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Abstract. Physically unclonable functions (PUFs) exploit the unavoidable manufacturing variations
of an integrated circuit (IC). Their input-output behavior serves as a unique IC ‘fingerprint’. Therefore,
they have been envisioned as an IC authentication mechanism, in particular the subclass of so-called
strong PUFs. The protocol proposals are typically accompanied with two PUF promises: lightweight
and an increased resistance against physical attacks. In this work, we review nineteen proposals in
chronological order: from the original strong PUF proposal (2001) to the more complicated noise bi-
furcation and system of PUF proposals (2014). The assessment is aided by a unified notation and a
transparent framework of PUF protocol requirements. The work comprehends a sequel on our prior
CHES 2014 manuscript1.
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1 Introduction

In this work, we consider a common authentication scenario between two parties: a low-cost resource-
constrained token and a resource-rich server. Practical instantiations of a token include the following:
radio-frequency identification (RFID) tags, smart cards and nodes of a wireless sensor network. One-way
or possibly mutual entity authentication is the main objective, occasionally extended with token privacy.
Although the server has secure computing and storage at its disposal, providing security is a major chal-
lenge given the requirements at the token side. Tokens typically store a secret key in non-volatile memory
(NVM), using a mature technology such as EEPROM and its successor Flash, battery-backed SRAM or
fuses. Cryptographic primitives import the key and perform an authentication protocol.

Today’s issues are as follows. First, implementing cryptographic primitives in a resource-constrained
manner is rather challenging. A lightweight hash function (Spongent, Quark, Photon, etc.) still requires
1500 GE, typically. Second, an attacker can gain physical access to the integrated circuit (IC) of a token.
NVM has proven to be vulnerable to physical attacks [41] as the secret is stored permanently in a robust
electrical manner. Third, most NVM technologies oppose the low-cost objective. EEPROM/Flash requires
floating gate transistors, resulting in additional manufacturing steps with respect to a regular CMOS design.
Battery-backed SRAM requires a battery. Circuitry to protect the NVM contents, e.g., a mesh of sensing
wires, tends to be expensive.

Physically unclonable functions (PUFs) offer a promising alternative. Essentially, they are binary
functions, with their input-output behavior determined by IC manufacturing variations. Therefore, they
can be understood as a unique IC ‘fingerprint’, analogous to human biometrics. They might alleviate the
aforementioned issues. Many PUFs allow for an implementation which is both resource-constrained and
CMOS compatible. Furthermore, the secret is hidden in the physical structure of an IC, which is a much less
readable format. Invasive attacks might easily destroy this secret, as an additional advantage.

Numerous PUF-based authentication protocols have been proposed. Two categories of protocols
naturally emerge, linked to functional discrepancies between so-called weak and strong PUFs. The weak PUF

1 This work extends our prior CHES 2014 manuscript “Secure Lightweight Entity Authentication with Strong PUFs:
Mission Impossible?” as follows. Most notably, eleven additional strong PUF protocols are included in the overview-
analysis. Also, we improved the transparency of our analysis by explicitly listing protocol requirements. Finally,
token privacy has been included in the analysis.



approach comprehends the use of PUFs as key generator, which is perfectly compatible with conventional
authentication protocols. We focus on the strong PUF approach instead. The input-output behavior of the
PUF is then an essential component of the protocol itself. This requires a special flavor of protocol design.
We are the first to construct an extensive list of protocol requirements and apply it as an analysis tool to a
rather complete list of strong PUF protocols. Numerous security and practicality issues appear. To such an
extent, that we cannot support the use of most proposals in their current form. Our framework of protocol
requirements is also intended as a checklist to improve the quality of future PUF-based protocols.

We consider the following list of strong PUF protocols, all described with a unified notation for ease
of understanding: basic strong PUF authentication [34], controlled PUFs [8], Bolotnyy et al. [2], Öztürk et
al. [33], Hammouri et al. [10], Kulseng et al. [23], Sadeghi et al. [39], logically reconfigurable PUFs [19],
reverse fuzzy extractors [45], the converse protocol [20], Lee et al. I [25], Jin et al. [15], slender PUFs [30],
Xu et al. [46], He et al. [11], Jung et al. [16], Lee et al. II [26], noise bifurcation [47] and system of PUFs [21].

All protocols in this work employ two phases. The first phase is a one-time enrollment in a secure
environment, following IC manufacturing. The server then initializes variables in NVM and/or obtains some
information about the PUF to establish a shared secret. The destruction of one-time interfaces might per-
manently restrict direct NVM/PUF access afterwards. The second phase is in-the-field deployment, where
tokens are vulnerable to physical attacks. Token and server then authenticate over an insecure communication
channel.

The remainder of this manuscript is organized as follows. Section 2 introduces notation and preliminaries.
Section 3 lists the requirements of a PUF-based authentication protocol. Section 4 introduces authentication
via PUF-based key generation, to be considered as a reference. Section 5 describes and analyzes all strong
PUF protocols. Our analysis is performed at protocol level, considering PUFs as a black box. Section 6
provides an overview of the protocol assessment. Section 7 concludes the work.

2 Preliminaries

2.1 Notation

Binary vectors are denoted with a bold lowercase character, e.g., c ∈ {0, 1}1×m. All vectors are row vectors.
Their elements are selected with an index i ≥ 1 between round brackets, e.g., c(1), c(2), etc. The null vector
is denoted as 0. Binary matrices are denoted with a bold uppercase character, e.g., H. Operations are the
following: addition modulo 2 (XOR), e.g., x ⊕ c, multiplication modulo 2, e.g., e ·HT , concatenation, e.g.,
x||c, and bit inversion, e.g., r. Variable assignment is denoted with an arrow, e.g., d← d− 1. Variables may
occasionally be denoted with an additional protocol run counter, e.g., c(1), c(2), etc. Functions are printed
in italic, with their input arguments between round brackets, e.g., Hamming weight HW (r) and Hamming
distance HD(r1, r2).

2.2 Embedded Non-Volatile Memory

We consider three categories of embedded non-volatile memory (NVM). They are listed with increasing
flexibility in terms of programmability, as it determines which types of variables they can support. The
manufacturing cost often translates to additional masks and processing steps with respect to a regular
CMOS process. The first category is hard-wired read-only memory (ROM). Its contents are mask-defined
and therefore shared by each token. Technologies are typically low-cost as the manufacturing process is not
further complicated. The second category is one-time programmable (OTP) NVM. Technologies are based
on either fuses or antifuses and are either foundry-specific or foundry-independent. Several IP providers offer
foundry-independent OTP NVMs which do not further complicate the manufacturing process. This includes
eMemory, Kilopass, Novocell Semiconductor, NSCore and Sidense. To a very limited extent and at a high
area cost, reprogramming can be emulated via the partitioning of a large OTP NVM. Writing comprehends
disabling and enabling the current and next partition respectively. The third category is true multiple-time
programmable (MTP) NVM, supporting a very high number of write-cycles. Unfortunately, traditional
technologies are expensive. EEPROM and its successor Flash require floating gate transistors, resulting
in additional masks and processing steps. Battery-backed SRAM relies on CMOS-compatible SRAM, but
batteries are considered to be very expensive. There are MTP NVM cell structures which do not further



complicate the manufacturing process, as provided by, e.g., eMemory. However, these initiatives should not
be considered as a commodity yet. Furthermore, the storage density is typically lower than EEPROM/Flash.

2.3 Physically Unclonable Functions: Black Box Description

The m-bit input and n-bit output of a PUF are referred to as challenge c and response r respectively. Unfor-
tunately for cryptographic purposes, the behavior of challenge-response pairs (CRPs) does not correspond
with a random oracle. First, the response bits are not perfectly reproducible. Noise in transistors
and wires as well as various environmental perturbations (supply voltage, temperature, etc.) result in non-
determinism. Second, the response bits are non-uniformly distributed: bias and correlations are present.
Without proper compensation, this might enable a variety of attacks.

PUFs are often subdivided in two classes, according to their number of CRPs. Weak PUFs offer few
CRPs, scaling roughly linear with the required IC area. Architectures typically consist of an array of iden-
tically laid-out cells, each producing one or more response bits. E.g., the SRAM PUF [14] and the ring
oscillator PUF2 [42] are both very popular. Addressing the array provides a challenge-response mechanism.
However, the total array size is of primary importance: mostly, all 2m+n bits are used collectively to generate
a secret key. This key is stored in volatile memory whenever cryptographic operations have to be performed,
opposing the permanent nature of NVM. Post-processing logic, typically a fuzzy extractor [6], is required to
ensure a reproducible and uniformly distributed key.

Strong PUFs offer an enormous number of CRPs, often scaling exponentially with the required IC
area. Despite their small response space, mostly n = 1, architectures are typically able to provide a large
challenge space, e.g., m = 128. Therefore, they might greatly exceed the need for secret key generation and
have been promoted primarily as lightweight authentication primitives. The most famous example is the
arbiter PUF [24]. However, due to inherent correlations, unprotected exposure to the PUF might enable
so-called modeling attacks. One tries to construct a predictive model of the PUF, given a limited set of
training CRPs. Machine learning algorithms have proven to be successful [37]. For completeness, we note
that the definition of strong PUFs has shifted over the years. The original more specific notion in [9] assumes
a large response space in addition to strong cryptographic properties: resistance against modeling and tamper
evidence. Although highly relevant as an ideal case specification, we stick to the more recent practical notion.

PUFs were initially praised for their resistance against physical attacks. Hereby often relying on the
intuitive insight that invasion of the IC might damage the PUF and hence destroy the secret. This is in
addition to the volatile nature of PUFs, posing limits on the attack time. However, a recent string of physical
attacks [12, 31, 38, 43] reduces the optimism. Side-channel analysis is non-invasive and cannot destroy the
secret. Even invasive techniques were demonstrated to be successful. The primary focus of these attacks is
collecting CRPs. For weak PUFs, this directly corresponds with a characterization of the secret. For strong
PUFs, an additional machine learning step might be required for the attack to be successful. Despite all the
former, it needs to be said that there is hardly work on countermeasures. Just like NVM and algorithms
without countermeasures are an easy target, the same might be true for PUFs.

2.4 Secure Sketches and Fuzzy Extractors

The noisiness of a PUF causes the regenerated instance of a response r to be slightly different: r̃ = r⊕e, with
HW (e) relatively small. Although a wide variety of reconstruction methods has been proposed [4], secure
sketches [6, 7] are a particularly useful tool, as defined by a two-step procedure. First, public helper data is
generated: p = Gen(r). Second, reproduction is performed: r = Rep(r̃,p). Helper data p unavoidably leaks
some information about r, although this entropy loss is supposed to be limited. Despite the rather generic
definition, two constructions dominate the implementation landscape, as specified below. Both the code-offset
and syndrome construction employ a binary [n, k, t] block code C, with t the error-correcting capability. The

latter construction requires a linear block code, as it employs the parity check matrix H ∈ {0, 1}(n−k)×n.
Successful reconstruction is guaranteed for both constructions, given HW (e) ≤ t. Information leakage is
limited to n − k bits. The hardware footprint is asymmetric: Gen is better suited for resource-constrained
devices than Rep [45].

2 We consider the most usable read-out modes which aim to avoid correlations, e.g., pairing neighboring oscillators.
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A fuzzy extractor (FE) can be constructed out of a secure sketch. An additional hash function then produces
a nearly uniform output: k ← Hash(r). By having more input than output bits, it compensates for the
non-uniformity of r as well as the helper data leakage. Although no generic threats have been reported, we
stress that other methods, used either as an alternative or an extension, are known to be vulnerable against
helper data manipulation attacks. Therefore, it can be advisable to extend all of the former with a helper
data integrity check [3].

3 Protocol Requirements

PUFs require a special flavor of protocol design. We are the first to explicitly list an extensive set of protocol
requirements. Sections 3.1 to 3.10 describe a mixture of PUF-induced requirements and more conventional
concerns. The list is tailored to the vast majority of PUF protocols, aiming to obtain token-server entity
authentication, but can be mapped quite easily to other settings.

3.1 Complete Specification (#1)

A protocol should be specified in a complete unambiguous manner. Although this seems obvious, we observe
that many proposals do not comply. Furthermore, the use of a particular PUF should be suggested, at least
for protocols of which the security and/or functional behavior is PUF-dependent. As a side note, there is
considerable advantage in having a graphical representation of a protocol, clearly detailing all computations
and exchanged messages. This facilitates the analysis considerably. We observe that many proposals focus on
a text-based description, with only a minimal graphical representation as support. In this work, we represent
all protocols in a detailed graphical manner, hereby using a unified notation. For ease of understanding,
we make abstraction of non-essential refinements regarding the two-party setting. E.g., multiple servers, a
trusted issuer to aid the enrollment, a distinction between RFID readers and the back-end server, etc.

3.2 Leakage Resilience (#2)

The main advantage of PUF technology with respect to NVM should be preserved: improved physical
security. Otherwise, one could equally well opt for traditional secret key-storage. To illustrate further, PUF
behavior could in principle be mimicked with the latter. Secure NVM allows to instantiate an IC-specific
secret function, with the lack of noise as additional advantage. Therefore, we argue that PUF protocols
should be resilient against the leakage of their NVM contents. Although not equally critical, the extended
case where an attacker also has NVM write-access would correspond to a stronger security claim. Also, we
stress that protocol components other than NVM should be implemented in a physically secure manner.
E.g., with an unprotected cryptographic algorithm, NVM might not be the weakest link anymore.

3.3 Able to Handle Noisiness (#3)

Noisiness of the PUF responses should be taken into account. One can employ either one of two approaches:
error correction and error tolerance. Responses r̃ typically have a 1−15% error rate, considering their enrolled
versions r as a reference, although it largely depends on the IC’s environment. The lowest noise levels apply
to laboratory settings where the environment is ultra-stable. Higher noise levels apply to practical in-the-
field settings. Market products are typically supposed to function in a range of temperatures, among other
specifications. For completeness, we mention the noisiness to be bit-specific: some bits are noisy, others are
stable. Or more precisely, there is a continuous spectrum of bit error rates [28].



3.4 Counteracting Strong PUF Modeling Attacks (#4)

Strong PUFs are too fragile for unprotected exposure, as demonstrated by a history of machine learning
attacks [24,29,36,37]. So far, no PUF architecture can claim to be practical, well-validated and robust against
modeling. Or stated otherwise: no architecture satisfies the original strong PUF definition given in [9], as
has been observed by others, e.g., [27]. With strong cryptographic primitives such as a hash function, one
can fully mitigate this threat. Several proposals opt for more lightweight logic (XOR, PRNG, TRNG, etc.),
although this might offer partial protection only, as becomes clear later-on.

An unprotected strong PUF able to resist modeling would be a real breakthrough. Unfortunately, two
fundamental issues undermine the optimism. First, strong PUFs extract their enormous amount of bits
from a limited IC area only, hereby using a limited number of circuit elements. The delay model of the
arbiter PUF [36] provides an example. A highly correlated structure is the unavoidable consequence. Machine
learning algorithms exploit these correlations in a ‘blind’ implicit manner. The modeling resistance is usually
quantified by the minimum size of the training set as well as the algorithm runtime. More insightful explicit
quantification has been initiated in [29]. Via simulations, one characterized the probability P (ru = rv) =
f(cu, cv) for the ‘averaged’ arbiter PUF. CRPs with |f − 1/2| > 0 are correlated.

As a second issue, the more entangled and diffusing the structure of a PUF, the more robust against
modeling, but the less reproducible the responses as they accumulate more contributions from local noise
sources. A popular countermeasure against modeling is the replication of a strong PUF circuit, hereby
XORing the output bits. As has been analyzed for arbiter PUFs, correlations are considerably reduced then.
Unfortunately, XORing amplifies the noisiness, posing a practical limit on the modeling resistance.

3.5 Strong PUF Response Space Expansion (#5)

To counteract brute-force attacks and random guessing, all strong PUF protocols in this work require the
challenge c and response r to be of sufficient length, e.g., m = n = 128. Unfortunately, strong PUFs provide
a small response space only, often n = 1. Replicating the PUF circuit is a simple but unfortunately very
expensive solution [19,20]. The lightweight approach is to evaluate a list of n challenges, hereby concatenating
the response bits. Several proposals suggest the use of a particular method to generate such a list. The
server could send a list of true random numbers, requiring no additional IC logic, but resulting in a large
communication overhead [10]. A small pseudorandom number generator (PRNG), such as a linear feedback
shift register (LFSR), is often employed [5, 10, 21, 30, 35, 45, 47]. Challenge c is then used as seed value:
r̃← SPUF (PRNG(c)). In [33], a repeated permutation is employed for the same purpose. One might also be
able to reuse cryptographic primitives, e.g., in [19], a challenge with an additional counter input is repeatedly
hashed. We make abstraction of the response expansion method in the remainder of this work, except when
there is a related security issue.

3.6 Low-Cost and Resource-Constrained (#6)

We evaluate the PUF lightweight premise. Low-cost manufacturing is mainly an issue for proposals which
rely on MTP NVM. However, as practically every protocol building block requires a physically secure imple-
mentation, it might extend to a more general concern, largely depending on the selected countermeasures.
Constraints in available resources are mainly an issue for proposals which rely on strong cryptographic
primitives, such as a hash function.

3.7 Easy-to-instantiate (#7)

Ideally, one should not make exacting assumptions about the PUF, so that the protocol can be instantiated
easily. There is considerable advantage in the design of generic PUF-independent protocols. First, efficiency
and performance characteristics differ for every PUF, in terms of speed, area, power, noisiness, etc. Flexibility
of choice allows for better optimization with respect to a given set of constraints. Second, the recent string
of physical attacks on PUFs promotes to envision them as easy-to-replace building blocks. We note that all
protocols in this work require physical attacks on the PUF to be infeasible. PUF-based key generation is
compatible with quasi every weak or strong PUF. The proposals under review are more specific: they all
require a strong PUF. Furthermore, additional constraints are imposed, most frequently with respect to the
modeling robustness.



3.8 Resistance against Protocol Attacks (#8)

Resistance against conventional protocol attacks should be provided. We hereby assume the PUF to be an
ideal random oracle, in order to distinguish from previous requirements. The primary threat is token and/or
server impersonation. Furthermore, denial-of-service (DoS) attacks should be considered. We limit the scope
to protocol-based DoS attacks, as they can be executed remotely. This because mechanical DoS attacks are
trivial to perform, given that one might acquire physical access to a token. Specific protocol claims such
as token privacy should be validated as well. For protocols which claim NVM leakage resilience, all of the
former should be reevaluated. It even makes sense to reevaluate DoS, as it could have a benefit to perform
such an attack with delay, in a non-mechanical manner.

The assumed attacker capabilities should be realistic with respect to the intended application, as it its an
occasional practice to mitigate realistic threats with unrealistic assumptions. Luckily, most proposals stick
to a fully insecure channel between token and server as well as physical attacks on the token state. We stress
the importance of assuming that a token and its PUF are still functional after performing the NVM leakage
attack. If an attacker cannot interfere with a genuine protocol run anymore, the security claim would be
very marginal. Note that server impersonation, token privacy and DoS are irrelevant for a broken token.

3.9 Scalability: Identification Prior to Authentication (#9)

We distinguish between authentication and identification. The former comprehends the secure verification
of an identity while the latter is limited to an unverified claim. Most protocols in this work provide token
authentication and therefore also token identification. Unfortunately, identification prior to authentication
is more practical. Otherwise, the server would have to iterate over all enrolled tokens to establish a match.
There is a simple solution if token privacy is of no concern. Each token can store an identifier in insecure OTP
NVM [45]. Alternatively, one could opt for a PUF-generated identifier as well. Matching noisy identifiers is
a straightforward operation and more complicated algorithms might even obtain sublinear complexity. We
will not further comment on the absence of an identification step, except for the proposals which claim token
privacy.

3.10 On the Mutual Authentication Order (#10)

An attacker’s potential to freely query tokens is a major concern. Therefore, it is a good practice to establish
server authenticity first, in the case of mutual authentication [13]. The corresponding reduction in attack
surface inherently benefits the security and privacy objectives. This might even be the reason to provide
mutual authentication in the first place, rather than token authenticity only. Although several protocols
employ the opposite order, we do not further discuss, as it comprehends a guideline rather that a stringent
requirement.

4 Authentication via PUF-Based Key Generation

In principle, one could select a conventional authentication protocol from literature and replace key-storage
in NVM with PUF-based key generation, as the latter is believed to be more physically secure. Although
such concatenations are not the primary interest of this work, they establish a baseline in terms of security,
efficiency and extensibility. A well-validated protocol combined with a secure mechanism for PUF-based key
generation might provide excellent security guarantees. Efficiency might be a major concern though as strong
cryptographic primitives are expected to be involved. Extensibility to other requirements is excellent and
one might benefit from a wide body of literature. Guided by Figure 1, we now refine foregoing sketch on
concatenated protocols.

4.1 Reference Protocols

Reference I-A in Figure 1(a) relies on physically secure NVM, an assumption which might not always hold
in practice. Figure 2 represent the corresponding protocol, which offers token authenticity only. Each token
stores a unique secret key k in OTP NVM. A cryptographic primitive performs the authentication. We opt
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Fig. 1. Token representations for the key generation approach. The following IC logic is not drawn: intermediary
registers (volatile) and control. A dashed line represent the interface with the server. One-time interfaces destructed
after enrollment are marked by the symbol ×.



for a block cipher with encryption and decryption algorithms Enc and Dec respectively. E.g., the 128-bit
version of the Advanced Encryption Standard (AES) might be used. Reference I-B, represented by Figure
1(b) and 3, provides server authenticity. Both mechanisms could be combined in order to provide mutual
authentication.

(1×)

Auth. (∞×)

Token j

R/W-secure OTP NVM: k← kj

a← Enc(k;n)

n

a

Server

kj ← TRNG()

n← TRNG()

Abort if n 6= Dec(kj ;a)

Fig. 2. Authentication with Reference I-A. The thick arrow points from verifier to prover.

(1×)

Auth. (∞×)

Token j

R/W-secure OTP NVM: k← kj

n← TRNG()

Abort if n 6= Dec(kj ;b)

n

b

Server

kj ← TRNG()

b← Enc(k;n)

Fig. 3. Authentication with Reference I-B.

Reference II-A, represented by Figures 1(c) and 4, provides token authenticity. A weak PUF (WPUF ) is
sufficient and logic for generating challenges might be as simple as reading out the whole cell array. One could
opt for a strong PUF (SPUF ) with challenge generator as well. The response noisiness and non-uniformity
issues are resolved with a fuzzy extractor. Gen is executed only once during enrollment. Public helper data
p is stored by the server, or alternatively at the token side in insecure OTP NVM. One could generate a key
as k← Hash(r). We perform an optimization by merging this step with the authentication. Reference II-B,
represented by Figure 1(d) and 5, provides server authenticity. Again, both mechanisms could be combined
in order to provide mutual authentication.

(1×)

Auth. (∞×)

Token j

rj ←WPUF ()

a← Hash(Rep(WPUF (),pj),n)

n, pj

a

Server

rj

pj ← Gen(rj)

n← TRNG()

Abort if a 6= Hash(rj ,n)

Fig. 4. Authentication with Reference II-A.

4.2 Existing Literature

Several proposals in literature aim to provide entity authentication via PUF-based key generation, as listed
next. Tuyls et al. [44] use public key cryptography, mitigating the need for a shared secret between token
and server, although it might not be so very lightweight. The proposal of Sadeghi et al. [39] is formulated
as a strong PUF protocol and hence analyzed later-on, although it can be reduced quite trivially to a weak
PUF protocol. The modified reverse fuzzy extractor proposal [27] comprehends a special case of secret key
generation, as the key is adapted to the noise. There is the protocol of Bassil et al. [1], which has been badly
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Fig. 5. Authentication with Reference II-B.

broken in [40]. The proposal of Kardas et al. [18] is formulated as a strong PUF protocol, although it can
again be reduced quite trivially to a weak PUF protocol. However, it does not fully fit our scope, as it aims
to defend against RFID reader compromise.

5 Strong PUF Protocol Analysis

We describe and analyze all strong PUF protocols in chronological order, guided by Figure 6. As some
protocols contain similar design concepts, we also considered categorizing them. However, it does not fly all
the way, so we opt for the history of development as main theme instead. Protocols already discussed in
our prior CHES 2014 manuscript are not included here. Sections 5.1 to 5.11 can be read in arbitrary order,
although we recommend to get acquainted with the basic protocol first.

5.1 Bolotnyy et al. (March 2008)

The protocol of Bolotnyy et al. [2] is represented by Figures 6(c) and 7. PUFs are assumed to be robust
against modeling. The authors claim token privacy under the assumption of an eavesdropping attacker.

Incomplete Specification (#1) The authors do not acknowledge the need to expand the response space
of the strong PUF.

NVM Undermines PUF Benefit (#2) The need for secure NVM undermines the main benefit of PUF
technology: improved physical security. Leakage of the state allows for one-time token impersonation as well
as a one-time privacy breach. This issue could be resolved by storing the preceding identifier rather than the
currently valid identifier. With write-access, an attacker could reconstruct the server database.

Non-Functional due to PUF Noisiness (#3) PUF noisiness has not been taken into account properly,
making the protocol non-functional. The authors suggest majority voting as an error-correction mechanism,
hereby evaluating the PUF multiple times to approach the most likely response value. Under the assumption
of a uniform bit error rate, one could make the failure rate arbitrarily small as such. However, in practice,
bit error rates are highly non-uniform, so a majority vote by itself is ineffective. Bits with error rates close
to 50% remain problematic.

Modeling Attacks (#4) It is unrealistic to assume that PUFs are robust against modeling, which further
limits the practical value of the protocol. There is no secure instantiation due to the lack of an appropriate
strong PUF.

Overly Restricted Attacker Capabilities, Denial-of-Service (#8) As acknowledged in the article,
the assumption of an eavesdropping attacker mitigates a denial-of-service threat. However, we argue that
realistic threats should not be mitigated with unrealistic assumptions. Sending an authentication request to
a token is sufficient to cause desynchronization. Either blocking or modifying a token response has a similar
effect.
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Fig. 6. Token representation for all strong PUF protocols. The following IC logic is not drawn: expansion of the
strong PUF responses, intermediary registers (volatile) and control.
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Fig. 6. Token representation for all strong PUF protocols (continued).
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Token j

R/W-secure MTP NVM: ĩ← i1j

Majority vote i2j ← SPUF (i1j)

. . .

Majority vote idj ← SPUF (i(d−1)j)

i′ ← ĩ

Majority vote ĩ← SPUF (̃i) i′

Server

〈iij〉 with i1j ← TRNG() and i ∈ [1 d]

dj ← 1

Abort if ∀j : i′ 6= iij with i← dj

dj ← dj + 1

Fig. 7. Authentication protocol of Bolotnyy et al.



5.2 Kulseng et al. (March 2010)

The proposal of Kulseng et al. [23] provides mutual authentication. Figures 6(f) and 8 represent the protocol.
Token identifier i is updated after every authentication, for improved privacy: tracking is only possible in
between protocol executions. An attacker can desynchronize token and server by blocking the last message:
only the former updates its state then. Therefore, recovery logic is foreseen to prevent denial-of-service from
occurring. The authors suggest the use of an arbiter PUF.

(1
×

)
A

u
th

.
(∞
×

)

Token j

Insecure MTP NVM: i← ij

R/W-secure MTP NVM: x̃−1, x̃0 ← x0j

R/W-secure OTP NVM: y← yj

x1j ← SPUF (x̃0j)

If b = y ⊕ x̃0

x̃1 ← SPUF (x̃0)

w̃1 ← PRNG(x̃0)

i← PRNG(i⊕ x̃0)

x̃−1 ← x̃0

x̃0 ← x̃1

Else if b = y ⊕ x̃−1

x̃1 ← SPUF (x̃−1)

w̃1 ← PRNG(x̃−1)

Else Abort

ã1 ← x̃1 ⊕ w̃1

x̃2 ← SPUF (x̃1)

w̃2 ← PRNG(w1)

ã2 ← x̃2 ⊕ w̃2

i

b

ã1, ã2

Server

ij ← TRNG()

x0j ← TRNG()

yj ← TRNG()

x1j

Abort if i 6= ij or i 6= PRNG(ij ⊕ x0j)

b← yj ⊕ x0j

w1 ← PRNG(x0j)

Abort if x1j 6= ã1 ⊕w1

ij ← PRNG(ij ⊕ x0j)

x0j ← x1j

w2 ← PRNG(w1)

x1j ← ã2 ⊕w2

Fig. 8. Authentication protocol of Kulseng et al. We assume that x0 is used to update i, given the contradictive
specification.

Incomplete Specification (#1) There is contradictive information regarding the update of i: either x0

or x1 may be used. Although it leads to an equally insecure system, we align our interpretation with the
cryptanalysis in [17] and opt for x0. Also, the authors do not acknowledge the need to expand the response
space of the strong PUF.



Secure NVM Undermines PUF Benefit (#2) The need for secure NVM undermines the main benefit
of PUF technology. Either read or write access would enable an attacker to break the system.

Non-Functional due to PUF Noisiness (#3) PUF responses are not acknowledged to be noisy, making
the protocol non-functional. There will be a mismatch x̃1 = x′1 ⊕ e, with HW (e) small, leading to token
rejection. The use of x2 is even more problematic: the feedback loop over the PUF leads to error amplification.
We make abstraction of the noisiness issue in the remainder of our analysis.

Server Impersonation (#8) The desynchronization recovery logic allows for a simple replay attack. One
can impersonate the server by resending the last b.

Denial-of-Service (#8) As observed in [17], there is a simple denial-of-service attack. Interfering with a
genuine protocol run and modifying ã2 to an arbitrarily chosen value is sufficient to desynchronize token and
server.

Token/Server Impersonation and Privacy Breach (#8) The PRNG is instantiated with a LFSR.
In [17], one describes an attack which leads to full system disclosure. Given an n-bit output sequence of an
n-bit LFSR, one can easily retrieve the initial state. This principle is applied to two consecutive identifiers:

i(1) and i(2). This allows for the recovery of x̃
(1)
0 and subsequently all other secret variables. Our analysis

revealed an alternative PRNG exploitation attack, leading to full system disclosure as well. One can recover

w
(1)
1 = i(2) ⊕ LFSR(i(1)) and subsequently also other secret variables.

5.3 Sadeghi et al. (October 2010)

The protocol of Sadeghi et al. [39] is represented by Figures 1(e) and 9. Essentially, one uses a strong PUF
to generate a cryptographic key. The authors claim token privacy, in particular for an attacker which obtains
the NVM contents.

(1×)

Auth. (∞×)

Token j

Insecure OTP NVM: y← TRNG()

Insecure OTP NVM: p← Gen(rj)

rj ← SPUF (yj)

nT ← TRNG()

k← Hash(Rep(SPUF (y),p))

a← PRF (k;nT ,nS)

nS

nT , a

Server

kj ← Hash(rj)

nS ← TRNG()

Abort if ∀j : a 6= PRF (kj ;nT ,nS)

Fig. 9. Authentication protocol of Sadeghi et al. Unlike the proposing manuscript, we represent the fuzzy extractor
as an explicit part of the protocol. We argue that implicit usage does not properly reflect the security and efficiency
concerns.

Incomplete Specificiation (#1) The authors do not suggest the use of a particular strong PUF. The
need to expand its response space is not acknowledged either.

Suboptimal (#6) Two inefficiencies have not been addressed. First, there is no need for the PUF to have
an enormous input-output space. Even a weak PUF could be used and the NVM storing y could be omitted
as well. Second, joint optimization of the fuzzy extractor and the authentication logic has not been explored,
unlike Reference II-A which reuses cryptographic functions.



Privacy without Identification (#9) The proposal does not scale in the number of tags. One cannot
introduce a public identifier as this would oppose the privacy claim.

5.4 Lee et al. I (March 2012)

The first protocol of Lee et al. [25] is represented by Figures 6(j) and 10. The authors instantiate Enc with
the affiliated stream cipher NLM-128, with r̃ and y as key and initialization vector respectively. We note
that Enc corresponds to key stream generation only rather than encryption, as there is no message involved.
NVM physical security is not explicitly addressed, although we note that one can obtain i and x = a ⊕ b
via a direct query and eavesdropping respectively.

(1
×

)
A

u
th

.
(d
×

)

Token j

Insecure OTP NVM: i← ij

Insecure MTP NVM: x← xj

R/W-Secure OTP NVM: y← yj

rij ← SPUF (cij)

r̃← SPUF (c)

a← Enc(r̃;y)

Abort if b 6= a⊕ x

Update x

i

c

a

b

Server

ij ← TRNG()

xj ← TRNG()

yj ← TRNG()

〈cij , rij〉 with cij ← TRNG() and i ∈ [1 d]

dj ← d

Abort if i 6= ij

〈c, r〉 ← 〈cij , rij〉 with i← dj

dj ← dj − 1

Abort if a 6= Enc(r;yj)

b← a⊕ xj

Update xj

Fig. 10. Authentication protocol of Lee et al.

Incomplete Specification (#1) The update mechanism for x is not further specified, but should be
chosen carefully. We argue that secret variable y should be involved in the update: x← f (x,y), rather than
x← f (x). If not, one could mount a simple server impersonation attack. Consider eavesdropping on a genuine
protocol run (1). An attacker could get authenticated with an arbitrary c(2) and b(2) ← a(2)⊕ f (a(1)⊕b(1)).
Also, the authors do not suggest the use of particular strong PUF. They do not acknowledge the need to
expand its response space either.

Secure NVM Undermines PUF Benefit (#2) The use of secure NVM undermines the main benefit of
PUF technology: improved physical security.

Non-Functional due to PUF Noisiness (#3) The authors mention the existence of fuzzy extractors as
an error-correction mechanism. However, Gen/Rep procedures are not part of the proposed protocol and the
need for helper data is not acknowledged either. We assume the complete absence of error-correction rather
than an implicit usage, as security and efficiency concerns would not be reflected properly in the latter case.
In practice, there will then be a mismatch r̃ = r⊕e, with HW (e) relatively small, leading to token rejection.
We make abstraction of the noisiness issue in the remainder of our analysis.



Denial-of-Service (#8) There is a simple denial-of-service attack. Either blocking or modifying the last
message is sufficient to desynchronize token and server.

Cryptanalysis of NLM-128 (#8) A cryptanalytic attack on the stream cipher NLM-128 has recently
been reported [32], so one might have to consider other ciphers.

5.5 Jin et al. (April 2012)

The proposal of Jin et al. [15] seems to be inspired by [23]. The protocol is represented by Figures 6(k)
and 11. The function ShiftCirc rotates its input over half the length. The authors claim resistance against
physical attacks recovering the secret state x̃0: future authentications are not threatened. The protocol is
also claimed to be resistant against tracking. An attacker can desynchronize token and server by blocking
the last message: only the latter updates its state then. Therefore, recovery logic is foreseen to prevent
denial-of-service from occurring.
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.
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×

)

Token j

Insecure MTP NVM: x̃0 ← x0j

R/W-secure OTP NVM: y← yj

x1j ← SPUF (x0j)

x̃1 ← SPUF (x̃0)

x̃2 ← SPUF (x̃1)

ã1 ← x̃1 ⊕ x̃2

ã2 ← Hash(y, x̃2,n)

Abort if b 6= y ⊕ ShiftCirc(x̃2)

x̃0 ← x̃1

n

ã1, ã2

b

Server

x0j ← TRNG()

yj ← TRNG()

x1j

n← TRNG()

If ã2 = Hash(yj ,x2,n) with x2 ← ã1 ⊕ x1j

b← yj ⊕ ShiftCirc(x2j)

x0j ← x1j

x1j ← x2

Else if ã2 = Hash(yj ,x2,n) with x2 ← ã1 ⊕ x0j

b← yj ⊕ ShiftCirc(x2j)

Else Abort

Fig. 11. Authentication protocol of Jin et al.

Incomplete Specification (#1) The authors instantiate the protocol with a custom variant of the feed-
forward arbiter PUF. However, the description is too vague to allow for the interpretation of a workable
PUF. Also, the need to expand its response space is not acknowledged.

Secure NVM Undermines PUF Benefit (#2) The use of secure NVM undermines the main benefit
of PUF technology: improved physical security. The authors claim to be robust against key leakage via x′,
although they do not stress that this protection does not apply to y′. The latter which is prone to physical
attacks as well.

Non-Functional due to PUF Noisiness (#3) PUF responses are not acknowledged to be noisy, making
the protocol non-functional. There will be a mismatch x̃1 = x′1 ⊕ e, with HW (e) small, leading to token
rejection. The use of x2 is even more problematic: the feedback loop over the PUF leads to error amplification.
We make abstraction of the noisiness issue in the remainder of our analysis.



Server Impersonation (#8) Eavesdropping on the last protocol execution allows for server impersonation.

First one sends an arbitrary nonce n(2) and subsequently one responds with b(2) ← b(1) ⊕ ShiftCirc(ã
(2)
1 ).

Denial-of-Service (#8) The proposal instantiates the hash computation as follows: ã2 ← Hash(y, x̃2,n) =
Hash(y ⊕ x̃2 ⊕ n). This allows for desynchronization attacks: we describe two variations. With the first
variant, one injects the following messages during a genuine protocol run: n← n⊕ e and ã1 ← ã1 ⊕ e, with
an arbitrary e 6= 0. The server accepts and corrupts its state. With the second variant, one eavesdrops on

a genuine protocol run and obtains n(1) and ã
(1)
2 . Subsequently, one replies with the following messages in

the next protocol run: ã
(2)
2 ← ã

(1)
2 and ã

(2)
1 ← n(1) ⊕ n(2). Again, the server accepts and corrupts its state.

Furthermore, these attacks are in conflict with generally accepted privacy definitions. A single token which
is persistently refused can easily be distinguished from its neighbors.

Token Impersonation via Leakage of x̃0 (#8,#2) We argue the leakage claim to be incorrect. It
allows for unlimited token impersonation, meanwhile also incapacitating the genuine token. An attacker

eavesdrops on a genuine protocol run and obtains ã
(1)
1 . Subsequently, x̃

(2)
0 is obtained via leakage. Thereafter,

x̃
(2)
1 ← ã

(1)
1 ⊕ x̃

(2)
0 can be computed. One can choose an arbitrary value for x̃

(2)
2 . The attacker can now reply

to the server nonce n(2) and construct messages ã
(2)
1 and ã

(2)
2 . The impersonation extends to an unlimited

number of authentications: the PUF operation can be replaced with an arbitrary function.

Privacy without Identification (#9) The proposal does not scale in the number of tags. One cannot
introduce a public identifier as this would oppose the privacy claim.

5.6 Xu et al. (September 2012)

The protocol of Xu et al. [46] is represented by Figures 6(m) and 12. There is a system key y which is shared
by the server and all tokens. For improved privacy, token identifier i is updated after every authentication:
tracking is only possible in between protocol executions. An attacker can desynchronize token and server
by blocking the last message: only the latter updates its state then. Therefore, recovery logic is foreseen to
prevent denial-of-service from occurring.

Incomplete Specification (#1) There is only a vague informal description of the desynchronization
recovery logic. The authors state that the server retains old identifiers i−1j , without providing further details.
We filled in the blanks to the best of our insights and exclude this part from cryptanalysis. Also, the authors
do not suggest the use of particular strong PUF. They do not acknowledge the need to expand its response
space either.

Secure NVM (#2) The need for secure NVM undermines the main benefit of PUF technology: improved
physical security. Furthermore, all eggs are put in the same basket by having a system key y. If a single
token is compromised, one can easily obtain the identifier of every token as i0 = a⊕ y.

Non-Functional due to PUF Noisiness (#3) PUF responses are not acknowledged to be noisy, making
the protocol non-functional. There will be a mismatch r̃1 = r1 ⊕ e, with HW (e) small, leading to token
rejection. The use of r2 and r3 is even more problematic: the feedback loop over the PUF leads to error
amplification. We make abstraction of the noisiness issue in the remainder of our analysis.

Modeling Attacks (#4) The proposal does not acknowledge that PUFs are prone to modeling and
offers no protection either. Most notably, the CRP 〈r1, r2〉 is sent in the clear. Furthermore, one can obtain

additional CRPs 〈r2, r3〉, as r
(1)
3 ← a(1) ⊕ a(2). A practical limit on the number of authentications d should

hence be imposed. If system key y would be compromised, one can freely query CRPs 〈c, r1〉.
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Token j

R/W-secure MTP NVM: i0 ← i0j

R/W-secure ROM: y← y′

r1ij ← SPUF (cij)

r2ij ← SPUF (r1ij)

r3ij ← SPUF (r2ij)

a← i0 ⊕ y

c′ ← b⊕ i0

r̃1 ← SPUF (c′)

r̃2 ← SPUF (r̃1)

Abort if r̃2 6= r2

r̃3 ← SPUF (r2)

i0 ← i0 ⊕ r̃3

a

b

r̃1

r2

Server

i−1j , i0j ← TRNG()

y′ ← TRNG()

〈cij , r1ij , r2ij , r3ij〉 with cij ← TRNG() and i ∈ [1 d]

〈c, r1, r2, r3〉 ← 〈cij , r1ij , r2ij , r3ij〉 with i← dj

If i0j = a⊕ y′

b← i0j ⊕ c

Else if i−1j = a⊕ y′

b← i−1j ⊕ c

Else Abort

Abort if r̃1 6= r1

If i0j = a⊕ y′

i−1j ← i0j

i0j ← i0j ⊕ r3

dj ← dj − 1

Fig. 12. Authentication protocol of Xu et al. The desynchronization recovery logic is reconstructed to the best of our
insights, given its incomplete description.



Server Impersonation (#8) Eavesdropping on a single protocol run allows for unlimited server imper-

sonation. An attacker gets authenticated with b(2) ← b(1) ⊕ a(1) ⊕ a(2) and r
(2)
2 ← r

(1)
2 .

5.7 He et al. (September 2012)

The protocol of He et al. [11] is represented by Figures 6(n) and 13. The PRNG is instantiated with a LFSR.
For improved privacy, token identifier i is updated after every authentication: tracking is only possible in
between protocol executions. An attacker can desynchronize token and server by blocking the last message:
only the former updates its state then. Therefore, the authors suggest the use of recovery logic to prevent
denial-of-service from occurring. Exposure of the token state (i, x̃0 and y) via physical leakage is claimed
not to be a threat. The authors suggest the use of an arbiter PUF. The PUF error rate is assumed to be
negligible.

Incomplete Specification (#1) There is only an incomplete and informal description of the desynchro-
nization recovery logic. The authors suggest that tokens should retain their previous state, without providing
further details. This by itself can never work, as the server might receive either an old or new identifier i.
Therefore, we are not able to fill in the blanks properly and exclude this part from cryptanalysis. However
it should be noted that desynchronization recovery logic, when not carefully designed, often leads to one or
more protocol flaws. Furthermore, the initialization of the state (i, x̃0 and y) is not explicitly covered. Also,
the authors do not acknowledge the need to expand the PUF response space.

PUF Noisiness Underestimated (#3) It is unrealistic to assume that the PUF error rate is negligible,
making the protocol non-functional in practice. There will be a mismatch x′1 = x̃1⊕e, with HW (e) relatively
small, leading to server rejection. The use of x̃2 and x̃3 is even more problematic: the feedback loop over
the PUF leads to error amplification. We make abstraction of the noisiness issue in the remainder of our
analysis.

Denial-of-Service (#8) There are two simple denial-of-service attacks, both interfering with a genuine
protocol run in order to desynchronize token and server. A first attack comprehends the modification of ã2

to an arbitrarily chosen value. A second attack exploits the LFSR linearity, by injecting b1 ← b1 ⊕ e and
b2 ← b2 ⊕ LFSR(e), with an arbitrary e 6= 0.

Token/Server Impersonation, Denial-of-Service and Privacy Breach (#8) The use of a LFSR
leads to full system disclosure. Assume that an attacker eavesdropped on a genuine protocol run, hereby

obtaining i(1), b
(1)
1 , b

(1)
2 , a

(1)
1 and a

(1)
2 . Subsequently, one obtains i(2), either by eavesdropping or a direct

query. This allows for the retrieval of n
(1)
5 = i(1)⊕ i(2). Given an n-bit output sequence of an n-bit LFSR, one

can easily retrieve the initial state. This leads to n
(1)
4 , n

(1)
3 , n

(1)
2 and n

(1)
1 and hence also x

(1)
3 = n

(1)
4 ⊕ a

(1)
1 ,

x
(1)
2 = n

(1)
3 ⊕ a

(1)
2 , x

(1)
1 = n

(1)
2 ⊕b

(1)
2 and y(1) = n

(1)
1 ⊕b

(1)
1 , respectively. From this point onwards, all secret

variables of protocol run (2) are trivial to derive. Token impersonation extends to an unlimited number of
of authentications: the PUF operation can be replaced with an arbitrary function.

Token/Server Impersonation, Denial-of-Service and Privacy Breach via Leakage (#8) We argue
that leakage leads to full system disclosure, independent of the PRNG instantiation. Assume that an attacker
retrieved x̃0 and y by physical means. The state vector i can be obtained by a simple query. Subsequently,
one eavesdrops on a genuine protocol run, hereby obtaining b1, b2, a1 and a2. This allows for the retrieval
of n1 = b1 ⊕ y and hence also n2 to n6 by repeated PRNG evaluation. Further implications are identical to
the latter part of Section 5.7.
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Token j

Insecure MTP NVM: i← ij

Insecure MTP NVM: x̃0

Insecure MTP NVM: y← yj

x1j ← SPUF (x̃0)

x2j ← SPUF (x1j)

n′1 ← b1 ⊕ y

n′2 ← PRNG(n′1)

x′1 ← b2 ⊕ n′2

Abort if x′1 6= SPUF (x̃0)

x̃2 ← SPUF (x′1)

x̃3 ← SPUF (x̃2)

n′3 ← PRNG(n′2)

n′4 ← PRNG(n′3)

n′5 ← PRNG(n′4)

n′6 ← PRNG(n′5)

ã1 ← x̃2 ⊕ n′3

ã2 ← x̃3 ⊕ n′4

i← i⊕ n′5

x̃0 ← x′1

y← y ⊕ n′6

i

b1, b2

ã1, ã2

Server

ij ← TRNG()

yj ← TRNG()

x1j

x2j

Abort if ∀j : i 6= ij

n1 ← TRNG()

n2 ← PRNG(n1)

b1 ← yj ⊕ n1

b2 ← x1j ⊕ n2

n3 ← PRNG(n2)

x′2 ← ã1 ⊕ n3

Abort if x′2 6= x2j

n4 ← PRNG(n3)

n5 ← PRNG(n4)

n6 ← PRNG(n5)

x′3 ← ã2 ⊕ n4

ij ← ij ⊕ n5

x1j ← x2j

x2j ← x′3

yj ← yj ⊕ n6

Fig. 13. Authentication protocol of He et al. Desynchronization recovery logic is not included due to its incomplete
specification.



5.8 Jung et al. (January 2013)

The protocol of Jung et al. [16] is represented by Figures 6(o) and 14. The authors make use of timestamps
at both sides. The authors make use of the HMAC standard [22], with the PUF response as key. There is a
privacy claim: tracking is only possible in between protocol runs. Also, physical leakage of c0 is claimed not
to be a threat. We note leakage of c0 and iT to be equivalent, as one can query for a1.
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Token j

Insecure OTP NVM: iT ← iTj

Insecure MTP NVM: c0 ← c0j

r0j ← SPUF (c0j)

a1 ← iT ⊕ c0

nT ← Time()

r̃0 ← SPUF (c0)

ã2 ← HMAC (r̃0;nT , iT , iS)

c′1 ← b1 ⊕HMAC (r̃0;nS ,nT , iS , iT )

Abort if b2 6= HMAC (r̃0; c′1)

r̃1 ← SPUF (c′1)

ã3 ← r̃1 ⊕ c′1

ã4 ← HMAC (r̃1;nT + 1,nS , iT , iS)

c0 ← c′1

iS

a1, nT , ã2

nS , b1, b2

ã3, ã4

Server

iTj ← TRNG()

c0j ← TRNG()

r0j

iS ← TRNG()

Abort if ∀j : a1 6= iTj ⊕ c0j

Abort if ã2 6= HMAC (r0j ;nT , iTj , iS)

c1 ← TRNG()

nS ← Time()

b1 ← HMAC (r0j ;nS ,nT , iS , iTj)⊕ c1

b2 ← HMAC (r0j ; c1)

r′1 ← ã3 ⊕ c1

Abort if ã4 6= HMAC (r′1;nT + 1,nS , iTj , iS)

c0j ← c1

r0j ← r′1

Fig. 14. Authentication protocol of Jung et al.

Incomplete Specification (#1) An implementation of Time() has not been specified, which is crucial at
the token side in particular. The timestamp could be a snapshot of either a synchronized clock or a local
clock. One could also opt for a monotonic counter, incremented after every authentication, but this would
require write-secure MTP NVM. However, given that in the protocol specification, neither party verifies the
other party’s timestamp (not even to verify that the current timestamp is greater than the previous one),
one could equally well opt for a TRNG. Also, the authors do not suggest the use of a particular strong PUF.
The need to expand its response space is not acknowledged either.

Non-Functional due to PUF Noisiness (#3) PUF responses are not acknowledged to be noisy, making
the protocol non-functional. There will be a mismatch r̃0 = r0j ⊕ e, with HW (e) relatively small, leading to
token rejection. We make abstraction of the noisiness issue in the remainder of our analysis.



Denial-of-Service (#8) There is a simple denial-of-service attack. Either blocking or modifying the last
message is sufficient to desynchronize token and server.

Token/Server Impersonation, Denial-of-Service and Privacy Breach via Leakage (#8) We argue
that leakage leads to full system disclosure. Assume an attacker to eavesdrop on a single protocol run,

hereby obtaining a
(1)
3 . Subsequently, iT and c

(2)
0 are obtained via physical leakage. One can then retrieve

r
(2)
0 = a

(1)
3 ⊕ c

(2)
0 . An attacker can now replace the PUF with an arbitrary function and take control.

5.9 Lee et al. II (July 2013)

The second protocol of Lee et al. [26] is represented by Figures 6(p) and 15. Exposure of the token state (i,
c0 and y) via physical leakage is claimed not to be a threat.

(1
×

)
A

u
th

.
(∞
×

)

Token j

Insecure OTP NVM: i← ij

Insecure MTP NVM: c0 ← c0j

Insecure OTP MVM: y← yj

r0j ← SPUF (c0j)

r̃0 ← SPUF (c0)

c1 ← Hash(c0)

r̃1 ← SPUF (c1)

n′ ← b1 ⊕ i

ã1 ← r̃0 ⊕ c0

ã2 ← Hash(r̃1)⊕ c0

ã3 ← MAC (c0; ã1, ã2,n
′)

Abort if b3 6= MAC (c0;b2,n
′)

Abort if y 6= b2 ⊕ c0

c0 ← c1

b1

ã1, ã2, ã3

b2, b3

Server

ij ← TRNG()

c0j ← TRNG()

yj ← TRNG()

x0j ← Hash(r0j)

n← TRNG()

b1 ← ij ⊕ n

Abort if ã3 6= MAC (c0j ; ã1, ã2,n)

r′0 ← ã1 ⊕ c0j

Abort if x0j 6= Hash(r′0)

b2 ← yj ⊕ c0j

b3 ← MAC (c0j ;b2,n)

x0j ← ã2 ⊕ c0j

c0j ← Hash(c0j)

Fig. 15. Authentication protocol of Lee et al. We assume c0j to be the key of MAC b3, as this has not been specified
clearly.

Incomplete Specification (#1) The key for MAC b3 is not explicitly given, although there seems to be
no objection against the use of c0j . Also, the authors do not suggest the use of particular strong PUF. They
do not acknowledge the need to expand its response space either.

Non-Functional due to PUF Noisiness (#3) PUF responses are not acknowledged to be noisy, making
the protocol non-functional. There will be a mismatch r̃0 = r′0 ⊕ e, with HW (e) relatively small, leading to
token rejection. We make abstraction of the noisiness issue in the remainder of our analysis



No Guidance on Resources (#6) Neither the hash nor the MAC is instantiated. However, in order
to save resources, it might be advisable to rely on a single cryptographic algorithm. E.g., a hash-based
implementation of the MAC could be a possibility.

Denial-of-Service (#8) There is a simple denial-of-service attack. Either blocking or modifying the last
message is sufficient to desynchronize token and server.

Token/Server Impersonation and Denial-of-Service via Leakage (#8) We argue that leakage leads
to full system disclosure. Assume an attacker to observe a genuine protocol run (1). Via state leakage, one

subsequently obtains i, c
(2)
0 and y. First consider impersonation of the server, meanwhile causing desynchro-

nization for the genuine token. One only has to select an arbitrary nonce n(2) and compute b
(2)
1 , b

(2)
2 and

b
(2)
3 accordingly. Now consider token impersonation, meanwhile causing desynchronization for the genuine

token. An attacker has to interfere with a genuine protocol run (2). First, one retrieves n(2) = b
(2)
1 ⊕ i. The

PUF is replaced with an arbitrary function which outputs r̃1. One computes ã2 and ã3 accordingly. There
is no modification to ã1.

5.10 Noise Bifurcation (May 2014)

The noise bifurcation proposal [47] can be understood as a minor variation on the slender PUF protocol,
as also reflected by Figure 6(q). There are three countermeasures against modeling, while avoiding the need
for cryptographic primitives. First, the protocol requires a strong PUF with a high resistance. A model is
constructed during enrollment via auxiliary one-time interfaces. The authors opt for arbiter XOR PUFs.
Second, the exposure of r̃ is limited to a randomly decimated version s̃, hereby obfuscating the CRP link.
The response string is partitioned into segments of d bits. For every segment, one generates a random number
in order to discard all-but-one bits. This effect is referred to as learning ‘noise’ for an attacker, not to be
confused with physical noise. The server selects only the segments for which the bits are either all zero or
all one, according to its PUF model. The method requires a pre-expansion of the PUF response with a
factor d · 2d−1, posing a practical limit on the obfuscation. Third, server and token both contribute to the
challenge via their respective nonces cS and cT , counteracting chosen-challenge attacks. Figure 16 represents
the protocol.

(1
×

)
A
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th

.
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×

)

Token j

r̃← SPUF (cS , cT )

cT ← TRNG()

r̃← SPUF (cS , cT )

∀i : s̃(i)← r̃(d · i− ui + 1) with

ui ∈ [1, d]← TRNG()

cS

cT , s̃

Server

Train model S̃PUF j

cS ← TRNG()

r′ ← S̃PUF j(cS , cT )

Collect all indices 〈v〉 with

r′(d · v − d+ 1) = . . . = r′(d · v)

Abort if HD(s′(〈v〉), r′(〈d · v〉)) > ε

Fig. 16. Noise bifurcation protocol.

Incomplete Specification (#1) The protocol employs a PRNG to expand the PUF response space:
r̃ ← SPUF (PRNG(cS , cT )). The authors suggest an LFSR-based design, without committing to a specific
implementation. Therefore, we are not enable to properly evaluate the security. Remember that the reverse
FE and slender PUF proposals were both found to be insecure due to their LFSR-based PRNG.



Exacting PUF Requirements (#7) The PUF requirements are rather exacting and partly opposing. On
one hand, the PUF should be easy-to model, requiring a highly correlated structure. On the other hand, an
attacker might exploit correlations either explicitly or implicitly. The proposed PUF architecture seems to
offer this delicate balance. XORing reduces an attacker’s potential although one-time interfaces allow for a
bypass. During enrollment, the arbiter chains can be modeled separately. However, it all comes at a price:
XORing amplifies noisiness, posing a practical limit on the number of chains. Specialized machine learning
algorithms might therefore be successful. In the article, the authors showed how to defeat the protocol using
simulated arbiter XOR PUFs with up to four chains.

5.11 System of PUFs (October 2014)

The system of PUFs proposal [21] consists of three PUFs, as shown in Figure 6(r). They are referred to as
hidden, guard and secure PUF. The hidden PUF is assumed not to be bothered by noise, as its response
propagates to both of its neighbours. The secure PUF is assumed to be robust against modeling. Figure 17
represents the protocol. There is a two-level authentication. The first level, consisting of hidden PUF and
guard PUF, is acknowledged to be insecure. Server and attacker face the exact same modeling burden here,
as the enrollment is not aided by one-time interfaces. System security relies on the second level, the secure
PUF. One claims that the protocol provides breach recognition and recovery. An attacker that modeled the
first level, cannot provide the correct response for the second level. This would then be detected by the
server, triggering a non-further specified recovery procedure. One suggests to instantiate hidden, guard and
secure PUF with a ring oscillator, arbiter and arbiter XOR PUF respectively. One also claims robustness
against denial-of-service attacks, unlike the basic authentication protocol, given an attacker which aims to
deplete the server database.

(1
×

)
A

u
th

.
(d
×

)

Token j

r̃H ←WPUFH(cH)

r̃G ← SPUFG(r̃H , cH)

r̃S ← SPUFS(r̃H , cS)

cH

r̃G

cS

r̃S

Server

Train models W̃PUFHj and S̃PUFGj

〈cHij , rSij〉 with cHij ← TRNG() and i ∈ [1 d]

〈cH , rS〉 ← 〈cHij , rSij〉 with i← dj

dj ← dj − 1

r′G ← S̃PUFGj(W̃PUFHj(cH), cH)

Abort if HD(r̃G, r
′
G) > ε1

cS ← Hash(cH , r
′
G)

Abort if HD(r̃S , rS) > ε2

Fig. 17. System of PUFs.

PUF Noisiness Underestimated (#3) A single noisy bit of the hidden PUF is sufficient to result
in an authentication failure. The authors rely on the ring oscillator PUF measurements in [42], offering
outstanding error rates below 1%. However, they fail to mention that the reported error rate incorporates an
error-correction scheme. With a raw PUF, the imposed requirement seems extremely hard to meet, especially
under environmental perturbations.

Modeling Attacks (#4) Although the authors seem to suggest the opposite, there is no practical PUF
which is robust against modeling. E.g., noisiness provides an upper limit for the number of chains of an
arbiter XOR PUF. There is hence no secure instantiation of the protocol.



No Need for the First Level (#6) Playing along with the assumption of a secure PUF, the first level
would be superfluous. It does not improve system security and could be regarded as pure overhead. After its
modeling, an attacker with physical access is free to query CRPs of the ‘secure’ PUF, which is no different
from basic authentication. The authors derive argumentation from the breach recognition, but this concept is
flawed as detailed hereafter. Also within the first level, one could question the need to protect the guard PUF
with the hidden PUF, as it makes the enrollment more cumbersome. The authors argue that the prolonged
modeling time eliminates many attack scenarios. However, it seems highly unlikely that minor differences in
the physical access time would make a worthwhile difference. Furthermore, an attacker can focus its efforts
on a single token, while the modeling burden of the server comprehends the complete set of tokens.

Flawed Breach Recognition Claim (#8) The potential for breach recognition is much lower than
claimed. One assumes that an attacker attempts to defeat the server after modeling the first level, engaging
in the protocol. However, playing along with the assumption of a secure PUF, this would be a useless effort.
That’s because random guessing of rS should have a negligible probability of success. In practice, with
insecure PUFs, an attacker might rather query a token until both levels are modeled. Furthermore, it is not
clear how one would implement breach recovery without enabling a denial-of-service attack.

Flawed Server Depletion Claim (#8) The server depletion statements are unfair. It all depends on
which party initiates the protocol, an aspect which has not been covered. We represented the common sense
version of the basic authentication protocol, with the server as sole initiator. The ability for a token to
initiate would enable denial-of-service, but this is equally true for the system of PUFs.

6 Overview and Discussion

Table 1 provides an overview of Section 5. We adopt the perspective of an interested system provider, aim-
ing to select a protocol. Proposals which do not offer any robustness against both noise (#3) and modeling
(#4) are discarded first. Subsequently, we discard proposals which are vulnerable to conventional protocol
attacks (#8). Despite the exploitation of their response expansion method (#5), we maintain the slender
PUF and original reverse FE proposals. This is due to the implementation-dependency: PRNG redesign
might easily offer a fix for both. The eight remaining proposals are marked bold for further consideration.
We do not object that the discarded proposals might contain worthwhile concepts.

The eight retained protocols can be split in two categories. The first category comprehends all forms of
PUF-based key generation, including a strong cryptographic primitive to perform the authentication. To
save resources, the latter primitive might be reused as part of the key generation logic. All this might provide
excellent security, but it is unfortunately not so very lightweight (#6). Within this category, Reference II-A
can be considered as the weak PUF variant of controlled PUFs. Similarly, there is also a weak PUF variant
of the reverse FE protocol. Both weak PUF variants have the advantage that they are compatible with quasi
every PUF (#7).

The second category comprehends strong PUF obfuscation. Although not equally secure, it improves
the lightweight perspectives. However, both the slender PUF and noise bifurcation proposals rely on a TRNG
to perform obfuscation. A physically secure TRNG is not easy to obtain in practice. Additional resources in
the form of countermeasures might be required. Furthermore, this category only seems useful if the scope is
limited to just entity authentication. If there are other security requests that require strong cryptographic
primitives, e.g., message confidentiality and integrity, PUF-based key generation seems more appropriate.

7 Conclusion

Various protocols utilize a strong PUF to provide lightweight entity authentication. We described nineteen
proposals using a unified notation, hereby creating a large-scale overview and initializing direct comparison
as well. Our framework of protocol requirements considerably aided the analysis, revealing numerous security
and practicality issues. Most proposals aim to compensate the lack of cryptographic properties of the strong
PUF. However, proper compensation seems to be in conflict with the lightweight objective. More fundamental
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Weak PUF X X × × × × × × × × × X × × × × × × × × × X
Strong PUF1 × × X X X X X X X X X × X X X X X X X X X X

MTP NVM × × × × X X × X × X × × × X X × X X X X × ×
TRNG × X × × × × X × X × × X X × × X × × ∼ × X ×

Gen × × × × × × × × × × X X × × × × × × × × × ×
Rep X X × × × × × × X × × × X × × × × × × × × ×

Crypto (Enc/Hash/MAC) X X × X × × × × X X X X X X X × × × X X × ×
PRNG × × × × × × × X × × × × × × × × × X × × × ×
⊕,=? × X × × × X X X × × X X X X X × X X X X × ×

1× interface X X × X × X X X X × X X X X X X X X X X X ×
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Server authenticity × X × × × × × X × × X X X X X × X X X X × ×
Token authenticity X × X X X X X X X X X X × X X X X X X X X X

Token privacy × × × × X × × X X ∼ × × × × X × X X X × × ×
Leakage resilience (#2) × × × X ∼ × ∼ × X X X

# Authentications ∞ ∞ d d d ∞ ∞ ∞ ∞ d ∞ ∞ ∞ d ∞ ∞ d ∞ ∞ ∞ ∞ d

ev
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lu
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ti
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n

Noise Robust (#3) X X X × ∼ × × X X X × × X × × × × X ∼
Modeling Robust (#4) X X × X × X × X X ∼ ∼ ∼ ×

PUF Independency (#7) X X ∼ ∼ × X × ×
Server authenticity (#8) X × ∼ X × X × × × ×
Token authenticity (#8) X X × X ∼ X X ∼ × × X

Token privacy (#8) × X × ×
DoS prevention (#8) X X X × × × X × X X × × X × × × X

Leakage resilience (#8) X × × × ×
Scalability2 (#9) X X X X × X X × X X

1 Including logic to expand the PUF response (#5).
2 Including a public token identifier stored in insecure OTP NVM for proposals which do not

claim privacy.

Table 1. For all protocols: token hardware (top segment), the authenticity and privacy claims (middle segment) and
our condensed analysis (bottom segment). The symbol X denotes ‘yes’. The symbol × denotes ‘no’. The symbol ∼
denotes the middle ground. An empty cell means ‘non-applicable’. A grayed-out cell means ‘irrelevant due to other
issues’.



physical research is required, aiming to create a truly strong PUF with great cryptographic properties. If
not, we are inclined to recommend conventional PUF-based key generation as a more promising alternative.
The observations and lessons learned in this work can facilitate future protocol design.
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