
The Chaining Lemma and its application

Ivan Damg̊ard1, Sebastian Faust2, Pratyay Mukherjee1, and Daniele Venturi3

1Department of Computer Science, Aarhus University
2Security and Cryptography Laboratory, EPFL

3Department of Computer Science, Sapienza University of Rome

December 3, 2014

Abstract

We present a new information theoretic result which we call the Chaining Lemma. It considers a so-called
“chain” of random variables, defined by a source distribution (X(0)) with high min-entropy and a number (say,
t in total) of arbitrary functions (T1, . . . , Tt) which are applied in succession to that source to generate the

chain X(0) T1−→ X(1) T2−→ X(2) · · · Tt−→ X(t). Intuitively, the Chaining Lemma guarantees that, if the chain is
not too long, then either (i) the entire chain is “highly random”, in that every variable has high min-entropy;
or (ii) it is possible to find a point j (1 ≤ j ≤ t) in the chain such that, conditioned on the end of the chain i.e.

X(j) Tj+1−→ X(j+1) · · · Tt−→ X(t), the preceding part viz. X(0) T1−→ X(1) · · · Tj−→ X(j) remains highly random. We
believe this is an interesting information-theoretic result which is intuitive but nevertheless requires rigorous
case-analysis to prove. We believe that it will find applications in cryptography. We give an example of
this, namely we show an application of the lemma to protect essentially any cryptographic scheme against
memory-tampering attacks. We allow several tampering request, the tampering functions can be arbitrary,
however, they must be chosen from a bounded size set of functions that is fixed a priori.

1 Introduction

Assume that we have a uniform random distribution over some domain X , represented by the random variable
X. Let us now apply an arbitrary function T to X and denote the output random variable by X ′ = T (X).
Since T is an arbitrary function, the variable X ′ can also be arbitrarily distributed. Consider now the case,
where X ′ is “easy to predict”, or more concretely where X ′ has “low” min-entropy. Now, a natural question,
in this case, is how much information can X ′ reveal about X? or more formally, how much min-entropy can X
have if we condition on X ′?

Intuitively, one might expect that since X ′ has low entropy, it cannot tell us much about X, so X should
still be “close to random” and hence have high entropy. While this would be true for Shannon entropy, it turns
out to be completely false for min-entropy. This may seem a bit counter-intuitive at first, but is actually easy
to see from an example: Let T be the function which maps half of the elements in X to one “heavy” point but
is injective on all the other elements. For this T , X ′ has very small min-entropy (namely 1) because the heavy
point occurs with probability 1/2. But on the other hand, X ′ reveals everything about X half the time, and so
the entropy of X in fact decreases very significantly (on average) when X ′ is given. So despite having very low
min-entropy, X ′ = T (X) does reveal a lot about X.

There is, however, a more refined statement that will be true for min-entropy: Let E be the event that X
takes one of the values that are not mapped to the “heavy point” by T , while Ē is the event that X is mapped
to the heavy point. Now, conditioned on E , both X|E and X ′|E have high min-entropy. On the other hand,

conditioned on Ē , X|Ē will clearly have the same (high) min-entropy whether we are given X ′|E or not

This simple observation leads to the following conjecture: there always exists an event E such that: (i)
Conditioned on E , both X and X ′ have “high” min-entropy (ii) and conditioned on Ē , X ′ reveals “little” about
X. In this paper, from a very high-level, we mainly focus into settling this conjecture, however, in a more

general setting, which results in the main contribution of the paper, the information theoretic lemma which we
call the Chaining Lemma.

We generalize the above setting and towards that, for notational convenience, let us rename the above
symbols as follows: X(0) ≡ X, T1 ≡ T and X(1) ≡ X ′. We consider t functions T1, T2, . . . , Tt which are applied
to the the variables sequentially starting from X(0). In particular, each Ti is applied to X(i−1) to produce a
new variable X(i) = Ti(X

(i−1)) for i ∈ {1, . . . , t}. We call the sequence of variables (X(0), . . . , X(t)) a “chain”
which is completely defined by the “source” distribution X(0) and the sequence of t functions (T1, . . . , Tt). It

can be presented more vividly as follows: X(0) T1−→ X(1) T2−→ X(2) · · · Tt−→ X(t).
We are now interested in the min-entropy of X(1), . . . , X(t). Of course, each variable X(i) has min-entropy

less than (or equal to) the preceding variable X(i−1) (as a deterministic function can not generate randomness).
Assume now that we fix some threshold value u and consider any value of min-entropy less than u to be “low”.
Assume further that the source has min-entropy much larger than u. As a motivation, one may think of a
setting where each X(i) is used as key in some cryptographic application, where, as long X(i) has high min
entropy we are fine and the adversary will not learn something he should not. But if X(i) has low min-entropy,
things might go wrong and the adversary might learn X(i).

Now, there are two possible scenarios for the above chain: (i) all the variables (hence the last variable X(t))
in the chain have high min-entropy (ii) one or more variable (obviously including the last variable X(t)) has low
min-entropy.

In case (i), everything is fine. But in case (ii), things might go wrong at a certain point. We now want to ask
if we can at least “save” some part of the chain, i.e., can we find a point in the chain such that if we condition
on all the variables after that point, all the preceding variables (obviously including the source X(0)) would still
have high min-entropy ? This hope might be justified if t is small enough compared to the entropy of X(0):
since the entropy drops below u after a small number of steps, there must be a point (say j) where the entropy
falls “sharply”, i.e., X(j) has much smaller min-entropy than X(j−1). However, as the above example shows,
even if there is a large gap in min-entropy between two successive variables (X(j) and X(j−1) in this case), the
succeeding one (X(j)) might actually reveal a lot about the preceding one (X(j−1)) on average. So it is not
clear that we can use j as the point we are looking for. However, one could hope that a generalised version of
the above conjecture might be true, namely there might exist some event, further conditioning on which, all
variables would have high min-entropy, and on the other hand, conditioning on the complement, X(j−1) (and
hence the entire preceding chain) would have high min-entropy. Essentially that is what our Chaining Lemma
says, which we present next although in an informal way. We give the formal statement and proof of the lemma
in Section 3.

Lemma 1.1. (The Chaining Lemma (informal)) Let X(0) be a uniform random variable over X and (T0, . . . , Tt)

be arbitrary functions mapping X → X . They define a chain X(0) T1−→ X(1) T2−→ X(2) · · · Tt−→ X(t). If the chain
is “sufficiently short”, there exists an event E such that (i) if E happens, then all the variables (X(0), . . . , X(t))
(conditioned on E) would have “high” min-entropy; (ii) otherwise if E does not happen there is an index j such
that conditioning on X(j) (and also on Ē) all the previous variables namely X(0), . . . , X(j−1) would have “high”
min-entropy.

Application to tamper-resilient cryptography: Although we think that the Chaining Lemma is interest-
ing in its own right, in this paper we provide an application in cryptography, precisely in tamper-resilient cryp-
tography. In tamper-resilient cryptography the main goal is to “theoretically” protect cryptographic schemes
against the well-known fault attack which are found to be devastating as shown by [5, 12] and many more. In this
model, the adversary is stronger than standard black-box setting because, in addition to standard (blackbox)
access, it can change the secret state [9, 27, 22, 31, 8] or the cryptographic computation [29, 26, 17, 18, 24, 19]
and observes the effect of such changes at the output. In this paper we restrict ourselves to the model where
the adversary is not allowed to alter the computation, but only the secret state (i.e. only the memory of the
device but not the circuitry).

To illustrate such memory tampering, consider a digital signature scheme Sign with public/secret key pair
(pk , sk). The tampering adversary obtains pk and can replace sk with T (sk) for arbitrary tampering function T .
Then, the adversary gets access to an oracle Sign(T (sk), ·), i.e., to a signing oracle running with the tampered

2

key T (sk). As usual the adversary wins the game by outputting a valid forgery with respect to the original
public key pk .1 In the most general setting, the adversary is allowed to ask an arbitrary polynomial number of
tampering queries. However, a general impossibility result by Gennaro et al. [27] shows that the above flavor of
tamper resistance is unachievable without further assumptions. There are several methods of countermeasures
adapted in the literature, e.g. tamper-detection and self-destruct [22, 15, 1, 14, 13, 25, 16, 2, 3, 4, 30, 23],
limiting the function to simple relations [9, 33, 7, 6, 28, 35, 36, 10, 11] etc.

However in contrast to those, very recently, Damg̊ard et al. [20] proposed a different approach where,
instead of limiting the type of allowed modifications, they assume an upper bound on the number of tampering
queries that the adversary can ask, so that now the attacker can issue some a-priori fixed number t of arbitrary
tampering queries. As argued by [20], this limitation is more likely to capture realistic tampering attacks. They
also show how to construct public key encryptions and identification schemes secure against bounded leakage
and tampering (BLT)2 attack. This modeling actually fits perfectly with the setting of the Chaining Lemma as
in BLT also we consider a limited number of tampering functions (T1, . . . , Tt) for some fixed bound t, applied on
a uniform (or close to uniform) secret-state X(0). Now recall that, the Chaining Lemma 1.1 guarantees that, for
“small enough” t, the source distribution stays unpredictable in essentially “any” case. Therefore, the source
can be now used as a “highly unpredictable” secret-key for any arbitrary but limited number of tampering.
As a basic application of the Chaining Lemma, we show that any cryptographic scheme can be made secure
in the BLT model. To the best of our knowledge, this is the first such general result that holds for arbitrary
tampering functions and multiple tampering queries. The price we pay for this is that the tampering functions
must be chosen from a bounded size set that is fixed a priori.

Previous work by Faust et al. [25], shows how to protect generically against tampering using a new primitive
called non-malleable key-derivation. This result also works for arbitrary tampering functions, does not require
that a small set of functions is fixed in advance, but works only for one-time tampering.

We discuss the application briefly in Section 4 and in detail in Appendix A.

2 Preliminaries

We review the basic terminology used throughout the paper.

2.1 Notation

For n ∈ N, we write [n] := {1, . . . , n}. Given a set S, we write s ← S to denote that element s is sampled
uniformly from S. If A is an algorithm, y ← A(x) denotes an execution of A with input x and output y; if A is
randomized, then y is a random variable.

We denote with k the security parameter. A function δ(k) is called negligible in k (or simply negligible)
if it vanishes faster than the inverse of any polynomial in k. A machine A is called probabilistic polynomial
time (PPT) if for any input x ∈ {0, 1}∗ the computation of A(x) terminates in at most poly(|x|) steps and A
is probabilistic (i.e., it uses randomness as part of its logic). Random variables are usually denoted by capital
letters. We sometimes abuse notation and denote a distribution and the corresponding random variable with
the same capital letter, say X. We write sup(X) for the support of X. Given an event E, we let X|E be the
conditional distribution of X conditioned on E happening. The statistical distance of two random variables X
and Y , defined over a common set S is ∆(X;Y) = 1

2

∑
s∈S |Pr [X = s] − Pr [Y = s]|. Given a random variable

Z, the statistical distance of X and Y conditioned on Z is defined as ∆(X;Y |Z) = ∆((X,Z); (Y,Z)).

2.2 Information Theory Basics

The min-entropy of a random variable X over a set X is defined as H∞(X) := − log maxx Pr [X = x], and
measures how X can be predicted by the best (unbounded) predictor. The conditional average min-entropy [21]

1Notice that T may be the identity function, in which case we get the standard security notion of digital signature scheme as a
special case.

2Although in our actual model we consider both leakage and tampering, we do not talk about leakage until Appendix A where
we formally present the model in complete detail as the main result here is about tampering and the extension to leakage is
straightforward.

3

of X given a random variable Z (over a set Z) possibly dependent on X, is defined as

H̃∞(X|Z) := − logEz←Z [2−H∞(X|Z=z)] =
∑
z∈Z

Pr [Z = z] · 2−H∞(X|Z=z).

We say that a distribution X over a set X of size |X | = 2n is (α, n)-good if H∞(X) ≥ α and Pr [X = x] ≥ 2−n

for all x ∈ sup(X).
We will rely on the following basic properties (see [21, Lemma 2.2]).

Lemma 2.1. For all random variables X,Z and Λ over sets X , Z and {0, 1}λ such that H̃∞(X|Z) ≥ α, we
have that

H̃∞(X|Z,Λ) ≥ H̃∞(X|Z)− λ ≥ α− λ.

The above lemma can be easily extended to the case of random variables Λ with bounded support, i.e.,
H̃∞(X|Z,Λ) ≥ H̃∞(X|Z)− log |sup(Λ)|.

Lemma 2.2. For any ε > 0, H∞(X|Z = z) is at least H̃∞(X|Z)− log(1/ε) with probability at least 1− ε over
the choice of z.

3 The Chaining Lemma

Before presenting the main proof of the Chaining Lemma, we state and prove two sub-lemmas. We do not
provide any intuitions at this point regarding the whole proof of the Chaining Lemma due to involvement of
rigorous case-analysis. Instead, we take a modular approach presenting intuitions step-by-step for each of the
sub-lemmas and finally providing an intuition of the Chaining Lemma after the proof of these sub-lemmas.

The first lemma states that if the support of a distribution is sufficiently large then there always exists an
event E such that conditioned on E the conditional distribution has high min-entropy.

Lemma 3.1. For n ∈ N>1 let c be some parameter such that
√
n < c < n. Let X be a set of size 2n = |X | and

X be a distribution over X with |sup(X)| > 2c such that for all x ∈ sup(X) we have Pr[X = x] ≥ 1
2n . There

exists an event E such that:

1. H∞(X|E) > c− 2
√
n, and

2. |sup(X|E)| < |sup(X)|.

Proof. Intuitively, the lemma is proven by showing that if a distribution has sufficiently large support, then
over a large subset of the support the distribution must be “almost” flat. We will describe below what it means
for a distribution to be “almost flat”. We then define an event E that occurs when X takes some value in the
almost flat area. Clearly, X conditioned on E must be “almost” uniformly distributed, and if furthermore the
support of X conditioned on E is still sufficiently large, we get that H∞(X|E) must be large. We proceed with
the formal proof.

We introduce a parameter b which is a positive integer such that c > n/b. Later we fix b to its optimal
value. For ease of description we assume that n is a multiple of b. We start by defining what it means for an
area to be flat. For some probability distribution X we define k ∈ [2n/b − 1] sets as follows:

1. For k ∈ [2n/b − 1] we have: Ik :=
{
x ∈ sup(X) : kb

2n ≤ Pr[X = x] < (k+1)b

2n

}
, and

2. I2n/b = {x ∈ sup(X) : Pr[X = x] = 1}.

These sets characterize the (potential) flat areas in the distribution X as the probability of all values in some
set Ik lie in a certain range that is bounded from below and above. Clearly, the sets Ik are pairwise disjoint
and cover the whole space between 1/2n and 1. Therefore, each x ∈ sup(X) with some probability Pr[X = x]
must fall into some unique set Ik.

4

We denote by Im the set that contains the most elements among all sets Ik, and define the event E as the
event that occurs when x ∈ sup(X) falls into Im, i.e., X takes a value that falls in the largest set Im. We now
lower bound the probability that E occurs.

Pr[E] ≥ |Im|
mb

2n
(1)

≥ 2c−n/b
mb

2n
(2)

Inequality (1) holds as for all x ∈ Im we have Pr[X = x] ≥ mb

2n . (2) follows from the fact that Im must have size

at least 2c−n/b, as there are 2n/b sets and there are at least 2c elements in the support of X.
As H∞(X|E) = maxx Pr[X = x|E], we can give a lower bound for the min entropy of X|E by upper bounding

Pr[X = x|E]. More precisely,

Pr[X = x|E] =
Pr[X = x ∧ E]

Pr[E]

<
(m+ 1)b/2n

2(c−n/b)mb/2n
(3)

=

(
1 +

1

m

)b
2−c+n/b

≤ 2b−c+n/b (4)

Inequality (3) uses (2) and the fact that Pr[X = x ∧ E] < (m+1)b

2n by definition of Im. (4) follows from m ≥ 1.
This implies that H∞(X|E) > c− n/b− b as required in the lemma.

For the second requirement, it is easy to see from the definition of E that the support of the condi-
tional probability distribution X|E decreases by at least 2(c−n/b) points (as these points belong to E). Clearly,

|sup(X|E)| ≤ |sup(X)| − 2c−n/b < |sup(X)| as stated in the lemma.

Now, we observe that, the loss in min-entropy, given by (b+n/b) is minimum when b =
√
n. Since b is a free

parameter, we fix b :=
√
n (note that, since c >

√
n, the constraint c > n/b holds) to get H∞(X|E) > n− 2

√
n

as stated in the lemma.

In the following lemma we consider an arbitrary distribution X with sufficiently high min-entropy and some
arbitrary function T . We show that if the support of Y = T (X) is sufficiently large, then there exists an event
E such that one of the following happens:

(i) The min-entropy of Y conditioned on the event E is high, i.e., Y conditioned on E has an almost flat area
with large support;

(ii) If E happens, then the average min-entropy ofX given Y is high. Intuitively, this means that Y conditioned
on E has small support as then it does not “reveal” too much about X.

We formalize this statement in the lemma below.

Lemma 3.2. For n ∈ N>1 let c, α be some parameters such that
√
n < c < α ≤ n. Let X be some set of size

2n = |X | and X be an (α, n)-good distribution over X . For any function T : X → X , let Y = T (X) be such
that |sup(Y)| > 2c. There exists an event E such that the following holds:

(i) H∞(Y|E) > c− 2
√
n.

(ii) H̃∞(X|E |Y|E) ≥ α− c− log 1
1−Pr[E] .

5

Ω

E′1 E′′1

E′2 E′′2

E′3 E′′3

Ω

E′′
1E′

3

E′′
2E′′

3

Figure 1: Events covering the probability space in the proof of Lemma 3.2 and Lemma 3.3.

Proof. Intuitively, in the proof below we apply Lemma 3.1 iteratively to the distribution Y to find flat areas
in Y . We “cut off” these flat areas until we have a distribution (derived from Y) which has sufficiently small
support. Clearly such restricted Y cannot reveal too much information about X. To formalize this approach,
we construct iteratively an event E by combining the events Ei obtained by applying Lemma 3.1 to Y . If E
happens then Y takes values that lie in a large flat area. On the other hand E characterizes only a relatively
small support, and hence giving such Y does not reveal much information (on average) about X. The formal
proof with an explicit calculation of the parameters follows. We will define the event E depending on events
{Ei, E′i, E′′i }i∈{0,...,m−1} (for some integer m) which we will specify later. These events partition the probability
space as follows (cf. Figure 1):

E′i :=
i∧

j=0

Ej = Ei ∧ E′i−1 E′′i := Ei ∧

i−1∧
j=0

Ej

 = Ei ∧ E′i−1. (5)

We will rely on some properties of the above partition. In particular, note that for all i ∈ {0, . . . ,m − 1} we
have

E′i ∨ E′′i = E′i−1 E′i ∧ E′′i = ∅. (6)

We start by constructing the events {Ei, E′i, E′′i } and conditional probability distributions Y (i) that are
derived from Y by applying Lemma 3.1. Lemma 3.1 requires the following two conditions:

1. |sup(Y (i))| > 2c, and

2. for all y ∈ sup(Y (i)) we have Pr[Y (i) = y] ≥ 2−n.

Clearly these two conditions are satisfied by Y (0) = Y , since Y (0) is computed from X by applying a function
T and for all x ∈ sup(X) the statement assumes Pr[X = x] ≥ 2−n. Hence, Lemma 3.1 gives us an event E0.

We set and we define Y (1) = Y
(0)

|E0
. For all i ≥ 1 we proceed to construct events Ei and conditional distributions

Y (i+1) = Y
(i)

|Ei
as long as the requirements from above in 1 and 2 are satisfied. Notice that by applying Lemma 3.1

to distribution Y (i) we get for each event Ei:

1. H∞(Y
(i)
|Ei

) > c− 2
√
n, and

2. |sup(Y (i+1))| < |sup(Y (i))|.

Clearly, there are only finitely many (say m) events before we stop the iteration as the size of the support
is strictly decreasing. At the stopping point we have |sup(Y (m−1))| > 2c and |sup(Y (m))| ≤ 2c. We define
E =

∨m−1
i=0 Ei =

∨m−1
i=0 E′′i and E =

∧m−1
i=0 Ei = E′m−1 and show in the claims below that they satisfy the

conditions of the lemma.

Claim 1. H∞(Y|E) > c− 2
√
n.

6

Proof. Recall that for each 0 ≤ i ≤ m− 1 we have

Y
(i)
|Ei

= Y|Ei∧Ei−1...∧E0
(7)

= Y|E′′i (8)

Eq. (7) follows from the definition of the conditional probability distribution Y
(i)
|Ei

. Eq. (8) from the definition of

the constructed events. From Eq. (8) and Lemma 3.1 we have for each 0 ≤ i ≤ m−1 that H∞(Y|E′′i) > c−2
√
n.

As for each 0 ≤ i ≤ m − 1 we have |sup(Y|E)| ≥ |sup(Y|E′′i)| we get that H∞(Y|E) > c − 2
√
n. This concludes

the proof of this claim.

Claim 2. H̃∞(X|E |Y|E) ≥ α− c− log 1
1−Pr[E] .

Proof. We first lower bound H∞(X|E).

H∞(X|E) = − log

(
max
x

Pr[X = x ∧ E]

Pr[E]

)
(9)

≥ − log

(
1

Pr[E]
max
x

Pr[X = x]

)
(10)

≥ H∞(X)− log
1

Pr[E]
≥ α− log

1

1− Pr[E]
. (11)

Eq. (9) follows from the definition of min-entropy and the definition of conditional probability. Eq. (10) follows
from the basic fact that for two event Pr[E ∧ E′] ≤ Pr[E]. Finally, we get Eq. (11) from our assumption that
H∞(X) ≥ α. To conclude the claim we compute:

H̃∞(X|E |Y|E) ≥ H∞(X|E , Y|E)− log |sup(Y|E)| (12)

= H∞(X|E)− log |sup(Y|E)| (13)

≥ α− log
1

1− Pr[E]
− c = α− c− log

1

1− Pr[E]
. (14)

Eq. (12) follows from Lemma 2.1 and (13) from the fact that Y|E is computed as a function from X|E . In-

equality (14) follows from (11) and the fact that the size of sup(Y|E) is at most c. The latter follows from

the definition of the event E = E′m−1 which in turn implies that |sup(Y|E)| = |sup(Y|E′m−1
)| = |sup(Y

(m−1)

|Em−1
)| =

|sup(Y (m))| ≤ 2c, which concludes the proof.

The above two claims finish the proof.

We now turn to the proof of the chaining lemma.

Lemma 3.3 (The Chaining Lemma). For n ∈ N>1 let α, β, t, ε be some parameters where t ∈ N, 0 < α ≤ n,
β > 0, ε ∈ (0, 1] and t ≤ α−β

β+2
√
n

. Let X be some set of size |X | = 2n and let X(0) be a (α, n)-good distribution

over X . For i ∈ [t] let Ti : X → X be arbitrary functions and X(i) = Ti(X
(i−1)). There exists an event E such

that:

(i) If Pr [E] > 0, for all i ∈ [t], H∞(X
(i)
|E) ≥ β.

(ii) If Pr
[
E
]
≥ ε there exists an index j ∈ [t] such that

H̃∞(X
(j−1)

|E |X(j)

|E) ≥ β − log
t

ε
.

7

Proof of Lemma 3.3. Consider the chain of random variables X(0) T1−→ X(1) T2−→ . . .
Tt−→ X(t). Given a pair

of random variables in the chain, we refer to X(i−1) as the “source distribution” and to X(i) as the “target
distribution”. The main idea is to consider different cases depending on the characteristics of the target
distribution. In case the min-entropy of X(i) is high enough to start with, we get immediately property (i)
of the statement and we can immediately move to the next pair of random variables in the chain. In case
the min-entropy of X(i) is small, we further consider two different sub-cases depending on some bound on the
support of the variable. If the support of X(i) happens to be “small”, intuitively we can condition on the target
distribution since this cannot reveal much about the source; roughly this implies property (ii) of the statement.
On the other hand, if the support happens to be not small enough, we are not in a position which allows us to
condition on X(i).

In the latter case, we will invoke Lemma 3.2. Roughly this guarantees that there exists some event such
that, conditioned on this event happening, the target lies in a large “flat” area and the conditional distribution
has high min-entropy; this yields property (i) of the statement. If instead the event does not happen, then
conditioning on the event not happening we get a “restricted” distribution with small enough support which
leads again to property (ii) of the second statement.

Whenever we are in those cases where (possibly conditioning on some event) the target distribution has high
min-entropy, we move forward in the chain by considering X(i) as the source and X(i+1) as the target. However,
when we reach a situation where we can “reveal” the target distribution we do not proceed further, since the
remaining values can be computed as a deterministic function of the revealed distribution and, as such, do not
constrain the min-entropy further. We now proceed with the formal proof.

Similar to Lemma 3.2, we will define the event E depending on events {Ei, E′i, E′′i }i∈[t] which we will specify
later. These events partition the probability space as follows (cf. Figure 1):

E′i :=
i∧

j=1

Ej = Ei ∧ E′i−1 E′′i := Ei ∧

i−1∧
j=1

Ej

 = Ei ∧ E′i−1. (15)

We will rely on some properties of the above partition. In particular, note that for all i ∈ [t] we have

E′i ∨ E′′i = E′i−1 E′i ∧ E′′i = ∅. (16)

For all i ∈ [t+ 1], define the following parameters:

si = (t− i+ 1)(β + 2
√
n) (17)

αi−1 = β + si. (18)

Note that using the bound on t from the statement of the lemma, we get α ≥ α0; moreover, it is easy to verify
that αi−1 > si >

√
n for all i ∈ [t].

In the next claim we construct the events {Ei, E′i, E′′i }i∈[t].

Claim 3. For all i = 0, . . . , t−1, there exist events E′i+1 and E′′i+1 (as given in Eq. (16)) such that the following
hold:

(*) If Pr
[
E′i+1

]
> 0, H∞(X

(i+1)
|E′i+1

) ≥ αi+1.

(**) If Pr
[
E′′i+1

]
≥ ε′, H̃∞(X

(i)
|E′′i+1
|X(i+1)
|E′′i+1

) ≥ β − log 1
ε′ . where 0 < ε′ ≤ 1.

Proof. We prove the claim by induction.

Base Case: In this case we let E0 denote the whole probability space and thus Pr [E0] = 1. note that

H∞(X
(0)
|E0

) = H∞(X(0)) = α ≥ α0. The rest of the proof for the base case is almost the same to that of the
inductive step except the use of above statement instead of induction hypothesis. Therefore we only prove the
induction step in detail here. The proof-details for the base case would be a straightforward extension of the
induction step with some notational changes.

8

Induction Step: The following holds by induction hypothesis:

(*) If Pr [E′i] > 0, then H∞(X
(i)
|E′i

) ≥ αi.

(**) If Pr [E′′i] ≥ ε′ then, H̃∞(X
(i−1)
|E′′i
|X(i)
|E′′i

) ≥ β − log 1
ε′ where 0 < ε′ ≤ 1.

By construction of events, E′i is partitioned into two sub-events E′i+1 and E′′i+1 (cf. Eq. 16). From the statement
of the claim, we observe that: since we are assuming Pr

[
E′i+1

]
> 0 in (*) and Pr

[
E′′i+1

]
≥ ε′ > 0 in (**), in

both cases we have Pr [E′i] > 0. Then (*) from the induction hypothesis holds: H∞(X
(i)
|E′i

) ≥ αi which we use to

prove the inductive step. We will define the events E′i+1 and E′′i+1 differently depending on several (complete)
cases. For each of these cases we will show that property (*) and (**) hold.

The case where H∞(X
(i+1)
|E′i

) ≥ αi+1. In this case we define E′i+1 to be E′i, which implies E′′i+1 = ∅ by Eq. (16).

Moreover property (*) holds since, if Pr
[
E′i+1

]
> 0, then Pr [E′i] > 0 and H∞(X

(i+1)
|E′i+1

) = H∞(X
(i+1)
|E′i

) ≥ αi+1;

as for property (**) there is nothing to prove, since Pr
[
E′′i+1

]
= 0 in this case.

The case where H∞(X
(i+1)
|E′i

) < αi+1. Here we consider two sub-cases, depending on the support size of

X(i+1).

1. |sup(X
(i+1)
|E′i

)| ≤ 2si+1 . We define E′′i+1 = E′i, which implies E′i+1 = ∅ by Eq. (16). As for property (*) there

is nothing to prove, since Pr
[
E′i+1

]
= 0. To prove property (**) we observe the following:

If Pr
[
E′′i+1

]
≥ ε′ > 0, then Pr [E′i] > 0. Hence,

H̃∞(X
(i)
|E′′i+1
|X(i+1)
|E′′i+1

) = H̃∞(X
(i)
|E′i
|X(i+1)
|E′i

) (19)

≥ H∞(X
(i)
|E′i
, X

(i+1)
|E′i

)− log(|sup(X
(i+1)
|E′i

)|) (20)

≥ αi − si+1 (21)

= β + si+1 − si+1 = β.

Eq. (19) follows as E′′i+1 = E′i. Eq. (20) follows from Lemma 2.1. Eq. (21) follows from two facts: (i) X(i+1)

is a deterministic function of X(i), which means H∞(X
(i+1)
|E′i

, X
(i+1)
|E′i

) = H∞(X
(i)
|E′i

) ≥ αi (plugging-in the

value from induction hypothesis), and (ii) |sup(X
(i+1)
|E′i

)| ≤ 2si+1 .

2. |sup(X
(i+1)
|E′i

)| > 2si+1 . Here using induction hypothesis: H∞(X
(i)
|E′i

) ≥ αi, we invoke Lemma 3.2 on the

distribution X
(i+1)
|E′i

(recall that αi > si+1 >
√
n), to obtain the event Ei+1 such that:

H∞(X
(i+1)
|E′i∧Ei+1

) > si+1 − 2
√
n (22)

H̃∞(X
(i)

|E′i∧Ei+1
|X(i+1)

|E′i∧Ei+1
) > αi − si+1 − log

1

1− Pr [Ei+1]
. (23)

Note that by our definitions of the events E′i, E
′′
i (cf. Eq. (15)), we have E′i∧Ei+1 = E′i+1 and E′i∧Ei+1 =

E′′i+1.

Now, to prove (*) we have: if Pr
[
E′i+1

]
> 0, then Pr [E′i] > 0 and Pr [Ei+1] > 0. Plugging the values of

αi and si+1 from Eq. (18) and (17) into Eq. (22), we get

H∞(X
(i+1)
|E′i+1

) > si+1 − 2
√
n

= (t− i)(β + 2
√
n)− 2

√
n

= β + (t− i− 1)(β + 2
√
n)

= β + si+2 = αi+1,

9

Similarly, to prove (**) we have: if Pr
[
E′′i+1

]
≥ ε′, then Pr [E′i] ≥ ε′ > 0 and Pr

[
Ei+1

]
≥ ε′. Using

Eq. (23), we obtain:

H̃∞(X
(i)
|E′′i+1
|X(i+1)
|E′′i+1

) > αi − si+1 − log
1

Pr
[
Ei+1

]
= β − log

1

Pr
[
Ei+1

]
≥ β − log

1

ε′
,

This concludes the proof of the claim.

We define the event E to be E = E′t =
∧t
i=1Ei =

∧t
i=1E

′
i. It is easy to verify that this implies E =

∨t
i=1E

′′
i .

We distinguish two cases:

• If Pr [E] > 0, by definition of E we get that Pr [E′i] > 0 for all i ∈ [t]. In particular, Pr [E′t] > 0. Hence,

H∞(X
(t)
|E) = H∞(X

(t)
|E′t

) ≥ αt = β, where the last inequality follows from (*) of Claim 3 putting i = t− 1.

Also, we observe that for all i ∈ [t], H∞(X
(i−1)
|E) ≥ H∞(X

(i)
|E). This proves property (i) of the lemma.

• If Pr
[
E
]
≥ ε, then we get

Pr

[
t∨
i=1

E′′i

]
≥ ε. (24)

t∑
i=1

Pr
[
E′′i
]
≥ ε. (25)

Eq. 24 follows from the definition of E and Eq. 25 follows applying union bound. Clearly, from Eq. 25,

there must exists some j such that Pr
[
E′′j

]
≥ ε/t.

Hence, putting i = j − 1 and ε′ = ε/t in (**) of Claim 3, we get:

H̃∞(X
(j−1)
|E′′j

|X(j)
|E′′j

) ≥ β − log
t

ε
.

From the definition of E, E′′j implies E and hence property (ii) of the lemma follows.

4 Application to Tamper-resilient Cryptography (overview)

We show that any cryptographic primitive where the secret key can be chosen as a uniformly random string
can be made secure in the BLT model by a simple and efficient transformation. Our results therefore cover
pseudorandom functions (PRF), block ciphers and many encryption and signature schemes. However, the result
holds in a restricted model of tampering: the adversary first selects an arbitrary set of tampering functions
of bounded size and as he interacts with the scheme. He must choose every tampering function from the set
that was specified initially. We call this the semi-adaptive BLT model. Our result holds only when the set of
functions is “small”3.

The basic intuition behind the construction using the Chaining Lemma is easy to explain. We use a
random string X0 as secret key, and a universal hash function h as public (and tamper proof) parameter. The

3In particular, the adversary can choose a “short enough” sequence of tampering functions from a set containing polynomially
many such sequences.

10

construction then computes K0 = h(X0) and uses K0 as secret key for the original primitive. The intuitive
reason why one might hope this would work is as follows: each tampering query changes the key, so we get a

chain of keys: X(0) T1−→ X(1) T2−→ X(2) · · · Tt−→ X(t). Recall that the chaining lemma guarantees that for such a
chain, there exists an event E such that (i) when E takes place then all Xi have high min-entropy, then we can
show that with a suitable choice of h, all the hash values K0 = h(X0),K1 = h(X1), . . . , are statistically close to
uniformly and independently chosen keys; (ii) otherwise when E does not happen, for some index j ∈ {1, . . . , t}
we should be able to reveal the value of Xj to the adversary as the Xi’s with i < j should still have high entropy
and hence hash to independent values. On the other hand the Xi’s with i ≥ j are deterministic function of
Xj and hence the tampering queries corresponding to any subsequent key can be simulated by the adversary
himself.

Due to its generality the above result suffers from two limitations. First, as already mentioned above (without
making non-standard assumptions) the tampering has to satisfy a somewhat limited form of adaptivity. Second,
the number of tampering queries one can tolerate is upper bounded by the length n of the secret key. While
this is true in general for schemes without key update, for our general result the limitation is rather strong.
More concretely, with appropriately chosen parameters our transformation yields schemes that can tolerate up
to O(3

√
n) tampering queries.

We discuss the application in full detail in Section A

Comaprison with Faust et al. [25]. Very recently, Faust et al. [25] introduced the concept of non-malleable
key derivation which is similar in spirit with this particular application of the Chaining Lemma. Intuitively
a function h is a non-malleable key derivation function if h(X) is close to uniform even given the output of
h applied to a related input T (X), as long as T (X) 6= X. They show that a random t-wise independent
hash function already meets this property, and moreover that such a function can be used to protect arbitrary
cryptographic schemes (with a uniform key) against “one-time” tampering attacks (i.e., the adversary is allowed
a single tampering query) albeit against a much bigger class of functions4

However, we stress that the novelty of our result is in discovering the Chaining Lemma rather than this
application, which can be instead thought of as a new technique, fundamentally different from that of [25] to
achieve tamper-resilience in BLT model. We believe that, the Chaining Lemma itself is a new discovery from
the perspective of information theory and the new techniques might find more application in cryptography in
future.

References

[1] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from additive combinatorics.
Electronic Colloquium on Computational Complexity (ECCC), 20:81, 2013. To appear in STOC 2014.

[2] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran. Explicit
non-malleable codes resistant to permutations. IACR Cryptology ePrint Archive, 2014:316, 2014.

[3] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran. Ex-
plicit non-malleable codes resistant to permutations and perturbations. IACR Cryptology ePrint Archive,
2014:841, 2014.

[4] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prabhakaran. Explicit
optimal-rate non-malleable codes against bit-wise tampering and permutations. IACR Cryptology ePrint
Archive, 2014:842, 2014.

[5] Ross Anderson and Markus Kuhn. Tamper resistance: a cautionary note. In WOEC’96: Proceedings of
the 2nd conference on Proceedings of the Second USENIX Workshop on Electronic Commerce, pages 1–1,
Berkeley, CA, USA, 1996. USENIX Association.

4However, if they extend their model to multiple (but bounded) time tampering, it might be possible that they could achieve
the same parameters in the semi-adaptive model but against much larger tampering family, essentially subsuming our result.

11

[6] Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under related-key attacks and
applications. In ICS, pages 45–60, 2011.

[7] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure against related-
key attacks. In CRYPTO, pages 666–684, 2010.

[8] Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-key attacks and tam-
pering. In ASIACRYPT, pages 486–503, 2011.

[9] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: Rka-prps, rka-prfs,
and applications. In EUROCRYPT, pages 491–506, 2003.

[10] Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond the linear barrier: IBE,
encryption and signatures. In ASIACRYPT, pages 331–348, 2012.

[11] Rishiraj Bhattacharyya and Arnab Roy. Secure message authentication against related key attack. In FSE,
2013.

[12] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of eliminating errors in
cryptographic computations. J. Cryptology, 14(2):101–119, 2001.

[13] Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-malleable codes. In ITCS, pages 155–168,
2014.

[14] Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and split-state
tampering. In TCC, pages 440–464, 2014.

[15] Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: Built-in tamper resilience. In ASIACRYPT,
pages 740–758, 2011.

[16] Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-bit to multi-bit public-key
encryption via non-malleable codes. IACR Cryptology ePrint Archive, 2014:324, 2014.

[17] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits against constant-rate tampering. In
CRYPTO, pages 533–551, 2012.

[18] Dana Dachman-Soled and Yael Tauman Kalai. Securing circuits and protocols against 1/poly(k) tampering
rate. In TCC, pages 540–565, 2014.

[19] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally decodable and updatable
non-malleable codes and their applications. Cryptology ePrint Archive, Report 2014/663, 2014. http:

//eprint.iacr.org/.

[20] Ivan Damg̊ard, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Bounded tamper resilience:
How to go beyond the algebraic barrier. In ASIACRYPT (2), pages 140–160, 2013.

[21] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[22] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In ICS, pages 434–452,
2010.

[23] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. Continuous non-malleable
codes. In TCC, pages 465–488, 2014.

[24] Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi. A tamper and leakage
resilient random access machine. IACR Cryptology ePrint Archive, 2014:338, 2014.

12

http://eprint.iacr.org/
http://eprint.iacr.org/

[25] Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Efficient non-malleable codes
and key-derivation for poly-size tampering circuits. In EUROCRYPT, pages 111–128, 2014.

[26] Sebastian Faust, Krzysztof Pietrzak, and Daniele Venturi. Tamper-proof circuits: How to trade leakage
for tamper-resilience. In ICALP (1), pages 391–402, 2011.

[27] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic tamper-proof
(atp) security: Theoretical foundations for security against hardware tampering. In TCC, pages 258–277,
2004.

[28] Vipul Goyal, Adam O’Neill, and Vanishree Rao. Correlated-input secure hash functions. In TCC, pages
182–200, 2011.

[29] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Private circuits II: Keeping secrets in
tamperable circuits. In EUROCRYPT, pages 308–327, 2006.

[30] Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-malleable codes. Cryptology
ePrint Archive, Report 2014/956, 2014. http://eprint.iacr.org/.

[31] Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptography with tamperable and leaky
memory. In CRYPTO, pages 373–390, 2011.

[32] Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A new randomness extraction paradigm for
hybrid encryption. In EUROCRYPT, pages 590–609, 2009.

[33] Stefan Lucks. Ciphers secure against related-key attacks. In FSE, pages 359–370, 2004.

[34] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. J.
ACM, 51(2):231–262, 2004.

[35] Krzysztof Pietrzak. Subspace lwe. In TCC, pages 548–563, 2012.

[36] Hoeteck Wee. Public key encryption against related key attacks. In Public Key Cryptography, pages
262–279, 2012.

A Application of Chaining Lemma to Tamper-Resilient Cryptography (in
detail)

A.1 Abstract Security Games with Tampering

We start by defining a general structure of abstract security games for cryptographic schemes CS. Most standard
security notions such as IND-CPA or pseudorandomness of PRFs follow the structure given below, and we will
later give concrete instantiations of our abstract definition. We then show how to extend such games to the BLT
setting. Consider some cryptographic scheme CS with associated key generation algorithm KeyGen. KeyGen
outputs a secret key X, and in some cases some public parameters pp. We will grant the adversary access to an
oracle O(pp, X, ·). The definition of the oracle depends on the actual security definition. For instance, it can be
a signing oracle or an oracle that gives access to the outputs of a PRF with key K. To simplify notation, we will
assume that such oracles can be multi-functional. That is, if we want to model CCA security of a symmetric
encryption scheme, O offers interfaces for both encryption and decryption queries.

Definition A.1 (Abstract security game). Let k ∈ N be the security parameter and let CS be a cryptographic
scheme with key generation algorithm KeyGen. Let O(X, pp, ·), C(X, pp, ·) be some oracles, where C(X, pp, ·) is
the challenge oracle that outputs at the end a bit b. We assume in the following that both oracles share state.
An abstract security game GameCSC,O,A(k) consists of 3 phases given below.

1. Setup: Run the key generation (X, pp)← KeyGen(1k). The public parameters pp are given to A.

13

http://eprint.iacr.org/

2. Query phase: The adversary gets access to the oracle O(X, pp, ·) and is allowed to query them in any
order.

3. Challenge phase: The adversary looses access to all oracles and interacts with the challenge oracle
C(X, pp, ·) that at the end outputs a bit b. b is returned by the game, where b = 1 indicates that A
won the game.

We define the security of a cryptographic scheme according to the above definition depending on whether
it is an unpredictability or indistinguishability type game.

• For unpredictability security games we say that a scheme is δ(k)-secure if for any PPT adversary A the
advantage of A is

Pr[GameCSC,O,A(1k) = 1] ≤ δ(k).

• For indistinguishability games we say that a scheme is δ(k)-secure if for any PPT adversary A the advantage
of A is

Pr[GameCSC,O,A(1k) = 1]− 1/2 ≤ δ(k).

For indistinguishability games, we assume wlog. that the challenger C internally keeps a bit b and A submits
as its last message to C a bit b′. If b = b′ then the challenger returns 1; otherwise 0. In the following, we will
usually omit the parameter δ(k) and just say that a scheme is secure if δ(k) is negligible in k.

We now extend the above definition to the BLT setting. We will give the extension specifically for the case of
a semi-adaptive choice of tampering functions. Notice that BLT security can also be defined for a fully adaptive
choice, but our general construction from this section does not achieve this stronger notion. We emphasize,
however, that for some specific schemes fully adaptive BLT security can be achieved for free (as shown in [20]).
We start by providing some intuitive description of semi-adaptive BLT security.

In contrast to Definition A.1, in the BLT setting the adversary A can learn λ bits about the key in the setup
phase. More importantly, after the query phase he may decide on a particular choice of tampering functions
T ∈ T and gets access to the tampered oracles. Finally, in the challenge phase, he looses access to all oracles
(including the tampered oracles) and plays the standard security game against the challenger C(X, pp, ·). As in
Definition A.1 the challenge oracle outputs a bit indicating whether the adversary won or lost the BLT security
game.

Definition A.2 (Abstract BLT security game). Let λ, t, v be functions in the security parameter k ∈ N and
let CS be a cryptographic scheme with key generation algorithm KeyGen. Let O(X, pp, ·), C(X, pp, ·) be some
oracles, where C(X, pp, ·) is the challenge oracle that outputs at the end either 0 or 1. We assume in the
following that all these oracles share state. An abstract BLT-security game BLTCSC,O,A(k, t, λ, v) consists of 4
phases given below.

1. Setup: Run (X, pp)← KeyGen(1k) and obtain from A a description of a leakage function L : X → {0, 1}λ
and a set of tolerated tampering functions T = {(T1, . . . , Tt)|Ti : X → X} with |T | = v. Give pp, L(X)
to the adversary.

2. Query phase: The adversary gets access to the oracle O(X, pp, ·) and is allowed to query them in any
order.

3. Tampering phase: The adversary decides on a choice of tampering functions T = (T1, . . . , Tt) ∈ T
and gets access to the tampered oracles. That is, he can query (in any order) the tampered oracles
O(T1(X0), pp, ·), . . .O(Tt(Xt−1), pp, ·), where X0 = X and Xi = Ti(Xi−1).

4. Challenge phase: The adversary looses access to all oracles and interacts with the challenge oracle
C(pp, X, ·) that eventually outputs a bit b. b is returned by the game and indicates if A won the game.

14

We define BLT security for unpredictability or indistinguishability type games analogous to standard security
where the adversary now runs in the BLT game as given by Definition A.2.

Definition A.3 (Semi-adaptive BLT security of CS). We say that a cryptographic scheme CS is (λ, t, v)-BLT-
secure in the semi-adaptive BLT model if for all PPT adversaries A we have

Pr[BLTCSC,O,A(k, t, λ, v) = 1] ≤ negl(k).

Here, |T | = v and each element of T is a tuple (T1, . . . , Tt) of tampering functions.

Some remarks are in order to explain the relation between GameCSC,O,A(k) and the BLT game BLTCSC,O,A(k, t,
λ, v). Consider for instance the standard security notion of existential unforgeability of digital signature scheme.
Our abstract security game from Definition A.1 clearly covers this security notion when O(pp,K, ·) is the signing
oracle and the challenge oracle returns 1 if the adversary submits a valid forgery to C during the challenge phase.
Another example is the indistinguishability based security notion of PRFs. Here, O is the oracle that returns
outputs of the PRF on inputs of the adversary’s choice, while the challenge oracle returns either the output of
the PRF or the output of a random function. Notice that in this case the challenge oracle returns ⊥ for inputs
that have been already queried to oracle O. As in the standard definition for PRFs the adversary wins the
game when he can correctly tell apart random or real queries.

The BLT security game extends these abstract security games by giving the adversary additional access to
tampered oracles. That is, for all an oracle O that the adversary can access in the standard security game,
he now gets access to a “tampered copy” of this oracle. More precisely, for any oracle O from the standard
security game and for any set of tampering functions (T1, . . . , Tt) the adversary gets now additionally access to
the oracles O(pp, Ti(Xi−1), ·).

A.2 Semi-Adaptive BLT Security for General Primitives

In this section, we show that “any” primitive (e.g., any PRF or signature scheme) can be made BLT secure by
combining it with a universal hash function. We put forward a notion of semi-adaptive BLT security for general
primitives in Section A.1. In Section A.2.1, we describe our transformation based on universal hashing and state
our main theorem (Theorem A.1). Section A.2.2 contains a high-level overview of the proof of Theorem A.1;
a formal proof appears in Section A.2.4 and A.2.3. Finally, in Section A.3 we discuss a few extensions of our
main theorem.

Notation for this section. In this section n = poly(k) denotes the length of the key unless explicitly
mentioned otherwise, where k is the security parameter. Given some event E we write H̃∞(X|Y1, Y2, . . . , E) to
denote that every random variable is conditioned on the event E.

A.2.1 A General Transformation

We now describe a general transformation to leverage security of a cryptographic scheme CS (as per Defini-
tion A.1) to semi-adaptive BLT security (as per Definition A.3). The transformation is based on a family
H = {hS : X → Y} of (2t+1)-wise independent hash functions. Recall that H is called t-wise independent if for
any sequence of distinct elements X(1), . . . , X(t) ∈ X the random variables hS(X(1)), . . . , hS(X(t)) are uniform,
where hS ← H.5

The transformation. Consider a cryptographic scheme CS with a key generation algorithm KeyGen out-
putting a secret key X and public parameters pp. In the following we consider schemes that have a BLT
admissible key generation algorithm. That is, (1) the secret key X is sampled uniformly at random from the
key space X , and (2) given the secret key X, there exists an efficient algorithm KeyGen′(X) that takes as input
X and outputs corresponding public parameters pp. Furthermore, let CS be some cryptographic algorithm

5A concrete construction is given by the following function hS : Zp → Zp: Sample S by choosing t random elements
s0, s1, . . . , st−1 ← Zt

p and define hS(X) = s0 + s1 ·X + . . . + st−1 ·Xt−1 mod p.

15

that uses the secret key X, the public parameters pp and some input M and outputs Z ← CS(pp,K,M). For
instance, CS may be a block cipher and CS the associated encryption algorithm with M being the message
and Z the corresponding ciphertext. We transform CS into CS ′ as follows. Let H = {hS : X → Y}S∈S be
a family of 2(t + 1)-wise independent hash functions. At setup we sample a key for the hash function S and
X ← X uniformly at random and compute K = hS(X). We then run KeyGen′(K) to sample the corresponding
public parameters pp, where KeyGen is the underlying key generation of CS. Let X be the secret key of CS ′
and pp′ = (pp, S) the corresponding public parameters. To compute the cryptographic algorithm CS′ on some
input M , we run Z ← CS(pp, hS(X),M), i.e., we map the key X for CS ′ to the key K for the underlying
cryptoscheme CS by applying the hash function.

The theorem below states that the above transformation is BLT-secure in the semi-adaptive BLT model
whenever CS is secure in the standard sense (cf. Definition A.1 and its key generation algorithm is BLT
admissible.

Theorem A.1. If CS is secure and H = {hS : X → Y}S∈S is a family of 2(t + 1)-wise independent hash
functions with |X | = 2n and |Y| = 2`, then we have that CS ′ is (λ, t, δ, v)-secure in the semi-adaptive BLT
model, where

λ = O(3
√
n) t = O(3

√
n) δ ≤ negl(k) v = O(nd) ` = O(4

√
n),

for some constant d > 0.

Concretely, we can think of CS being a PRF (or a signature scheme) with security in the standard sense, i.e.,
the adversary has negligible advantage when playing against the underlying challenger. The Theorem A.1 says
that, for sufficiently large n, the transformed PRF CS ′ achieves semi-adaptive BLT security against adversaries
tampering O(3

√
n) times and leaking O(3

√
n) bits from the original key. Notice that the hash function compresses

the n-bit input to O(4
√
n) bits and the set of admissible (sequences of) tampering functions has size O(nd) for

some constant d > 0. Notice that if the underlying primitive is super-polynomial secure than we can increase
the size of admissible tampering functions. In the extreme case when the underlying primitive has exponential
security, the size of T may be sub-exponentially large.

We emphasize that we can obtain stronger leakage resilience as we inherit the security properties from the
underlying cryptoscheme CS. Hence, if CS is secure against adaptive leakage attacks from the key K, then also
CS ′ is secure against adaptive leakage attacks from the key hS(X) used by the actual cryptographic scheme.

A.2.2 Outline of the Proof

We explain the intuition and the main ideas behind the proof of Theorem A.1. The proof is by reduction: Given
an adversary A with non-negligible advantage in the semi-adaptive BLT game for CS ′ (cf. Definition A.3), we
build an adversary B against standard security of CS (cf. Definition A.1). The main difficulty is that B has
only access to the standard oracle O(pp,K), so it is not a priori clear how B can answer A’s tampering queries
and simulate the tampered oracles.

The idea is to let B sample the initial key X(0) independently of the target key K (which is anyway
not known to B) and compute the keys X(1), . . . , X(t) as specified by the tampering functions Ti in order to
simulate the tampered view of A, i.e., the oracles O(pp′, Ti(X

(i−1))). To give a first hint why this may indeed be
a good strategy, consider the simple case where all tampered keys have high min-entropy (say higher than some
threshold β). In this case, we can rely on a property of 2(t+1)-wise independent hashing, namely for a uniformly
sampled hash function hS the tuple (hS(X(0)), hS(X(1)), . . . , hS(X(t))) is statistically close to uniform and thus
B’s simulation of A’s view is indistinguishable from the real view. The proof is a straightforward extension
of [32, Lemma 3.2]. and is deferred to Appendix B.

Lemma A.1. Let (X1, X2, . . . , Xt) ∈ X t be t (possibly dependent) random variables such that H∞(Xi) ≥ β and
(X1, . . . , Xt) are pairwise different. Let H = {hS : X → Y} be a family of 2t-wise independent hash functions,
with |Y| = 2`. Then for random hS ← H we have that

∆((hS , hS(X1), hS(X2), . . . , hS(Xt)); (hS , UY , . . . , UY︸ ︷︷ ︸
t times

)) ≤ t

2
· 2(t·`−β)/2.

16

Of course, in our general tampering model nothing guarantees that all keys have high min-entropy, and
hence we cannot immediately apply Lemma A.1. At this point, a careful reader may object that at the end
this does not matter too much: if the compression of the hash function is high enough (as it is the case for our
choice of ` ≈ 4

√
n in Theorem A.1) the hashed keys are short anyway, and thus the entropy of X(0) given the

hash of the tampered keys remains high. At this point it looks tempting to apply the leftover hash lemma, and
argue that hS(X(0)) is statistically close to uniform even given the hashed tampered keys. The leftover hash
lemma, however, requires that the key S can be sampled uniformly and independently from the distribution of
X(0). Unfortunately, the conditional distribution of X(0) (given the tampered hashed keys) may now depend
on S, and we cannot apply the leftover hash lemma directly.

At this point we use the Chaining Lemma. We restate the Chaining Lemma 3.3 below for reader’s conve-
nience.

Lemma 3.3. For n ∈ N>1 let α, β, t, ε be some parameters where t ∈ N, 0 < α ≤ n, β > 0, ε ∈ (0, 1] and
t ≤ α−β

β+2
√
n

. Let X be some set of size |X | = 2n and let X(0) be a (α, n)-good distribution over X . For i ∈ [t] let

Ti : X → X be arbitrary functions and X(i) = Ti(X
(i−1)). There exists an event E such that:

(i) If Pr [E] > 0, for all i ∈ [t], H∞(X
(i)
|E) ≥ β.

(ii) If Pr
[
E
]
≥ ε there exists an index j ∈ [t] such that

H̃∞(X
(j−1)

|E |X(j)

|E) ≥ β − log
t

ε
.

Instead of the real experiment we can now turn to a mental experiment where at some point in the chain
we reveal an entire source X(i). By the Chaining Lemma 3.3 we are guaranteed that X(0), X(1), . . . , X(i−1)

individually all have high min-entropy even given X(i), which allows us to apply Lemma A.1 and conclude
that hS(X(0)), . . . , hS(X(i−1)) are jointly close to uniform. Notice that in the mental experiment clearly the
remaining sources X(0), X(1), . . . , X(i−1) remain independent from S even given X(i). At this point we are
almost done except for two technical difficulties: (1) the Lemma A.1 requires that all X(j) (for j < i) are
pairwise distinct, and (2) the adversary picks its tampering choice adaptively from a fixed set T after seeing
the key for the hash function S and after interacting with the original challenger (the so-called semi-adaptive
model). We solve the first by changing the above mental experiment and eliminate all sources that appear
multiple times in the source chain. We then show that given a short advice we can re-sample the complete
X(0), . . . , X(t) from the reduced chain. To complete the proof, we address the semi-adaptivity mentioned in (2)
by a counting argument as the size of the set of potential tampering queries T is not too big (polynomial in the
security parameter).

We conclude the above outline by defining two experiments that describe how the keys X(0), X(1), . . . , X(t)

are sampled in the real game and in the simulation. For t, λ ∈ N and any set of functions T1, . . . , Tt : X → X ,
L : X → {0, 1}λ consider the two experiments as given in Figure 2. In the lemma below we show that for
a distribution X with a sufficient amount of min-entropy and certain set of carefully chosen parameters the
distance between Real(X, T , L) and Sim(X, T , L) is statistically close. We will in the following omit to explicitly
mention the inputs to the experiments.

Lemma A.2. Denote with k ∈ N the security parameter and let n, t, q, v, λ, ε, `, α be functions in k such that
λ, t < α ≤ n and ε ∈ (0, 1/2). Let H = {hS : X → Y} be a family of q-wise independent hash functions and
T = {Ti : X → X}, such that |T | = 2v. Let |X | = 2n, |Y| = 2`, and X be an (α, n)-good distribution over X .
For all sequences of functions (T1, . . . , Tt) ∈ T , and for all L : X → {0, 1}λ as specified in Figure 2:

∆(Real; Sim) ≤ 2t(v+`)+2
(q

4tε22c−t`

) q
2t

+ 6ε,

where c := β − 2 log t/ε− λ− 2t log(t) and β := α−2t
√
n

t+1 .

Some comments are in order to explain the mechanics of the parameters defining the statistical distance
between Real and Sim in Lemma A.2. To obtain a negligible quantity (as we will need for the proof of Theo-
rem A.1 in Section A.2.3), the value c must be chosen to be sufficiently larger than the value (t + 1) · `; this

17

Experiment Real vs. Sim

1. Experiment Real(X, T , L): Let X(0) be a random variable with distribution X and hS ← H a uniformly sampled hash
function. For a sequence of functions T1, . . . , Tt ∈ T let X(i) = Ti(X

(i−1)) and output:

Real := (D0, . . . , Dt+2) =
(
hS(X(0)), . . . , hS(X(t)), L(X(0)), S

)
.

2. Experiment Sim(X, T , L): Let X(0) be a random variable with distribution X and hS ← H a uniformly sampled hash
function. For a sequence of functions T1, . . . , Tt ∈ T let X(i) = Ti(X

(i−1)), and proceed as follows:
Sample D0 ← UY .
For i ∈ [t] compute:

If X(i) 6= X(0) then Di = hS(X(i))
Else Di = D0

Output Sim = (D0, . . . , Dt, L(X(0)), S).

Figure 2: Experiment Real denotes the real tampering experiment and Sim our simulation.

shows a clear trade-off between the value of t and the value of `. We instantiate Lemma A.2 with concrete
values in the following corollary. It shows a setting where we try to maximize the number of tampering queries
we can tolerate by using a very high compression factor.

Corollary 1. For sufficiently large n, if we set ` = O(4
√
n), λ = O(3

√
n), α = n−O(3

√
n) and ε = exp(−Θ(3

√
n))

in Lemma A.2 we get t = O(3
√
n) for which the distance ∆(Real; Sim) ≤ exp(−Ω(3

√
n)) in n.

A.2.3 Proof of Theorem A.1

We now turn to the proof of Theorem A.1.

Proof of Theorem A.1. Suppose there exists an adversary A and a polynomial p(.) such that A breaks the (λ, t, v)
semi-adaptive BLT security of CS ′ with advantage at least 1/p(k) for infinitely many k. Then, we construct an
adversary B that breaks the security of CS according to the challenge oracle C(pp,K) with advantage at least
1/p′(k) for some polynomial p′(.). To this end, adversary B needs to simulate the environment specified by
BLT game according to Definition A.2 to A given only access to its target oracle O(pp,K) and C(pp,K). At a
high-level this simulation is carried out as follows: B uses its target oracles to simulate the interaction of A in
the query and challenge phase. In the tampering phase, it will either use access to O(pp,K) (if the adversary
did not tamper with the key) or simulates the tampered view with the keys sampled uniformly at random. The
simulation closely follows the structure of the BLT game as specified in Definition A.2 and is given below:

1. setup phase: In the first step B receives a leakage function L : X → {0, 1}λ and a set of tolerated
tampering functions T from A. It also receives the public parameters pp from its own target game. B
chooses uniformly at random an index j∗ ∈ [v]. Recall that v = |T | = O(nd) for some constant d.

2. B samples a random key S for the hash function and uniformly at random an initial key X(0) from X . It
forwards L(X(0)) and pp′ = (pp, S) as the public parameters to A.

3. B uses its underlying target oracle O(pp,K) for the cryptoscheme CS to simulate A’s interaction with the
original (un-tampered) key in the query phase.

4. B receives a tuple of tampering functions Vj = (T1, . . . , Tt) ∈ T from A. If j 6= j∗ then we proceed as
follows:

(a) If B runs an unpredictability game, then it aborts.

(b) If B runs an indistinguishability game, then it samples a random bit b and submits b as its last
message to its challenge oracle C.

5. B computes X(i) = Ti(X
(i−1)) and simulates interactions with the oracles as follows:

18

(a) For all i ≥ 1 withX(i) 6= X(0), it usesX(i) to simulate A’s interaction with the oraclesO(pp′, hS(X(i)))
in the tampering phase. As X(i) is known to B this can be done efficiently.

(b) For all i ≥ 0 with X(i) = X(0), it uses its target oracle to simulate A’s view. Notice that this includes
the case when A interacts with the scheme running on the original key X(0).

We argue that when A wins the tampering game with advantage at least 1/p(k), then B wins the underlying
game against challenger C with advantage 1/p′(k). To this end, we first show that conditioned on j = j∗ the
view of the adversary in the simulation and the adversary’s view in the real experiment are statistically close.
If j = j∗ the simulation above is identically distributed to the simulation given in Sim from Figure 2. This
follows from the following observations:

1. In the simulation A is committed to the tampering option j∗ before he starts to interact with the challenge
oracles as otherwise B will abort the simulation. Notice that this commitment is in particular before seeing
the hash key S, and the view with the original key. Hence, B’s simulation corresponds to the non-adaptive
case as given in Sim.

2. B uses its own challenge oracle running with a uniform key to simulate A’s un-tampered view. This is
exactly as in the simulation Sim from Figure 2, where we replace the first output of the hash function
with a uniformly and independently sampled value (independently of S and the first input to the hash
function).

3. B simulates the tampering queries by using an initial input X(0) for the hash function that is chosen
independently from the un-tampered view. That is exactly what happens in Sim.

The above concludes that the simulation of B and the simulation given in Sim are identical if j = j∗. By
Lemma A.2 and Corollary 1 we get for the choice of parameters given in the theorem’s statement (notice that
this choice corresponds to the parameters of Corollary 1) that for j = j∗

∆(BLTCS
′

C,O,A(k, t, λ, v);BLT
CS′
C,O,A(k, t, λ, v)) ≤ exp(−Ω(3

√
(n)), (26)

where BLT
CS′
C,O,A(k, t, λ, v) is the game where A runs in the experiment as defined by B. To complete the proof

we need to lower bound the advantage of B when running against challenger C. We discuss how to handle
unpredictability and indistinguishability games separately.

1. Unpredictability security notion: For unpredictability games B aborts in Step 4 if j 6= j∗. Hence, we get:

Pr[GameCSC,O,B(1k) = 1] = Pr[GameCSC,O,B(1k) = 1|j = j∗] Pr[j = j∗]

+ Pr[GameCSC,O,B(1k) = 1|j 6= j∗] Pr[j 6= j∗]

≥Pr[GameCSC,O,B(1k) = 1|j = j∗] Pr[j = j∗]

≥
(

Pr[BLTCS
′

C,O,A(k, t, λ, v) = 1]− exp(−Ω(3
√
n)
) 1

v
(27)

>
1

p′(k)
. (28)

(27) follows from Eq. (26) and the fact that conditioned on j = j∗ B wins game GameCSC,O,B when A

wins BLTCS
′

C,O,A(k, t, λ, v). Finally, (28) holds because v = O(nd) (for some constant d) and by assumption

Pr[BLTCS
′

C,O,A(k, t, λ, v) = 1] ≥ 1/p(k). Clearly, (28) yields a contradiction.

2. Indistinguishability security notion: For indistinguishability games B aborts and sends a random bit b to
the challenger. As above we need to lower bound the advantage of B when playing against the challenge

19

oracle C.

Pr[GameCSC,O,B(1k) = 1]− 1

2
= Pr[GameCSC,O,B(1k) = 1|j = j∗] Pr[j = j∗]

+ Pr[GameCSC,O,B(1k) = 1|j 6= j∗] Pr[j 6= j∗]− 1

2

≥Pr[GameCSC,O,B(1k) = 1|j = j∗] Pr[j = j∗] +
Pr[j 6= j∗]

2
− 1

2
(29)

≥

(
Pr[BLTCS

′

C,O,A(k, t, v, λ) = 1]− exp(−Ω(3
√
n))
)

v
+
v − 1

2v
− 1

2
(30)

>
1

p′(k)
. (31)

(29) holds because Pr[GameCSC,O,B(1k) = 1|j 6= j∗] = 1/2. (30) follows from Eq. (26) and the fact that

conditioned on j = j∗ B wins its game when A wins its BLT game. Finally, (31) holds because v = O(nd)
(for some constant d) and Pr[BLTCS

′

C,O,A(k, t, v, λ) = 1] ≥ 1/2 + 1/p(k) for some polynomial p(.).

The above yields a contradiction as for both game types the adversary B has a non-negligible advantage
against the underlying challenger C. Hence, we get

Pr[BLTCS
′

C,O,A(k, t, v, λ) = 1] ≤ negl(k)

as claimed in the theorem. This concludes the proof.

A.2.4 Proof of Lemma A.2

We start by describing a distribution D1 that together with a short advice Z allows to sample Real. Distribution
D1 is defined exactly as Real except that it only contains distinct values (in particular notice that D1 can contain
less values than Real). More precisely, D1 is sampled as follows:

1. Let X(0) be distributed according to X and compute X(i) = Ti(X
(i−1)) (this is exactly as in Real).

2. For all i ∈ [t] output hS(X(i)) if for all j < i we have X(i) 6= X(j). Denote these outputs by D1. We also
output (L(X(0)), S).

The advice Z (depending on X(0) and the functions T1, . . . , Tt) describes where the values from D1 appear in
Real. An easy way to describe such an advice Z requires t2/2 bits. A more thorough analysis shows that one
can encode the information necessary to map from D1 to Real by 2t log(t) bits.6 In the following we denote the
mapping algorithm that maps (D1, Z) to Real as Samp(D1, Z). Clearly, Samp(D1, Z) and Real are identically
distributed and all values in D1 are distinct. For ease of notation we will reuse the parameter t to denote the
number of elements in D1.

Claim 4. Let β = α−2t
√
n

t+1 . There exists an i ∈ [t] and an event Good such that Pr[Good] ≥ 1− ε and

H̃∞(X(i)|X(i+1), L(X(0)), S, Z,Good) ≥ β − log t/ε− λ− 2t log(t). (32)

In the above X(t+1) denotes a random variable that is chosen uniformly and independently from X .

Proof. Recall that by putting Good in the condition of (32) we denote that all random variables are conditioned
on the fact that Good happens. We prove this statement by relying on Lemma 3.3 which shows that each X(i)

has average min-entropy at least β − log t/ε. Lemma 3.3 puts a constraint on β, i.e., β ≤ α−2t
√
n

t+1 . Clearly, our

choice of β satisfies the above constraint. As X(0) is (α, n)-good, we can now apply Lemma 3.3:

1. If Pr [E] > 0, for all i ∈ [t]: H∞(X
(i)
|E) ≥ β,

6This can be done by first describing for each element in D1 how often it appears in Real and then by defining a mapping that
maps each element to its position in Real. Each of these steps require at most t log(t) bits.

20

2. If Pr[E] ≥ ε then there exists i ∈ [t] such that : H̃∞(X
(i−1)

|E |X(i)

|E) ≥ β − log t
ε .

Consider now the setting when Pr [E] > 0. Hence we know by Step (1) from above that for all i ∈ [t]:

H∞(X
(i)
|E) ≥ β, and in particular H∞(X

(t)
|E) ≥ β. As X(t+1) is uniformly and independently chosen from all

other variables, we get in this case that

H̃∞(X
(t)
|E |X

(t+1)
|E) ≥ β ≥ β − log t/ε. (33)

Again if Pr[E] ≥ ε then by Step (2) from above there exists an i ∈ [t] such that

H̃∞(X
(i−1)

|E |X(i)

|E) ≥ β − log t/ε. (34)

We define Good as follows: Good = E if Pr[E] < ε and Good = Ω if Pr[E] ≥ ε where Ω denotes the whole
probability space. We can bound the probability of the event Good considering two cases:

• When Pr
[
E
]
≥ ε, then Pr [Good] = 1.

• When Pr
[
E
]
< ε then, Pr [Good] = Pr [E] > 1− ε.

So clearly Pr [Good] > 1− ε.
We conclude that there must exist an i ∈ [t] such that

H̃∞(X(i)|X(i+1), L(X(0)), S, Z,Good) ≥ H̃∞(X(i)|X(i+1), S,Good)− λ− 2t log(t) (35)

= H̃∞(X(i)|X(i+1),Good)− λ− 2t log(t) (36)

≥ β − log t/ε− λ− 2t log(t). (37)

Eq. (35) follows from the chain rule for conditional average min entropy (cf. Lemma 2.1). Eq. (36) holds because
S is chosen uniformly and independently from all other variables. Finally, as either E or E must happen and
we condition on Good , we get from Eq. (33) and Eq. (34) that Eq. (37) holds. This concludes the proof of the
claim.

By using the union bound and Lemma 2.1, we can now restate Claim 4 in terms of min-entropy and
condition all random variables on event Good happening. Thus we get that there exists an i ∈ [t] such that
with probability at least 1− 2ε the following holds:

H∞(X(i)|(X(i+1), L(X(0)), S, Z) = r) ≥ β − 2 log t/ε− λ− 2t log(t).

Recall that X(i) can be computed as a (deterministic) function from X(j) where j < i. Hence, the above
holds for all X(j) where j ≤ i, i.e.,

H∞(X(j)|(X(i+1), L(X(0)), S, Z) = r) ≥ β − 2 log t/ε− λ− 2t log(t) =: c.

As with probability at least 1 − 2ε all X(j) individually have min-entropy c and by assumption all X(j) are
distinct, we can apply Lemma A.1:

∆((D1, Z); (

i+1 times︷ ︸︸ ︷
UY , . . . , UY , X

(i+1), L(X(0)), S︸ ︷︷ ︸
D2

, Z)) ≤ 2t(v+`)+1
(q

4tε22c−t`

) q
2t

+ 3ε =: ε′.

As Samp is a deterministic algorithm, the above implies:

∆(Samp(D1, Z);Samp(D2, Z)) ≤ ε′.
Notice that in Samp(D2, Z) the first i + 1 values are now sampled uniformly and independently from UY .
Consider now a distribution D3 where only the first element is replaced by UY and the following i elements are
computed correctly as the output of the hash function hS . By a standard argument, we get

∆(Samp(D1, Z);Samp(D3, Z)) ≤ 2ε′.

To conclude the proof notice that Real and Sim are identically distributed except for the effect that the first
element has on the two distributions.7 Hence, Samp(D3, Z) and Sim are identically distributed. As moreover
Samp(D1, Z) and Real are identically distributed this concludes the proof.

7In both cases we start with an element sampled from X and apply the functions T1, . . . , Tt to it.

21

A.3 Extensions

Beyond semi-adaptivity. Notice that since T is a set of tuples of functions, Definition A.3 clearly implies
non-adaptive security where the adversary commits to a single chain of tampering functions (T1, . . . , Tt). We
further notice that we can obtain a stronger form of semi-adaptivity by paying a higher price in the security
loss. In this model, after committing to a set of functions T = {Ti : X → X} (in Step 1 of Definition A.2), the
adversary can adaptively choose individual functions from T (in Step 3 of Definition A.2). The loss in security
however increases by a factor vt (instead of just v as in Theorem A.1). Finally, observe that we can replace
the 2(t+ 1)-wise independent hash function with any cryptographic hash function and model it in the security
proof of Theorem A.1 as a random oracle. As long as the tampering function cannot query the random oracle,
the tampering choice may now be fully adaptively. Notice also that the random oracle allows us to improve
some of the parameters from the theorem—in particular, the compression rate `.

It is an interesting question if also for general primitives stronger adaptivity security notions in the BLT
model can be obtained. The following simple example shows, however, that this question may be hard—at least
in its most general form.

Example A.1. Consider a PRF ψ(K,M) that is a function of a d-key K and input M and is secure in the
standard sense (without tampering or leakage). We also assume that the function can be broken if one learns
a constant fraction of the key bits. We turn this into a new scheme with a public parameter x1, . . . , xd chosen
from a large finite field of characteristic 2. The secret key is now a random polynomial f of degree at most d−1.
To evaluate the function on input M , we first compute K = (lsb(f(x1)), . . . , lsb(f(xd))) where lsb denotes the
least significant bit, and output ψ(K,M). If there is no tampering, this is still secure, since K is random, even
given the xi’s.

However, a fully adaptive tampering function that has full information on the xi’s can interpolate a poly-
nomial that takes any set of desired values in the xi’s. It can therefore tamper freely with individual bits of K,
and use a generic attack to learn t bits of K using t tampering queries and break the function.

On the other hand, a non-adaptive tampering function is not allowed to depend on the public parameters.
Assume it replaces the polynomial by f ′ 6= f . Then if f − f ′ is constant, either K is not changed or all bits
of K are flipped. We can reasonably assume that ψ is secure against such a related-key attack. If f − f ′ is
not constant, then (f − f ′)(xi) is close to uniform for all i because the degree of f − f ′ is at most d and this
is much smaller than the size of the field. Although the values (f − f ′)(xi) are not independent, it is certainly
not possible to change only one or a small number of key bits. So assuming ψ has some form of related-key
security, non-adaptive tampering cannot break the function.

Avoid hashing by assuming RKA security. We discuss a simple extension of our result from Theorem A.1
which allows to lift the statement to a fully adaptive setting, in case one is willing to assume the underlying
cryptographic scheme has an additional security property (essentially a form of related-key attack security [8]).
The scheme CS should remain secure even against an adversary which is allowed to see outputs Z ′ produced
with keys related to X but that still retain high enough min-entropy. In this case, we can avoid entirely the
transformation based on hashing and apply directly this assumption in the proof of Lemma A.2.

One natural question to ask is whether one can hope to prove that all primitives are secure in the non-
adaptive BLT model, without necessarily using our transformation. The question to this answer is negative.
Consider for instance the Naor-Reingold construction of a PRF [34]. For a group G of prime order p with

generator g, let NR : (Z∗p)n+1 × {0, 1}n → G be defined as NR(x,m) = gx0·
∏n

i=1 x
mi
i . The following is a simple

non-adaptive attack on NR. Before the public parameters are sampled, commit to tampering function T , such
that T (x0, . . . , xn) = (x0, x2, x1, x3 . . . , xn) (i.e., T just swap x1 and x2). Query the function on input m′ =
(1, 0, . . . , 0); this yields the value y′ = gx0·x2 . Now, run the challenge phase using input m′′ = (0, 1, 0, . . . , 0).
This is clearly distinguishable from random, as y′′ = y′ for NR.

B Proof of Lemma A.1

We restate the lemma for the reader’s convenience.

22

Lemma A.1. Let (X1, X2, . . . , Xt) ∈ X t be t (possibly dependent) random variables such that H∞(Xi) ≥ β and
(X1, . . . , Xt) are pairwise different. Let H = {hS : X → Y} be a family of 2t-wise independent hash functions,
with |Y| = 2`. Then for random hS ← H we have that

∆((hS , hS(X1), hS(X2), . . . , hS(Xt)); (hS , UY , . . . , UY︸ ︷︷ ︸
t times

)) ≤ t

2
· 2(t·`−β)/2.

Proof. Denote with d = log |H| the size of the set H. For random variables Z, Z ′ such that Z ′ is an independent
copy of Z we write Col(Z) = Pr [Z = Z ′] for the collision probability of Z. In particular,

Col((hS , hS(X1), hS(X2), . . . , hS(Xt)))

= Pr
[
(hS , hS(X1), hs(X2), . . . , hS(Xt)) = (h′S , h

′
S(X ′1), h′s(X

′
2), . . . , h′s(X

′
t))
]

= Pr
[
hS = h′S

]
· Pr

[
(hS , hS(X1), hS(X2), . . . , hS(Xt)) = (h′S , h

′
S(X ′1), h′S(X ′2), . . . , h′S(X ′t)) | hS = h′S

]
= 2−d · Pr

[
(hS , hS(X1), hS(X2), . . . , hS(Xt)) = (hS , hS(X ′1), hS(X ′2), . . . , hS(X ′t))

]
(38)

where the probabilities above are over the choices of hS , (X1, X2, . . . , Xt) and h′S , (X
′
1, X

′
2, . . . , X

′
t).

We define an event E such that conditioning on E happening we can apply the assumption that hS is
2t-wise independent, and thus bound the probability in Eq. (38) by 2−t·`. The event E becomes true when
X1, X2, . . . , Xt, X

′
1, X

′
2, . . . , X

′
t are pairwise different. Notice that there are

(
2t
2

)
such pairs, however by as-

sumption (X1, . . . , Xt) are pairwise different; this leaves us with
(

2t
2

)
− 2
(
t
2

)
= t2 pairs. Hence, by the union

bound
Pr
[
E
]

= Pr
[
X1 = X2 ∨X2 = X3 ∨ . . . ∨X ′t−1 = X ′t

]
≤ t2 · 2−β,

where the inequality comes from the assumption that all random variables have individually min-entropy at
least β and by applying the union bound.

Plugging the last expression in Eq. (38) and using the fact that hS is 2t-wise independent yields

Col((hS , hS(X1), hS(X2), . . . , hS(Xt)))

≤ 2−d ·
(
Pr
[
(hS , hS(X1), hS(X2), . . . , hS(Xt)) = (hS , hS(X ′1), hS(X ′2), . . . , hS(X ′t)) | E

]
+ Pr

[
E
])

≤ 2−d · (2−t·` + t2 · 2−β).

Let Z be a random variable with support Z and U be uniform over Z. Then ‖Z − U‖22 = Col(Z)− |Z|−1.
In particular,

‖(hS , hS(X1), hS(X2), . . . , hS(Xt))‖22 = Col((hS , hS(X1), hs(X2), . . . , hS(Xt)))− 2−d−t·`

≤ 2−d ·
(

2−t·` + t2 · 2−β
)
− 2−d−t·` = t2 · 2−d−β.

Finally, using that ‖Z‖1 ≤
√
|Z| · ‖Z‖2 for any random variable Z with support Z, we obtain

∆((hS , hS(X1), hs(X2), . . . , hS(Xt)); (hS , UY , . . . , UY︸ ︷︷ ︸
t times

))

=
1

2
‖(hS , hS(X1), hS(X2), . . . , hS(Xt))− (hS , UY , . . . , UY︸ ︷︷ ︸

t times

)‖1

≤ 1

2

√
2d+t·` ·

√
t2 · 2−d−β =

t

2
· 2(t·`−β)/2.

23

	Introduction
	Preliminaries
	Notation
	Information Theory Basics

	The Chaining Lemma
	Application to Tamper-resilient Cryptography (overview)
	Application of Chaining Lemma to Tamper-Resilient Cryptography (in detail)
	Abstract Security Games with Tampering
	Semi-Adaptive BLT Security for General Primitives
	A General Transformation
	Outline of the Proof
	Proof of Theorem A.1
	Proof of Lemma A.2

	Extensions

	Proof of Lemma A.1

