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Abstract

Fully Homomorphic Encryption schemes (FHEs) and Functional Encryption schemes
(FunctEs) have a tremendous impact in Cryptography both for the natural questions that
they address and for the wide range of applications in which they have been (sometimes
critically) used.

In this work we put forth the notion of a Controllable Homomorphic Encryption scheme
(CHES), a new primitive that includes features of both FHEs and FunctEs. In a CHES
it is possible (similarly to a FHE) to homomorphically evaluate a ciphertext Ct = Enc(m)
and a circuit C therefore obtaining Enc(C(m)) but only if (similarly to a FunctE) a token
for C has been received from the owner of the secret key.

We discuss difficulties in constructing a CHES and then show a construction based on
any FunctE.
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1 Introduction

In this paper we put forth the notion of a controllable homomorphic encryption scheme (CHES,
in short) that blends together the notion of a fully homomorphic encryption scheme [Gen09a]
(FHE, in short) and of a functional encryption scheme [BSW11, GVW12a] (FunctE, in short).
Specifically, like in a FHE, a CHES-ciphertext of plaintext m can be homomorphically trans-
formed into a ciphertext of plaintext C(m), for every efficiently computable function C; on the
other hand, like in a FunctE, the homomorphic transformation can only be efficiently per-
formed by a party that has a special token for function C that is released by the owner of
the master secret key. Except for the token for C, no other secret information is needed to
homomorphically transform a ciphertext according to function C.

Non-triviality. The following scheme is a straightforward (albeit inefficient) construction of a
CHES derived from any standard public key encryption scheme E = (GenKey,Enc,Dec) and any
secure signature scheme S = (SigKeyGen, Sign,Verify). The public key of the CHES consists of a
pair (pk, vk) of a randomly generated public key pk of E and of a randomly generated verification
key vk of S. To encrypt message m, one simply computes an encryption of m with respect to key
pk. The token for function C is simply a signature σC of C and to homomorphically transform
ciphertext ct0, one simply appends an encryption ct1 of the pair (C, σC) to ct0. The decryption
function takes a pair of ciphertexts (ct0, ct1), decrypts both and obtains (m,C, σC). If σC is a
correct signature of C, then the decryption function outputs C(m); otherwise, it outputs ⊥.

There is a clear drawback in the above construction: the size of the ciphertext depends on the
size of the description of the function C. In this paper, to avoid triviality, we require ciphertext
size and decryption time to be upper bounded by a polynomial of the security parameter and
be independent of the function C. This is the same requirement that makes the construction of
a FHE non-trivial [Gen09a].

1.1 Contribution

The contribution of this work consists of the following three steps. We introduce and define this
new primitive, we discuss some interesting applications, and provide a construction based on
any FunctE. Our main result is the above last step, indeed we will show a general procedure
that builds a CHES starting from a general functional encryption scheme.

Limitations of FunctEs w.r.t. CHESs. At first, one might think that a CHES is just a
special case of a functional encryption scheme: the token to transform an encryption of m into
an encryption of C(m) is simply a token for the function that first computes C(m) and then
re-encrypts the result. Such a direct construction suffers of two major problems.

One first problem posed by this simple construction is that randomness must be used to
construct the resulting ciphertext and this would require a notion of functional encryption for
probabilistic functionalities proposed in two independent works. Alwen et al. [ABF+13] put
forward a definition of randomized functional encryption but they are able to construct it only
for very restricted classes of functionalities. In another work, Goyal et al. [GJKS13] propose
functional encryption schemes for randomized functionalities for two different notions of security,
both suffering from some limitation. The first one is simulation-based but stated in the selective
model. This is the best one can hope for simulation-based security since, due to the impossibility
result of Agrawal et al. [AGVW13a] and Boneh et al.[BSW11], for non-selective security it is
necessary to put a bound on the number of queries the adversary can ask (see also Gorbunov et
al. [GVW12b], De Caro et al.[DIJ+13] and De Caro and Iovino [CI13]). The second definition
they propose is indistinguishability-based but is affected by the severe problem of forbidding the
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adversary to ask queries for computationally indistinguishable distributions, thus not providing
any guarantee of security in applications where the server is provided with a token for the re-
encryption function. Therefore, for the scope of our applications the solution of Goyal et al. is
not satisfactory unless one wants to resort to bounded security (i.e., putting a bound on the
number of ciphertexts and tokens generated by the system) that represents a strong limitation.
Instead, our approach does not suffer from this problem. In fact, we are able to prove the security
of our scheme under a notion of security that (1) is not selective, (2) allows the adversary to
ask an unbounded number of queries and (3) does allow the adversary to request token for the
re-encryption function. Another more serious problem in using functional encryption naively is
made evident by looking at the following example. Suppose an adversary obtains a token for
the increment function C(m) := m + 1. Clearly, for every two messages m1 6= m2 the output
range of the evaluation of the token for C are disjoint (as one contains encryptions of m1 + 1
and the other encryptions of m2 + 1). This makes the security requirement of the functional
encryption scheme vacuous. Indeed, security for functional encryption schemes is only with
respect to adversaries that obtain tokens for which the two challenge plaintexts give the same
result and, quite understandably, no guarantees is given for adversaries that have requested and
obtained tokens for which the two challenge plaintexts give different results1. Therefore, if the
token for the innocent looking increment function is released, all security disappears.

Tricks to construct a CHES. We obtain a CHES by solving the two major problems of the
above direct construction of a CHES from a FunctE. Concerning the first problem, we will make
use of pseudorandom functions in order to provide to the evaluation process a pseudorandom
string to be used for re-encryption. Concerning the second problem, we exploit the fact that
even though the two output ranges are disjoint they are still indistinguishable. Interestingly,
a similar observation could be used for functional encryption in order to have a relaxed (and
therefore easier to achieve) but still fully meaningful definition.

In sums, our construction considers as starting point the problematic construction described
above and will leverage on various techniques in order to obtain the desired security. Our
construction is proved secure against an adversary that receives tokens for circuits of his choice
after seeing the challenge ciphertext. We leave open the problem of constructing a CHES where
the adversary can ask encryption and token queries in any order.

Targeted malleability. In a recent paper, Boneh et al. [BSW12] put forward the notion of
targeted malleability that generalizes the notion of non-malleability [DDN91] by ensuring that
the malleability of an encryption scheme is limited to a set of legal functions F , specified in the
public key. We note that, unlike in CHES, in targeted malleability the set F of legal functions
is specified during the key-generation phase and then any party can efficiently homomorphically
transform any ciphertext according to any function in F without receiving any secret information
from the owner of the secret key. Thus the two primitives are quite different in scope. Boneh et
al. [BSW12] show how to transform any FHE scheme into one that offers targeted malleability
based on the existence of succinct non-interactive arguments that are known to exist under
non-falsifiable assumptions [Nao03].

We also notice that in their construction [BSW12], ciphertexts obtained through homomor-
phic transformations can themselves be transformed again and this process can be repeated up
to a constant number t of times; the value t must be specified during the generation of the public
key that grows with t but the length of the ciphertexts is independent of t.

1 Here we only consider game-based notions of security as simulation-based ones suffer of more serious limita-
tions [BSW11, AGVW13b, DCIJ+13, CI13].
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In this work, we do not concentrate on this property and give a construction of CHES
in which the mauling procedure can only be applied to ciphertexts output by the encryption
procedure. We mention though (and do not elaborate further) that our construction can be
modified so that the homomorphic transformation procedure can be applied any constant number
of times, starting from a ciphertext generated by the encryption procedure. We stress that in
our case this number does not affect the length of the ciphertexts nor the one of the public key.

Indistinguishability obfuscation. Recently Garg et al. [GGH+13] constructed indistin-
guishability obfuscation, a powerful primitive that overcomes the limitation of virtual black-box
obfuscation, and allows to build functional encryption indistinguishability-secure against adver-
saries asking an unbounded number of token queries.

For sake of simplicity and generality, in this work we focus on constructing a CHES by
relying on functional encryption only. An interesting question that we leave open is whether
one can construct improved CHESs by weaker assumptions.

Application scenarios. The notion of a CHES finds natural applications in the problem of
outsourcing computation on private data to an untrusted server.

In the first scenario we consider a user U that has one message m and stores it in encrypted
form Ct on an untrusted server S using a CHES. At some later point, U wishes to compute value
C(m) and sends a CHES token TokC for C (i.e., the token that when applied on a ciphertext
for m returns a ciphertext for C(m)). The server S applies the token TokC to Ct and returns
the resulting ciphertext to U . If the server S is honest-but-curious, the above scheme guarantees
that U gets the desired result without revealing anything about m (not even the value C(m)).
The same would work with a FHE. However, a malicious server S could just pick an arbitrary
value, encrypt it using the CHES and then return the value to U . Against such a dishonest
adversary, we can use the standard trick of adding a MAC as follows. U sends S an encryption
Ct of m and of a random value R (i.e., Ct is an encryption of the concatenation of m and R). To
compute the value C(m), for some circuit C, U picks an arbitrary value x and generates a token
for the circuit that returns an encryption of C(m) and of F (R, x), where F is a pseudo-random
family of functions2. In other words, the token encrypts C(m) and a MAC of the fact that
the right token was used to compute the result. Notice that this simple tweak would not give
security against malicious servers in the above case based on a FHE and this shows that in
some applications CHESs is conceptually stronger than FHEs.

CHES is an extension of public key encryption and thus, quite obviously, tokens can be
applied to ciphertexts that are generated by third parties. This is different from other approaches
to secure outsourcing of computation (see, e.g., [GGP10]) in which it is implicitly implied that
ciphertexts are generated by the same party that will later ask to perform computation on the.

Indeed, in the second scenario we consider a user U who publishes its CHES public key and
then various users U1, . . . , Uk use U ’s public key to send to S encryption c1, . . . , ck of messages
m1, . . . ,mk. Each time U wants to compute a function over those encrypted messages, it sends
a token Tok for circuit C to S. Then S applies t to each of the above k ciphertexts therefore
obtaining new ciphertexts c′1, . . . , c

′
k that are then sent to U . U decrypts those k ciphertexts

therefore obtaining C(m1), . . . , C(mk). Notice that U can perform this final decryption steps
(that can be iterated many times depending on the number of the users) by only running the
decryption procedure of a CHES, and this can potentially be efficient (i.e., faster than evaluating
C). Similarly to the first scenario, a simple tweak can make this application secure against a

2The use of a PRF is needed to allow the use of more than one token for the same ciphertext; otherwise, a
simple encryption of C(m) concatenated to R would be sufficient.
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malicious server S. However in this case users will have to communicate (non-interactively) to
U the values R they used when computing ciphertexts.

2 Definitions

Notation. We will denote by λ the security parameter. A negligible function ν(λ) is a function
that is smaller than the inverse of any polynomial in λ, for sufficiently large λ. If D is a
probability distribution, the writing “x← D” means that x is chosen according to D. If D is a
finite set, the writing “x← D” means that x is chosen according to uniform probability on D.
If q > 0 is an integer then [q] denotes the set {1, . . . , q}. If A is an algorithm then A(x1, x2, . . .)
denotes the probability distribution of the output of A when A is run on input (x1, x2, . . .) and
randomly chosen coin tosses. Instead A(x1, x2, . . . ;R) denotes the output of A when run on
input (x1, x2, . . .) and (sufficiently long) coin tosses R.

All algorithms, unless explicitly noted, are probabilistic polynomial time and all adversaries
are modeled by non-uniform polynomial time algorithms. If B is an algorithm and A is an
algorithm with access to an oracle then AB denotes the execution of A with oracle access to
B. If a and b are arbitrary strings, then a||b denotes the string that represents the delimited
concatenation of a and b. We assume a standard binary encoding for circuits, so for ease
of exposition we define functions with binary inputs and invoke them with circuits as inputs
instead of their binary encodings.

For the sake of simplicity, in this work we will only consider circuits that on a n-bit input
compute an n-bit output. However, this can be generalized to any nI -bit input and nO-bit
output circuit where nI = nI(λ), nO = nO(λ) and nI , nO are polynomials.

2.1 Functional Encryption for Circuits

In this paper we use a special FunctE, which we call FE4C, that allows to compute any
polynomial size circuit (see [GVW12a, GGH+13]). We start by giving a definition of FE4C and
then we present the security notion that we use in our construction.

Definition 2.1 [FE4C: Functional Encryption Scheme for Circuits] A Functional Encryption
scheme for Circuits is a tuple FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Eval) of 4 efficient algo-
rithms with the following syntax:

1. FE.Setup(1λ, 1n) outputs public and master secret keys (Pk,Msk) for security parameter
λ and length parameter n.

2. FE.KeyGen(Msk, C), on input a master secret key Msk for length parameter n and an
n-bit input and n-bit output circuit C, outputs token TokC .

3. FE.Enc(Pk,M), on input public key Pk for length parameter n and plaintextM ∈ {0, 1}n,
outputs ciphertext Ct.

4. FE.Eval(Pk,Ct, Tok) outputs B ∈ {0, 1}n ∪ {⊥}.
For the correctness condition we require that for all n-bit input and n-bit output circuits C, all
M ∈ {0, 1}n, and for (Pk,Msk)← Setup(1λ, 1n), Tok← KeyGen(Msk, C) and Ct← Enc(Pk,M),
the probability that Eval(Pk,Ct, Tok) 6= C(M) is negligible in λ.

We formalize security for a FE4C FE by means of the following game FE-IndCPA-Game
between a challenger FE .C and an adversary A that can issue two types of queries to FE .C,
encryption queries and token queries. The definition is essentially the one in [BSW11].
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FE-IndCPA-GameFEA (λ, n)

Setup. FE .C generates (Pk,Msk) ← FE.Setup(1λ, 1n), selects random b ∈ {0, 1} and runs A
on input Pk.

Token Query. FE .C on input an n-bit input n-bit output circuit C, computes and returns
Tok← FE.KeyGen(Msk, C).

Encryption Query. FE .C, on input a pair (m0,m1) of plaintexts, answers by computing and
returning FE.Enc(Pk,mb).

Output of the Game. Let b′ the output of A. Then the game outputs 1 if and only if

1. b = b′;
2. for all encryption queries (m0,m1), it holds that m0 and m1 are of the same length;
3. for all token queries C and for all encryption queries (m0,m1), it holds that C(m0) =
C(m1).

Definition 2.2 We say that a FE4C FE is IND-CPA secure if for all PPT adversaries A there
exists a negligible function µ such that

Prob[FE-IndCPA-GameFEA (λ) = 1] ≤ 1/2 + µ(λ).

Tag-Based Non-Rerandomizable Functional Encryption. In our main construction we
use a special type of FE4C in which ciphertexts cannot be re-randomized. More precisely, we
consider tag-based FE4C in which the encryption algorithm for n-bit plaintext m and security
parameter λ takes two extra arguments: a tag τ from the set Tλ of λ-bit tags and an auxiliary
message of length n1. It is easy to see how any FE4C can be modified to accommodate tags and
auxiliary messages at the expenses of increasing the length parameter n. In a non-rerandomizable
tag-based FE4C, given a ciphertext for an adversarially chosen plaintextm and auxiliary message
aux and a random tag τ , no adversary can produce another ciphertext for the same plaintext
m and the same tag. Specifically, we consider the following security game between a challenger
FE .C and and adversary A that can issue one single encryption query.

ReRandomTFE
A (λ, n, n1)

Setup. FE .C generates (Pk,Msk)← TFE.Setup(1λ, 1n, 1n1) and runs A on input Pk.

Token Query. FE .C on input an (n + n1 + λ)-bit input (n + n1 + λ)-bit output circuit C,
computes and returns Tok← TFE.KeyGen(Msk, C).

Encryption Query. FE .C, on input plaintext m and auxiliary message aux, picks a ran-
dom tag τ from the set Tλ of tags of length λ and returns a ciphertext Ct =
TFE.Enc(Pk,m, aux, τ) with tag τ .

Output of the Game. Let Ct? the output of A. Then the game outputs 1 if and only if

1. Ct? 6= Ct;
2. TFE.Dec(Msk,Ct?) = (m′, aux′, τ ′) with m′ = m and τ = τ ′;

We say that a tag-based FE4C TFE is non-rerandomizable if for all PPT adversaries A and for
n and n1 polynomially bounded in λ there exists a negligible function µ such that

Prob[ReRandomTFE
A (λ, n, n1) = 1] ≤ µ(λ).
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It is easy to see that any tag-based FE4C can be transformed into a non-rerandomizable
one by using a secure signature scheme. More precisely, we define the encryption algorithm
TFE.Enc that encrypts plaintext m and aux, to pick a random pair of (vk, sgk) of verification
and signing key for a secure signature scheme (SigKeyGen, Sign,Verify) and m, aux are encrypted
using vk as tag obtaining Ct. Finally, a signature σCt of Ct is computed using the signing key sgk
and the resulting ciphertext consists of the pair (Ct, σCt). Tokens for function C on ciphertext
(Ct, σCt) first verify σCt and, if successful, proceed to compute C(m, aux). We observe that A
either changes the verification key (and thus changes the tag) or keeps the same verification key
but then it has to sign a new ciphertext or compute a new signature (which would violate the
security of the signature scheme).

3 Controllable Homomorphic Encryption

In this section we define the notion of a Controllable Homomorphic Encryption Scheme (CHES).

Roughly speaking, in a CHES it is possible to homomorphically create a string that will be
decrypted as C(M) on input a ciphertext for M only if one holds a special token for the circuit
C. Similarly to the compactness requirement of FHE, we require that the length of the string
homomorphically computed be independent of the circuit.

Definition 3.1 A Controllable Homomorphic Encryption Scheme (CHES, in short) is a tuple
CHE = (CHE.Setup,CHE.KeyGen,CHE.Enc,CHE.HEval,CHE.Dec) of efficient algorithms with the
following syntax and that enjoys the following property of correctness.

1. CHE.Setup(1λ, 1n) on input the security parameter λ and length parameter n, outputs
public and master secret keys (Pk,Msk).

2. CHE.KeyGen(Msk, C) on input master secret key Msk for length parameter n and the
description of an n-bit input and n-bit output circuit C, outputs token TokC for circuit C.

3. CHE.Enc(Pk,M) on input public key Pk with length parameter n and plaintext M ∈
{0, 1}n, outputs a ciphertext Ct.

4. CHE.HEval(Pk,Ct, Tok) on input public key Pk for length parameter n, a ciphertext Ct
for plaintext M ∈ {0, 1}n and a token Tok for circuit C, outputs a string Ct′ of size
independent of C.

5. CHE.Dec(Msk,Ct′′) on input the master secret key Msk and a string Ct′′ outputs a string
M ∈ {0, 1}n ∪ {⊥}.

For the correctness we require that (CHE.Setup,CHE.Enc,CHE.Dec) be an encryption scheme,
and that there exists a negligible function µ such that for all n = poly(λ), for all n-bit input and
n-bit output circuits C, and all plaintexts M ∈ {0, 1}n it holds that:

Pr [CHE.Dec(Msk,HEval(Pk,Ct, TokC)) 6= C(M) ] ≤ µ(λ)

where (Pk,Msk)← Setup(1λ, 1n), TokC ← KeyGen(Msk, C) and Ct← Enc(Pk,M).

Multivariate CHES. FHE is multivariate in the sense that it allows to efficiently combine in-
dependently computed ciphertexts for messagesm1, . . . ,ml into one ciphertext for C(m1, . . . ,ml)
for any efficiently computable multivariate function f . On the other hand, functional encryp-
tion has been defined and constructed as a univariate primitive, in the sense that tokens can
be issued only for univariate functions. For example, it is not possible to have a token that
computes which among two ciphertexts encrypts the larger value.

6



Since our notion is inspired by functional encryption, we decided to define CHES as a
univariate primitive. Both for FunctE and CHES obtaining constructions for the multivariate
case is an important open question.

Composing tokens. In the definition of a CHES, the output of CHE.HEval is not required
to be a valid ciphertext (that is, an output of CHE.Enc) and correctness only requires it to be
a valid input for CHE.Dec. This means that the security definition does not necessarily need
to tolerate an adversary that receives a token for a circuit C, an encryption of m and then
computes an encryption of Ci(m), for any i > 0. More in general, the security definition does
not have to assume that an adversary is able to compose tokens.

We would like to point out that it is possible to formally define a CHES so that tokens could
be composed. The requirement then for a successful adversary would be to output a ciphertext
of C(mb) for a circuit C that is not the composition of the ones for which she received tokens.
However efficiently proving such a fact could be difficult as it is a co-NP statement.

Along these lines, we point out that the concept of targeted malleability as implemented
in [BSW12] allows composition of homomorphic transformations for a constant and fixed num-
ber of times (this allows to go-around co-NP) using non-falsifiable knowledge extraction as-
sumptions (these are needed to construct succinct extractable arguments that are needed for
compactness). We finally point out that our construction can be modified to allow a constant
and fixed number of compositions of homomorphic transformations, even though in the paper
we do not elaborate further.

Given the above subtleties, from now on we consider a ciphertext as the output of the
encryption function. While the output of the evaluation function is just a string.

3.1 Security of a CHES

As usual in encryption schemes, there are two flavors to measure the security of a CHES. The
most interesting flavor is the non-malleable one, since it captures the idea of controlling the
capability of mauling a ciphertext. We will therefore continue with the definition of an NM-
CPA CHES, and the interested reader can find in Appendix A the notion of IND-CPA CHES,
along with some expected implications concerning this notion.

NM-CPA security of a CHES scheme. We now consider a security definition for CHES
that is the conceptually equivalent to the notion of NM-CPA security of plain encryption
schemes. We formalize this notion of security for a CHES CHE = (CHE.Setup,CHE.KeyGen,
CHE.Enc,CHE.HEval,CHE.Dec) by means of games CHES-NMCPA-GameCHEb,A , for b = 0, 1, be-
tween an adversary A and a challenger CHE .C. The adversary A receives a randomly generated
public key of CHE and can issue two types of queries to CHE .C: encryption queries and token
queries. Below we formalize how queries are answered by CHE .C and the output of the games.
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CHES-NMCPA-GameCHEb,A (λ, n)

Setup. CHE .C computes (Pk,Msk)← CHE.Setup(1λ, 1n) and runs A on input Pk.

Token Query. CHE .C replies to a token query for a circuit C by returning TokC ←
CHE.KeyGen(Msk, C).

i-th Encryption Query. CHE .C replies to an encryption query (M i
0,M

i
1) with M i

0 6= M i
1 and

|M i
0| = |M i

1|, by returning Ct← CHE.Enc(Pk,M i
b).

Output of the Game. Let (j,Ct?, C) be A’s output.

If all the following conditions hold:

1. A did not issue a token query for circuit C ′ that coincides with C on M j
b .

2. C(M j
0 ) 6= C(M j

1 ).

3. CHE.Dec(Msk,Ct) = C(M j
b ).

4. Ct? is not a ciphertext obtained as a reply to an encryption query.

then the output is C(M j
b ). Otherwise the output of the game is ⊥.

The above definition captures the fact that the adversary manages to produce (see conditions 3
and 4) a new ciphertext of C(M j

b ) (for otherwise, the adversary could issue encryptions queries
for (M0,M1) and for (C(M0), C(M1)) and returns the ciphertext obtained as a reply to this
second query; in case of a single ciphertext query, the adversary could set C equal to the identity
function and return the ciphertext obtained as a reply to the encryption query (M0,M1)). For
this to be a meaningful achievement, it must be that the circuit C gives different output for the
two challenge plaintexts (see condition 2) (for otherwise, the ciphertext could have been obtained
by simply giving in output C(M j

0 ) = C(M j
1 )). Moreover, it is also required (see condition 1)

that the adversary has not asked for a token for a function C ′ for which C(M j
b ) = C ′(M j

b ) (for
otherwise, the ciphertext could have been obtained by simply applying the token).

Definition 3.2 A CHES CHE is a NM-CPA secure CHES if for every PPT adversary A for all
polynomially bounded n = n(λ) we have that the following two ensembles are indistinguishable{

CHES-NMCPA-GameCHE0,A (λ, n)
}

and
{
CHES-NMCPA-GameCHE1,A (λ, n)

}
.

A CHES CHE is single-message NM-CPA secure if it is NM-CPA secure with respect to all
PPT adversaries A that ask exactly one encryption query.

In App. B we show that any single-message NM-CPA-secure CHES is also NM-CPA-secure.

4 CHES from Functional Encryption

In this section, we describe an NM-CPA CHES CHE = (CHE.Setup,CHE.KeyGen,CHE.Enc,
CHE.HEval,CHE.Dec). We stress that our security proof works only for an adversary that is
required to first ask for an encryption query and then can ask for tokens.

In the description of CHE, we let FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Eval) be an IND-
CPA secure non-rerandomizable3 tag-based FE4C. For a CHES with n-bit plaintexts and secu-
rity parameter λ, we use an FE for plaintexts of length n, auxiliary message of length λ+ 2. In

3In the proof, we give details of the impact of the transformation of Section 2.1 in case FE is re-randomizable.
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addition we let F = {F (·, ·)} be a pseudorandom family of functions F (·, ·) (the first argument
is the seed), and PKE = (Setup,Enc,Dec) be a public-key encryption scheme.

For sake of simplicity, we assume that secret keys of PKE with security parameter λ are
exactly λ-bit long and that ciphertexts of n-bit messages computed with respect to public key
with security parameter λ have length ` = `(λ, n). Also, not to overburden notation, we assume
that the tag space Tλ of FE coincides with the seed space of F and that they both coincide with
{0, 1}λ. In addition, for an n-bit input and n-bit output circuit C, `-bit string s, and public key
FE.Pk of FE, we denote by Cs,FE.Pk the (n+ 2λ+ 2)-bit input circuit defined as follows:

C
s,FE.Pk

(M, r, t, sk) =


FE.Enc(FE.Pk, (C(M), 0λ,⊥, 0λ);F (r, C)), if t = 0;

Dec(sk, s), if t = 1;

⊥, if t = ⊥;

where M ∈ {0, 1}n, r, sk ∈ {0, 1}λ and t ∈ {0, 1,⊥}. In what follows, we will drop FE.Pk from
C

s,FE.Pk
whenever it is clear from the context and simply write Cs.

Circuit Cs takes three types of plaintexts: regular plaintexts, corresponding to t = 0, which
are the outputs of the encryption algorithm; mauled plaintexts, corresponding to t =⊥, which
are outputs of the application of a token; trapdoor plaintexts, corresponding to t = 1, which
are used only in the proof. For ciphertexts carrying regular plaintexts, the circuit Cs outputs a
ciphertext for C(m) and this captures the correct application (through the CHE.HEval algorithm)
of a token for circuit C to an encrypted message. Notice that in this case the resulting ciphertext
carries a mauled plaintext. For ciphertexts carrying mauled plaintexts, the circuit Cs outputs
⊥ and this captures the (incorrect) application of a token to an already mauled message. For
ciphertexts carrying a trapdoor plaintexts, Cs outputs a decryption of s with respect to the
secret key that is part of the trapdoor plaintext. In the reduction of an adversary for CHE to
an adversary for FE, trapdoor plaintexts are very useful because they force Cs to return a value
that is independent of the actual input M , and thus can be used to contradict the security of
FE (cfr., discussion in the Introduction). To do so the value s used in the generation of the
tokens must be carefully chosen so to be indistinguishable from the ones output by algorithm
CHE.KeyGen.

Algorithm CHE.Setup(1λ, 1n).

1. Run algorithm FE.Setup on input (1λ, 1n+2λ+2) and obtain (FE.Pk,FE.Msk);
2. run algorithm Setup on input 1λ and obtain (pk′, sk′);
3. set Pk = FE.Pk and Msk = (FE.Pk,FE.Msk, pk′);
4. return (Pk,Msk).

Algorithm CHE.KeyGen(Msk, C).

1. set s = Enc(pk′,FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ)));
notice that 0n is the plaintext, (0λ,⊥) constitute the auxiliary message and 0λ the tag.

2. set Tok = FE.KeyGen(FE.Msk, Cs);
3. return Tok.

Algorithm CHE.Enc(Pk,M).

1. Randomly select tag r ∈ {0, 1}λ;
2. run algorithm Setup on input 1λ and obtain (pk, sk);
3. set Ct = FE.Enc(FE.Pk, (M, r, 0, sk));

notice that M is the plaintext, (0, sk) is the auxiliary message and r is the tag.
4. return Ct.
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Algorithm CHE.HEval(Pk,Ct, Tok) outputs FE.Eval(FE.Pk,Ct, Tok);

Algorithm CHE.Dec(Msk,Ct)
1. Set Tok = FE.KeyGen(FE.Msk, ID) where the circuit ID is defined in the following way:

ID(x1, x2, x3, x4) = x1.
2. return FE.Eval(FE.Pk,Ct, Tok).

In our construction we are using the r component of a plaintext both as a tag and as the seed of
the PRF that gives the randomness of the ciphertext resulting from the application of a token
(see the definition of Cs). In case Tλ does not coincide with the seed space of the PRF then we
add another value to be used as a seed of a PRF.

The correctness of the scheme follows by the correctness of FE and by the definition of Cs.
In the next section we prove the following theorem.

Theorem 4.1 Under the assumption of the existence of an IND-CPA secure functional en-
cryption scheme for all circuits (FE4C), there exists a NM-CPA secure CHES secure against
adversaries that ask all encryption queries before the token queries.

A construction of a FE4C that is secure (according to Definition 2.2) when the adversary
sees any polynomial number of tokens has recently been given in [GGH+13].

4.1 Proof on NM-CPA Security

Here we prove the security of our scheme for adversaries that issues all token queries after the
encryption query and issues exactly one encryption query (by Theorem B.1 we get security
against multi-message adversaries).

Assume that there exists such an adversary A that breaks the security of CHE for parameters
λ and n; that is, there exists a distinguisher D such that, denoted by pb(λ, n) the probability
that D outputs 1 when its input is sampled according to CHES-NMCPA-GameCHEb,A (λ, n),
p0(λ, n) ≥ p1(λ, n) + µ(λ) for some non-negligible function µ(·).

Based on A, we build adversary B for FE for security parameter λ and length parameter
n+ 2λ+ 2. B interacts with challenger FE .C for FE to which B can issue encryption and token
queries and runs internal copies of A and D.

Adversary B tricks adversary A into believing it is interacting with CHE .C by presenting a
view that differs indistinguishably by the one offered by CHE .C since the challenge ciphertext is
trapdoor. Then, from A’s output B manages to decrypt by obtaining from FE .C of a token for
a function that is equivalent to decryption when applied to A’s output but, nonetheless, gives
the same value when applied to a ciphertext for one of the two challenge plaintexts output by
B. This therefore allows B to win in the security game of functional encryption.

Next we formally describe how B, FE .C, D, and A interact.

Setup. FE .C randomly selects b ← {0, 1}, computes (FE.Pk,FE.Sk) ← FE.Setup(1λ, 1n+2λ+2)
and runs B on input FE.Pk.

B computes (pk′, sk′)← Setup(1λ), sets CHE.Pk = FE.Pk and runs A on input CHE.Pk.

Encryption query. When A issues an encryption query for the pair of messages (M0,M1),
B proceeds as follows. B selects random r0, r1 ← {0, 1}λ, sets m0 = (M0, r0, 1, sk

′) and
m1 = (M1, r1, 1, sk

′), and issues encryption query (m0,m1) to challenger FE .C.
We remind the reader that, for b = 0, 1, Mb is the plaintext, rb is the tag and (1, sk′) is
the auxiliary message.

Challenger FE .C returns Ct = FE.Enc(FE.Pk,mb) and B returns ciphertext Ct to A.

10



Token query. When A issues a token query for circuit C, B proceeds as follows.

B sets mC
0 = (C(M0), 0

λ,⊥, 0λ) and mC
1 = (C(M1), 0

λ,⊥, 0λ), issues encryption query
(mC

0 ,m
C
1 ) to challenger FE .C and receives CtC as a reply.

We remind the reader that, for b = 0, 1, C(Mb) is the plaintext, 0λ is the tag and (⊥, 0λ)
is the auxiliary message.

B then sets s = Enc(pk′,CtC), issues a token query for Cs and receives token TokC as a
reply. B returns TokC to A.

Output. A outputs circuit G and Ct? (claimed to be an encryption of G(Mb)).

Define circuit ˜ID(·, ·, ·, ·) as

˜ID(M, r, t, sk) =


⊥, if (M, r) = (M0, r0) or (M, r) = (M1, r1);

⊥, if t = ⊥;

M, otherwise;

B issues token query for ˜ID and obtains token Tok
˜ID as a reply from FE .C. B then computes

Out = FE.Eval(FE.Pk,Ct?, Tok
˜ID). If D(Out) = 1 then B outputs 0 as its guess for b; B

outputs 1 otherwise.

This ends the description of B.

Handling re-randomizable FE4C. Before proceeding further, we briefly discuss the impact
on algorithm B of the transformation outlined in Section 2.1 in case the underlying FE4C FE
is re-randomizable. We remind the reader that, in order to enforce non-rerandomizability, the
encryption algorithm is modified by using a signature verification key as tag and then adding a
signature to the ciphertext. Tokens check that the signature that is part of the ciphertext is cor-
rect according to the verification key in the plaintext. Thus we modify the encryption algorithm
so that one extra slot is used in the plaintext: (M, r, t, sk, vk) where now (M, r) constitute the
plaintext, (t, sk) the auxiliary message, and vk the tag. During the setup, algorithm B picks a
pair (vk′, sgk′) and the verification key vk′ is used as tag in the ciphertexts returned as replies to
encryption queries and the associated signing key sgk′ is used to sign the ciphertexts. The func-
tion ˜ID is then modified to return ⊥ if (M, r, vk) = (M0, r0, vk

′) or if (M, r, vk) = (M1, r1, vk
′).

We omit further details.

Sanity check. Let us verify what happens if A asks for a token TokC for circuit C and then
sets G = C and computes ciphertext Ct? by applying TokC to the ciphertext Ct of Mb obtained
as a reply to the encryption query (M0,M1). Obviously, such an adversary, by the correctness of
CHE, always succeeds but cannot be considered a successful adversary according to the definition
of NM-CPA security. Therefore B should not be able to break the IND-CPA security of the
underlying functional encryption scheme FE, otherwise we would get a contradiction.

In fact, by applying TokC on Ct, A gets a ciphertext for (C(Mb), 0
λ,⊥, 0λ) which is useless

since ˜ID(C(Mb), 0
λ,⊥, 0λ) =⊥, independently from b. One might think of modifying the defini-

tion of ˜ID by removing the clause concerning the case t =⊥. But then B would cease to be a
legitimate adversary for the IND-CPA security of FE. Indeed, observe that, in the construction
of TokC , B issues encryption queries for plaintexts (C(M0), 0

λ,⊥, 0λ) and (C(M1), 0
λ,⊥, 0λ);

this adds the constraint that B can only ask tokens for functions for which these two plaintexts
give the same output.
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Hybrid plaintext for Ct s in Tok

Hβ
0 (Mβ, r, 0, sk) Enc(pk′,FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ); z))

Hβ
1 (Mβ, r, 0, sk) Enc(pk′,FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ);F (r′, C)))

Hβ
2 (Mβ, r, 0, sk) Enc(pk′,FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ);F (r, C)))

Hβ
3 (Mβ, r

′, 1, sk′) Enc(pk′,FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ);F (r, C)))

Hβ
4 (Mβ, r

′, 1, sk′) Enc(pk,FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ); z))

Figure 1: The hybrid experiments at a glance. The pairs (pk, sk) and (pk′, sk′) and the values
r and r′ are randomly chosen at the start of the hybrid experiment. The values z used as
randomness for FE.Enc are randomly and independently chosen for each token query. Invocations
of the Enc algorithm take fresh and independent randomness (not shown above).

We continue the proof by showing that B is a legitimate adversary for FE. That is, we need to
prove that for all the encryption queries (m0,m1) issued by B we have that m0 and m1 have the
same length; and that, if B has issued token query for circuit C then for all encryption queries
(m0,m1) we have that C(m0) = C(m1). The first condition is easily seen to be satisfied. Let us
verify that the second condition holds. For each token query for circuit C issued by A, B issues
token query for circuit Cs. B, on the other hand, issues encryption queries for (M0, r0, 1, sk

′)
and (M1, r1, 1, sk

′) while answering A’s challenge query. In this case we have Cs(M0, r0, 1,sk
′) =

Cs(M1, r1, 1,sk
′) = Decrypt(s,sk′). B also issues encryption queries while preparing the answer to

A’s token queries. In this case we have that Cs(C(M0), 0
λ,⊥, 0λ) = Cs(C(M1), 0

λ,⊥, 0λ) = ⊥.
A similar reasoning holds for the token query for ˜ID issued by B in the output phase.

In the rest of the proof we will show that A’s view in the interaction with B is indistin-
guishable from the view of A in CHES-NMCPA-GameCHEb,A (λ, n) (b is the random bit selected
by CHE .C in the Setup phase). We will then prove that, except with negligible probability,
the value x computed by B is the same as the output of CHES-NMCPA-GameCHEb,A (λ, n) and
thus the output of the distinguisher D can be used to correctly guess b. Specifically, we show
that, for β = 0, 1, the view of A in CHES-NMCPA-GameCHEβ,A is indistinguishable from the
view of A in the interaction with B that is in turn interacting with FE .C that sets b = β. We
do so by considering a sequence of hybrid experiments and then showing that adjacent hybrid
experiments are indistinguishable (see Figure 1).

Hybrid Hβ
0 .

1. Setup. Set (pk, sk)← Setup(1λ), (pk′, sk′)← Setup(1λ) and (FE.Pk,FE.Sk)← FE.Setup(1λ, 1n+2λ+2).
Randomly pick r, r′ ← {0, 1}λ. Run A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (M0,M1), return
Ct = FE.Enc(FE.Pk, (Mβ, r, 0, sk)).

3. Token query. When A issues a token query for circuit C, proceed as follows.
Pick random z ∈ {0, 1}λ and set s′ = FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ); z). Set s = Enc(pk′, s′).
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Set Tok = FE.KeyGen(FE.Sk, Cs) and return Tok.

For β = 0, 1, the view ofA inHβ
0 is the same as the view ofA is CHES-NMCPA-GameCHEβ,A (λ, n).

Hybrid Hβ
1 . Hybrid Hβ

1 differs from Hβ
0 only in the way value s′ is computed in the reply to

token query for circuit C. Specifically, s′ is computed by using pseudorandom value F (r′, C)

instead of truly random value z. The formal description of Hβ
1 follows.

1. Setup. Set (pk, sk)← Setup(1λ), (pk′, sk′)← Setup(1λ) and (FE.Pk,FE.Sk)← FE.Setup(1λ, 1n+2λ+2).
Randomly pick r, r′ ← {0, 1}λ. Run A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (M0,M1), return
Ct = FE.Enc(FE.Pk, (Mβ, r, 0, sk)).

3. Token query. When A issues a token query for circuit C, proceed as follows. Set s′ =
FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ);F (r′, C)). Set s = Enc(pk′, s′) and return Tok = FE.KeyGen(FE.Sk, Cs).

Next we show that, by the pseudorandomness of F , the views of A in Hβ
0 and Hβ

1 are
indistinguishable, for β = 0, 1. We do so by constructing an efficient simulator algorithm S
that interacts with adversary A and has access to an oracle O that can be either random or
pseudorandom. Depending on the nature of O, S produces A’s view in Hβ

0 or in Hβ
1 . This

suffices for proving that Hβ
0 ≈c H

β
1 . Next we describe S.

1. Setup. S sets (pk, sk)← Setup(1λ), (pk′, sk′)← Setup(1λ) and (FE.Pk,FE.Sk)← FE.Setup(1λ, 1n+2λ+2).
Then S randomly picks r, r′ ← {0, 1}λ. Finally, S runs A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (M0,M1), S returns
Ct = FE.Enc(FE.Pk, (Mβ, r, 0, sk)).

3. Token query. When A issues a token query for circuit C, S proceeds as follows. S
queries O on C, obtains z and sets s′ = FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ); z). Finally, S sets
s = Enc(pk′, s′) and returns Tok = FE.KeyGen(FE.Sk, Cs).

Suppose the oracle O is in random mode; that is, all queries are answered with random values.
Then it is easy to see that A’s view is exactly the same as in Hβ

0 . On the other hand, suppose
the oracle O is in pseudorandom mode; that is, O picks a random r′ and, upon receiving C, it
replies with F (r′, C). Then it is easy to see that A’s view is exactly the same as in Hβ

1 .

Hybrid Hβ
2 . Hybrid Hβ

2 differs from Hβ
1 again in the randomness used to compute the value

s′. Specifically, s′ is computed by using as randomness the pseudorandom value F (r, C) instead

of F (r′, C). The formal description of Hβ
2 follows.

1. Setup. Set (pk, sk)← Setup(1λ), (pk′, sk′)← Setup(1λ) and (FE.Pk,FE.Sk)← FE.Setup(1λ, 1n+2λ+2).
Randomly pick r, r′ ← {0, 1}λ. Run A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (M0,M1), return
Ct = FE.Enc(FE.Pk, (Mβ, r, 0, sk)).

3. Token query. When A issues a token query for circuit C, proceed as follows. Set
s′ = FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ);F (r, C)). Set s = Enc(pk′, s′) and return Tok =
FE.KeyGen(FE.Sk, Cs).

Next we show that, by the IND-CPA security of encryption scheme Enc, the views of A in Hβ
1

and Hβ
2 are indistinguishable, for β = 0, 1. We do so by constructing an IND-CPA adversary

S for Enc that uses A as a subroutine and interacts with a challenger C for Enc. S has the
property that if C answers S’s encryption queries for (s′0, s

′
1) by encrypting s′0 then A’s view is

exactly the same as in Hβ
1 ; on the other hand, if C answers encryption queries by encrypting s′1

then A’s view is exactly the same as in Hβ
2 . Thus, if the two views can be distinguished, S can

break the IND-CPA security of Enc. Next we describe S.
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1. Setup. S receives pk′ from C and sets (pk, sk)← Setup(1λ). Moreover, S sets (FE.Pk,FE.Sk)←
FE.Setup(1λ, 1n+2λ+2) and randomly picks r, r′ ← {0, 1}λ.
Finally, S runs A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (M0,M1), S returns
Ct = FE.Enc(FE.Pk, (Mβ, r, 0, sk)).

3. Token query. When A issues a token query for circuit C, S proceeds as follows. S sets

s′0 = FE.Enc(FE.Pk, (0n, 0λ,⊥, 0λ);F (r′, C)) and s′1 = FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ);F (r, C))

and issues an encryption query to C obtaining s. Finally, S returns Tok = FE.KeyGen(FE.Sk, Cs).

Hybrid Hβ
3 . Hybrid Hβ

3 differs from Hβ
2 in the way A’s encryption queries are answered.

Specifically, Ct is a ciphertext of (Mβ, r
′, 1, sk′) instead of (Mβ, r, 0, sk). The formal description

of Hβ
3 follows.

1. Setup. Set (pk, sk)← Setup(1λ), (pk′, sk′)← Setup(1λ) and (FE.Pk,FE.Sk)← FE.Setup(1λ, 1n+2λ+2).
Randomly pick r, r′ ← {0, 1}λ. Run A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (M0,M1), return
Ct = FE.Enc(FE.Pk, (Mβ, r

′, 1, sk′)).
3. Token query. When A issues a token query for circuit C, proceed as follows. Set
s′ = FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ);F (r, C)). Set s = Enc(pk′, s′) and return Tok =
FE.KeyGen(FE.Sk, Cs).

Next we show that, by the IND-CPA security of functional encryption scheme FE, the views of
A in Hβ

2 and Hβ
3 are indistinguishable, for β = 0, 1. We do so by constructing an IND-CPA

adversary S for FE that uses A as a subroutine and interacts with a challenger FE .C for FE. S
has the property that if FE .C answers S’s encryption query for (m′0,m

′
1) by encrypting m′0 then

A’s view is exactly the same as in Hβ
2 ; on the other hand, if FE .C answers encryption queries

by encrypting m′1 then A’s view is exactly the same as in Hβ
3 . Thus, if the two views can be

distinguished, S can break the IND-CPA security of FE. Next we describe S.

1. Setup. S receives FE.Pk from FE .C and sets (pk, sk)← Setup(1λ), (pk′, sk′)← Setup(1λ).
Moreover, S randomly picks r, r′ ← {0, 1}λ and runs A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (M0,M1), S sets

m0 = (Mβ, r, 0, sk) and m1 = (Mβ, r
′, 1, sk′)

issues encryption query (m0,m1) to FE .C, obtains Ct and returns it to A.
3. Token query. When A issues a token query for circuit C, S proceeds as follows. S sets

s′ = FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ);F (r, C)) and s = Enc(pk′, s′)

and issues an encryption query to FE .C for a token for circuit Cs. Finally, S returns the
token Tok received from FE .C to A.

Firstly, we verify that S is a legal adversary for IND-CPA of FE. Indeed, S issues one encryption
query for m0 and m1 and for all circuits Cs for which S asks for a token it holds that

Cs(m0) = Cs(m1) = FE.Enc(FE.Pk, (C(Mβ), 0n,⊥, 0n);F (r, c)).

Clearly, if FE .C returns an encryption of m0 then A’s view is exactly as in Hβ
2 ; if FE .C

returns an encryption of m1 then A’s view is exactly as in Hβ
3 .
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Hybrid Hβ
4 . Hybrid Hβ

4 differs from Hβ
3 for the randomness used to compute s′. Specifically,

in Hβ
3 , F (r, C) is used as randomness for computing s′ whereas in Hβ

4 true randomness is used.

The formal description of Hβ
4 follows.

1. Setup. Set (pk, sk)← Setup(1λ), (pk′, sk′)← Setup(1λ) and (FE.Pk,FE.Sk)← FE.Setup(1λ, 1n+2λ+2).
Randomly pick r, r′ ← {0, 1}λ. Run A on input CHE.Pk = FE.Pk.

2. Encryption query. When A issues an encryption query for messages (M0,M1), return
Ct = FE.Enc(FE.Pk, (Mβ, r

′, 1, sk′)).
3. Token query. When A issues a token query for circuit C, proceed as follows. Randomly

pick z ← {0, 1}λ and set s′ = FE.Enc(FE.Pk, (C(Mβ), 0λ,⊥, 0λ); z). Set s = Enc(pk′, s′)
and return Tok = FE.KeyGen(FE.Sk, Cs).

Notice that, for β = 0, 1, the view of A in Hβ
4 coincides with the view of A while interacting

with B. Moreover, by the pseudorandomness of F , Hβ
3 and Hβ

4 are indistinguishable.

B’s success probability. Finally, we show that the probability that B correctly guesses b is
at least 1/2 + µ(λ) for a non-negligible function µ.

All it is left to show is that the string Out computed by B and then fed as input to D is
indistinguishable from the output of CHES-NMCPA-GameCHEb,A . This is necessary since B does

not have access to Msk and uses a token for function ˜ID instead. However, observe that ˜ID differs
from the decryption function when the plaintext associated with Ct? is of the form (Mb, rb, t, sk)
or (M1−b, r1−b, t, sk) for some t and sk. In the first case, this means that A has managed to
re-randomize a ciphertext for FE since it has produced a different ciphertext with the same
plaintext Mb and the same tag rb as the plaintext received from the encryption query. This, by
hypothesis, occurs only with negligible probability. For the second case, observe that r1−b is a
random λ-bit string that is independent from A’s view and thus the probability that A produces
a ciphertext carrying r1−b is negligible. We can thus conclude that the input provided by A to
D is indistinguishable from its input in CHES-NMCPA-Game. Therefore, by the hypothesis
on D we can conclude that B breaks the IND-CPA security of FE.
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A IND-CPA CHES

IND-CPA security of a CHES. We formalize the notion of security equivalent to IND-
CPA for a CHES CHE = (CHE.Setup,CHE.KeyGen,CHE.Enc,CHE.HEval,CHE.Dec) by means of
game CHES-IndCPA-Game between an adversary A and a challenger CHE .C. The adversary
A receives a randomly generated public key of CHE and can issue two types of queries to CHE .C:
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encryption queries and token queries. Below we formalize how queries are answered by CHE .C
and what it means for A to win the game.

CHES-IndCPA-GameCHEA (λ, n)

Setup. CHE .C computes (Pk,Msk) ← CHE.Setup(1λ, 1n), selects a random b ∈
{0, 1} and runs A on input Pk.

Token Query. CHE .C replies to a token query for a circuit C by returning TokC ←
CHE.KeyGen(Msk, C).

i-th Encryption Query. CHE .C replies to encryption query (M i
0,M

i
1) with

|M i
0| = |M i

1|, by returning Ct← CHE.Enc(Pk,M i
b).

Output of the Game. Let b′ be A’s output. Return 1 (meaning that A has won)
iff b = b′.

Definition A.1 A CHES CHE is IND-CPA secure if for every PPT adversary A, there exists
a negligible function µ(·) such that

Pr
[
CHES-IndCPA-GameCHEA (λ, n) = 1

]
≤ 1/2 + µ(λ).

A CHES CHE is single-message IND-CPA secure if it is IND-CPA secure for all PPT
adversaries A asking exactly one encryption query.

A.1 Implications

IND-CPA CHES from LWE. Noticing that any fully homomorphic encryption scheme [Gen09b]
is also an IND-CPA CHES, we have that the results of [BV11, BGV12] prove the following the-
orem.

Theorem A.2 Assuming LWE, there exists an Ind-CPA-secure CHES.

NM-CPA CHES ⇒ IND-CPA CHES. Here we show the natural implication that every
NM-CPA CHES is also an IND-CPA CHES.

Theorem A.3 Any NM-CPA-secure CHES is also Ind-CPA-secure.

Proof: The proof is by contradiction. Assume there exists a PPT adversary A Ind-CPA that
is able to guess the challenge bit with probability at least 1/2 + 1/ poly(λ), for some polynomial
poly(·) and consider the following adversary A′. A′ interacts with a challenger for NM-CPA,
runs an internal copy of A and uses the challenger to answer A’s queries. When A outputs b,
A′ outputs with the triple (1, ct∗, C∗), where ct∗ is an encryption of C?(M1

b ) and C? is a circuit
that satisfies the condition of the definition. Specifically, C?(m) = m+ i where i is the smallest
integer for which C? satisfies the condition of the definition (that is C?(M1

0 ) 6= C?(M1
1 ) and

none of the tokens asked by A coincides with C? on messages M1
0 and M1

1 ). Since the number
of token queries is polynomially bounded, the circuit C? can be efficiently found.
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Ind-CPA: single message vs many messages. Here we show that in order to prove the
Ind-CPA and NM-CPA security of a construction for a CHES, it is sufficient to concentrate
on the case of an adversary that asks for one encryption query only. Indeed, we prove that any
single-message Ind-CPA-secure CHES is also Ind-CPA and similarly for NM-CPA security.

Theorem A.4 Any single-message Ind-CPA-secure CHES is also Ind-CPA.

Proof: Consider a single-message Ind-CPA CHES CHE and suppose by contradiction that
there exists an adversary A against its (many-message) Ind-CPA security that succeeds with
probability 1/2 + 1/ poly(λ) for a polynomial poly(·). We construct an adversary A′ against
the single-message Ind-CPA security of CHE as follows. A′ behaves as a proxy between the
challenger of single-message Ind-CPA and A except for encryption queries and answers. Specif-
ically, A′ selects a random bit b′ and a random index j′ in {1, . . . , q}, where q is an upper bound
on the number of queries of A and will behave as a proxy between A and the challenger for
all token queries and for j′-th encryption query; for the remaining encryption queries (M i

0,M
i
1)

instead, A′ replies by computing an encryption of M i
b′ . Finally, A′ outputs the same bit that A

outputs.

Observe that the success probability of A is equal to 1/2(S0 + S1), where we let Sb denote the
success probability ofA when the challenger chooses bit b. Therefore we have that 1/2(S0+S1) ≥
1/2 + 1/ poly(λ).

Now consider the probability that A outputs the same bit b chosen by the challenger but in an
experiment where for a randomly chosen challenge ciphertext the value b̄ is used instead of b,
and let us denote such a probability by Tb. Notice that, for b = 0, 1, Tb ≥ Sb − µ(λ) for some
negligible function µ, for otherwise we can trivially break the single-message Ind-CPA security
of CHE.

Noticing that with probability 1/2 it holds that b = b′, we have that the success probability of
A′ is S0 + S1 with probability 1/2, and T0 + T1 with probability 1/2.

Summing up, the success probability of A′ can be computed as follows: S0+S1+T0+T1
2 ≥ 1/2 +

poly′(λ) for some polynomial poly′.

B Single-Message vs Multi-Message NM-CPA CHES

Theorem B.1 Any single-message NM-CPA-secure CHES is also NM-CPA-secure.

Proof: Let CHE be a single-message NM-CPA-secure CHES. Assume by contradiction that
there exists a successful adversary A for NM-CPA security and an efficient distinguisher D that
distinguishes

CHES-NMCPA-GameCHE0,A (λ, n) and CHES-NMCPA-GameCHE1,A (λ, n).

We now reduce A to an adversary A′ for single-message NM-CPA security of CHES. The re-
duction is similar to the one given in [PSV06]. Let q > 1 be an upper bound on the the
number of encryption queries made by A. Consider the game CHES-NMCPA-GameCHEJ,A (λ, n)
indexed by vector J = (b1, . . . , bq) that specifies that the j-th encryption query is answered by

encrypting M j
bj

. For j = 0, . . . , q, we define vector Jj = (1, . . . , 1, 0, 0, . . . , 0) as the vector whose
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first j components are 1 and the remaining components are 0. We can now run hybrid argu-
ments since CHES-NMCPA-GameCHE0,A (λ, n) corresponds to CHES-NMCPA-GameCHEJ0,A(λ, n)

and CHES-NMCPA-GameCHE1,A (λ, n) corresponds to CHES-NMCPA-GameCHEJq ,A(λ, n). Since
D distinguishes

CHES-NMCPA-GameCHEJ0,A(λ, n) and CHES-NMCPA-GameCHEJq ,A(λ, n),

there exists j ∈ {0, . . . , q − 1} such that D distinguishes between

CHES-NMCPA-GameCHEJj ,A(λ, n) and CHES-NMCPA-GameCHEJj+1,A(λ, n).

We can therefore use D along with an adversary A′ to contradict single-message NM-CPA
security of CHE as follows. A′ behaves as proxy between the challenger and A for the token
queries. Instead encryption queries are handled as follows. A selects a random j′ ∈ {0, . . . , q−1}
and forwards to the challenger the j′-th encryption query (M j′

0 ,M
j′

1 ) received from A, and
forwards to A the corresponding answer received from the challenger. Instead, for all remaining
encryption queries (M i

0,M
i
1), A′ answers on its own by sending an encryption of M i

1 when i < j′

and of M i
0 when i > j′.

Assume j = j′. Notice that when the challenger encrypts M j
0 , the above game corresponds to

CHES-NMCPA-GameCHEJj ,A(λ, n)

while when the challenger encrypts M j
1 , the above game corresponds to

CHES-NMCPA-GameCHEJj+1,A(λ, n).

By conditioning on the event that j = j′ we conclude observing that therefore D distinguishes
CHES-NMCPA-GameCHE0,A′ (λ′, n) from CHES-NMCPA-GameCHE1,A′ (λ, n).
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