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Abstract

We introduce a new framework for polling responses from a large population. Our
framework allows gathering information without violating the responders’ anonymity and at
the same time enables public verification of the poll’s result. In contrast to prior approaches
to the problem, we do not require trusting the pollster for faithfully announcing the poll’s
results, nor do we rely on strong identity verification.

We propose an “effort based” polling protocol whose results can be publicly verified
by constructing a “responder certification graph” whose nodes are labeled by responders’
replies to the poll, and whose edges cross-certify that adjacent nodes correspond to honest
participants. Cross-certification is achieved using a newly introduced (privately verifiable)
“Private Proof of Effort” (PPE). In effect, our protocol gives a general method for con-
verting privately-verifiable proofs into a publicly-verifiable protocol. The soundness of the
transformation relies on expansion properties of the certification graph.

Our results are applicable to a variety of settings in which crowd-sourced information
gathering is required. This includes crypto-currencies, political polling, elections, recom-
mendation systems, viewer voting in TV shows, and prediction markets.
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1 Introduction

The Internet enables reciprocal communication on a massive scale. Thus, it has the potential to
allow new forms of information gathering and “crowd-sourced” decision making. Some examples
(already in widespread use) are political polling, elections (which are a mechanism for achiev-
ing consensus among voters about which candidate to put in office), recommendation systems
(e.g., based on users’ opinions about products and services), prediction markets (leveraging the
“wisdom of the crowds” to predict future events) and “crypto-currencies” (such as Bitcoin [15]).

We can think of all these cases as a generalized “opinion poll”:the outcome is the result of
aggregating the opinions of a large population of Internet users. The “protocols” that implement
the poll (and the methods of computing the results) are different in each case, but in all of
them we can categorize the participants into three types (some parties may belong to multiple
categories):

1. pollsters are responsible for collecting the information and publishing the result.

2. responders are the parties who provide inputs to the poll.

3. verifiers are interested in (should agree on) the result, but may not be active participants.

Although at first glance the examples mentioned above may not necessarily appear to be
a distributed protocol problem (e.g., in elections there is a central election authority that can
broadcast results to everyone), it is natural to consider the case when the central authorities
are untrusted, and can potentially act maliciously. Viewed this way, verifiable polling is a
generalization of the fundamental problem of achieving consensus between mutually-distrustful
parties. While in the general polling setting, inputs of various parties could differ and are
aggregated into the poll’s “tally”, the basic consensus problem focuses on the special case in
which parties only have to agree on a specific output if all of their inputs match. Correctness
of the consensus is guaranteed by the verifiability property of the polling protocol.

In their general form, verifiable opinion polls are also useful as building blocks in more
complex protocols. For example, the main technical innovation of Bitcoin, a recently popular
“crypto-currency”, is in achieving a distributed, decentralized consensus about the currency’s
public transaction ledger (the record of all Bitcoin transactions) [15].

In the “traditional” setting for the verifiable polling problem (and its variants), the number
and identities of the parties are known in advance. Using standard cryptographic techniques,
solutions are known to many of them. Techniques for verifiable voting, for example, provide
solutions that hide the individual responses of the participants, even after revealing the tally
(see subsection 1.5 for references).

Unfortunately, adapting the traditional solutions to work in a decentralized internet envi-
ronment is non-trivial. One of the major problems encountered in this setting is the lack of
identity verification. Strong identity verification on a large scale is expensive, and in many
cases completely impractical (e.g., when participants are spread across national boundaries,
there might not be a single entity trusted by all of them to certify identities). The mechanisms
for identity verification become even more complex when anonymity (or pseudonymity) of the
participants is required. In the absence of identity verification, it is impossible to distinguish a
fake identity from a real one; this opens the door to “Sybil attacks” (attacks based on creating
multiple fake identities).

There are various methods used to mitigate Sybil attacks without requiring identity verifi-
cation. A recurring idea is to force participants to prove they expended some valuable resource:
for example, spending money or performing a computational task. This serves to limit the
number of fake identities an adversary can create. In this paradigm, we have no choice but to
relax our requirements from the poll: rather than requiring “one vote per participant”, we now
allow “one vote per effort” (where an “effort unit” corresponds to expending some resource).
We call this effort-based polling.
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The Bitcoin protocol is an excellent example of this type: in effect, consensus is achieved
by having parties constantly “vote” on which version of the transaction ledger they accept,
where for each “vote” the party must also generate a “proof-of-work” to prove that the required
amount of computational effort was expended.1

Proofs of work are one of the very few examples of proofs of effort that are publicly verifiable.
However, they suffer from significant drawbacks. First of all, they are inherently wasteful in
that the computation “does nothing” except prove work (indeed, this is one of the strongest
arguments against the Bitcoin currency [11]). Secondly, and perhaps more importantly, a party
with access to more computing power than most honest responders may gain a hugely dispro-
portionate influence on the results (not to mention the wide disparities between the responders
themselves).

1.1 Privately Verifiable Proofs of Effort

An alternative to publicly-verifiable proofs of work, and one that may be potentially easier to
achieve, is that of privately-verifiable proofs of resource expenditure. One well known example
is that of enforcing human involvement in each response. In voting for the “American Idol”
TV show, for example, online viewers must solve a CAPTCHA [18] for each vote, but the
total number of votes is effectively unlimited. (What makes the CAPTCHA solution privately
verifiable is the fact that all currently known CAPTCHAs are private coin: in effect, every
CAPTCHA is generated together with its solution.)

Beyond being easier to achieve (and not being “wasteful”) The “human effort” requirement
may be useful when there is a “resource gap” between honest and malicious parties. For example,
show producers have significantly more money and access to more computing power than most
honest viewers (and there are wide disparities between the viewers themselves)—using proof-
of-work in this context could give them a hugely disproportionate influence on the results.

In effect, what CAPTCHAs enable us to achieve is what we call a privately-verifiable proof
of effort (PPE). Informally, this is an interactive protocol between two parties: if both parties
are honest the test returns “true” to both, otherwise the test returns “false” to the honest
participant.

Definition 1.1 (PPE, informal). A two-party protocol is a PPE if it satisfies:

1. Effort If both parties honestly follow the protocol, they expend one “effort unit”.

2. σ-Completeness. If both parties honestly followed the protocol, they will both output “true”
at the end of the protocol with probability at least 1− σ.

3. ε-Soundness. If one party is malicious (invests less than the required effort) and the other
honestly follows the protocol, the honest party will output “false” with probability at least
1− ε.

We note that this definition is necessarily informal, since the term “effort unit” is itself not
well defined. In our analysis, we sidestep the problem by reversing the definition: instead of
defining a PPE as a proof of effort, we define a “proof of effort” as successful completion of PPE
with at least one honest participant (formally, we follow Canetti et al.’s framework for defining
CAPTCHAs [3] and define effort in terms of oracle calls; see section 2 for details).

The peer-to-peer nature of PPEs makes them potentially easier to realize than their publicly-
verifiable counterparts (which require costly distributed coordination). In Appendix B, we
list several potential mechanisms for PPEs, most of which do not require human involvement
(making them fully automatizable, and hence scalable). These include proofs of storage, human
interaction (including symmetric CAPTCHAs) and leveraging social networks.

1The outcome of a Bitcoin “poll” is not a majority-vote, but a randomized selection in which the probability
for selecting a “candidate” is proportional to the total effort expended for that candidate. However, this still fits
in our generalized polling framework.
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1.2 Our Results

While PPEs seem easier to realize, it is not at all clear how to utilize them in order to deal with
the problem of a cheating pollster. For instance, in the American Idol example, a malicious
CAPTCHA generator can use the solutions to the CAPTCHAs without expending any human
effort. Thus, existing CAPTCHAs cannot be publicly verified (hence cannot be used to achieve
a consensus about the result of the poll when the generator is untrusted).

Our main result is a new protocol for publicly-verifiable effort-based polling, based on any
privately-verifiable proof-of-effort (PPE). The protocol uses PPEs to generate a “responder
certification graph”: each responder is a node in the graph while an edge between two responders
corresponds to a PPE execution. Loosely speaking, we guarantee that, as long as enough honest
users participate in the protocol, a large number of cheating nodes will be publicly detected (note
that, unlike most standard definitions of an “honest party”, in our case every party controlled
by the adversary is considered “cheating”, even if it follows the honest protocol exactly).

If each node in the graph is published together with their response to the poll, the poll
results cannot be skewed significantly by the pollster without being detected.

In its simplest variant, our protocol assumes that the responder certification graph is sampled
at random. This sampling can be performed in a publicly-verifiable way, say by applying a
“random-looking” function (e.g., SHA-1) to two nodes’ indices to determine if there is an edge
between them in the graph. Since our protocol’s analysis relies only on expansion properties
of such randomly chosen graphs, the construction can potentially be derandomized—using an
explicit graph with the appropriate expansion properties, we could remove our assumption about
SHA-1 and improve the protocol parameters, at the cost of making the protocol more complex.

We note that while the structure of certification graph is fixed (it depends only on the
number of nodes), we allow the adversary to specify the number of nodes (within bounds) and
to arbitrarily control the assignment of honest nodes to vertices in the graph. We prove that
security holds for every assignment.

1.3 Main Theorems

The total number of nodes in the certification graph is denoted m and corresponds to the total
number of responders (some of whom may be controlled by the adversary). The number of hon-
est responders is denoted by n. We denote by d the average degree of the responder certification
graph: this is the number of PPE executions each responder is expected to participate in.

We model our assumption that the pollsters have bounded resources by specifying that a
cheating pollster cannot participate in too many successful PPEs with honest responders. In
terms of the certification graph, this assumption implies a bound a on the number of “attack
edges”—PPE executions in which the cheating pollster participates as one party and convinces
an honest responder to accept. The ratio a/d gives a lower bound on the number of “cheating”
nodes; an attacker can always create this many cheating nodes without detection by following
the protocol honestly. Thus, our security guarantees make sense only when a/d � n (we can
think of a/dn as a small constant).

We denote by κ the security parameter. Our main theorems guarantee the soundness (a
malicious pollster can’t cheat undetectably) and completeness (an honest execution will be
accepted) of our protocol. For simplicity, we will consider PPEs for which ε (the soundness
error of a PPE) is negligible in the security parameter and omit it. For our completeness proof,
we require an additional independence property: that for a given node, the probability of failure
in each PPE execution is independent (the probability can depend on the node, however).

Theorem 1.2 (Soundness—Informal). Let A be an adversarial pollster that cannot succeed in
more than a PPEs with honest responders. If there are at least n ≥ αm, α ∈ (0, 1), honest
responders to the poll and A controls more than Ω(ad) of the responses in the poll outcome, then
verification will fail with overwhelming probability (in κ).
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See section 4 for the full theorem and proof. Note that our proof holds in the random oracle
model, but under a very reasonable assumption about the cryptographic hash function (that
the generated graph has good expansion parameters) it holds in the standard model as well.

Theorem 1.3 (Completeness—Informal). If the pollster is honest, and malicious responders
are bounded by O(m) successful PPEs, the probability that verification fails is negligible in κ.

See section 5 for the full theorem and proof. The bound on successful PPEs by malicious
responders is required to guarantee robustness of the protocol—when the pollster is honest the
verification should succeed even if some of the responders are malicious.

1.4 Comparison to Verifiable Voting

At a high level, our polling protocol has the same form as most universally verifiable voting
protocols (involving an “election authority”, “voters”, “receipts” and “verification procedure”):

1. The pollster sets up the poll and publishes public parameters on a bulletin-board (modeled
as a broadcast channel). This corresponds to the role of the “election authority”.

2. Honest responders (corresponding to the “voters”) send their responses to the pollster
and engage in an interactive proof protocol to ensure that they are expending the correct
amount of “effort” for each response. This protocol includes interaction with the pollster
and also, unlike most voting protocols, interaction with a subset of other responders.

The pollster signs the transcript of each communication with a responder and sends this
signature to the responder (think of this as the “receipt” in the voting protocol).

3. The pollster publishes the empirical distribution of responses, together with a proof of
correctness.

4. The verification procedure consists of both a local verification step performed by the
responders (which in a voting protocol corresponds to verifying that the voter’s receipt
appears on the bulletin board) and a global verification step performed by the verifiers
(which corresponds to the “universal verification” step in voting protocols). Note that
responders can also act as verifiers if they wish.

A significant difference between effort-based polling and verifiable voting is the issue of voter
identity. In our polling protocol, parties are identified only by self-chosen pseudonyms (for our
purposes, a pseudonym is a verification key of a public-key signature scheme). We do not limit
the number of pseudonyms a party may generate, or require parties to link their pseudonyms
to their real identities.

In contrast, most voting protocols assume each party in the protocol has been identified by
a trusted authority, in order to ensure that each voter gets only a single vote. By relaxing this
requirement to “one vote per effort expended”, we can dispense with the complexity, expense
and privacy implications of securely identifying responders.

In particular, our protocol is compatible with completely anonymous polling (if responders
communicate with the pollster over anonymous channels)—in addition to hiding the link be-
tween their real identities and their responses, use of anonymous channels can hide the fact of
participation in the poll, with the degree of anonymization depending only on the anonymous
channel (in contrast, cryptographic voting protocols that support hiding the voters’ participa-
tion require a separate non-anonymous registration step, and anonymity depends on the election
trustees in addition to the anonymous channel).
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1.5 Related Work

Sybil Defense In a “Sybil attack”, an adversary creates multiple “fake” identities in order to
manipulate a protocol. The problem of establishing trustworthy virtual identities has plagued
the Internet from its inception [9]. It is particularly acute in distributed systems with no
central authority—without additional assumptions, vulnerability to some forms of Sybil attacks
is unavoidable in this case [8]. The paper by [9] deals with the problem of establishing identities.
One of the first discussions of trust metrics based on social graphs appears in [12]. The term
“Sybil Attack” (attributed to Brian Zill from MSR) was introduced in [8], where it is shown
that in the absence of a central certifying authority, some attacks are always possible.

A reputation system for p2p with similar ideas to pagerank (doesn’t handle sybils) is de-
veloped in [10], and the possibility of using “Turing tests” to limit Sybil nodes is mentioned
in [2]. In [6] it is shown that there exists no symmetric sybil-proof reputation mechanism. Since
the existing sybil-defense protocols all care about reputations (e.g., determining which nodes
are “real” and which are sybils), they all strongly rely on breaking symmetry: having at least
one trusted node. Our protocol is symmetric, however we can sidestep the impossibility proof
because we don’t care about individual nodes’ reputations—only about the aggregate opinion
of all the nodes.

The technique of random walks on a social networks to bound the effect of Sybil attack is
introduced in [22] (see [21] for an expanded version with full proofs). A 2006 survey of sybil
attack literature can be found in [13]. An improved version of [22] (slightly different protocol,
same goal but better parameters) appears in [20], and a newer protocol to identify sybil nodes in
a social graph is presented in [7]. The protocol makes very similar assumptions about the social
graph, and Bayesian methods to compute the probabilities that nodes are sybils. Finally, [17]
uses the social network graph to aggregate votes for online content. The “vote collector” is
assumed to be honest, and votes are collected using max-flow in the social graph.

Most of these techniques implicitly or explicitly use assumptions about expansion properties
of social-network graphs. We also make use of the idea that if “adding edges is hard” in an
expander graph the adversary is limited in the effect bad nodes can have, but in our case the
graph is artificially generated, so we can prove (in the random-oracle model, at least) that our
graph has the required properties. On the other hand, the labeling of the graph is adversarial;
despite this, we get results that are—in some sense—stronger than the results on social networks:
we can bound the total number of “bad” nodes (rather than just their influence).

Verifiable and Private Polling. A widely used technique for privacy-preserving polling is
called “randomized response” and was introduced in [19]. The first suggestion for cryptographic
verifiability in voting, which also gives a mechanism for establishing anonymous channels (mix-
nets) was made in [4]. More recently, the works of [5, 16] propose taking into account human
voters in End-to-End verifiability, and introduce the notion of separate verification steps for
the voter and external observers. Another incarnation of this idea is verifiable (for the pollster)
privacy-preserving polling using scratch-off cards [14].

2 Model and Definitions

We now introduce a formal model for capturing the notion of verifiable effort-based polling.
The definition will have to address both the syntax of a polling protocol and the issue of the
“effort” involved in the protocol execution. To model the effort expended by each one of the
protocol participants, we give parties access to an effort oracle. The effort spent by each party
is measured as the number of calls that party makes to the oracle. To justify this measure,
we propose to use “peer-to-peer” protocols that presumably require the expenditure of one call
to an effort oracle per successful execution. One well known example for such a protocol is
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a CAPTCHA, automatically generated challenges that should be solvable only if given a call
to an effort oracle (and moreover accommodate automatic verification of the solution). Other
options, (some of which may be more practical) are described in Appendix B.

Before delving into the details, we note that for the convenience of the reader, Appendix C
contains a table of the parameters and notation used in the paper.

2.1 Verifiable Effort-Based Polling

An m-responder polling scheme is a multi-party protocol between a pollster, denoted P and m
responders, denoted R1, . . . , Rm. The ith responder holds an input xi ∈ D ∪ {⊥}, where D is
the domain from which the responses are taken and ⊥ denotes lack of participation in the poll.
In practice m will be an upper bound on the number of responders; We denote by n < m the
actual number of (honest) participants. The number of honest responders is known only to the
adversary. Thus, the adversary can create “fake” responders by replacing some of the ⊥ inputs
with adversarially chosen values. As the adversary knows all the inputs and controls all the
outputs in our protocols, we do not need to consider corrupted responders—the adversary can
just replace an honest responder’s input with a different one to simulate a corrupted responder.

We give parties access to an oracle denoted E, and let REi (resp. PE) denote the execution
of Ri (resp. P ) with access to the oracle E. Let ei denote the total number of oracle calls made
by Ri to E. Let 〈PE , RE1 (x1), . . . , R

E
m(xm)〉 be a random variable describing the output of a

protocol execution, where the probabilities are taken over the parties’ coin tosses. The output
of the protocol takes the form (Y , z), where Y = (y, w) denotes the output of the pollster
(y = (y1, . . . , ym) indicates the outputs of the responders as announced by the pollster, and w
contains a proof of correctness of the result) and z = (z1, . . . , zm) denotes the local outputs of
the responders, where zi corresponds to the local output of Ri following the protocol execution.
The role of the local outputs zi is to enable local verification by the parties.

To make the polling scheme publicly-verifiable we will additionally require the existence of
a verifier V that takes Y and z as inputs (the verification procedure can use the output of the
local verification; e.g., global verification could fail if too many responders complain).

Definition 2.1 (Verifiable Effort-Based Polling). Let κ,m, a ∈ N and let α, θ ∈ [0, 1] and B :
N×N 7→ N. An m-responder effort-based polling scheme is said to be (α,B)-sound and θ-robust
if there exists a probabilistic polynomial-time algorithm V such that for any x1, . . . , xm ∈ D∪{⊥}
with n = #{i ∈ [m]|xi 6= ⊥}, the following properties are satisfied:

Soundness: For every PPT (Probabilistic Polynomial Time) P ∗, if n ≥ αm and ∆(x, y) ≥
B(a,m) then

Pr
[
V (Y , z) = accept

]
< 2−κ ,

where the probability is taken over (Y , z) ← (P ∗E , RE1 (x1), . . . , R
E
m(xm)), a is the total

number of oracle calls made by P ∗ to E,and ∆(x, y) is the minimum Hamming distance
between x and some permutation of y (i.e., this corresponds to the number of responses
changed/added by the adversary).

Completeness: For every subset {i1, . . . , it} ⊆ [m] of responders (corresponding to malicious
responders), if ei1 + . . .+ eit < θm then

Pr
[
V (Y , z) = accept

]
> 1− 2−κ,

where the probability is taken over (Y , z)← (PE , RE1 (x1), . . . , R
E
m(xm)).

Informally, we can interpret (α,B)-soundness as a guarantee that if at least an α-fraction of
responders are honest, then the adversary cannot change too many responses without getting
caught. The influence of the adversary is captured by the function B. Generally, we would
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expect B(a,m) to be proportional to the number of responses an honest user could add using
a calls to the effort oracle. Thus, an intuitive measure of the protocol’s soundness is a bound
on the multiplicative advantage of the adversary:

C(a) = B(a,m)
d

a

If the multiplicative advantage is bounded by C, then any adversary who can change C · `
responses using an optimal cheating strategy could have altered ` responses (in expectation) by
honestly following the protocol and expending the same amount of effort.

The θ-robustness of the protocol guarantees that if the total effort available to malicious
responders is less than θm, then they cannot cause the verification procedure to fail except with
negligible probability.

2.2 Formally Defining Proofs of Effort

In the “effort-oracle” model we can fully formalize definition 1.1. Note that while we define
PPE to be a two-party protocol, we require soundness to hold even in a concurrent setting,
in which a malicious party A∗ participates concurrently in multiple executions of the protocol
with other parties. To achieve this, we assume each protocol execution has a unique identifier
id (e.g., in practice this could be a concatenation of the identities of the participating parties
and the current time).

Definition 2.2 (PPE). A protocol ΠE(A,B) between two parties A and B is a PPE if it satisfies
the following properties:

1. σ-Completeness If A and B execute an instance of ΠE(A,B) and both honestly follow
the protocol, then with probability at least 1− σ both parties will output “true” at the end
of the protocol.

2. ε-Soundness For every pair of PPT (Probabilistic Polynomial time) A∗ and B that ex-
ecute an instance of ΠE(A∗, B) with identifier id, if B honestly follows the protocol but
A∗ does not make at least one oracle call to E with input id, then the probability that B
outputs “true” is at most ε.

3 The Protocol

The main technical innovation in this paper is the construction of the Pollster’s proof for the
correctness of the published results. To do this, we borrow ideas from the literature on defense
against Sybil attacks using pre-existing trust relations.

To account for the possibility that an honest responder can fail a PPE execution indepen-
dently of his honesty, we denote by ηE the fraction of failing PPEs that the protocol tolerates
before discarding someone’s vote. On the other hand, we indicate by ηV the upper bound on
the fraction of responders whose vote can be discarded by the pollster (if the number of dis-
carded votes is greater than ηV , the overall verification will fail). Moreover, in order to avoid
denial-of-service attacks caused by malicious responders that intentionally fail all their PPEs,
our protocol will require to register for the poll by solving a single-sided PPE (i.e., a PPE that
requires effort only from the voters side in order to be successful). With high probability this
kind of attack will then be unsuccessful whenever the cheating responders are limited in the
amount of effort they can expend. Following, is a high-level description of our protocol. For
each of the steps below, the full formal protocol description appears in subsection A.3.

1. Parameter Announcement. (Protocol 1) This phase consists of a single broadcast by
the pollster, consisting of the public parameters for the poll. The pollster generates a
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unique, random identifier id for the poll and public key parameters for a digital signature
scheme. We denote by SK, V K the secret and public key respectively.

The public parameters are the tuple (id, questions, p, V K), where questions is the set of
poll questions. p is a probability that determines the expected degree of the certification
graph (see Appendix C for a full explanation of how it’s chosen).

2. Registration. (Protocol 2) Each responder Ri samples a private key SKi and a public
key V Ki for their signature scheme, and sends (addri, V Ki) to the pollster (where addri is
the responder’s network address). Each responder then solves a single-sided PPE (verified
by the pollster). If verification was successful, the pollster adds (addri, V Ki) to its list of
registered responders.

When the registration phase is over, the pollster broadcasts the list of registered public
keys. Note that the network addresses are not required to appear in the broadcast list.
The order of public keys in the list maps each registered responder to a unique index (i.e.,
the ith key in the list is mapped to index i).

For each index i, we define Ni to be “the neighborhood of i” in the certification graph.
Ni is computed from i and m (the total number of parties) using a cryptographic hash H:
j ∈ Ni iff H(i, j) ≤ p, where the output of H is treated as a binary fraction in [0, 1] (e.g.,
H could be SHA-1). Since all of the parameters are public, every party can compute the
list of its neighbors in the graph.

However, while Ri may know the verification key of every neighbor, it does not necessarily
know their network addresses. The parties can communicate via the pollster, or alterna-
tively, the pollster can send each party i the network addresses of all its neighbors in the
graph.

3. Responder Certification (PPE execution). (Protocol 3) As just described, every
pair of responders is paired in a PPE instance with probability p. Now, for each Rj ∈ Ni,
responder Ri engages in a PPE with Rj . The actual execution is peer-to-peer, however
the communication may be facilitated by the pollster (e.g., the pollster’s website can
be used as a conduit for a VOIP chat). If the PPE execution succeeded (both parties
received “true”), the parties sign each other’s public keys (concatenated with a unique
“poll identifier”, to prevent the signatures being reused in other polls) and send the signed
values to each other.

4. Poll Response. (Protocol 4) Every responder Ri sends to the pollster the results of
the certification phase (a signature on V Ki from each neighbor with which it successfully
completed a PPE) and xi, the actual response to the poll questions.

5. Results and Proof. (Protocol 5) We can think of the responders as nodes of a graph
Gc in which they are connected by edges if and only if they were supposed to interact
through a PPE. Let V = {1, . . . ,m} denote the set of responders and E := {(i, j)|i, j ∈
V,H(i, j) < p} the set of edges. We call Gc = (V,E) the “certification graph”. Note
that anyone can compute Gc given the serial numbers associated to the responders and
p. Then, as a “proof of correctness” the pollster publishes the graph consisting of the
following2:

Node labels: For each responder Ri he publishes (xi, sigSKi(xi), V Ki, idi).

Edge signature: For each successful PPE he publishes (sigj(V Ki), sigi(V Kj)), where
V Ki, V Kj are the public keys of the responders involved in it.

2the information as described is redundant (e.g., the list of deleted nodes can be computed from the list of
edge signatures and node labels), but we describe it in this way to make the description of the verification process
simpler.

8



List of deleted nodes: The list of all nodes whose response will not count in the result
because they failed more than a ηE fraction of the PPEs.

The empirical distribution of the responses can be computed by counting the votes as-
sociated to the non-deleted nodes. Note that the graph published by the pollster, call
it Gp, is composed of the same nodes as Gc, but it’s missing all the edges associated to
unsuccessful PPEs. So, Gp = (V,E′) is a subgraph of Gc = (V,E) where (i, j) is in E′ if
and only if Ri and Rj successfully interacted through a PPE.

6. Verification. (Protocol 6) The procedure is divided in two steps:

Local verification (performed by each responder) consists of verifying that the corre-
sponding node was published correctly, as were the edge signatures in which he was
involved (no adjacent edge is missing, and all the adjacent edges in the graph were
verified with a successful PPE). If any of these verifications fail, the responders sends
a “complaint”.

Global verification (can be performed by anyone) consists of checking that all the
nodes, and no others, that failed more then ηEd edges are indeed marked as deleted.
To verify if a node i is marked correctly, the verifier needs to find its neighbors in
the graph (by computing the hash function H(i, j) for every j 6= i) and checking how
many of the signed edges appear in the published graph. Then, the verifiers need to
check that no more than a ηV fraction of the nodes were deleted and that not “too
many” valid complaints were sent.

An adversarial pollster can attempt to manipulate results either by changing the responses
associated with honest nodes or by “controlling” many nodes (they will be nodes that do not
correspond to any honest participant, but appear in Gp and their “behaviour” is dictated by
the pollster), such that the overall empirical distribution differs from the empirical distribution
over the honest nodes. In the former case, the local verification will detect the adversary and
many valid complaints will be sent. In the latter case, we use an expansion property of the
graph to prove that any large enough set of “bad” nodes (nodes that are controlled by the
adversary) must have many edges to its complement in the graph. Thus, an adversary who
wants to control a big enough set of nodes must succeed in many PPE executions with honest
nodes; since the adversary is bounded in the number of successful PPE executions, it will be
caught with high probability.

The protocol also provides a measure of robustness against malicious responders. Cheating
responders cannot undetectably modify the results for the same reason that a cheating pollster
cannot. However, they can attempt to launch a denial-of-service attack by causing verification
to fail. As explained above, the single-sided PPE in step 4 will prevent this form of attack, as
long as the cheating responders are limited enough in the amount of effort they can expend.

4 Soundness

To prove the soundness of our protocol we need to show that the number of votes that the
adversary can control is at most proportional to the amount of effort that he is willing to
invest. That is, whenever the adversary is able to control a “meaningful” amount of votes that
is significantly greater that the number of votes that she could have controlled by honestly
following the protocol (with the same effort investment), our verification procedure will fail
with overwhelming probability. The proof of such a result will rely both on the security of the
signature schemes and on an expansion property of the graph Gp published by the pollster as
proof of correctness.

The use of the signatures is entirely straightforward: they prevent the adversary from chang-
ing honest users’ votes and from claiming a failed PPE with an honest user was successful (to
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do this, the adversary would have to forge the honest node’s signature). Similarly, the pollster’s
signature on the honest user’s registration information and the signatures of its neighboring
nodes allows the honest user to verifiably complain about being omitted from the count despite
successfully completing the requisite number of PPEs. The “meat” of the security proof is in
the analysis of the certification graph, and that will be the focus of this section.

As described in the previous sections, in a m-responders polling scheme, each responder
holds an input xi ∈ D ∪ {⊥}, where D is the domain from which the responses are taken and
⊥ denotes lack of participation in the poll. We call a node honest if its corresponding party
participated in the poll (its input was not ⊥). We call a node bad if it is not honest but its
response in the output is not ⊥. Finally, we say a node is deleted if it failed more than ηEd
of the PPEs it was assigned (note that both honest and bad nodes may be deleted), where d
is the number of PPE executions each responder is expected to participate in. Note that for
soundness to hold, we need that at least a certain portion, say α, of the responders are actually
honest. That is, we need at least αm responders to participate to the poll by sending an input.
The adversary could in theory be the one controlling the remaining (1−α)m votes by replacing
⊥ as an actual vote in the output and by spending the effort he has available. We prove that if
the number of controlled nodes is significantly greater than the number of votes he would have
controlled by acting honestly, then he will be detected with high probability.

In order to prove soundness, we bound separately the number of bad nodes (corresponding
to “fake” parties generated by the adversary) and the number of changes the adversary can
make to the input of honest nodes (that is, responder Ri voted xi and the pollster output
yi ∈ D \ {xi} or yi = ⊥ instead). To prove the first bound, we rely on an expansion property
of the graph Gp output by the pollster. In the following subsection we give a general definition
of such a property and we prove some lemmas that will be useful for our proof.

4.1 Large-Set Expanding Property

The LSE property is similar to the “jumbled” graphs of Thomason, but is weaker since we don’t
care if small sets do not expand. This lets us get better LSE parameters for random graphs
than are possible for the standard jumbled graphs.

Definition 4.1 (Large-Set Expanding (LSE)). A graph G = (V,E), with m = |V |, is said
to be (K, ρ, q)-LSE if for every pair of disjoint sets A,B ⊂ V such that K ≤ |A| ≤ m/2,
|B| ≥ m − |A| − ρ it holds that the set of edges between A and B, denoted by e(A,B), has
cardinality greater than |A||B|q.

In our analysis K will denote a bound on both the maximum number of bad nodes that we
will allow and on the minimum number of good nodes that we require, ρ will be the maximum
number of deleted nodes and q a function of the probability that two voters have to run a PPE.

Lemma 4.2. Let G(m, p) = (V,E) be a random graph with p = d/m, For every ρ ≥ 1, ρ ∈ N
and every b > 1, if

d >
4b2m

m− 2ρ
(lnm+ 1)

then G is (K, ρ, b−1b p)-LSE with probability at least 1− 2−κ for K = κ+ (ρ+ 2) lnm+ ρ (where
the probability is over the choice of graph).

Proof. Consider an arbitrary pair of sets A,B ⊂ V such that K ≤ |A| ≤ m/2, |B| = m−|A|−r
with 1 ≤ r ≤ ρ. Define the random variable Xi,j to be the indicator variable for the event
(i, j) ∈ E.

Since G is a random (m, p)-graph, the Xi,j ’s are independent and Pr[Xi,j = 1] = p. Then
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|e(A,B)| =
∑
i∈A

∑
j∈B

Xi,j

E[|e(A,B)|] = |A||B|p = µ

For A,B ⊂ V such that K ≤ |A| ≤ m
2 and m− |A| − ρ ≤ |B| ≤ m− |A|, let Bad(A,B) be the

event that

|e(A,B)| < b− 1

b
µ

(For A,B not satisfying the size restrictions, we define Bad(A,B) to be the null event.)
To prove the lemma, we must bound the probability that Pr [∃A,B ⊂ V : Bad(A,B)] First,

since the Xi,j ’s are independent, by the Chernoff bound we have for any disjoint sets A and B:

Pr[|e(A,B)| < b− 1

b
µ]

≤ exp{− µ

2b2
} = exp{−|A||B|p

2b2
}

= exp{−|A|(m− |A| − r)p
2b2

} ≤ exp{−|A|(m/2− r)p
2b2

}

Next, we bound the probability that there exist two sets A and B of fixed sizes |A| = x,
|B| = m− x− r such that Bad(A,B) occurs. Denote

ε = Pr

 ⋃
A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

Bad(A,B)


By the union bound, this probability is bounded by

ε ≤
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

Pr

[
|e(A,B)| < b− 1

b
µ

]

≤
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

exp{−|A||B|p
2b2

}

=
∑

A,B⊂V,A∩B=∅
|A|=x,|B|=m−x−r

exp{−x(m− x− r)p
2b2

}

=

(
m

x

)(
m− x
r

)
exp{−x(m− x− r)p

2b2
}

≤
(
m

x

)(
m

r

)
exp{−x(m− x− r)p

2b2
}

≤
(me
x

)x (me
r

)r
exp{−x(m− x− r)p

2b2
}

Since |A| = x ≤ m
2 ,

exp{−x(m− x− r)p
2b2

} ≤ exp{−x(m/2− r)p
2b2

}
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Hence

ε ≤ exp
{
x(lnm+ 1− lnx) + r(lnm+ 1− ln r)− x

(m
2
− r
) p

2b2

}
≤ exp

{
−x
(
d

4b2
− dr

2b2m
− lnm− 1 + lnx

)
+ r(lnm+ 1− ln r)

}
≤ exp

{
−x
(
d

4b2
− dr

2b2m
− lnm

)
+ r(lnm+ 1)

}
≤ exp {−x+ r(lnm+ 1)}

Where the last two inequalities hold as long as lnx > 1 (which is always true assuming K > 3),

ln r ≥ 0 (which is always true for r ≥ 1) and d > 4b2m
m−2r (lnm+ 1).

Applying the union bound again, we get

Pr [∃A,B ⊂ V : Bad(A,B)]

≤
m/2∑
x=K

ρ∑
r=1

Pr

 ⋃
A⊂V
|A|=x

⋃
B⊂V

|B|=m−x−r

{|e(A,B)| < b− 1

b
µ}


≤ m

2
ρe−K+ρ(lnm+1)

≤ 2−κ

since K > κ ln 2 + (ρ+ 1) lnm+ ln ρ+ ρ.

In our analysis, we will use this lemma to prove that the certification graph Gc is indeed
expanding with specific parameters K, ρ, and q. We will then need to use the following lemma,
in order to prove that our protocol is sound:

Lemma 4.3. Consider a graph G = (V,E) with m = |V | nodes. Let G′ = (V,E′) be the
graph obtained from G by deleting at most s edges per node. If G is (K, ρ, q)-LSE, then G′ is
(K, ρ, q − 2s

m−2ρ)-LSE.

Proof. For simplicity let q′ = q − 2s
m−2ρ . Consider A,B ⊂ V such that K ≤ |A| ≤ m/2 and

m − |A| − ρ ≤ |B| ≤ m − |A|. We want to prove that |eG′(A,B)| > |A||B|q′, where eG(·, ·)
indicates the set of edges between A and B in the graph G.

First, by assumption the maximum number of edges that can be missing in G′ from v are
exactly s. Therefore, the maximum number of edges that can be missing in G′ from the set of
all edges with at least one node in A is |A|s. In the worst case, for us, all the missing edges
were part of e(A,B) in G. Thus,

|eG′(A,B)| ≥ |eG(A,B)| − |A|s

Now we can use the fact that G is (K, ρ, q)-LSE to obtain the following:

|eG′(A,B)| ≥ |eG(A,B)| − s|A| > |A||B|q − s|A| .

It remains to show that |A||B|q′ ≤ |A||B|q − s|A|. From q′ = q − 2s
m−2ρ and |A| ≤ m/2 we get

|A||B|q′ = |A||B|
(
q − 2s

m− 2ρ

)
≤ |A||B|

(
q − s

m− |A| − ρ

)
= |A||B|q − |A|s

(
|B|

m− |A| − ρ

)
≤ |A||B|q − |A|s ,

from which we can conclude |eG′(A,B)| > |A||B|q′ as required.
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4.2 Main Theorem and Proofs

We can now apply the results obtained in the previous subsection specifically to our protocol.
Let a denote the maximum number of effort oracle calls that the adversary is willing to make
and let K = κ+ (ηVm+ 2) lnm+ ηVm.3 Formally, we prove

Theorem 4.4 (Soundness). Let

b =

√
d(12 − ηV )

2(lnm− 1)
.

If b > (12 − ηV )/(12 − ηV − ηE) > 1, then the protocol of section 3 is an (α,B)-sound verifiable
polling protocol for

α = K/m+ ηV

and

B(a,m) = max

{
K,

(
b

(b− 1)(12 − ηV )− bηE

)
a

d

}
+ θm .

When a is sufficiently large (so we can ignore the K “free” responses), this implies the
multiplicative advantage of the adversary is bounded by

C(a) =

(
b

(b− 1)(12 − ηV )− bηE

)
+
θmd

a
.

One way to interpret this is that an adversary gets resources equivalent to θm honest users “for
free”, but any more powerful adversary has multiplicative advantage bounded by

C∗ =

(
b

(b− 1)(12 − ηV )− bηE

)
+ 1

(recall that an honest user must solve, in expectation, d PPEs during the protocol execution,
so an adversary more powerful than that must have a > θmd).

Proof. As we discussed at the beginning of the section, there are two ways for the pollster to
affect the vote count:

1. By possibly controlling some of the nodes.

2. By replacing or deleting the votes of honest participants.

For the latter, the bound relies on the security of the signature scheme and on the local
verification of honest parties. In fact, the signature scheme ensures that the adversary cannot
modify responses (with a yi 6= ⊥) (since that would require forging a signature compatible with
the node’s verification key). Thus, the local verification of honest nodes will catch the adversary
deleting or completely replacing nodes; Global verification fails whenever more then θm nodes
complain—thus, the number of deleted/replaced nodes in a successful protocol execution can
be at most θm.

It is left to show that if the number of controlled nodes is higher than B, then global
verification will fail. The proof proceeds as follow:

• Using Lemma 4.2 and Lemma 4.3 we prove that Gp is LSE with high probability.

• We will then have an lower bound on the number crossing edges between a possible set of
bad nodes and the set of honest nodes.

3Recall that ηV is a parameter denoting the max fraction of nodes that can be deleted before verification fails.
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• We conclude by noticing that the pollster, in order to control a set of nodes larger than
B, would have had to succeeded in more than a PPEs involving honest participants.

Let F denote the nodes in Gp corresponding to voters that have failed more than ηEd PPEs.
It must be that |F | ≤ ηVm, otherwise the verification procedure would fail. Let B and H denote
the set of bad and honest nodes, respectively, that have not been labeled as “deleted”. Thus
B, H and F are disjoint sets whose union is V . That is, since we have a total of m nodes, if
|B| = x then |H| = m − x − |F |. Recall that a successful PPE corresponds to an edge in Gp.
Thus, a lower bound on the number of edges in Gp between the sets B and H translates to a
lower bound on the number of PPEs in which the adversary must have succeeded, and hence
on the number of oracle calls made by the adversary.

Note that from Lemma 4.2, we know that Gc is (K, ηVm,
b−1
b p)-LSE with probability at

least 1− 2κ. Thus, from Lemma 4.3, we can conclude that, with probability at least 1− 2κ, Gp
is (K, ηVm,

b−1
b p−

2ηEd
m−2ηVm)-LSE. Wlog assume

|B| < m/2 and |B| ≥ max

{
K,

(
b

(b− 1)(12 − ηV )− bηE

)
a

d

}

(the case |H| < m/2 is analogous, using |H| ≥ (α− ηV )m ≥ K). Then, we get:

|e(B,H)| > |B||H|
(
b− 1

b
p− 2ηEd

m− 2ηVm

)
≥ |B| (m− |B| − ηVm)

(
(b− 1)d(1− 2ηV )− 2bdηE

mb(1− 2ηV )

)
≥
(

2b

(b− 1)(1− 2ηV )− 2bηE

)
a

d

(m
2
− ηVm

)((b− 1)d(1− 2ηV )− 2bdηE
mb(1− 2ηV )

)
=

(
2b

(b− 1)(1− 2ηV )− 2bηE

)
a

d

(
m(1− 2ηV )

2

)(
d[(b− 1)(1− 2ηV )− 2bηE ]

mb(1− 2ηV )

)
= a

Thus, with probability at least 1 − 2κ, |e(B,H)| > a which contradicts the assumption of
the adversary being limited to a successful PPEs.

Therefore, the number of votes controlled by a pollster that invests a effort oracle calls must

be lower than max{K,
(

b
(b−1)( 1

2
−ηV )−bηE

)
a
d}+ θm, as wanted.

5 Completeness

It is now left to show that in the case of an honest pollster, the verification procedure will
succeed with overwhelming probability. Even when dealing with an honest pollster, we still
need to take into account the possibility that malicious voters might try to force the verification
to fail. This can be done by registering for the poll but aborting in all the PPE executions.
Such a strategy will force the verification procedure to label the node as deleted and all its edges
as failing. It will thus increase the number of deleted nodes which, for the verification to output
accept, needs to be smaller than ηVm.

To make sure that such an attack would require the adversary to expend actual effort,
we require each responder to solve a single-sided PPE (where the effort is required only from
the responders) in order to be allowed to participate to the poll. We think of the number of
maliciously controlled nodes as bounded by θm, where θ will depend on the “effort” invested by
the malicious voters. Theorem 5.2 gives a bound on ηV as a function of θ and κ that will enable
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the verification procedure, in case of an honest pollster, to output accept with probability at
least (1− 2κ).

To prove the main theorem of this section, we will require the following lemma (whose proof
is below):

Lemma 5.1. Assuming static corruption, the probability that malicious responders with a θm
bound on effort (in total) can control max {3θmd, 3κ} edges in the certification graph is bounded
by e−κ.

Theorem 5.2 (Completeness). Let θm denote the maximum number of effort oracle calls that
can be made by malicious responders and

ηmin
V = θ +

3 ·max
{
κ
md , θ

}
ηE

+
2σ

ηE

(
1 + max

{
2,

2κ

mdσ

})
If the pollster follows the protocol honestly, ηE > 0 and ηV ≥ ηmin

V then the probability that
the verification procedure outputs accept is at least 1− 2−κ.

We note that for non-trivial soundness, the values of ηE and ηV are further constrained. See
Appendix C for a discussion on choosing the parameters.

Proof. Let G(m, p) = (V,E), with p = d/m, be the random graph generated by the pollster.
Recall that an edge (i, j) is labeled as failing whenever the PPE between i and j fails. We
denote by σ the probability that such an event occurs between honest voters. Moreover, ηE is
the highest fraction of PPEs that can fail before a node/voter gets labeled as deleted, and ηV
is the maximal fraction of deleted nodes accepted by the verification procedure.

Let Xi,j denote the indicator random variable for the event “(i, j) ∈ E is a failing edge”.
Note that, if i and j are both honest, the Xi,j ’s are independent and Pr[Xi,j = 1] = σp. Let
X =

∑
i∈V

∑
j∈V Xi,j . Then, E[X] = m2σp = mdσ and X denotes the number of failing edges

in the graph. Since each edge affect 2 nodes, 2X is actually the cardinality of the set containing
(with repetitions) all the nodes affected by failing X edges. Note that for a node to be labeled
as deleted, such a node needs to be connected to at least dηE failing edges, which means that
such a node has been counted at least dηE times in 2X. Thus, the expected number of deleted
nodes in case of honest responders is bounded by 2X/dηE . Now, in our analysis, we need to
take into account that, in the worst case scenario, there will be θm nodes maliciously controlled
who will intentionally fail all their PPE’s. Therefore, we will have to account for the following:

1. The malicious nodes (which are θm) will be failing nodes;

2. Enough bad edges will cause an honest node to be marked deleted. However, by Lemma 5.1,
with high probability the malicious responders cannot affect more than 3 ·max {κ, θmd}
honest edges. Which means that at most another 3 · max {κ/d, θm} /ηE nodes can be
“forced” to be labeled as deleted.

To conclude, we want to prove that the probability that 2X
dηE

+ θm + 3θm
ηE

is greater than

ηVm is negligible. Let ηV = θ + 3θ
ηE

+ 2σ
ηE

(1 + δ). (we will set δ below.) Then,

Pr

[
2X

dηE
+ θm+

3θm

ηE
> ηVm

]
= Pr

[
2X

dηE
>

2σ

ηE
(1 + δ)m

]
= Pr [X > (1 + δ)mdσ]

By the Chernoff Bound,

Pr [X > (1 + δ)mdσ] ≤ exp

{
− δ2

2 + δ
mdσ

}
Setting δ = max

{
2, 2κ

mdσ

}
, we ensure that Pr [X > (1 + δ)mdσ] ≤ e−κ.
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We conclude by proving Lemma 5.1, as a corollary of the following claim:

Claim 5.3. Let S ⊂ V be an arbitrary set of vertices and denote δ = max {2, 2κ/(|S|d)}. Then

Pr [|{(i, j) ∈ E|i ∈ S}| > (1 + δ)d|S|] < e−κ

(i.e., the probability S has more than (1 + δ)d|S| edges is bounded by e−κ).

Proof. For every pair of vertices i, j ∈ V , let Xi,j be the indicator variable for the event (i, j) ∈
E. By definition, E[Xi,j ] = p. Denote X =

∑
i∈S
j∈V

Xi,j the number of edges adjacent to S. Then

E[X] = mp|S| = d|S|. By Chernoff,

Pr [Xi > (1 + δ)d|S|] ≤ exp

{
− δ

2/δ + 1
d|S|

}
≤ exp

{
−δ

2
d|S|

}
= exp {−κ}

Proof of Lemma 5.1. Since the pollster randomly shuffles the nodes in the certification path
during the registration phase, any set of responders is assigned a random set of nodes in the
certification graph. By symmetry, we can consider the probability for any specific set of size
θm. The result follows by setting |S| = θm in Claim 5.3.

6 Discussion and Open Questions

General Verifiable Computation Among Anonymous Participants While we state
our main results in terms of polling, the security guarantee we give is that the final published
graph does not contain too many “bad” nodes. It may be possible to leverage this technique
for doing more general computations, where the edges in the graph correspond to a private
computation between two parties, and the final goal is a joint, publicly-verifiable computation
(in this case, the “responses” might be some intermediate public values of the computation).

Parallel and Distributed Verification The verification procedure in our protocol is highly
parallelizable: each responder must verify three properties, each of which can be done by reading
only a small part of the graph:

• that her own node was correctly published on the bulletin-board (requires O(m) evalua-
tions of the hash function, but only O(d) communication),

• that the total number of deleted nodes was small (requires reading a small list of nodes),

• and that no edges were missed (this is a local property of each potential edge that can be
computed from the node labels and the size of the graph).

The only non-local part in the verification is the aggregation of the results from all the nodes.
However, by publishing a small amount of additional information, this computation can be
distributed as well. Given an aggregation tree, where each node aggregates the results from its
children, a verifier can check a single local neighborhood and a path from that neighborhood
to the root in the tree. Thus, if we can assume that enough honest responders will participate
in verification, the total amount communication for each responder can be made logarithmic in
the size of the graph.

Practicality of the Protocol The parameters achieved by our protocol are not quite good
enough to be practical for interaction-based PPEs (the degree of the graph would be about 180
for reasonable parameters). However, this may already be good enough for PPEs that can be
automated (for example, the social-network based PPE). Moreover, we believe further research
can significantly improve the efficiency.
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Improving Efficiency by Using Hypergraphs. Our bound on the degree of the graph
may be slightly high for some uses of the protocol. However, we can extend the PPE definition
to a multi-party setting, in which several parties certify each other simultaneously (e.g., using a
multi-person chat, such as “Google Hangout” or “Skype”). This has the potential of significantly
lowering the degree. Extending our protocol in this way may be an interesting direction for
future work.

Improving Efficiency by Using Explicit Graphs. Our bound on the degree of the graph
is for a randomly chosen graph. In particular, our soundness analysis includes the event that
the chosen graph is not a good expander as a failure mode. Thus, we require the properties to
hold for random graphs with overwhelming probability. However, it is fairly easy to prove that
graphs with better parameters (e.g., lower degree for the same expansion rate) exist : if we have
an explicit representation of such a graph, soundness will hold unconditionally.
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A Formal Protocol Description

A.1 Communication Model and Party Identities

Our protocol involves several different classes of participants. There is a single pollster, and
multiple responders and verifiers (the same physical party may participate in the protocol in
more than one role).

Since the main problem we are trying to solve with this protocol is lack of identity verifica-
tion, we cannot assume that the identities of all parties are known in advance. To simplify the
analysis, we will only assume that the pollster’s identity is publicly known.

Anonymous Channels and Network Addresses. To model the fact that the neither the
pollster nor the honest parties know the identities of all the parties we will assume that all
communication are over anonymous channels. To simplify analysis, we will only assume such
channels between the pollster and every honest party (i.e., the communication graph is a star,
with the pollster as the central node).

The pollster and all responders (modeled as ITMs) have one standard outgoing communi-
cation tape and one standard incoming communication tape. Every honest party has a unique
network address in {0, 1}∗ (the network address is given to the party as input). A message
written to the outgoing communication tape by every party except for the pollster is copied
to the pollster’s incoming communication tape. An honest party will always write messages of
the form (addr,msg) to its outgoing communication tape, where addr is its network address.
Every message written by the pollster to its outgoing communication tape is also parsed as an
(addr,msg) tuple, and the message is copied to incoming communication tape of the honest
party with network address addr (if one exists). Regardless of whether addr is valid or not, the
message is also copied to the adversary’s incoming communication tape.

This model allows two-way anonymous communication; Corrupt parties may write arbitrary
source addresses (including using addresses allocated to the honest parties). Thus, the pollster
cannot identify which party wrote the message (except by what is revealed from the contents
of the message). Since a copy of every message is also sent to the adversary, sending a “fake”
source address doesn’t prevent a malicious responder from two-way communication with the
pollster.

When we describe communication between two responder parties (e.g., when the protocol
instructs responder A to communicate with responder B), this is shorthand for their commu-
nicating messages by passing them via the pollster. Although we omit this from the formal
protocol description (to reduce clutter), this can be easily accomplished by adding a special
header in the message that the honest pollster interprets as “forward to the specified address”;
these messages are otherwise ignored by the honest pollster.

Broadcast Channel. In addition to point-to-point channels, we will assume a broadcast
channel from the pollster to all the other parties. This is a special outgoing communication
tape with corresponding incoming broadcast tapes for each other party; any message written
by the pollster to the broadcast tape is copied to the incoming broadcast tapes of all parties.
Verifiers have an incoming broadcast tape, but no standard incoming or outgoing tapes.

Complaint Channel. All parties have a special broadcast channel for “complaints”. This
is used only in cases where the pollster misbehaves in a way that cannot be publicly detected
by other honest parties (for example, if the pollster refuses to interact with an honest party, or
omits its inputs from the final proof).

Implementation with Peer-to-Peer Communication. Although our analysis assumes a
star-shaped communication graph, this is not a very efficient strategy for networks that do
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allow peer-to-peer communication (such as the Internet). Our protocol does not require any
specific topology, as long as parties who need to can communicate—for example, the pollster
can “introduce” every two parties who need to communicate (by giving them each other’s
network addresses), and let them communicate directly. This can only improve soundness,
since a malicious pollster will lose access to the communication between honest parties, so our
soundness guarantees will continue to hold (and it has no effect on completeness, since the
pollster doesn’t use its privileged position in the communication graph in any way except to
pass messages).

A.2 Adversary and Corruption Model

We consider two types of adversaries: a malicious pollster (who attempts to violate the sound-
ness guarantee) and malicious responders (who attempt to violate the completeness guarantee).

Soundness. In the malicious pollster case, our adversarial model does not include corruption
of responders: this is without loss of generality, since the pollster can create an arbitrary number
of “fake” responders and control them completely (honest responders do not have any secret
inputs, so there is no information to be gained by corrupting them). Thus, modeling “sybils”
is natural in this model (the pollster just broadcasts additional identities). When we refer to
“corrupt” parties, this is shorthand for identities that were created by the pollster in this way.

We note that, since all communication is under the control of the pollster, the pollster can
perform message replay attacks as well as copy message contents but forge the originator (as
long as the fake source of the message is a corrupt party—it can’t forge a signature for an honest
party).

Completeness. In the malicious responder case, we can assume the pollster is honest (since
a malicious pollster can always perform a denial-of-service attack by simply aborting). In this
case, we can assume a single malicious responder, who creates an arbitrary number of fake
identities (this is w.l.o.g. in the static corruption setting, since there are no secret inputs).

A.3 Full Protocol

We divide the protocol into six phases (as described in section 3). The formal protocol de-
scription for each phase appears below. The phases are executed in order. In addition to the
specified inputs, each party receives as input its view from the previous phases.

A.3.1 Common Elements

We make use of several elements common to all of the subprotocols.

Signature Scheme. In all of the subprotocols, we make use of a public-key signature scheme,
(Gen, Sign, V er). denoting the key generation, signing algorithm and verification algorithm
respectively. Gen(1κ) outputs a key pair (sk, vk). Sign(msg, sk) outputs a signature σ ∈
{0, 1}∗, and V er(msg, σ, vk) outputs either 1 (if σ is a valid signature on msg with verification
key vk) or 0 if not (if V er outputs one we say the signature is accepted).

Pseudonyms and Network Addresses. The first step for every party in the protocol is
generating a signature scheme key pair. The verification key is used as the party’s pseudonym.
Since parties communicate directly only through the pollster, we can identify the parties’ net-
work addresses with their pseudonyms (the pollster can keep a table mapping one to the other,
or provide the address when needed). Note we do not assume a pre-existing PKI—a malicious
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pollster can play man-in-the-middle between any pair of honest parties (however, the protocol
will ensure that such an attack is not advantageous to the pollster).

Session identifiers, serial numbers and message validity. To prevent replay attacks,
the pollster generates a unique session identifier sid as the first step of the protocol. A
message between parties vksrc and vkdst is considered valid only if it begins with the tuple
(sid, vksrc, vkdst, serial, σ), where serial is the number of messages sent so far in session sid
between vksrc and vkdst, and σ is a valid signature under vksrc of the entire message contents,
including the initial header tuple (sid, vksrc, vkdst, serial).

Dealing with errors. At any point in the protocol, malicious parties may deviate from the
honest execution. Any detected deviation is treated as if the deviating party aborted. For
example, if party A receives an invalid message from party B, it treats this as if B aborted (and
ignores any further messages from B).

Unless we explicitly say otherwise, the same holds for PPE verification (if parties A and B
engage in a PPE execution, and party A did not successfully verify party B, it treats this as if
B has aborted).

Protocol 1 Parameter Announcement
This protocol is executed by the pollster with inputs κ, questions, p:

1: (SK, V K)← Gen(1κ) // Generate pollster’s key pair
2: Broadcast (sid, κ, p, V K, questions) to all parties.

Protocol 2 Registration

This protocol is between the pollster and every responder Ri. Every Ri receives as input addri
(its network address).
For every i ∈ {1, . . . ,m}, Ri and the pollster execute:

1: (Responder Ri): (SKi, V Ki)← Gen(1κ) // Generate responder’s key pair
2: (Responder Ri): send (addri, V Ki) to pollster.
3: (Pollster and Ri): Engage in a one-sided PPE with identifier (sid, V Ki) (in which Ri is

the prover).
4: (Pollster): If verification was successful, add (addri, V Ki) to the responder list.

When the registration phase is completed:

1: (Pollster): Choose a random permutation π : [m] 7→ [m] and broadcast the shuffled list
(V Kπ(1), . . . , V Kπm). // The shuffle is used only as defense against malicious responders;
to reduce clutter we ignore it except in the completeness proof; when we write Ri below we
actually mean Rπ(i).

2: (Responder Ri): Verify that V Ki appears in the list. If not, broadcast a complaint.

B Implementing PPEs, Extensions and Selective Polling

The peer-to-peer nature of PPEs seems to facilitate implementation with relatively simple
mechanisms. Below we give several examples.

B.1 Bitcoin and Proofs of Storage

The original motivation for proofs of storage (PoS) is to allow clients to outsource data storage
“to the cloud”. In this setting a storage provider stores a large file on behalf of a client.
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Protocol 3 Responder Certification

This protocol is executed between every responder Ri and its neighbors in the certification
graph: Ni = {Rj |j ≤ m, j 6= i,H(i, j) < p}. Note that Ni can be computed independently by
Ri given the public parameters H, p and the list (V K1, . . . , V Km). For responder Ri:

1: for all Rj ∈ Ni (concurrently) do
2: Engage in a PPE ΠE(Ri, Rj) with identifier (sid, V Kmin{i,j}, V Kmax{i,j}).

3: If ΠE(Ri, Rj) = 1, Ri computes σ ← Sign(sid||V Kj , SKi) and sends σ to Rj .
4: Let σj be corresponding the signature received from Rj
5: end for
6: Let Goodi = {σj |V er(sid||V Ki, σj , V Kj) = 1} be the set good signatures from neighbors.

Protocol 4 Poll Response

This protocol is between is the pollster and every responder Ri. Ri’s input in this phase is xi,
the answers to the poll questions.
For every i ∈ {1, . . . ,m}:

1: Ri sends respi = (xi, Goodi, Sign(sid||xi||Goodi, SKi)) to the pollster.

Roughly, a PoS protocol allows the provider to prove to the client that it is still storing the file
(can reconstruct the entire file), using a small amount of communication.

Since storage is a valuable resource, it is tempting to use proofs-of-storage as the “effort
unit” in an effort-based polling scheme (e.g., one unit of effort could be storing 1GB of data for
1 day).

Moreover, publicly-verifiable proofs of storage have been constructed [1]—given a “public-
key” generated for a specific file, anyone can verify that the PoS that the storage provider
publishes for that file.

The problem here is that “backup” is a peer-to-peer concept. In particular, any solution
must prevent malicious parties from sending each other “fake” data to store: e.g., they store a
short seed instead of a large pseudorandom file generated by that seed.

However, the existing PoS protocols can be trivially used to construct a PPE: an honest user
will send good (incompressible) files to its peers (e.g., by encrypting the file), and it can verify
using the PoS that the files were stored as required. The soundness and completeness properties
of this PPE are inherited directly from the PoS protocol, hence we can hope for almost perfect
completeness and negligible soundness-error.

This implementation of PPEs may be most interesting in the context of Bitcoin. One of the
strong arguments against the currency is the inherent waste of the Bitcoin protocol [11]; this is
a direct consequence of using proof-of-work as the basis of its effort-based polling scheme. If we
could replace proof-of-work with, for example, “proof-of-backup”, instead of generating heat as
a side-effect, the Bitcoin network would function as a distributed backup system in addition to
a currency.

Protocol 5 Results and Proof
This protocol is executed by the pollster.

1: for all i ∈ {1, . . . ,m} do
2: Broadcast respi
3: end for
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Protocol 6 Verification
This protocol is executed by the responders and verifiers

Local Verification. Executed by every responder. For every i ∈ {1, . . . ,m}:
1: verify that respi was published.
2: if respi was not published, broadcast a complaint.

Global Verification. Executed by every verifier. The verifiers receive θ as a parameter.

1: Set badNodes← 0.
2: Set complaints← 0.
3: Initialize an array count[] indexed by the poll answers.
4: for all i ∈ {1, . . . ,m} do
5: Verify that respi contains a valid signature from under V Ki

6: Verify that Goodi is valid (all signatures in it are valid).
7: if |Ni| − |Goodi| > ηEd then
8: Increment count[xi]. // We don’t count nodes if they failed more than ηEd PPEs
9: else

10: Increment badNodes
11: end if
12: if Ri broadcast a complaint then
13: Increment complaints
14: end if
15: end for
16: if complaints > θm then
17: Output ⊥ // Too many complaints
18: end if
19: if badNodes > ηVm then
20: Output ⊥ // Too many deleted nodes
21: end if
22: Output the array count.
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B.2 Human Interaction

The simplest type of PPE consists of human interaction: participants certify each other’s effort
by simply talking with each other (e.g., using VOIP, video, or even textual chat). This is at
least as hard to pass than a “real” Turing test (which consists solely of textual interaction), so
its soundness properties seem to be very robust.

To prevent a proxying attack (in which Eve convinces Alice that she has expended effort by
relaying Alice’s challenges to Bob and vice versa), the protocol can include Bob reading aloud
his partner’s identity. Thus, to act as a person-in-the-middle, Eve would have to translate Bob
saying Eve’s public key to Bob saying Alice’s public key, which seems like it would require some
actual effort.

B.3 Symmetric CAPTCHAs

In this version of the PPE, each party generates a “real” CAPTCHA to be solved by the other
party while simultaneously solving the CAPTCHA she received.

To prevent a proxying attack, we bind the CAPTCHA to the parties’ identities using a com-
bination of cryptographic commitments and a Message Authentication Code (MAC). Define the
CAPTCHA as a problem-generator G(r) that given a random input r generates a CAPTCHA
C along with its solution V .

1. When Bob generates a CAPTCHA for Alice, he chooses a secret MAC key and sets as
the random input to G the MAC of the pair of public keys (Alice,Bob). He sends G(r) to
Alice.

2. Alice solves C, and sends a commitment to her solution to Bob.

3. Bob then sends his secret MAC key to Alice.

4. Alice verifies that the challenge she received is correctly generated (i.e., bound to Alice
and Bob’s public keys). If not, she aborts

5. Otherwise, Alice opens her commitment

6. Bob verifies that Alice correctly solved the challenge.

This protocol ensures that Eve can’t use Alice to solve Bob’s challenge to her, since Alice would
refuse to open her commitment if she sees the CAPTCHA wasn’t meant for her. Note that in
terms of the effort required, this is not harder than just solving a CAPTCHA—the rest of the
protocol can be completely automated.

B.4 Leveraging Existing Social Networks

Instead of an online effort, a possible PPE implementation can use an existing social network
(basing the “effort” on the assumption that becoming “well connected” in a social network is
difficult). For example, two parties can verify that they have several short, vertex-disjoint paths
between them in the social network (or use some other measure of distance for which the effort
assumption seems reasonable).

In this version of the protocol, parties are not guaranteed anonymity (since they must
reveal their identities in order to verify their distance in the social network), but the public
transcript of the protocol does not reveal anything about their identities or their social-network
neighborhood.

The main problem here is preventing an adversary from using the same social-network iden-
tity in multiple different PPE invocations. The fact that the PPE is a private-coin primitive
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makes this problem easy to solve, assuming the social network allows users to publish infor-
mation linked to their real identity (e.g., a “home page”). Party i chooses a random nonce ri
and publish a commitment to ri on their homepage. When executing the PPE with party j, i
will publish ri and privately open the commitment to ri towards party j; Party j can verify by
looking at i’s homepage that the nonce is the correct one. Assuming the homepage provides a
consistent view to all honest users, i cannot use a different nonce in different PPE invocations.
However, the public transcript cannot be linked to i’s social-network identity due to the hiding
property of the commitment.

B.5 Other PPE Extensions

Our basic definition of PPE only guarantees that “effort” is expended by the parties. This
can be easily extended to capture more complex conditions that are hard to verify publicly but
may be easy to verify in a peer-to-peer manner. For example, we may want to poll participants
only in a small geographic area. While certifying location in a publicly-verifiable way is difficult,
verifying that someone else is physically nearby can be much easier (e.g., using speed of response
or shared environmental cues, such as noise or micro-local weather conditions). By extending the
PPE to also verify physical proximity, our protocol guarantees that if enough locals participate,
the vast majority of participants must be local.

A similar situation occurs when we want to poll groups whose membership is secret (e.g.,
a poll of the “Anonymous” organization). If we can assume that members of the group can
recognize each other (e.g., they have a “secret handshake”), we can use the same technique to
guarantee that our poll is targeting the group.

We can also use an existing social network to poll specific communities (here the intent is
to use the social network in addition to an effort test. Thus we can conduct verifiable polls on
a social-network graph while keeping the graph itself secret—this can be important, since the
structure of the social network often reveals a large amount of information about the identity
of its nodes.

C Choosing Parameters

Below is a table containing a list of the most common parameters used throughout the paper.
We partition the parameters into fixed parameters (in Table 1)—those that depend on assump-
tions about adversarial behavior and the effectiveness of the PPEs, and tunable parameters
(in Table 2)—those that can be set by the poll designer (subject to certain constraints) and
computed parameters (in Table 3)—these are functions of the previous parameters.

Table 1: Fixed Parameters

Symbol Description

m Total number of responders to the poll / Number of nodes
in the graph.

n Number of honest responders.

a
Upper bound on the number of oracle calls that the adver-
sary can successfully perform / Upper bound on the number
of attack edges.

Continued on next page
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Table 1 – continued from previous page

Symbol Description

θ
Upper bound on the fraction of malicious responders: the
total number of oracle calls made by malicious responders is
at most θm.

σ Probability of a PPE failing when both parties honestly fol-
low the protocol.

ε Probability of a PPE succeeding when one party does not
make at least one oracle call.

Table 2: Tunable Parameters

Symbol Description

κ Security parameter.

d
Expected degree of the graph (expected number of PPE
executions per responder). This can be tuned by changing
p (p = d/m).

α Minimum fraction of honest responders required to guaran-
tee soundness.

Table 3: Computed Parameters

Symbol Description

p Edge probability. Every pair of responders will be required
to engage in a PPE with probability p.

ηE
Upper bound on the fraction of PPE’s that a responder can
fail without getting deleted.

ηV
Upper bound on the fraction of nodes that can be deleted
without causing the verification procedure to fail.

K Number of nodes in the graph that the adversary can control
“for free”.

Continued on next page
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Table 3 – continued from previous page

Symbol Description

C∗
Upper bound on the multiplicative advantage of the adver-
sary (an adversary has no more influence than an honest
user that can invest C∗ times the effort).

C.1 Constraints on Parameters

First, from Theorem 4.4 we have:√
d(12 − ηV )

2(lnm− 1)
> (

1

2
− ηV )/(

1

2
− ηV − ηE)

which implies that

d >
1
2 − ηV

(12 − ηV − ηE)2
(2 lnm− 2) . (1)

By the definitions of α and K in Theorem 4.4, we get

α ≥ K/m+ ηV =
κ+ 2 lnm

m
+ ηV (lnm+ 2) ≥ κ+ 2 lnm

m
(2)

Isolating ηV instead of α, we have:

ηV ≤ ηmax
V =

α− κ+2 lnm
m

2 + lnm
(3)

Combining this with the bound on ηV from Theorem 5.2, we get

ηmin
V = θ +
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κ
md , θ

}
ηE

+
2σ

ηE

(
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{
2,

2κ

mdσ

})
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V

Which implies the following bound on ηE :

ηE ≥ ηmin
E = ηE ·
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V − θ
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V − θ

=
3 ·max

{
κ
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}
+ 2σ

(
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2, 2κ

mdσ

})
ηmax
V − θ

(4)

Finally, note that we must have θ < ηV ≤ ηmax
V , but this is not sufficient. Since we need

1
2 − ηV − ηE > 0:

1

2
< ηV + ηE ≥ ηmin
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E

≥ θ +
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V , this implies
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6θ + 4σ
(
1 + max

{
2, 2κ

mdσ

})
ηmax
V

= θ

(
1 +

6

ηmax
V

)
+
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This gives us the following bound on θ:

θ <

1
2 −

4σ
ηmax
V

(
1 + max

{
2, 2κ

mdσ

})
1 + 6

ηmax
V

(5)

Since the θ must be non-negative, we also have a bound on σ:

12σ

ηmax
V

≤ 4σ

ηmax
V

(
1 + max

{
2,

2κ

mdσ

})
≤ 1

2

hence

σ ≤
ηmax
V

24
(6)

C.2 Examples of Parameter Settings

For simplicity we will consider PPEs for which the soundness error ε is negligible and we will
omit it. Moreover, depending on the context in which we would like to use our protocol and the
level of security we would like to achieve, different type of PPEs might be more suitable. As
presented in Appendix B, there are multiple ways we could think of implementing PPEs and,
naturally, each implementation comes with its own advantages/disadvantages. For instance,
opting for a proof-of-storage based implementation can provide us with PPEs with almost
perfect completeness (σ = 0), but requires a lot of communication. On the other hand, other
implementations which would give us a worse completeness error (e.g., based on CAPTCHAs),
might have higher error but require fewer (or different) resources.

In Table 4 the reader can find example parameter settings for two parameter regimes: in
Scenarios 1 and 2, there are 5000 responders and PPEs are error-free, while Scenarios 3 and
4 have 100000 responders with PPEs that have a non-negligible (albeit small) error rate. The
first scenario in each pair has degree close to the minimum possible for those parameters, while
the second demonstrates the soundness advantage of increasing the degree (we note that the
values are based on our worst-case bounds—in practice it may be possible to achieve better
parameters).

Table 4: Possible Parameters

Symbol Scenario 1 Scenario 2 Scenario 3 Scenario 4

κ 40 40 40 40

m 5, 000 5, 000 100, 000 100, 000

θ 1/1000 1/1000 1/10000 1/10000

σ 0 0 1/1000 1/1000

ηE 1/8 1/8 0.23 0.23

ηV 0.025 0.025 0.028 0.028

α 0.28 0.28 0.38 0.38

Continued on next page
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Table 4 – continued from previous page

Symbol Scenario 1 Scenario 2 Scenario 3 Scenario 4

K 1246 1246 35, 192 35, 192

d 60 120 165 240

C∗ 200 10 670 23

As to be expected, higher the degree of the graph (that is the number of PPEs each responder
is required to carry out) lower is the advantage the adversary gets.
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