod zg.

Since C' is an encoding of 0, we have that the integer w is small compared to zg.

We note that w is a quadratic form in & and r. Moreover, we know that in the original CLT
scheme, w is a linear form in the n CRT components ¢; of a CLT encoding ¢ at level x, with
¢ = ¢;/z" mod p;. We can therefore expand the previous vectors and matrices from dimension 2k + 1
to dimension (2k + 1) - n, and write:

w=&xC*x 7

where the (i - (2k + 1) + j)-th coefficient of & is a; mod p;; similarly C* is a square matrix of
dimension (2x + 1) - n which is block-diagonal, with the n sub-matrices C* mod p; on the diagonal.



Now by applying the Cheon et al. attack, we can recover the characteristic polynomial of C*
over Z. Namely as in the Cheon et al. attack, instead of using single vectors & and 7, we can use
(26 4+ 1) - n such vectors, so that we obtain a matrix:

We=XxC*xR.

As in the Cheon et al. attack we do this twice, once with W and once with Wy, where I is the
identity matrix. We can then compute:

WC-WfI:XxC’*xX_l.

We can therefore compute over Z the characteristic polynomial f(z) of C*.

If the matrix C* in (4) was diagonal, then the eigenvalues of W¢ - W, ! which are the same as
the eigenvalues of C*, would give the CRT components modulo p; of all native CLT encodings in
the diagonal of C*, from which one could recover the p;’s and all secret values.

Now the matrix C* is not diagonal, hence we proceed as follows. Since C*is block-diagonal
with the sub-matrices C* mod p; on the diagonal, the characteristic polynomial f(z) of C* is
the product of the characteristic polynomials f;(x) of the sub-matrices C* mod p;. Therefore we
compute the factorization of f(z) in Z:

n
fa) =] fi@)-
i=1
This can be done in polynomial time. Since f; is also the characteristic polynomial of the matrix
C mod p;, by the Cayley-Hamilton theorem we have:

fi(C) = 0 mod p;

for all 1 < i < n. Therefore the secret p;’s can be recovered by taking the ged of one non-zero
coefficient of the matrix f;(C) with xo.

5 Cryptanalysis of Boneh et al. Countermeasure

In a recent paper, Boneh, Wu and Zimmerman described another transformation of CLT multilinear
maps in order to resist the Cheon et al. attack [BWZ14]. In this section we show that this
transformation is also insecure.

The Boneh et al. Countermeasure. For simplicity we describe the countermeasure in the
symmetric setting. We also assume that the message space Zy is the direct product Zg, x -+ X Zg,;
that is we take © = 1 in [BWZ14] —our attack naturally extends to any ©. Following [BWZ14] we
denote an encoding of an element x € Zy by [z1,...,z,] where x = 2; mod g; for all 1 <i < n.

The transformation creates a new multilinear map ZMM with the same domain Z . For this
it uses CLT with 2 additional slots, therefore a total of n + 2 slots, with a domain Zy+ such that
N'= N - gni1 - gnro. In the new multilinear map, an encoding of an element x € Zy is the pair of
native CLT encodings with n + 2 slots:

Cc= (l’L,-fUR) = ([xla"wxnagaVL]v [7717"'777R7CaVR])

where the scalars ¢, vy, vg and n1,...,7, are chosen at random in the appropriate rings Zg,.
To zero-test such encoding ¢, two additional native CLT encodings are made public:

tp=[1,...,1,1,0] and tg=1[0,...,0,1,0].
We want to test whether (z1,...,2,) = (0,...,0). For this we compute:
w=ps-(rp -ty —TR-tR).

We see from the structure of the native CLT encodings x, xg, t7, and tg that zy -t — zp -t is
an encoding of 0 iff z = 0. Therefore w is small compared to x¢ if ¢ is a ZMM encoding of zero (and
whp is not when c¢ is not).



Our Attack. We see that w is still a 2(n + 2) linear form in the CRT components of the CLT
encodings xy, and x . Therefore the attack of Cheon et al. is easily extended by using matrices of
dimension 2(n + 2) instead of n. This enables to recover all secret parameters.
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