
Secure Lightweight Entity Authentication with Strong PUFs:
Mission Impossible II

Jeroen Delvaux1,2, Dawu Gu2, Roel Peeters1 and Ingrid Verbauwhede1

1 ESAT/COSIC and iMinds, KU Leuven,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{jeroen.delvaux, roel.peeters, ingrid.verbauwhede}@esat.kuleuven.be
2 CSE/LoCCS, Shanghai Jiao Tong University,
800 Dongchuan Road, Shanghai 200240, China

dwgu@sjtu.edu.cn

Abstract. Physically unclonable functions (PUFs) exploit the unavoidable manufacturing variations
of an integrated circuit (IC). Their input-output behavior serves as a unique IC ‘fingerprint’. Therefore,
they have been envisioned as an IC authentication mechanism, in particular the subclass of so-called
strong PUFs. The protocol proposals are typically accompanied with two PUF promises: lightweight
and an increased resistance against physical attacks. In our prior CHES 2014 manuscript, we reviewed
eight proposals in chronological order. This work comprehends a sequel. Most notably, five additional
strong PUF protocols are included in our large-scale overview-analysis. Again, numerous security and
practicality issues are revealed. Furthermore, we improve the transparency of our analysis by explicitly
listing protocol requirements. These can also be used as a guideline for future protocol design. Finally,
token privacy has been included in the analysis.

Keywords: physically unclonable function, entity authentication, lightweight

1 Introduction

In this work, we consider a common authentication scenario between two parties: a low-cost resource-
constrained token and a resource-rich server. Practical instantiations of a token include the following:
RFID tags, smart cards and nodes of a wireless sensor network. One-way or possibly mutual entity authen-
tication is the main objective, occasionally extended with token privacy. Although the server has secure
computing and storage at its disposal, providing security is a major challenge given the requirements at the
token side. Tokens typically store a secret key in non-volatile memory (NVM), using a mature technology
such as EEPROM and its successor Flash, battery-backed SRAM or fuses. Cryptographic primitives import
the key and perform an authentication protocol.

Today’s issues are as follows. First, implementing cryptographic primitives in a resource-constrained
manner is rather challenging. A lightweight hash function (Spongent, Quark, Photon, etc.) still requires
1500 GE, typically. Second, an attacker can gain physical access to the integrated circuit (IC) of a token.
NVM has proven to be vulnerable to physical attacks [28] as the secret is stored permanently in a robust
electrical manner. Third, most NVM technologies oppose the low-cost objective. EEPROM/Flash requires
floating gate transistors, resulting in additional manufacturing steps with respect to a regular CMOS design.
Battery-backed SRAM requires a battery. Circuitry to protect the NVM contents, e.g. a mesh of sensing
wires, tends to be expensive.

Physically unclonable functions (PUFs) offer a promising alternative. Essentially, they are binary
functions, with their input-output behavior determined by IC manufacturing variations. Therefore, they
can be understood as a unique IC ‘fingerprint’, analogous to human biometrics. They might alleviate the
aforementioned issues. Many PUFs allow for an implementation which is both resource-constrained and
CMOS compatible. Furthermore, the secret is hidden in the physical structure of an IC, which is a much less
readable format. Invasive attacks might easily destroy this secret, as an additional advantage.

Several PUF-based authentication protocols have been proposed, in particular for the subclass of
so-called strong PUFs. In our prior CHES 2014 manuscript [1], we reviewed the following eight proposals:
basic strong PUF authentication [23], controlled PUFs [4], Öztürk et al. [22], Hammouri et al. [6], logically

reconfigurable PUFs [12], reverse fuzzy extractors [31], the converse protocol [13] end slender PUFs [20]. In
this work, we extend our analysis with five additional protocols: Kulseng et al. [15] Jin et al. [10], Xu et
al. [32], noise bifurcation [33] and system of PUFs [14].

Similar to key-storage in NVM, all protocols in this work employ two phases. The first phase is a one-time
enrollment in a secure environment, following IC manufacturing. The server then obtains some information
about the PUF to establish a shared secret. The destruction of a one-time interface might permanently restrict
direct PUF access afterwards. The second phase is in-the-field deployment, where tokens are vulnerable to
physical attacks. Token and server then authenticate over an insecure communication channel.

The remainder of this paper is organized as follows. Section 2 introduces notation and preliminaries.
Section 3 lists the requirements of a PUF-based authentication protocol. Section 4 describes and analyzes all
strong PUF protocols. Section 5 provides an overview of the protocol issues. Section 6 concludes the work.
Our analysis is performed at protocol level, considering PUFs as a black box. The occasional need for PUF
internals is provided by Appendix A in [1].

2 Preliminaries

2.1 Notation

Binary vectors are denoted with a bold lowercase character, e.g. c ∈ {0, 1}1×m. All vectors are row vectors.
Their elements are selected with an index i ≥ 1 between round brackets, e.g. c(1), c(2), etc. The null vector
is denoted as 0. Binary matrices are denoted with a bold uppercase character, e.g. H. Operations are the
following: addition modulo 2 (XOR), e.g. x ⊕ c, multiplication modulo 2, e.g. e · HT , concatenation, e.g.
x||c, and bit inversion, e.g. r. Variable assignment is denoted with an arrow, e.g. d← d− 1. Variables may
occasionally be denoted with an additional protocol run counter, e.g. c(1), c(2), etc. Functions are printed
in italic, with their input arguments between round brackets, e.g. Hamming weight HW (r) and Hamming
distance HD(r1, r2).

2.2 Physically Unclonable Functions: Black Box Description

The m-bit input and n-bit output of a PUF are referred to as challenge c and response r respectively. Unfor-
tunately for cryptographic purposes, the behavior of challenge-response pairs (CRPs) does not correspond
with a random oracle. First, the response bits are not perfectly reproducible. Noise in transistors
and wires as well as various environmental perturbations (supply voltage, temperature, etc.) result in non-
determinism. Second, the response bits are non-uniformly distributed: bias and correlations are present.
Without proper compensation, this might enable a variety of attacks.

PUFs are often subdivided in two classes, according to their number of CRPs. Weak PUFs offer few
CRPs, scaling roughly linear with the required IC area. Architectures typically consist of an array of identi-
cally laid-out cells, each producing one or more response bits. E.g. the SRAM PUF [9] and the ring oscillator
PUF1 [29] are both very popular. Addressing the array provides a challenge-response mechanism. However,
the total array size is of primary importance: mostly, all 2m+n bits are used collectively to generate a secret
key. This key is stored in volatile memory whenever cryptographic operations have to be performed, opposing
the permanent nature of NVM. Post-processing logic, typically a fuzzy extractor [3], is required to ensure a
reproducible and uniformly distributed key.

Strong PUFs offer an enormous number of CRPs, often scaling exponentially with the required IC
area. Despite their small response space, mostly n = 1, architectures are typically able to provide a large
challenge space, e.g. m = 128. Therefore, they might greatly exceed the need for secret key generation and
have been promoted primarily as lightweight authentication primitives. The most famous example is the
arbiter PUF [16]. However, due to inherent correlations, unprotected exposure to the PUF might enable
so-called modeling attacks. One tries to construct a predictive model of the PUF, given a limited set of
training CRPs. Machine learning algorithms have proven to be successful [26]. For completeness, we note
that the definition of strong PUFs has shifted over the years. The original more specific notion in [5] assumes
a large response space in addition to strong cryptographic properties: resistance against modeling and tamper
evidence. Although highly relevant as an ideal case specification, we stick to the more recent practical notion.

1 We consider the most usable read-out modes which aim to avoid correlations, e.g. pairing neighboring oscillators.

2.3 Secure Sketches and Fuzzy Extractors

The noisiness of a PUF causes the regenerated instance of a response r to be slightly different: r̃ = r⊕e, with
HW (e) relatively small. Secure sketches [3] are a useful reconstruction tool, as defined by a two-step proce-
dure. First, public helper data is generated: p = Gen(r). Second, reproduction is performed: r = Rep(r̃,p).
Helper data p unavoidably leaks some information about r, although this entropy loss is supposed to be
limited. Despite the rather generic definition, two constructions dominate the implementation landscape,
as specified below. Both the code-offset and syndrome construction employ a binary [n, k, t] block code C,
with t the error-correcting capability. The latter construction requires a linear block code, as it employs the

parity check matrix H ∈ {0, 1}(n−k)×n. Successful reconstruction is guaranteed for both constructions, given
HW (e) ≤ t. Information leakage is limited to n−k bits. The hardware footprint is asymmetric: Gen is better
suited for resource-constrained devices than Rep [31]. A fuzzy extractor (FE) can be constructed out of a
secure sketch. An additional hash function then produces a nearly uniform output: k ← Hash(r). By hav-
ing more input than output bits, it compensates for the non-uniformity of r as well as the helper data leakage.

co
d

e-
o
ff

se
t Gen Rep

Random w ∈ C w̃← r̃⊕ p = w ⊕ e
p← r⊕w Error-correct w̃ to w

r← p⊕w sy
n

d
ro

m
e

Gen Rep

p← r ·HT s← r̃ ·HT ⊕ p = e ·HT

Determine e
r← r̃⊕ e

3 Protocol Requirements

PUFs require a special flavor of protocol design. We are the first to explicitly list an extensive set of protocol
requirements. Sections 3.1 to 3.5 describe the PUF-induced requirements. Sections 3.7 to 3.9 cover more
conventional concerns, which of course still apply.

3.1 Benefit with Respect to NVM (#1)

Advantages of PUF technology with respect to NVM should be preserved. This is primarily low-cost manu-
facturing and improved physical security. Otherwise, one could equally well opt for traditional key-storage.
To illustrate further, PUF behavior could in principle be mimicked with the latter. Secure NVM allows
to instantiate an IC-specific secret function, with the lack of noise as additional advantage. We define an
NVM-based authentication protocol to highlight this requirement, further denoted as Reference I. Each to-
ken stores a unique secret key k, as represented by Figures 1(a) and 1(b). Additional cryptographic logic
performs the authentication. A block cipher would be an excellent choice. However, for ease of comparison,
we prefer a hash function. Reference I-A provides token authenticity only. The server checks whether a token
can compute a ← Hash(k,n), with n a random nonce. Reference I-B provides server authenticity only. A
token checks whether the server can compute b← Hash(k,n), with n a random nonce. The latter requires
an on-chip true random number generator (TRNG). A mixture of both mechanisms could provide mutual
authentication.

3.2 Able to Handle Noisiness (#2)

Noisiness of the PUF responses should be taken into account. One can employ either one of two approaches:
error correction and error tolerance. Responses r̃ typically have a 1−15% error rate, considering their enrolled
versions r as a reference, although it largely depends on the IC’s environment. The lowest noise levels apply
to laboratory settings where the environment is ultra-stable. Higher noise levels apply to practical in-the-
field settings. Market products are typically supposed to function in a range of temperatures, among other
specifications. For completeness, we mention the noisiness to be bit-specific: some bits are noisy, others are
stable. Or more precisely, there is a continuous spectrum of bit error rates [18].

3.3 Counteracting Strong PUF Modeling Attacks (#3)

Strong PUFs are too fragile for unprotected exposure, as demonstrated by a history of machine learning
attacks [19,25, 26]. So far, no PUF architecture can claim to be practical, well-validated and robust against
modeling. Or stated otherwise: no architecture satisfies the original strong PUF definition given in [5], as
has been observed by others, e.g. [17]. With strong cryptographic primitives such as a hash function, one
can fully mitigate this threat. Several proposals opt for more lightweight logic (XOR, PRNG, TRNG, etc.),
although this might offer partial protection only, as becomes clear later-on.

An unprotected strong PUF able to resist modeling would be a real breakthrough. Unfortunately, two
fundamental issues undermine the optimism. First, strong PUFs extract their enormous amount of bits from
a limited IC area only, hereby using a limited number of circuit elements. The delay model of the arbiter PUF
in Appendix A.2 of [1] provides an example. A highly correlated structure is the unavoidable consequence.
Machine learning algorithms exploit these correlations in a ‘blind’ implicit manner. The modeling resistance
is usually quantified by the minimum size of the training set as well as the algorithm runtime. More insightful
explicit quantification has been initiated in [19]. Via simulations, one characterized the probability P (ru =
rv) = f(cu, cv) for the ‘averaged’ arbiter PUF. CRPs with |f − 1/2| > 0 are correlated. As a result of
independent interest, we were the first to validate this work with an analytical model, as detailed in Appendix
A.4 in [19]

As a second issue, the more entangled and diffusing the structure of a PUF, the more robust against
modeling, but the less reproducible the responses as they accumulate more contributions from local noise
sources. A popular modeling countermeasure is the replication of a PUF circuit, hereby XORing the output
bits. This has been described for the arbiter PUF in Appendix A.3 in [1]. Correlations are considerably
reduced as detailed in Appendix A.4 in [1]. Unfortunately, XORing amplifies the noisiness, posing a practical
limit on the modeling resistance.

3.4 Strong PUF Response Space Expansion (#4)

To counteract brute-force attacks and random guessing, all strong PUF protocols in this work require the
challenge c and response r to be of sufficient length, e.g. m = n = 128. Unfortunately, strong PUFs provide
a small response space only, often n = 1. Replicating the PUF circuit is a simple but unfortunately very
expensive solution. The lightweight approach is to evaluate a list of n challenges, hereby concatenating
the response bits. Several proposals suggest the use of a particular method to generate such a list. The
server could send a list of true random numbers, requiring no additional IC logic, but resulting in a large
communication overhead [6]. A small pseudorandom number generator (PRNG), such as a linear feedback
shift register (LFSR), is often employed [2, 6, 14, 20, 24, 31, 33]. Challenge c is then used as a seed value:
r̃ ← PUF (PRNG(c)). In [22], a repeated permutation is employed as PRNG. A variety of counter-based
solutions can be applied as well [12]. We make abstraction of the response expansion method in the remainder
of this work, except when there is a related security issue.

3.5 Efficiency (#5)

Efficiency is part of the PUF lightweight premise. We define our own PUF-based authentication protocol
to establish a baseline. References II-A and II-B provide token and server authenticity respectively, as
represented by Figures 1(c) and 1(d) respectively. They could again be combined in order to provide mutual
authentication. Essentially, we employ a weak PUF to generate a secret key. Logic for generating challenges
might be as simple as reading out the whole cell array. In principle, one could opt for a strong PUF with
challenge generator as well. The response noisiness and non-uniformity issues are resolved with a FE. Gen
is executed only once during enrollment. Public helper data p is stored by the server, or alternatively at the
token side in insecure (off-chip) NVM. One could generate a key as k← Hash(r). We perform an optimization
by merging this step with the authentication hash: a← Hash(r,n).

3.6 Easy-to-instantiate (#6)

Ideally, one should not make exacting assumptions about the PUF, so that the protocol can be instantiated
easily. There is considerable advantage in the design of generic PUF-independent protocols. First, efficiency

NVM Hash
k

IC n

a

×

(a) Reference I-A: key in NVM.

NVM Hash =?

TRNG

k

IC
n

b

×

(b) Reference I-B: key in NVM.

Weak PUF

Rep Hashr̃
r

×

Gen p

a

n

(c) Reference II-A: key via PUF and FE.

IC

Weak PUF Hash

Rep TRNG

=?

r̃
r

×

Gen p

n

b

(d) Reference II-B: key via PUF and FE.

IC

Fig. 1. Token representation for the references. The following IC logic is not drawn: intermediary registers (volatile)
and control. A dashed line represent the interface with the server. One-time interfaces destructed after enrollment
are marked by the symbol ×.

and performance characteristics differ for every PUF, in terms of speed, area, power, noisiness, etc. Flexibility
of choice allows for better optimization with respect to a given set of constraints. Second, a recent string
of physical attacks [7, 21, 27, 30] promotes to envision PUFs as easy-to-replace building blocks. Reference
II embodies this vision as it functions with quasi every weak or strong PUF. The proposals under review
are more specific: they all require a strong PUF. Furthermore, additional constraints are imposed, most
frequently with respect to the modeling robustness.

3.7 Resistance against Protocol Attacks (#7)

Resistance against conventional protocol attacks should be provided. We hereby assume the PUF to be an
ideal random oracle, in order to distinguish from previous requirements. The primary threat is token and/or
server impersonation. Furthermore, denial-of-service should be considered. This in addition to the validation
of specific claims such as token privacy.

3.8 Identification Prior to Authentication (#8)

We distinguish between authentication and identification. The former comprehends the secure verification
of an identity while the latter is limited to an unverified claim. Most protocols in this work provide token
authentication and therefore also token identification. Unfortunately, identification prior to authentication
is more practical. Otherwise, the server would have to iterate over all enrolled tokens to establish a match.
There is a simple solution if token privacy is of no concern. Each token can store an identifier in insecure
NVM [31]. CMOS-compatible fuses could be used to limit the manufacturing cost. Alternatively, one could
opt for a PUF-generated identifier as well. Matching noisy identifiers is a straightforward operation and
more complicated algorithms might even obtain sublinear complexity. We will not further comment on the
absence of an identification step, except for the proposals which claim token privacy.

3.9 On the Mutual Authentication Order (#9)

An attacker’s potential to freely query tokens is a major concern. Therefore, it is a good practice to establish
server authenticity first, in the case of mutual authentication [8]. The corresponding reduction in attack
surface inherently benefits the security and privacy objectives. This might even be the reason to provide

NVM

NVM NVM

PRNG

⊕

Strong PUF

PRNG

=?⊕

⊕

i

w1, w2

y
x̃0

× × × ×

ã1, ã2

i

b

(a) Kulseng et al. [15].

IC

NVM

NVM

Hash

ShiftCirc

Strong PUF

=?⊕

⊕

x̃0

y
× × ×

ã2

ã1

n

b

(b) Jin et al. [10].

IC

Strong PUF

NVM NVM

⊕

⊕

=?

⊕

y

i0

c′

IC
× ××

r2

a

b

(c) Xu et al. [32].

Strong PUF

TRNG

↓ dr̃

ui

s̃

cT

cS

×
IC

(d) Noise bifurcation [33].

Strong PUFWeak PUF

Strong PUF

r̃H

r̃S

cS

r̃G

cH

IC

(e) System of PUFs [14].

Fig. 2. Token representation for all strong PUF protocols. The following IC logic is not drawn: expansion of the
strong PUF responses, intermediary registers (volatile) and control. A dashed line represent the interface with the
server. One-time interfaces destructed after enrollment are marked by the symbol ×.

mutual authentication in the first place, rather than token authenticity only. Although several protocols
employ the opposite order, we do not further discuss, as it comprehends a guideline rather that a stringent
requirement.

4 Protocol Analysis

We describe and analyze all strong PUF protocols in chronological order. Sections 4.1 to 4.5 can be read in
arbitrary order, although we recommend to get acquainted with the basic protocol in [1] first.

4.1 Kulseng et al. (March 2010)

The proposal of Kulseng et al. [15] provides mutual authentication. Figures 2(a) and 3 represent the protocol.
Token identifier i is updated after every authentication, for improved privacy: tracking is only possible in
between protocol executions. An attacker can desynchronize token and server by blocking the last message:
only the former updates its state then. Therefore, recovery logic is foreseen to prevent denial-of-service from
occurring. One suggest the use of an arbiter PUF, without acknowledging the need to expand the response
space.

NVM Undermines PUF Benefit (#1) The need for secure NVM undermines the advantages of PUFs.
Either read or write access would enable an attacker to break the system. Also, low-cost manufacturing is
impeded, due to x̃ in particular as it requires reprogrammable NVM.

Non-Functional due to PUF Noisiness (#2) PUF responses are not acknowledged to be noisy, making
the protocol non-functional. There will be a mismatch x̃1 = x′1 ⊕ e, with HW (e) small, leading to token
rejection. The use of x2 is even more problematic: the feedback loop over the PUF leads to error amplification.
We make abstraction of the noisiness issue in the remainder of our analysis.

Server Impersonation (#7) The desynchronization recovery logic allows for a simple replay attack. One
can impersonate the server by resending the last b.

Denial-of-Service (#7) As observed in [11], there is a simple denial-of-service attack. Interfering with a
genuine protocol run and modifying ã2 to an arbitrarily chosen value is sufficient to desynchronize token and
server.

Token/Server Impersonation and Privacy Breach (#7) The PRNG is instantiated with a LFSR.
In [11], one describes an attack which leads to full system disclosure. Given an n-bit output sequence of an
n-bit LFSR, one can easily retrieve the initial state. This principle is applied to two consecutive identifiers:

i(1) and i(2). This allows for the recovery of x̃
(1)
0 and subsequently all other secret variables. Our analysis

revealed an alternative PRNG exploitation attack, leading to full system disclosure as well. One can recover

w
(1)
1 = i(2) ⊕ LFSR(i(1)) and subsequently also other secret variables.

4.2 Jin et al. (April 2012)

The proposal of Jin et al. [10] seems to be inspired by [15]. The protocol is represented by Figures 2(b)
and 4. The function ShiftCirc rotates its input over half the length. The authors claim resistance against
physical attacks recovering the secret state x̃0: future authentications are not threatened. The protocol is
also claimed to be resistant against tracking. An attacker can desynchronize token and server by blocking the
last message: only the latter updates its state then. Therefore, recovery logic is foreseen to prevent denial-of-
service from occurring. The authors propose to instantiate the protocol with a variant of the arbiter PUF,
without acknowledging the need to expand the response space.

(1
×

)
A

u
th

.
(∞
×

)

Token j

Insecure ∞× NVM: i← ij

R/W-secure ∞× NVM: x̃−1, x̃0 ← x0j

R/W-secure 1× NVM: y← yj

x1j ← PUF (x̃0j)

If b = y ⊕ x̃0

x̃1 ← PUF (x̃0) and x̃2 ← PUF 2(x̃0)

w1 ← PRNG(x̃0) and w2 ← PRNG2(x̃0)

ã1 ← x̃1 ⊕w1 and ã2 ← x̃2 ⊕w2

i← PRNG(i⊕ x̃0)

x̃−1 ← x̃0

x̃0 ← x̃1

Else if b = y ⊕ x̃−1

ã1 ← PUF (x̃−1)⊕ PRNG(x̃−1)

ã2 ← PUF 2(x̃−1)⊕ PRNG2(x̃−1)

Else Abort

i

b

ã1, ã2

Server

ij
U←− TRNG() and yj

U←− TRNG()

x0j
U←− TRNG() and x1j

Abort if i 6= ij or i 6= PRNG(ij ⊕ x0j)

b← yj ⊕ x0j

w1 ← PRNG(x0j)

Abort if x1j 6= ã1 ⊕w1

ij ← PRNG(ij ⊕ x0j)

x0j ← x1j

w2 ← PRNG(w1)

x1j ← ã2 ⊕w2

Fig. 3. Authentication protocol of Kulseng et al. There is contradictive information regarding the update of i: either x0

or x1 may be used. Although it leads to an equally insecure system, we align our interpretation with the cryptanalysis
in [11] and opt for x0.

NVM Issues (#1) The use of reprogrammable NVM undermines the low-cost advantage of PUF tech-
nology. The authors claim to be robust against key leakage via x′, although they do not stress that this
protection does not apply to y′. The latter which is prone to physical attacks as well.

Non-Functional due to PUF Noisiness (#2) PUF responses are not acknowledged to be noisy, making
the protocol non-functional. There will be a mismatch x̃1 = x′1 ⊕ e, with HW (e) small, leading to token
rejection. The use of x2 is even more problematic: the feedback loop over the PUF leads to error amplification.
We make abstraction of the noisiness issue in the remainder of our analysis.

Server Impersonation (#7) Eavesdropping on the last protocol execution allows for server impersonation.

First one sends an arbitrary nonce n(2) and subsequently one responds with b(2) ← b(1) ⊕ ShiftCirc(ã
(2)
1).

Denial-of-Service (#7) The proposal instantiates the hash computation as follows: ã2 ← Hash(y, x̃2,n) =
Hash(y ⊕ x̃2 ⊕ n). This allows for desynchronization attacks: we describe two variations. With the first
variant, one injects the following messages during a genuine protocol run: n← n⊕ e and ã1 ← ã1 ⊕ e, with
an arbitrary e 6= 0. The server accepts and corrupts its state. With the second variant, one eavesdrops on

(1
×

)
A

u
th

.
(∞
×

)

Token j

R/W-secure ∞× NVM: x̃0 ← x0j

R/W-secure 1× NVM: y← yj

x1j ← PUF (x̃0)

x̃1 ← PUF (x̃0)

x̃2 ← PUF (x̃1)

ã1 ← x̃1 ⊕ x̃2

ã2 ← Hash(y, x̃2,n)

Abort if b 6= y ⊕ ShiftCirc(x̃2)

x̃0 ← x̃1

n

ã1, ã2

b

Server

x0j
U←− TRNG() and x1j

yj
U←− TRNG()

n
U←− TRNG()

If ã2 = Hash(yj ,x2,n) with x2 ← ã1 ⊕ x1j

b← yj ⊕ ShiftCirc(x2j)

x0j ← x1j

x1j ← x2

Else if ã2 = Hash(yj ,x2,n) with x2 ← ã1 ⊕ x0j

b← yj ⊕ ShiftCirc(x2j)

Else Abort

Fig. 4. Authentication protocol of Jin et al.

a genuine protocol run and obtains n(1) and ã
(1)
2 . Subsequently, one replies with the following messages in

the next protocol run: ã
(2)
2 ← ã

(1)
2 and ã

(2)
1 ← n(1) ⊕ n(2). Again, the server accepts and corrupts its state.

Furthermore, these attacks are in conflict with generally accepted privacy definitions. A single token which
is persistently refused can easily be distinguished from its neighbors.

Token Impersonation via Leakage of x̃0 (#7,#1) We argue the leakage claim to be incorrect. It
allows for unlimited token impersonation, meanwhile also incapacitating the genuine token. An attacker

eavesdrops on a genuine protocol run and obtains ã
(1)
1 . Subsequently, x̃

(2)
0 is obtained via leakage. Thereafter,

x̃
(2)
1 ← ã

(1)
1 ⊕ x̃

(2)
0 can be computed. One can choose an arbitrary value for x̃

(2)
2 . The attacker can now reply

to the server nonce n(2) and construct messages ã
(2)
1 and ã

(2)
2 . The impersonation extends to an unlimited

number of authentications: the PUF operation can be replaced with an arbitrary function.

Privacy without Identification (#8) The proposal does not scale in the number of tags. One cannot
introduce a public identifier as this would oppose the privacy claim.

4.3 Xu et al. (September 2012)

The protocol of Xu et al. [32] is represented by Figures 2(c) and 5. There is a system key y which is shared
by the server and all tokens. Token identifier i is updated after every authentication, for improved privacy:
tracking is only possible in between protocol executions. An attacker can desynchronize token and server
by blocking the last message: only the latter updates its state then. Therefore, recovery logic is foreseen to
prevent denial-of-service from occurring. The authors do not acknowledge the need to expand the response
space of the strong PUF.

Secure NVM (#1) The need for secure reprogrammable NVM undermines the PUF advantages: low-cost
manufacturing and improved physical security. Furthermore, all eggs are put in the same basket by having a
system key y. If a single token is compromised, one can easily obtain the identifier of every token: i0 ← a⊕y.

(1
×

)
A

u
th

.
(d
×

)

Token j

R/W-secure ∞× NVM: i0 ← i0j

R/W-secure 1× NVM: y← y′

rkij ← PUFk(cij)

a← i0 ⊕ y

c′ ← b⊕ i0

r̃1 ← PUF (c′)

r̃2 ← PUF (r̃1)

Abort if r̃2 6= r2

r̃3 ← PUF (r2)

i0 ← i0 ⊕ r̃3

a

b

r̃1

r2

Server

y′ and i−1j , i0j
U←− TRNG()

〈cij , r1i, r2ij , r3ij〉 with cij
U←− TRNG() and i ∈ [1 d]

〈c, r1, r2, r3〉 ← 〈cij , r1ij , r2ij , r3ij〉 with i← dj

If i0j = a⊕ y′

b← i0j ⊕ c

Else if i−1j = a⊕ y′

b← i−1j ⊕ c

Else Abort

Abort if r̃1 6= r1

If i0j = a⊕ y′

i−1j ← i0j

i′0j ← i0j ⊕ r3

dj ← dj − 1

Fig. 5. Authentication protocol of Xu et al. There was only an incomplete and informal description of the desynchro-
nization recovery logic. We filled in the blanks to the best of our insights and exclude this part from cryptanalysis.

Non-Functional due to PUF Noisiness (#2) PUF responses are not acknowledged to be noisy, making
the protocol non-functional. There will be a mismatch r̃1 = r1 ⊕ e, with HW (e) small, leading to token
rejection. The use of r2 and r3 is even more problematic: the feedback loop over the PUF leads to error
amplification. We make abstraction of the noisiness issue in the remainder of our analysis.

Modeling Attacks (#3) The proposal does not acknowledge that PUFs are prone to modeling and
offers no protection either. Most notably, the CRP 〈r1, r2〉 is sent in the clear. Furthermore, one can obtain

additional CRPs 〈r2, r3〉, as r
(1)
3 ← a(1) ⊕ a(2). A practical limit on the number of authentications d should

hence be imposed. If system key y would be compromised, one can freely query CRPs 〈c, r1〉.

Server Impersonation (#7) Eavesdropping on a single protocol run allows for unlimited server imper-

sonation. An attacker gets authenticated with b(2) ← b(1) ⊕ a(1) ⊕ a(2) and r
(2)
2 ← r

(1)
2 .

4.4 Noise Bifurcation (May 2014)

The noise bifurcation proposal [33] can be understood as a minor variation on the slender PUF protocol,
as also reflected by Figure 2(d). There are three countermeasures against modeling, while avoiding the need
for cryptographic primitives. First, the protocol requires a strong PUF with a high resistance. A model is
constructed during enrollment via auxiliary one-time interfaces. The authors opt for arbiter XOR PUFs, as
detailed in Appendix A.3 in [1]. Second, the exposure of r̃ is limited to a randomly decimated version s̃, hereby
obfuscating the CRP link. The response string is partitioned into segments of d bits. For every segment, one
generates a random number in order to discard all-but-one bits. This effect is referred to as learning ‘noise’

for an attacker, not to be confused with physical noise. The server selects only the segments for which the
bits are either all zero or all one, according to its PUF model. The method requires a pre-expansion of the
PUF response with a factor d ·2d−1, posing a practical limit on the obfuscation. Third, server and token both
contribute to the challenge via their respective nonces cS and cT , counteracting chosen-challenge attacks.
Figure 6 represents the protocol.

(1
×

)
A

u
th

.
(∞
×

)

Token j

cT
U←− TRNG()

r̃← PUF (cS , cT)

∀i : s̃(i)← r̃(d · i− ui + 1) with

ui ∈ [1, d]
U←− TRNG()

cS

cT , s̃

Server

Train model P̃UF j

cS
U←− TRNG()

r′ ← P̃UF j(cS , cT)

Collect all indices 〈v〉 with

r′(d · v − d+ 1) = . . . = r′(d · v)

Abort if HD(s′(〈v〉), r′(〈d · v〉)) > ε

Fig. 6. Noise bifurcation protocol.

Exacting PUF Requirements (#6) The PUF requirements are rather exacting and partly opposing. On
one hand, the PUF should be easy-to model, requiring a highly correlated structure. On the other hand, an
attacker might exploit correlations either explicitly or implicitly. The proposed PUF architecture seems to
offer this delicate balance. XORing reduces an attacker’s potential although one-time interfaces allow for a
bypass. During enrollment, the arbiter chains can be modeled separately. However, it all comes at a price:
XORing amplifies noisiness, posing a practical limit on the number of chains. Specialized machine learning
algorithms might therefore be successful. In the article, one was able to defeat the protocol using simulated
arbiter XOR PUFs with up to four chains.

PRNG Unspecified (#7,#4) The protocol employs a PRNG to expand the PUF response space:
r̃ ← PUF (PRNG(cS , cT)). The authors suggest an LFSR-based design, without committing to a specific
implementation. Therefore, we are not enable to properly evaluate the security. Remember that the reverse
FE and slender PUF proposals were both found to be insecure due to their LFSR-based PRNG.

4.5 System of PUFs (October 2014)

The system of PUFs proposal [14] consists of three PUFs, as shown in Figure 2(e). They are referred to as
hidden, guard and secure PUF. The hidden PUF is assumed not to be bothered by noise, as its response
propagates to both of its neighbours. The secure PUF is assumed to be robust against modeling. Figure 7
represents the protocol. There is a two-level authentication. The first level, consisting of hidden PUF and
guard PUF, is acknowledged to be insecure. Server and attacker face the exact same modeling burden here,
as the enrollment is not aided by one-time interfaces. System security relies on the second level, the secure
PUF. One claims that the protocol provides breach recognition and recovery. An attacker that modeled the
first level, cannot provide the correct response for the second level. This would then be detected by the
server, triggering a non-further specified recovery procedure. One suggests to instantiate hidden, guard and
secure PUF with a ring oscillator, arbiter and arbiter XOR PUF respectively. One also claims robustness
against denial-of-service attacks, unlike the basic authentication protocol, given an attacker which aims to
deplete the server database.

(1
×

)
A

u
th

.
(d
×

)

Token j

r̃H ← PUFH(cH)

r̃G ← PUFG(r̃H , cH)

r̃S ← PUFS(r̃H , cS)

cH

r̃G

cS

r̃S

Server

Train models P̃UFHj and P̃UFGj

〈cHij , rSij〉 with cHij
U←− TRNG() and i ∈ [1 d]

〈cH , rS〉 ← 〈cHij , rSij〉 with i← dj

dj ← dj − 1

r′G ← P̃UFGj(P̃UFHj(cH), cH)

Abort if HD(r̃G, r
′
G) > ε1

cS ← Hash(cH , r
′
G)

Abort if HD(r̃S , rS) > ε2

Fig. 7. System of PUFs.

PUF Noisiness Underestimated (#2) A single noisy bit of the hidden PUF is sufficient to result
in an authentication failure. The authors rely on the ring oscillator PUF measurements in [29], offering
outstanding error rates below 1%. However, they fail to mention that the reported error rate incorporates an
error-correction scheme. With a raw PUF, the imposed requirement seems extremely hard to meet, especially
under environmental perturbations.

Modeling Attacks (#3) Although the authors seem to suggest the opposite, there is no PUF which is
robust against modeling. At least in practice, as noisiness provides e.g. an upper limit for the number of
chains of an arbiter XOR PUF. There is hence no secure instantiation of the protocol.

No Need for the First Level (#5) Playing along with the assumption of a secure PUF, the first level
would be superfluous. It does not improve system security and could be regarded as pure overhead. After its
modeling, an attacker with physical access is free to query CRPs of the ‘secure’ PUF, which is no different
from basic authentication. The authors derive argumentation from the breach recognition, but this concept is
flawed as detailed hereafter. Also within the first level, one could question the need to protect the guard PUF
with the hidden PUF, as it makes the enrollment more cumbersome. The authors argue that the prolonged
modeling time eliminates many attack scenarios. However, it seems highly unlikely that minor differences in
the physical access time would make a worthwhile difference. Furthermore, an attacker can focus its efforts
on a single token, while the modeling burden of the server comprehends the complete set of tokens.

Flawed Breach Recognition Claim (#7) The potential for breach recognition is much lower than
claimed. One assumes that an attacker attempts to defeat the server after modeling the first level, engaging
in the protocol. However, playing along with the assumption of a secure PUF, this would be a useless effort.
That’s because random guessing of rS should have a negligible probability of success. In practice, with
insecure PUFs, an attacker might rather query a token until both levels are modeled. Furthermore, it is not
clear how one would implement breach recovery without enabling a denial-of-service attack.

Flawed Server Depletion Claim (#7) The server depletion statements are unfair. It all depends on
which party initiates the protocol, an aspect which has not been covered. In Figure 2 in [1], we represented
the common sense version of the basic authentication protocol, with the server as sole initiator. The ability
for a token to initiate would enable denial-of-service, but this is equally true for the system of PUFs.

R
e
fe
re
n
ce

II
-A

R
e
fe
re
n
ce

II
-B

B
as

ic
C
o
n
tr
o
ll
e
d

Ö
zt

ü
rk

et
al

.
H

am
m

ou
ri

et
al

.
K

u
ls

en
g

et
al

.
R

ec
on

fi
gu

ra
ti

on
R
e
v
e
rs
e
F
E

R
e
v
e
rs
e
F
E

v
2

C
on

ve
rs

e
Ji

n
et

al
.

S
le
n
d
e
r

X
u

et
al

.
N
o
is
e
b
if
u
rc
a
ti
o
n

S
y
st

em
of

P
U

F
s

re
so

u
rc

es
(#

5
)

Weak PUF X X × × × × × × × X × × × × × X
Strong PUF1 × × X X X X X X X × X X X X X X

NVM2 × × × × X × X X × × × X × × × ×
TRNG × X × × × X × × × X X × X × X ×

Gen × × × × × × × × X X × × × × × ×
Rep X X × × × × × × × × X × × × × ×

Hash X X × X × × × X X X X X × × × ×
PRNG × × × × × × X × × × × × × × × ×
⊕,=? × X × × X X X × X X X X × X × ×

1× interface X X × X X X X × X X X X X X X ×

cl
a
im

s

Server authenticity × X × × × × X × X X X X × X × ×
Token authenticity X × X X X X X X X X × X X X X X

Token privacy × × × × × × X X × × × X × X × ×
Authentications ∞ ∞ d d ∞ ∞ ∞ d ∞ ∞ ∞ ∞ ∞ d ∞ d

u
sa

b
il
it

y

PUF Benefit (#1) X X X X X X X
Noise Robust (#2) X X X ∼ × × X X × X × X ∼

Modeling Robust (#3) X X × X × X X ∼ ∼ ∼ ×
PUF Independency (#6) X X ∼ × X × ×
Server authenticity (#7) X × ∼ X × × ×
Token authenticity (#7) X X × ∼ X ∼ X

Token privacy (#7) ×
DoS prevention (#7) X X X × × × X X × X X

1 Including logic to expand the PUF response (#4).
2 Not including identification (#8).

Table 1. For all protocols: token hardware (top segment), the authenticity and privacy claims (middle segment) and
our condensed analysis (bottom segment). The symbol X denotes ‘yes’. The symbol × denotes ‘no’. The symbol ∼
denotes the middle ground. An empty cell means ‘non-applicable’. A grayed-out cell means ‘irrelevant due to other
issues’.

5 Overview and Discussion

Table 1 provides an overview of Section 4. We adopt the perspective of an interested system provider, aim-
ing to select a protocol. Proposals which do not offer any robustness against both noise (#2) and modeling
(#3) are discarded first. Subsequently, we discard proposals which are vulnerable to conventional protocol
attacks (#7). Despite the exploitation of their response expansion method (#4), we maintain the slender
PUF and original reverse FE proposals. This is due to the implementation-dependency: PRNG redesign
might easily offer a fix for both. The seven remaining proposals are marked bold for further consideration.
We do not object that the discarded proposals might contain worthwhile concepts.

The seven retained protocols can be split in two categories. The first category comprehends all forms of
PUF-based key generation, including a strong cryptographic primitive to perform the authentication.
This might provide excellent security, but it is unfortunately not so very lightweight (#5). Within this
category, Reference II-A can be considered as the weak PUF variant of controlled PUFs. Similarly, there is
also a weak PUF variant of the reverse FE protocol. Both weak PUF variants have the advantage that they
are compatible with quasi every PUF (#6).

The second category comprehends strong PUF obfuscation. Although not equally secure, it improves
the lightweight perspectives. However, both the slender PUF and noise bifurcation proposals rely on a TRNG
to perform obfuscation. A physically secure TRNG is not easy to obtain in practice. Additional resources in
the form of countermeasures might be required. Furthermore, this category only seems useful if the scope

is limited to just entity authentication. If there are other security request, e.g. message confidentiality and
integrity, PUF-based key generation seems more appropriate.

6 Conclusion

Various protocols utilize a strong PUF to provide lightweight entity authentication. We described five pro-
posals using a unified notation, hereby continuing our large-scale protocol overview of CHES 2014. Again,
our analysis revealed numerous security and practicality issues. Most proposals aim to compensate the lack
of cryptographic properties of the strong PUF. However, proper compensation seems to be in conflict with
the lightweight objective. More fundamental physical research is required, aiming to create a truly strong
PUF with great cryptographic properties. If not, we are inclined to recommend conventional PUF-based key
generation as a more promising alternative. Furthermore, we are the first to explicitly list PUF protocol
requirements. This might facilitate future protocol design.

7 Future Work

We plan to analyze more protocols in the near future. Therefore, please keep track of potential updates of
this Eprint manuscript.

Acknowledgment

The authors greatly appreciate the support received. The European Commission through the ICT pro-
gramme under contract FP7-ICT-2011-317930 HINT. The Research Council of KU Leuven: GOA TENSE
(GOA/11/007), the Flemish Government through FWO G.0550.12N and the Hercules Foundation AKUL/11/19.
The national major development program for fundamental research of China (973 Plan) under grant no.
2013CB338004. Jeroen Delvaux is funded by IWT-Flanders grant no. 121552.

References

1. J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede. Secure lightweight entity authentication with strong
pufs: Mission impossible? In Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, pages 451–475, 2014.

2. S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khandelwal. Design and implementation of puf-based
“unclonable” rfid ics for anti-counterfeiting and security applications. pages 58–64. IEEE, 2008.

3. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from biometrics
and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

4. B. Gassend, D. E. Clarke, M. van Dijk, and S. Devadas. Silicon physical random functions. In V. Atluri, editor,
ACM Conference on Computer and Communications Security, pages 148–160. ACM, 2002.

5. J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls. FPGA intrinsic pufs and their use for IP protection.
In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES 2007, 9th
International Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture Notes in
Computer Science, pages 63–80. Springer, 2007.

6. G. Hammouri, E. Öztürk, and B. Sunar. A tamper-proof and lightweight authentication scheme. Pervasive and
Mobile Computing, 4(6):807–818, 2008.

7. C. Helfmeier, C. Boit, D. Nedospasov, and J. Seifert. Cloning physically unclonable functions. In 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust, HOST 2013, Austin, TX, USA, June 2-3,
2013, pages 1–6. IEEE, 2013.

8. J. Hermans, R. Peeters, and J. Fan. IBIHOP: Proper Privacy Preserving Mutual RFID Authentication. In
Workshop on RFID and IoT Security - RFIDSec Asia 2013, Cryptology and Information Security, pages 45–56,
Guangzhou, China, 2013. IOS PRESS.

9. D. E. Holcomb, W. P. Burleson, and K. Fu. Power-up SRAM state as an identifying fingerprint and source of
true random numbers. IEEE Trans. Computers, 58(9):1198–1210, 2009.

10. Y. Jin, W. Xin, H. Sun, and Z. Chen. Puf-based rfid authentication protocol against secret key leakage. In Q. Z.
Sheng, G. Wang, C. S. Jensen, and G. Xu, editors, APWeb, volume 7235 of Lecture Notes in Computer Science,
pages 318–329. Springer, 2012.

11. S. Kardaş, M. Akgün, M. S. Kiraz, and H. Demirci. Cryptanalysis of lightweight mutual authentication and own-
ership transfer for rfid systems. In Lightweight Security Privacy: Devices, Protocols and Applications (LightSec),
2011 Workshop on, pages 20–25, March 2011.

12. S. Katzenbeisser, Ünal Koçabas, V. van der Leest, A. Sadeghi, G. J. Schrijen, H. Schröder, and C. Wachsmann.
Recyclable pufs: Logically reconfigurable pufs. In B. Preneel and T. Takagi, editors, Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October 1, 2011.
Proceedings, volume 6917 of Lecture Notes in Computer Science, pages 374–389. Springer, 2011.

13. Ünal. Kocabaş, A. Peter, S. Katzenbeisser, and A. Sadeghi. Converse puf-based authentication. In S. Katzen-
beisser, E. Weippl, L. J. Camp, M. Volkamer, M. K. Reiter, and X. Zhang, editors, Trust and Trustworthy
Computing - 5th International Conference, TRUST 2012, Vienna, Austria, June 13-15, 2012. Proceedings, vol-
ume 7344 of Lecture Notes in Computer Science, pages 142–158. Springer, 2012.

14. S. T. C. Konigsmark, L. K. Hwang, D. Chen, and M. D. F. Wong. System-of-pufs: Multilevel security for
embedded systems. In Proceedings of the 2014 International Conference on Hardware/Software Codesign and
System Synthesis, CODES ’14, pages 27:1–27:10, New York, NY, USA, 2014. ACM.

15. L. Kulseng, Z. Yu, Y. Wei, and Y. Guan. Lightweight mutual authentication and ownership transfer for rfid
systems. In INFOCOM, pages 251–255. IEEE, 2010.

16. J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas. A technique to build a secret key
in integrated circuits for identification and authentication applications. In Symposium on VLSI Circuits, pages
176–179. IEEE, 2004.

17. R. Maes. Physically Unclonable Functions: Constructions, Properies and Applications. PhD thesis, KU Leuven,
2012.

18. R. Maes. An accurate probabilistic reliability model for silicon pufs. In G. Bertoni and J. Coron, editors,
Cryptographic Hardware and Embedded Systems - CHES 2013 - 15th International Workshop, Santa Barbara,
CA, USA, August 20-23, 2013. Proceedings, volume 8086 of Lecture Notes in Computer Science, pages 73–89.
Springer, 2013.

19. M. Majzoobi, F. Koushanfar, and M. Potkonjak. Testing techniques for hardware security. In D. Young and
N. A. Touba, editors, ITC, pages 1–10. IEEE, 2008.

20. M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and S. Devadas. Slender puf protocol: A lightweight, ro-
bust, and secure authentication by substring matching. In IEEE Symposium on Security and Privacy Workshops,
pages 33–44. IEEE Computer Society, 2012.

21. D. Merli, D. Schuster, F. Stumpf, and G. Sigl. Semi-invasive em attack on fpga ro pufs and countermeasures. In
Workshop on Embedded Systems Security, 2011.

22. E. Öztürk, G. Hammouri, and B. Sunar. Towards robust low cost authentication for pervasive devices. In
PerCom, pages 170–178. IEEE Computer Society, 2008.

23. R. S. Pappu. Physical One-Way Functions. PhD thesis, MIT, 2001.
24. Z. S. Paral and S. Devadas. Reliable and efficient puf-based key generation using pattern matching. In HOST,

pages 128–133. IEEE Computer Society, 2011.
25. U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber. Modeling attacks on physical

unclonable functions. In E. Al-Shaer, A. D. Keromytis, and V. Shmatikov, editors, ACM Conference on Computer
and Communications Security, pages 237–249. ACM, 2010.

26. U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova, G. Dror, J. Schmidhuber, W. Burleson,
and S. Devadas. Puf modeling attacks on simulated and silicon data. IEEE Transactions on Information Forensics
and Security, 8(11):1876–1891, 2013.

27. U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushanfar, and W. Burleson. Efficient power
and timing side channels for physical unclonable functions. In CHES. IEEE, 2014.

28. S. P. Skorobogatov. Semi-invasive attacks - a new approach to hardware security analysis. Technical Report
UCAM-CL-TR-630, University of Cambridge, Computer Laboratory, 2005.

29. G. E. Suh and S. Devadas. Physical unclonable functions for device authentication and secret key generation. In
DAC, pages 9–14. IEEE, 2007.

30. S. Tajik, E. Dietz, S. Frohmann, J. Seifert, D. Nedospasov, C. Helfmeier, C. Boit, and H. Dittrich. Physical char-
acterization of arbiter pufs. In Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, pages 493–509, 2014.

31. A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R. Sadeghi, I. Verbauwhede, and C. Wachsmann.
Reverse fuzzy extractors: Enabling lightweight mutual authentication for puf-enabled rfids. In A. D. Keromytis,
editor, Financial Cryptography, volume 7397 of Lecture Notes in Computer Science, pages 374–389. Springer,
2012.

32. Y. Xu and Z. He. Design of a security protocol for low-cost rfid. In Wireless Communications, Networking and
Mobile Computing (WiCOM), 2012 8th International Conference on, pages 1–3, 2012.

33. M.-D. M. Yu, D. M’Räıhi, I. Verbauwhede, and S. Devadas. A noise bifurcation architecture for linear additive
physical functions. In HOST, pages 124–129. IEEE, 2014.

